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Abstract—Constructing efficient low-rate error-correcting
codes with low-complexity encoding and decoding have become
increasingly important for applications involving ultra-low-power
devices such as Internet-of-Things (IoT) networks. To this end,
schemes based on concatenating the state-of-the-art codes at
moderate rates with repetition codes have emerged as practical
solutions deployed in various standards. In this paper, we propose
a novel mechanism for concatenating outer polar codes with inner
repetition codes which we refer to as polar coded repetition. More
specifically, we propose to transmit a slightly modified polar
codeword by deviating from Arıkan’s standard 2 × 2 Kernel
in a certain number of polarization recursions at each repetition
block. We show how this modification can improve the asymptotic
achievable rate of the polar-repetition scheme, while ensuring
that the overall encoding and decoding complexity is kept almost
the same. The achievable rate is analyzed for the binary erasure
channels (BEC).

I. INTRODUCTION

Recently, the Third Generation Partnership Project (3GPP)
has introduced various features including Narrow-Band Inter-
net of Things (NB-IoT) and enhanced Machine-Type Commu-
nications (eMTC) into the cellular standard in order to address
the diverse requirements of massive IoT networks including
low-power and wide-area (LPWA) cellular connectivity [4].

In general, devices in IoT networks have strict limitations
on their total available power and are not equipped with
advanced transceivers due to cost constraints. Consequently,
they often need to operate at very low signal-to-noise ratio
(SNR) necessitating ultra-low-rate error-correcting codes for
reliable communications. For instance, the SNR of −13 dB
is translated to capacity being 0.03 bits per transmission. The
solution adopted in the 3GPP standard is to use the legacy
turbo codes or convolutional codes at moderate rates, e.g., the
turbo code of rate 1/3, together with up to 2048 repetitions to
support effective code rates as low as 1.6 × 10−4. Although
this repetition leads to efficient implementations with reduced
computational complexity and latency, repeating a high-rate
code to enable low-rate communication will result in rate
loss and mediocre performance. As a result, studying efficient
channel coding strategies for reliable communication in this
low SNR regime, where channel coding is the only choice, is
necessary [1].

The fundamental non-asymptotic laws for channel coding
in the low-capacity regimes have been recently studied in [1].
Furthermore, the optimal number of repetitions with negligible
rate loss, in terms of the code block length and the underlying
channel capacity, is characterized in [1]. It is also shown in
[1] that the state-of-the-art polar codes, proposed by Arıkan

[2], naturally invoke this optimal number of repetitions when
constructed for low-capacity channels. In another related work,
low-rate codes for binary symmetric channels are constructed
by concatenating high-rate i.e., rate close to 1, polar codes
with repetitions [5].

In this paper, we propose an alternative mechanism called
coded repetition, for the repetition concatenation scheme.
A slightly modified codeword in each repetition block is
transmitted instead of identical codewords in all repetition
blocks. The goal is to reduce the rate loss due to the repetition
while keeping the overall encoding and decoding complexity
the same as in a standard repetition concatenation scheme. In
particular, we consider polar codes as the outer code. In the
proposed polar coded repetition scheme, a slightly modified
polar codeword is transmitted in each repetition block by de-
viating from Arıkan’s standard 2×2 Kernel in a certain number
of polarization recursions at each repetition block. We show
that our proposed scheme outperforms the straightforward
polar-repetition scheme, in terms of the asymptotic achievable
rate, for any given number of repetitions over the binary
erasure channel (BEC). The proposed polar coded repetition
has almost the same encoding and decoding complexity as the
straightforward repetition scheme.

A. Background

Consider two copies of a binary discrete memoryless chan-
nel (B-DMC) W : X → Y with binary inputs x1, x2 ∈ X
and outputs y1, y2 ∈ Y . The transformation G2 =

(︂
1 0
1 1

)︂
is

applied on the inputs of these two channels and u1 and u2

are generated. Then, x1 and x2 are transmitted through the
independent copies of W . At the decoder side, u1 is decoded
by using two observations y1, y2 and then u2 is decoded by
using the decoded sequence, û1, and the observations y1, y2.
The transformation G2 along with this successive decoding,
referred to as successive cancellation (SC), transforms the
two copies of the channel W into two synthetic channels
W 0 : W ∗ W : X → Y2 and W 1 : W ∗ W : X → Y2 × X
as follows:

W ∗ W (y1, y2|u1) =
∑︂
u2∈X

1

2
W (y1|u1 + u2)W (y2|u2),

W ∗ W (y1, y2, u1|u2) =
1

2
W (y1|u1 + u2)W (y2|u2).

(1)
Here, the channel W 0 is weaker (i.e., less reliable) compared
to W , while the channel W 1 is stronger (i.e., more reliable)



compared to the channel W . The quality of a channel is
measured by a reliability metric such as the Bhattacharyya
parameter defined as

Z(W )
∆
=

∑︂
y∈Y

√︁
W (y|0)W (y|1), (2)

which is equal to the erasure probability for BECs, i.e., for
BEC(ϵ), Z(W ) = ϵ. The Bathacharyya parameters of the
synthetic channels follow the properties

Z(W 1) = Z(W )2,

Z(W 0) ≤ 2Z(W )− Z(W )2,
(3)

with equality in (3) iff W is a BEC.
If we continue applying the transformation G2 recur-

sively m times, we will obtain n = 2m synthetic
channels {W (i)

m }i∈{0,1,...,n−1}. More specifically, if we let
{i1, i2, ..., im} be the binary expansion of i = {0, 1, ..., n−1}
over m bits, where i1 is the most significant bit and im is
the least significant one, then we define the synthetic channels
{W (i)

m }i∈{0,...,n−1} as

W (i)
m = (((W i1)i2)...)im . (4)

Arıkan in his seminal paper, [2], showed that as m → ∞,
these 2m synthetic channels are either purely noiseless or
purely noisy channels. Thus, on the encoder side, using k
entries of the input vector un−1

0 as the information bits and
setting the remaining entries to zero (frozen bits) will provide
almost error-free communication. Hence, an (n = 2m, k) polar
code is a linear block code generated by k rows of Gn = G⊗m

2 ,
which correspond to the best k synthetic channels. Here, .⊗m

is the m-times Kronecker product of a matrix with itself.
Repetition coding is a simple way of designing a practical

low-rate code. Let r denote the number of the repetitions and
N , the length of the code. For constructing the repetition code,
first, one needs to design a smaller outer code (e.g. polar
codes) of length n = N/r for channel W r and then repeat
each of its code bits r times. Consequently, the length of the
final code will be n×r = N . This is equivalent to transmitting
an input bit over the r-repetition channel W r and outputs an
r tuple. For example, if W is BEC(ϵ), then its corresponding
r-repetition channel is W r = BEC(ϵr). The main advantage
of this concatenation scheme is that the decoding complexity
and latency is essentially reduced to that of the outer code
making it appealing to low-power applications. This comes at
the expense of loss in the asymptotic achievable rate especially
if the number of the repetitions is large. Suppose that C(W )
is the capacity of the channel W and NC(W ) is the capacity
corresponding to N channel transmissions. With repetition
coding, since we transmit n times over the channel W r, the
capacity will be reduced to nC(W r). Note that, in general,
we have nC(W r) ≤ NC(W ) and the ratio vanishes with
growing r. Let’s consider BEC(ϵ) as an example with r = 2.
If ϵ = 0.5, then 1

2C(W 2) = 0.375 whereas C(W ) = 0.5.
However, when ϵ is close to 1, C(W 2) = 1− ϵ2 is very close
to 2C(W ) = 2(1− ϵ).

II. PROPOSED SCHEME

In this section, the proposed polar coded repetition scheme
is discussed. It is shown how to improve the performance of
the straightforward repetition scheme in the low-rate regime,
while keeping the computational complexity and latency al-
most the same as the original one.

Consider an outer polar code with r = 2t repetitions and
let c denote a polar codeword of length n = 2m designed for
transmission over a channel W , r times. Owing to the recur-
sive structure of the polar codes, one can write the polarization
transform matrix as Gn = G′

r′ ⊗ G
⊗(m−t′)
2 , where G′

r′ is an
r′ × r′ binary matrix with r′ = 2t

′
. In our proposed scheme,

we consider a different G′
r′ in each repetition block, while

keeping G
⊗(m−t′)
2 the same in all of them. In other words,

the first t′ recursions of Arıkan’s polarization transform are
modified in each repetition while the rest of m− t′ recursions
are kept the same. Note that if one chooses r′ = n, i.e., the
transmission in each block being different, then the channel
capacity C(W ) can be achieved. However, we choose r′ = r
to have a comparable complexity with the straightforward
polar-repetition scheme. The complexity of the simple polar-
repetition and the proposed modified polar-repetition schemes
will be provided at the end of this section.

We illustrate the idea through some examples with two and
four repetitions and constructed with regular and irregular
polar coding approaches. Then, we generalize the regular
scheme to accommodate an arbitrary repetition r.

