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Abstract—In this paper, we present a low-complexity recursive
approach for massive and scalable code-domain nonorthogonal
multiple access (NOMA) with applications to emerging low-
capacity scenarios. The problem definition in this paper is
inspired by three major requirements of the next generations
of wireless networks. Firstly, the proposed scheme is particularly
beneficial in low-capacity regimes which is important in practical
scenarios of utmost interest such as the Internet-of-Things (IoT)
and massive machine-type communication (mMTC). Secondly,
we employ code-domain NOMA to efficiently share the scarce
common resources among the users. Finally, the proposed recur-
sive approach enables code-domain NOMA with low-complexity
detection algorithms that are scalable with the number of users to
satisfy the requirements of massive connectivity. To this end, we
propose a novel encoding and decoding scheme for code-domain
NOMA based on factorizing the pattern matrix, for assigning
the available resource elements to the users, as the Kronecker
product of several smaller factor matrices. As a result, both the
pattern matrix design at the transmitter side and the mixed
symbols’ detection at the receiver side can be performed over
matrices with dimensions that are much smaller than the overall
pattern matrix. Consequently, this leads to significant reduction
in both the complexity and the latency of the detection. We
present the detection algorithm for the general case of factor
matrices. The proposed algorithm involves several recursions
each involving certain sets of equations corresponding to a certain
factor matrix. We then characterize the system performance in
terms of average sum rate, latency, and detection complexity.
Our latency and complexity analysis confirm the superiority
of our proposed scheme in enabling large pattern matrices.
Moreover, our numerical results for the average sum rate show
that the proposed scheme provides better performance compared
to straightforward code-domain NOMA with comparable com-
plexity, especially at low-capacity regimes.

Index Terms—Code-domain NOMA, low-capacity channels,
massive communication, low-complexity recursive detection, low-
latency communication, IoT, mMTC.

I. INTRODUCTION

LOw-capacity scenarios have become increasingly impor-
tant in a variety of emerging applications such as the

Internet-of-Things (IoT) and massive machine-type communi-
cation (mMTC) [2]. For example, the narrowband IoT (NB-
IoT) feature, included in Release-13 of the 3rd generation
partnership project (3GPP), is specifically meant for ultra-
low-rate, wide-area, and low-power applications [3]. To ensure

The material in this paper was presented in part at the IEEE Global
Communications Conference (GLOBECOM), Abu Dhabi, UAE, Dec. 2018
[1].

The authors are with the Department of Electrical Engineering and Com-
puter Science, University of Michigan, Ann Arbor, MI 48109, USA (e-mail:
mvjamali@umich.edu, hessam@umich.edu).

This work was supported by the National Science Foundation under grants
CCF–1763348, CCF–1909771, and CCF–1941633.

wide-area applications, NB-IoT is designed to support maxi-
mum coupling losses (MCLs) as large as 170 dB. Achieving
such large MCLs requires reliable detection for signal-to-noise
ratios (SNRs) as low as −13 dB [4]. Consequently, one needs
to carefully design the communication protocols aimed for
massive communication applications, such as IoT and mMTC,
with respect to the low-SNR constraints.

Recently, nonorthogonal multiple access (NOMA) tech-
niques, that borrow ideas from solutions to traditional prob-
lems in network information theory including multiple access
and broadcast channels, have gained significant attention.
In NOMA schemes, multiple users are served in the same
orthogonal resource element (RE) or, more generally speaking,
a set of users are served in a smaller set of REs. The goal is
to significantly increase the system throughput and reliability,
improve the users’ fairness, reduce the latency, and support
massive connectivity [5], [6]. NOMA is a general setup and,
in principle, any multiple access scheme that attempts to non-
orthogonally share the REs among the users, e.g., random
multiple access [7]–[9] and opportunistic approaches [10], can
be formulated in this setting. In general, NOMA techniques
in the literature can be classified into two categories: power-
domain NOMA and code-domain NOMA.