A. Examples for two and four repetitions

In this subsection, we provide three examples for two and
four repetitions as follows.

Example 1 (Two repetitions): Consider an outer polar code
with two repetitions. Hence, the polar codeword c needs to be
designed for W 2 = W ∗ W . The recursive structure of polar
codes implies that codeword c = (c1 ⊕ c2, c2) is constructed
from the generator matrix Gn = G′

2⊗G
⊗(m−1)
2 , where G′

2 =(︂
1 0
1 1

)︂
and c1 and c2 are polar codewords of length n/2

generated from G
⊗(m−1)
2 .

Now, we consider an alternative scheme where in each
repetition, we transmit different combinations of c1 and c2
by choosing different G′

2 in each of them. Let G′(i)
2 be a

lower triangular matrix1 G′(i)
2 =

(︂
1 0
e 1

)︂
, where e ∈ F2 and

i = {1, 2} is the index of the transmission (see TABLE. I for
two possible matrices). There are three possible cases for two

Table I: Two possible matrices for two repetitions

Pattern no. G′(i)
2

P
(0)
2

(︂
1 0
1 1

)︂
P

(1)
2

(︂
1 0
0 1

)︂
transmissions as follows.

1[6] showed that the column permutations and the one-directional row
operations can always transform a non-singular kernel G′(i)

2 to a lower
triangular kernel G′′ with the same polarization behavior.



1) G′(1)
2 =

(︂
1 0
1 1

)︂
and G′(2)

2 =
(︂
1 0
1 1

)︂
: In this case,

(c1⊕c2, c2) and (c1⊕c2, c2) are transmitted in each repe-
tition. By considering both transmissions, one concludes
that codeword c1 is implicitly designed for the effective
channel that the sub-block of length n/2 observes, i.e.,
for W 2 ∗ W 2 and c2 is designed for W 2 ∗ W 2. As a
result, the capacity per channel use per transmission for
this case and specifically for BEC will be

C
(1)
2 = (C(W 2 ∗ W 2) + C(W 2 ∗ W 2))/4

= (1− ϵ2)/2.

2) G′(1)
2 =

(︂
1 0
1 1

)︂
and G′(2)

2 =
(︂
1 0
0 1

)︂
: For this case,

(c1 ⊕ c2, c2) and (c1, c2) are transmitted in the first
and second repetitions. Codeword c1 is designed for
the effective channel that the sub-block of length n/2
observes, i.e., for (W ∗ W 2) ∗ W , and c2 is designed
for W 2 ∗ W . As a result, the capacity per channel use
per transmission for this case is

C
(2)
2 = (C((W ∗ W 2) ∗ W ) + C(W 2 ∗ W ))/4

= (2− ϵ2 − 2ϵ3 + ϵ4)/4.

3) G′(1)
2 =

(︂
1 0
0 1

)︂
and G′(2)

2 =
(︂
1 0
0 1

)︂
: In the first and

second repetitions, (c1, c2) and (c1, c2) are transmitted.
Both Codewords c1 and c2 are designed for the effective
channel that the sub-block of length n/2 observes, i.e.,
for W 2. As a result, the capacity for this case will be

C
(3)
2 = (C(W 2) + C(W 2))/4

= (1− ϵ2)/2.

It can be observed that for 0 < ϵ < 1, the capacity of case 2
is larger than the capacities of both cases 1 and 3, which are
simple repetition schemes. In other words,

C((W ∗ W 2) ∗ W ) + C(W 3) > 2C(W 2), (5)

where the right hand side of (5) is the capacity for the
straightforward repetition scheme and the left hand side of
(5) is the capacity of case 2.

In the proposed modified approach, which we refer to as
coded repetition scheme, we consider case 2. This modified
scheme has the same encoding/decoding complexity as well
as latency compared to a simple repetition scheme.

Example 2 (Four repetitions with regular polar codes):
Consider an outer polar codes with four repetitions. Since
we intend to keep the complexity of the proposed scheme
the same as the complexity of the simple repetition one, let’s
consider all possible Kronecker products of the patterns P

(0)
2

and P
(1)
2 for G′(i)

4R, i = {1, 2, 3, 4} as the ones depicted in
Table II. We call these patterns regular polar codes. Then,
for four transmissions, we try all 35 multi-subsets of size
4 from the set {P (0)

4R , P
(1)
4R , P

(2)
4R , P

(3)
4R } to find the best one

in terms of the capacity. The channel that each codeword ci
observes follows the recursive structure shown in Fig. 1. With
a simple search among these 35 multi-subsets, it is found that
the pattern (P

(0)
4R , P

(3)
4R , P

(3)
4R , P

(3)
4R ) has the largest capacity.

Table II: All possible cases for four repetitions

Pattern no. G′(i)
4R

P
(0)
4R

(︂
1 0
1 1

)︂
⊗
(︂
1 0
1 1

)︂
P

(1)
4R

(︂
1 0
1 1

)︂
⊗
(︂
1 0
0 1

)︂
P

(2)
4R

(︂
1 0
0 1

)︂
⊗
(︂
1 0
1 1

)︂
P

(3)
4R

(︂
1 0
0 1

)︂
⊗
(︂
1 0
0 1

)︂
In this modified repetition scheme, (c1 ⊕ c2 ⊕ c3 ⊕

c4, c2 ⊕ c4, c3 ⊕ c4, c4), (c1, c2, c3, c4), (c1, c2, c3, c4) and
(c1, c2, c3, c4) are transmitted in the first, second, third and
fourth transmissions, respectively. Codword c1 is constructed
for the effective channel that the first sub-block of length n/4
observes, i.e., for W1 = ((W ∗ W 2) ∗ (W ∗ W 2)2) ∗ W 3, c2
for W2 = (W ∗ W 2)2 ∗ W 3, c3 for W3 = (W 2 ∗ W 4) ∗ W 3

and c4 for W4 = W 4 ∗ W 3. For BEC W , the capacity of the
modified scheme is larger than that of the repetition scheme
for 0 < ϵ < 1:

C4R = C(W1)+C(W2)+C(W3)+C(W4) > 4C(W 4). (6)

Example 3 (Four repetitions with irregular polar
codes2): We consider an alternative type of patterns for 4
repetitions, referred to as irregular polar codes, which have
the same computational complexity as the simple repeti-
tion scheme. These 8 irregular patterns are constructed with

G′(i)
4I =

(︃
P

(j)
2 0

P
(j)
2 P

(j)
2

)︃
and G′(i)

4I =

(︃
P

(j)
2 0

0 P
(j)
2

)︃
, where

j = {0, 1} and i = {1, 2, . . . , 8} (see Fig. 2).
With a simple search among all 330 multi-subsets of

size 4 from the set {P (k)
4I }7k=0, it is found that the pattern

(P
(2)
4I , P

(5)
4I , P

(7)
4I , P

(7)
4I ) has the largest capacity. The channel

that each codeword ci observes follows the recursive structure
shown in Fig. 2. In this scheme, (c1 ⊕ c3 ⊕ c4, c2 ⊕ c4, c3 ⊕
c4, c4), (c1 ⊕ c2, c2, c3, c4), (c1, c2, c3, c4) and (c1, c2, c3, c4)
are transmitted in the first, second, third and fourth trans-
missions, respectively. Codeword c1 is constructed for the
effective channel W1 = (W ∗ W 2) ∗ (W ∗ W 2) ∗ W ∗ W ,
c2 for W2 = (W ∗W 2) ∗ W 2 ∗ W ∗ W , c3 for W3 = (W 2 ∗
W 4) ∗W ∗W ∗W and c4 for W4 = W 4 ∗W ∗W ∗W . For
BEC W , the capacity of the modified scheme with irregular
polar codes is larger than the one with regular polar codes for
0 < ϵ < 1. In other words,

C4I = C(W1) + C(W2) + C(W3) + C(W4) > C4R. (7)

B. General case for regular polar codes

For the general case of r = 2t repetitions with regular polar
codes, we consider all r possible t times Kronecker products
of the patterns P

(0)
2 and P

(1)
2 , as P

(i)
r , i = 0, 1, . . . , r − 1.

In the proposed scheme, we use P
(0)
r = (P

(0)
2 )⊗t for the

first transmission and P
(r−1)
r = (P

(1)
2 )⊗t for the rest r − 1

ones. For BEC W with an erasure probability ϵ, let’s define
Z
P

(i)
r

(W
(k)
r )

∆
= Z(i1,...,it)(W

(k)
r ) as the erasure probabilities

of the channels that each codeword ck, k = {1, 2, . . . , r} for
pattern P

(i)
r observes and {i1, i2, . . . it} as the t-bit binary

2Note that regular scheme is a special case of the irregular scheme.



Figure 1: The recursive structure of the channels that each codeword ci observes for two and four transmissions.