Power-domain NOMA serves multiple users in the same
orthogonal RE by properly allocating different power levels
to the users [11]. Power-domain NOMA has attracted sig-
nificant attention in recent years and several problems have
been explored in this context. This includes cooperative com-
munication [12]–[14], simultaneous wireless information and
power transfer (SWIPT) [15], multiple-input multiple-output
(MIMO) systems [16], mmWave communications [17], mixed
radio frequency and free-space optics (RF-FSO) systems [18],
[19], unmanned aerial vehicles (UAVs) communications [20],
and cache-aided systems [21]. The detection procedure in
power-domain NOMA highly relies on successive interference
cancellation (SIC) which works well provided that the channel
conditions of the users paired together are not close to each
other.

Code-domain NOMA, on the other hand, aims at serving
a set of users, say K, in a set of M orthogonal REs, with
M ⩽ K, using a certain code/pattern matrix. The pattern
matrix comprises K pattern vectors each assigned to a user
specifying the set of available REs to that user. Unlike power-
domain NOMA, code-domain NOMA works well even in
power-balanced scenarios provided that each user is served
by a unique pattern vector. Nevertheless, code-domain NOMA
has received relatively less attention in the literature compared
to the power-domain NOMA. This is mainly because its gain
usually comes at the expense of complex multiuser detection
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(MUD) algorithms, such as maximum a posteriori (MAP)
detection, message passing algorithm (MPA), and maximum
likelihood (ML) detection. In this context, sparse code mul-
tiple access (SCMA) is proposed in [22] based on directly
mapping the incoming bits to multidimensional codewords
of a certain SCMA codebook set. Also, a low-complexity
SCMA decoding algorithm is proposed in [23] based on list
sphere decoding. Another efficient SCMA decoder is discussed
in [24] based on deterministic message passing algorithms.
Lattice partition multiple access (LPMA) is proposed in [25]–
[27] based on multilevel lattice codes for multiple users.
Interleave-grid multiple access (IGMA) is proposed in [28],
[29] in order to increase the user multiplexing capability and to
improve the performance. Moreover, pattern division multiple
access (PDMA) is introduced in [30], [31], where the pattern
vectors are designed with disparate orders of transmission
diversity to mitigate the error propagation problem in SIC
receivers. As opposed to most of the aforementioned prior
works in code-domain NOMA, the pattern matrix in PDMA
is not necessarily sparse. In other words, the number of REs
allocated to a particular user can potentially be comparable to
the total number of REs. Very recently, a low-complexity
on-off division multiple access (ODMA) scheme has been
proposed in [32] for code-domain NOMA systems. In the
ODMA scheme proposed in [32], each user employs the
same channel code whose coded bits, after modulation, are
sent in a random time-hopping manner over much larger
number of time slots than the length of the channel code by
keeping the remaining time slots idle, resulting in a super-
sparse multiple access with a very low-complexity iterative
multi-user decoding method. Also, a coded MIMO-NOMA
system with capacity-approaching performance and low im-
plementation complexity has been proposed in [33] which
consists of a linear minimum mean-square error (LMMSE)
multi-user detector and a bank of single-user message-passing
decoders to decompose the overall NOMA signal recovery
into distributed low-complexity computations with iterative
processing. Additionally, the achievable rates of approximate
message passing (AMP) algorithm for coded random linear
systems has been analyzed in [34], proving that the low-
complexity AMP algorithm achieves the constrained capacity
based on matched forward error control (FEC) coding.

Design of the pattern matrix plays a critical role in code-
domain NOMA to balance the trade-off between the system
performance and the complexity. Impact of the pattern matrix
on the average sum-rate of SCMA systems is explored in
[35], where a low-complexity iterative algorithm is proposed
to facilitate the design of the pattern matrix. Moreover, the
total throughput of low-density code-domain (LDCD) NOMA
is characterized in [36] for regular random pattern matrices
with large dimensions. It is well understood that, for a given
overload factor β ≜ K/M , expanding the dimension of
the pattern matrix improves the system performance [31].
However, increasing the pattern matrix dimension significantly
increases the detection complexity.

Inspired by the aforementioned trade-off between the system
performance and the detection complexity, we propose a novel
encoding and decoding approach toward code-domain NOMA

which factorizes the pattern matrix as the Kronecker product
of several smaller factor matrices. Consequently, as we show,
both the pattern matrix design at the transmitter side and the
mixed symbols’ detection at the receiver side can be performed
over much smaller dimensions and with significantly reduced
complexity, through recursive detection. In other words, our
scheme enables application of pattern matrices with large
dimensions while keeping the overall detection complexity and
latency manageably low. As we establish later, this provides
the possibility to significantly improve the system performance
at a given, reasonably low, complexity and latency level.

The low complexity of the proposed detection algorithm
for pattern matrices with large dimensions enables grouping
a massive number of users together, referred to as “massive
coded-NOMA” in this paper. Moreover, the proposed multiple
access technique is particularly advantageous in scenarios
where there is a stringent constraint on the maximum power
of the users’ symbols. Therefore, even full-power transmission
of the users’ symbols (up to a predefined maximum allowed
power) over only one RE (or few REs) does not meet the users’
desired data rates. In such circumstances, users are inevitable
to transmit over several REs, possibly with the maximum
allowed power per symbol, to achieve the desired data rates.
For instance, a large number of repetitions are allowed in low-
capacity scenarios such as NB-IoT and mMTC in order to
enable reliable communications in these emerging applications
[4]. Our proposed protocol, through facilitating coded-NOMA
over large-dimension pattern matrices, enables spreading the
symbols of the low-capacity users over several REs and then
detecting them with a low complexity. We start our studies
with the traditional Gaussian multiple access channel (GMAC)
model, and then clarify how the results can be extended to
more practical scenarios such as fading channels.

The main contributions of the paper are summarized as
follows.

• We propose a low-complexity and scalable approach
toward code-domain NOMA by constructing the overall
pattern matrix as the Kronecker product of several factor
matrices. We show that the proposed scheme significantly
reduces the detection complexity and also facilitates the
design of good pattern matrices; hence, it allows incorpo-
rating large pattern matrices that are of particular interest
for massive communication and low-capacity channels.

• For the Kronecker product of square factor matrices we
propose a systematic way of choosing the factor matri-
ces that enables a remarkably low-complexity detection
algorithm involving only few linear operations at each
recursion. We show that our design scheme and the
proposed detection algorithm for the Kronecker product
of square factor matrices effectively increases the SNRs
of data symbols after each recursion that is of particular
importance for low-capacity channels.

• We provide a generic recursive detection algorithm for
the Kronecker product of rectangular factor matrices that
can work on the general case of factor matrices.

• We derive useful expressions for the characterization of
important system performance metrics such as the aver-
age sum-rate per RE, latency, and detection complexity.
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• We demonstrate how the results of the paper, derived for
the Gaussian MAC model, can be extended to practical
scenarios such as uplink and downlink fading channels.
We also highlight how the proposed code-domain NOMA
scheme in this paper can be combined with power-domain
NOMA to boost the system performance in various
aspects.

• We provide extensive numerical analysis to study the
system performance in various scenarios.

The rest of the paper is organized as follows. In Section II,
we briefly describe the system and channel models. In Section
III, we focus on the design procedure and detection algorithm
of the proposed protocol over GMAC. We then characterize the
average sum rate, latency, and detection complexity in Section
IV. We devote Section V to more realistic scenarios, and
Section VI to numerical results. Finally, we conclude the paper
and highlight several future research directions in Section VII.

II. PRELIMINARIES AND SYSTEM MODEL

In this section, we briefly review the basics of code-
domain NOMA, specifically PDMA [31], which is relevant
to the system model of our proposed scheme. We consider
a collection of K users communicating using M REs, and
define the overload factor as β ≜ K/M ⩾ 1 implying
the multiplexing gain of PDMA compared to the orthogonal
multiple access (OMA). The modulation symbol xk of the k-
th user is spread over M orthogonal REs using the pattern
vector gk as vk ≜ gkxk, 1 ⩽ k ⩽ K, where gk ∈ BM×1,
with B ≜ {0, 1}, is an M × 1 binary vector defining the set
of REs available to the k-th user; the k-th user can use the
i-th RE, 1 ⩽ i ⩽ M , if the i-th element of gk is “1”, i.e.,
if gi,k ≜ gk(i) = 1. Otherwise, if gi,k = 0, then the k-th
user does not use the i-th RE. Then the overall (M × K)-
dimensional pattern matrix G ∈ BM×K is specified as follows
[31]:

GM×K ≜
[︁
g1 g2 · · · gK

]︁
=
[︁
gi,k
]︁
M×K . (1)

For the uplink transmission each user transmits its spread
symbol to the base station (BS). Therefore, assuming perfect
synchronization at the BS, the vector y comprising the re-
ceived signals at all M REs can be modeled as

y =
∑︂K

k=1
diag(hk)vk + n, (2)

where hk is the vector modeling the uplink channel response
of the k-th user at all of M REs, and n is the noise vector at the
BS with length M . Furthermore, diag(hk) is a diagonal matrix
consisting of the elements of hk. Then the uplink transmission
model can be reformulated as

y = Hx+ n, (3)

where x ≜ [x1, x2, . . . , xK ]T , H ≜ H⊙GM×K is the PDMA
equivalent uplink channel response, H ≜ [h1,h2, . . . ,hK ],
AT is the transpose of the matrix A, and ⊙ denotes the
element-wise product [31].

Moreover, for the downlink transmission, the BS first en-
codes the data symbol of each user according to its pattern
vector and then transmits the superimposed encoded symbols

∑︁K
j=1 vj through the channel. Therefore, the received signal

yk at the k-th user can be expressed as

yk = diag(hk)
∑︂K

j=1
gjxj + nk = Hkx+ nk, (4)

where Hk ≜ diag(hk)GM×K is the PDMA equivalent
downlink channel response of the k-th user. Moreover, hk and
nk are the downlink channel response and the noise vector,
both with length M , at the k-th user, respectively [31].

As a standard MUD algorithm in NOMA systems SIC pro-
vides a proper trade-off between the system performance and
the complexity. However, SIC receivers often suffer from error
propagation problems as the system performance is highly de-
pendent on the correctness of early-detected symbols. In order
to resolve this issue, one can either improve the reliability of
the initially-decoded users or employ more advanced detection
algorithms including ML and MAP. In [31], disparate diversity
orders are adopted for different users by assigning patterns
with heavier weights to those early-detected users in order to
increase their transmission reliability. Furthermore, employing
more advanced detection algorithms severely increases the
system complexity especially for larger pattern matrices; this
may hinder their practical implementation particularly for
downlink transmission where the users are supposed to have
lower computational resources than the BS.

In the next section, we elaborate how the proposed scheme
scales with the dimension of the pattern matrix, even with
rather heavy pattern weights, to boost massive connectivity
without a significant increase on the overall system complexity.
In Sections III and IV, we consider the conventional model
of GMAC, i.e., y = Gx + n, that corresponds to the case
where H defined after (3) is replaced by an all-one matrix
(or hk defined after (4) is replaced by an all-one vector). The
simple channel model of GMAC, although is conventional in
the literature, has several limitations in real practice, e.g., it
ignores the information about the channel gains. However,
since this is an initial research on this topic, we start with
the simplest channel model to streamline the presentation of
the underlying design strategies and detection algorithms for
the proposed low-complexity code-domain NOMA. We then
demonstrate, in Section V-A, how the results can be extended
to the cases of uplink and downlink fading channels, as in (3)
and (4), respectively.

III. DESIGN AND DETECTION OVER GAUSSIAN MAC
A. Design Principles

Depending on the number of users and the available REs
to them, we propose to consider pattern matrices that are
factorized as the Kronecker product of a certain number,
denoted by L, of smaller factor matrices as follows:

GM×K = G
(1)
m1×k1 ⊗G

(2)
m2×k2 ⊗ · · · ⊗G

(L)
mL×kL , (5)

where L is a design parameter and ⊗ denotes the Kronecker
product defined as

Am×k ⊗B ≜

⎡⎢⎣a11B · · · a1kB
...