Figure 2: All 8 possible irregular kernels G′(i)
4I for 4 transmissions and the corresponding recursive structure of the channels

that each codeword ci observes.

expansion of i. Then, the recursive formula for computing
Z
P

(i)
r

(W
(k)
r ) can be written as

Z(i1,...,it)(W
(2j−1)
r ) = Z(i1,...,it−1)(W

(j)
r
2

)×

[1 + Z(i1,...,it−1)(W
(j)
r
2

)− Z2
(i1,...,it−1)

(W
(j)
r
2

)](1−it),

Z(i1,...,it)(W
(2j)
r ) = Z(i1,...,it−1)(W

(j)
r
2

)×

[Z(i1,...,it−1)(W
(j)
r
2

)](1−it),
(8)

where Z(W
(1)
1 ) = ϵ and j = 1, 2, . . . , r

2 . Hence, the capacity
for the proposed scheme will be

CrR =
r −

∑︁r
k=1 ZP

(0)
r

(W
(k)
r )× (Z

P
(r−1)
r

(W
(k)
r ))r−1

r2
.

(9)
Since Z

P
(r−1)
r

(W
(k)
r ) = ϵ, for all k = 1, 2, . . . , r, we will have

CrR =
r −

∑︁r
k=1 ZP

(0)
r

(W
(k)
r )× ϵr−1

r2
. (10)

Next, we show that CrR > C(W r)
r for any r repetitions and



0 < ϵ < 1. In other words,
r∑︂

k=1

Z
P

(0)
r

(W (k)
r ) < rϵ. (11)

To this end, we first prove that
∑︁r

k=1 ZP
(0)
r

(W
(k)
r ) − rϵ has

zeros at ϵ = 0 and ϵ = 1.

Theorem 1. Z
P

(0)
r

(W
(k)
r ) = 0 at ϵ = 0 and Z

P
(0)
r

(W
(k)
r ) = 1

at ϵ = 1 for all k = {1, 2, . . . , r}.

Proof. Let us write the recursive formula for erasure probabil-
ity as Z

P
(0)
r

(W
(k)
r ) = fk1

(fk2
(...fkt

(ϵ)))), where ki = {0, 1},
i = {1, 2, . . . , t} and f0(a) = a + a2 − a3, f1(a) = a2,
∀k = {1, 2, . . . , r}.

Since fki
(a)|a=1 = 1 and fki

(a)|a=0 = 0, by using
recursion, we conclude Z

P
(0)
r

(W
(k)
r ) = 1 at ϵ = 1 and

Z
P

(0)
r

(W
(k)
r ) = 0 at ϵ = 0 ∀k = {1, 2, . . . r}. ■

Then, one can use Sturm algorithm3 [7] to show that∑︁r
k=1 ZP

(0)
r

(W
(k)
r )− rϵ does not have any root in ϵ = (0, 1).

Finally, one can choose an ϵ in the interval (0, 1) and compare
the values of

∑︁r
k=1 ZP

(0)
r

(W
(k)
r ) and rϵ at that point to see

that the capacity of proposed modified scheme is greater than
the repetition one for r number of repetitions. Fig. (3) shows
the left and the right sides of eq. (11) for r = 4.
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Figure 3: Comparison between the left and the right hand sides
of eq. (11).

Note that the decoding complexity of the simple polar-
repetition scheme and the proposed modified polar-repetition
are O(nr + n log n) and O(nr + n log n + n(r − 1) log r),
respectively, [9].

III. NUMERICAL RESULTS

In this section, we provide numerical results for the capacity
of the proposed polar coded repetition scheme for different
numbers of repetitions over BEC and compare them with the
capacity of the simple repetition scheme and the Shannon
bound. Fig. (4) illustrates the capacities of the proposed

3Although Sturm’s theorem is a complete solution for finding the number of
the real roots of the polynomials, when the degree of the polynomial increases,
it isn’t efficient in terms of implementation. The algorithm proposed in [8] is
more efficient for higher degrees.

schemes for 2, 4 and 8 repetitions. It can be observed that
the proposed scheme outperforms the simple repetition scheme
for all of these repetitions. The irregular scheme also slightly
outperforms the regular one for 4 repetitions. On the other
hand, as the number of repetitions increases, the gap to the
Shannon bound increases as expected.
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Figure 4: Capacity of the proposed scheme compared with the
capacity of the repetition scheme for r = 2, 4, 8.

IV. CONCLUSION

In this paper, we proposed a modified approach for the
repetition scheme. In this scheme, we used polar codes as
the outer code and proposed to transmit slightly modified
codeword in each repetition. We showed that the proposed
scheme outperforms the simple repetition scheme, in terms of
the asymptotic achievable rate, over BEC while it keeps the
decoding complexity almost the same as the repetition scheme.
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