. . .
...

am1B · · · amkB

⎤⎥⎦ , (6)
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for any two matrices A and B. The dimensions of the resulting
pattern matrix in (5) relate to the dimensions of the factor
matrices as M =

∏︁L
l=1ml and K =

∏︁L
l=1 kl. In general,

if at least one of M or K is not a prime number, we can
find some ml > 1 or kl > 1 to construct the pattern matrix as
the Kronecker product of some smaller factor matrices. On the
other hand, if both M and K are prime numbers, L is equal to
one and the design procedure simplifies to that of conventional
pattern matrix design (such as PDMA [31]). Note that both
M and K are design parameters and we can always properly
group a certain number of users over a desired number of REs
to optimize the system performance and the complexity.

The main inspiration behind factorizing the overall pattern
matrix as the Kronecker product of smaller factor matrices is
to come up with a low-complexity recursive detection algo-
rithm that can be applied to large-scale code-domain NOMA
settings. As it will be elaborated in the next subsections, the
proposed structure enables a recursive detection algorithm that
at each recursion divides the set of equations to disjoint subsets
of equations and works on them in parallel. In that sense, the
factorization helps us to devise a “divide-and-conquer” type of
algorithm that recursively breaks down the detection problem
into sub-problems that can be executed in parallel. This then
significantly lowers the complexity and latency compared to
the case where we directly solve the system of equations
defined according to the overall pattern matrix.

The proposed structure not only alleviates the detection
complexity and latency at the receiver side but also signif-
icantly reduces the search space at the transmitting party,
enabling the usage of large pattern matrices with a reasonable
complexity for massive connectivity. With the search space, we
mean the number of possible pattern matrices for which one
should perform a (possibly brute-force) search over them to
obtain a good pattern matrix. The notion of a good pattern
matrix depends on the context and the objective function
for which we want to optimize. With that being said, a
regular pattern matrix design (without factorization) requires
a comprehensive search over all

(︁
2M−1
K

)︁
possible (M × K)-

dimensional binary matrices with distinct nonzero columns
(patterns assigned to each user) to find an optimal pattern
matrix [31]. On the other hand, it is easy to show that
satisfying distinct nonzero columns for the overall pattern
matrix GM×K of the form given by (5) requires distinct
nonzero columns for all of the factor matrices G

(l)
ml×kl ,

l = 1, 2, . . . , L. Otherwise, if any of the factor matrices has
a repeated column, many of the pattern vectors in the overall
pattern matrix will be the same, i.e., many of the users will
be served with a same pattern vector which itself requires
more advanced detection algorithms to distinguish them at the
receiver (see also Section V-B). Therefore, the search space
for our proposed design method reduces to

∏︁L
l=1

(︁
2ml−1
kl

)︁
which is significantly smaller than

(︁
2M−1
K

)︁
. For example, for

M = 6 and K = 9, the regular pattern matrix design requires
searching over

(︁
26−1

9

)︁
= 2.36× 1010 possible matrices, while

our design method with the factorization of G
(1)
2×3 ⊗ G

(2)
3×3

only needs to search over
(︁
22−1

3

)︁
.
(︁
23−1

3

)︁
= 35 matrices. Note

that recursive construction of large matrices based on the

Kronecker product of some smaller matrices has been used in
different contexts such as polar coding [37] and its extended
versions such as compound polar coding [38], [39].

In the following subsections, we first describe the detection
algorithm over the Kronecker product of square and rectangu-
lar factor matrices, and then summarize the overall detection
algorithm over the general case of the pattern matrix. It is
worth mentioning at this point that, as it will be clarified from
the extensive characterizations in the following subsections,
our proposed detection algorithm for the case of square factor
matrices significantly differs from that of the rectangular factor
matrices and cannot be obtained as a special case of that.

B. Square Factor Matrices

In this subsection, we explore the design of square factor
matrices and describe the corresponding detection algorithm
over GMAC. In particular, we assume that the overall pattern
matrix is represented as GM×K = P

(1)
m1×m1

⊗ P
(2)
m2×m2

⊗
· · ·⊗P

(L)
mL×mL

, where P
(l)
ml×ml

, l = 1, 2, . . . , L, is an ml×ml

binary square matrix. In this case, M = K =
∏︁L
l=1ml and

the overload factor β is equal to 1. However, we will observe
that with a careful design of the square factor matrices one
can improve the effective SNR of individual data symbols
to a desired level that can guarantee a predetermined data
rate. As it will be clarified in the next example, we define
the effective SNR as the SNR of the individual data symbols
at the end of the detection algorithm after several rounds
of recursive combining. The aforementioned gain is obtained
by a low-complexity detection algorithm involving only few
linear operations (additions/subtractions) at each recursion, as
detailed in Section III-B2. Therefore, this scheme is useful
especially when the transmission of each symbol over each
RE is constrained by a maximum power limit which is often
the case in low-capacity scenarios as discussed in Section I.
To proceed, we begin with the following illustrative example
that helps clarifying the design procedure and the recursive
detection algorithm provided afterward.
Example 1. Consider the transmission of K = 12 users
(symbols) over M = 12 REs realized using the Kronecker
product of the following two square factor matrices

P
(1)
3×3 =

⎡⎣1 1 0
1 0 1
0 1 1

⎤⎦ , P
(2)
4×4 =

⎡⎢⎢⎣
0 0 0 1
0 1 1 0
1 0 1 0
1 1 0 0

⎤⎥⎥⎦ . (7)

Let us further define the following square matrices α(l), l =
1, 2, such that the matrix product α(l)P (l) is diagonal. As it
will be clarified after this example and the detailed detection
algorithm in Section III-B2, combining the received signals
according to the rows of matrices α(l)’s significantly reduces
the number of unknown data symbols after each recursion.

α
(1)
3×3=

⎡⎣ 1 1 −1
1 −1 1
−1 1 1

⎤⎦, α
(2)
4×4=

⎡⎢⎢⎣
0 −1 1 1
0 1 −1 1
0 1 1 −1
1 0 0 0

⎤⎥⎥⎦. (8)

Then y12×1 = G12×12x12×1+n12×1 defines the received sig-
nals vector over all 12 REs, where y12×1 ≜ [y1, y2, . . . , y12]

T ,
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G12×12 = P
(1)
3×3 ⊗ P

(2)
4×4, x12×1 ≜ [x1, x2, . . . , x12]

T , and
n12×1 ≜ [n1, n2, . . . , n12]

T . Using the definition of the
Kronecker product in (6), we have, for example, for the
received signals over the first four REs y1 = x4 + x8 + n1,
y2 = x2 + x3 + x6 + x7 + n2, y3 = x1 + x3 + x5 + x7 + n3,
and y4 = x1 + x2 + x5 + x6 + n4.

The resulting set of 12 equations for the received signals
yi’s over all REs can be analyzed using different MUD
methods to detect the data symbols xi’s, i = 1, 2, . . . , 12.
However, the proposed design method in this paper enables
recursive detection of the data symbols with a significantly
lower complexity. Here, for the sake of brevity, we focus on
the detection of x1, x5, and x9. The rest of the symbols can be
detected in a similar fashion. Let us define y(1)1 , y(1)5 , and y(1)9

each as the linear combination of four consecutive received
signals according to the first row of α(2), i.e.,

y
(1)
1 ≜ y3 + y4 − y2 = 2x1 + 2x5 + n

(1)
1 ,

y
(1)
5 ≜ y7 + y8 − y6 = 2x1 + 2x9 + n

(1)
5 ,

y
(1)
9 ≜ y11 + y12 − y10 = 2x5 + 2x9 + n

(1)
9 , (9)

where n(1)1 ≜ n3 +n4 −n2, n(1)5 ≜ n7 +n8 −n6, and n(1)9 ≜
n11+n12−n10. In a given equation involving a certain number
of data symbols and a noise term, we refer to the ratio of
the power of each data symbol to the noise variance as the
effective SNR of that data symbol. For instance, the effective
SNR of each of the symbols x1, x5, and x9 in (9) is 4/3
times the original SNR. This is because the noise terms ni’s
in different REs are independent, i.e., each of n(1)j ’s, for j =
1, 5, 9, has a mean equal to zero and variance σ2

1 = 3σ2, where
σ2 is the variance of the original noise terms ni’s. In this case,
roughly speaking, we say that the effective SNR is increased
by a factor of 4/3 through this recursion1.

Note that the set of three equations in (9) is defined
according to the factor matrix P

(1)
3×3 as follows:⎡⎢⎣y

(1)
1

y
(1)
5

y
(1)
9

⎤⎥⎦ =

⎡⎣1 1 0
1 0 1
0 1 1

⎤⎦⎡⎣2x12x5
2x9

⎤⎦+

⎡⎢⎣n
(1)
1

n
(1)
5

n
(1)
9

⎤⎥⎦ . (10)

Therefore, combining the three new symbols according to the
rows of α(1) results in the following set of equations involving
only one data symbol, also referred to as singleton equations,

y
(2)
1 ≜ y

(1)
1 + y

(1)
5 − y

(1)
9 = 4x1 + n

(2)
1 ,

y
(2)
5 ≜ y

(1)
1 + y

(1)
9 − y

(1)
5 = 4x5 + n

(2)
5 ,

y
(2)
9 ≜ y

(1)
5 + y

(1)
9 − y

(1)
1 = 4x9 + n

(2)
9 , (11)

in which n(2)1 ≜ n
(1)
1 +n

(1)
5 −n

(1)
9 , n(2)5 ≜ n

(1)
1 +n

(1)
9 −n

(1)
5 ,

and n
(2)
9 ≜ n

(1)
5 + n

(1)
9 − n

(1)
1 . Hence, the effective SNR is

increased again by a factor of 4/3 since the noise components

1Note that, as it will be seen at the end of Example 1 and also will be
demonstrated in Section III-B2 (see also Fig. 1), the proposed detection
algorithm for the Kronecker product of L square factor matrices reduces
(at the end of the L-th recursion) to singleton equations each containing a
single data symbol mixed with an additive noise term. Therefore, the notion
of “effective SNR”, defined here, is more relevant than the common notion
of signal-to-interference-plus-noise ratio (SINR).

n
(2)
j ’s have mean zero and variance σ2

2 = 3σ2
1 = 32σ2 due to

the independence of n(1)j ’s. Finally, (11) can be used to decode
the original data symbols xj’s though with the effective SNRs
increased by a factor of (4/3)2. Applying a similar method
demonstrates that the effective SNR of the data symbols x4,
x8, and x12 is improved by a factor of 4/3 while the gain on all
other data symbols is (4/3)2 (please refer to Section III-B3
and Fig. 2 for the general characterization of the effective
SNR development through the proposed recursive detection
algorithm in Section III-B2). □

The above example illustrates the idea behind the proposed
structure for the square pattern matrix and shows its potential
advantages by enabling a low-complexity recursive detection
process. However, there are several important questions that
need to be carefully addressed. In particular, what is the
criteria for selecting the factor matrices? How can the received
signals in different REs be combined to get smaller dimensions
and simpler sets of equations (e.g., converting the original
equations for yi’s to (9) and then (9) to (11))? What exactly
will be the gain of such a combining in terms of increasing
the effective SNRs? And, how many equations and with what
dimensions will be left at the end to perform advanced de-
tection algorithms? Next, we aim at properly answering these
questions with respect to a square pattern matrix factorized as
the Kronecker product of smaller square factor matrices.

1) Pattern Matrix Design and Recursive Combining: With
the pattern matrix structure, GM×K = P

(1)
m1×m1

⊗P
(2)
m2×m2

⊗
· · ·⊗P

(L)
mL×mL

, both the combining procedure of the received
signals over different REs and the resulting SNR gains, in
each recursion, directly relate to the underlying square factor
matrices P (l)’s. As it will be elaborated in Section III-B2,
our proposed detection algorithm starts from the rightmost
factor matrix P (L) and involves L recursions. We will further
establish that the l′-th recursion, for l′ = 1, 2, . . . , L, involves
equations defined according to the factor matrix P (l) with
l = L − l′ + 1. Now, Let P (l,v), for v = 1, 2, . . . ,

(︁
2ml−1
ml

)︁
,

denote the v-th possible matrix for P (l). Then at the begin-
ning of the l′-th recursion we have certain sets of auxiliary
equations of the following form (see, e.g., (10)):⎡⎢⎢⎢⎢⎢⎣
y
(l′−1)
i1

y
(l′−1)
i2

...
y
(l′−1)
iml

⎤⎥⎥⎥⎥⎥⎦=
⎡⎢⎢⎢⎢⎢⎣
p
(l,v)
1,1 p

(l,v)
1,2 · · · p

(l,v)
1,ml

p
(l,v)
2,1 p

(l,v)
2,2 · · · p

(l,v)
2,ml

...
...

. . .
...

p
(l,v)
ml,1

p
(l,v)
ml,2

· · · p(l,v)ml,ml

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
x
(l′−1)
i1

x
(l′−1)
i2

...
x
(l′−1)
iml

⎤⎥⎥⎥⎥⎥⎦+
⎡⎢⎢⎢⎢⎢⎣
n
(l′−1)
i1

n
(l′−1)
i2

...
n
(l′−1)
iml

⎤⎥⎥⎥⎥⎥⎦,
(12)

where p(l,v)i,j is the (i, j)-th element of the factor matrix P (l,v),
{i1, i2, . . . , iml

} is a length-ml subset of {1, 2, . . . ,M}, and
y
(l′−1)
i , x(l

′−1)
i , and n

(l′−1)
i are the i-th auxiliary received

signal, the data symbol, and the noise component, respectively,
at the beginning of the l′-th (end of the (l′ − 1)-st) recursion.

In order to facilitate a low-complexity recursive detection
while providing the maximum increase in the effective SNRs,
we obtain the effective combining coefficients (such as com-
bining yi’s in (9)) as follows. Given the ml×ml square factor
matrix P (l,v), as in (12), we find all T possible combining
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Algorithm 1 Calculation of the combining coefficients and
the corresponding SNR gains.

1: Input: dimension of the square factor matrix ml

2: Output: combining matrices α(l,v)=
[︂
α
(l,v)
i,j

]︂
ml×ml

and the

corresponding sets {γ(l,v)i }ml
i=1 of SNR gains for all v’s

3: for v = 1 :
(︁
2ml−1
ml

)︁
do

4: P (l,v) =
[︂
p
(l,v)
i,j

]︂
ml×ml

5: for i = 1 : ml do
6: Find all T possible sets of coefficients

{︂
α
(l,v,t)
i,j

}︂ml

j=1
such that:

7: C1: α(l,v,t)
i,j ∈ {−1, 0, 1}

8: C2:
∑︁ml

j=1 α
(l,v,t)
i,j p

(l,v)
j,i = w

(l,v,t)
i ̸= 0

9: C3:
∑︁ml

j=1 α
(l,v,t)
i,j p

(l,v)
j,i′ = 0, i′ ̸= i = 1, 2, . . . ,ml

10: Calculate γ(l,v,t)i ≜
[︂
w

(l,v,t)
i

]︂2/︂∑︁ml

j=1

[︂
α
(l,v,t)
i,j

]︂2
11: Calculate t∗ = argmax

t=1:T
γ
(l,v,t)
i

12: Output
{︂
α
(l,v)
i,j

}︂ml

j=1
=
{︂
α
(l,v,t∗)
i,j

}︂ml

j=1

13: Output γ(l,v)i = γ
(l,v,t∗)
i

14: end for
15: end for

matrices of size ml ×ml, with the t-th such matrix denoted
by α(l,v,t), for t = 1, 2, . . . , T , such that α(l,v,t)P (l,v) is a
diagonal matrix with the nonzero diagonal entries equal to
w

(l,v,t)
i , for i = 1, 2, . . . ,ml.2 The (i, j)-th entry of the matrix

α(l,v,t) is denoted by α(l,v,t)
i,j ∈ {−1, 0,+1}. Now, by linearly

combining the ml auxiliary received signals in (12) according
to the rows of α(l,v,t) we get ml new equations as
ml∑︂
j=1

α
(l,v,t)
i′,j y

(l′−1)
ij

= w
(l,v,t)
i′ x

(l′−1)
ii′

+

ml∑︂
j=1

α
(l,v,t)
i′,j n

(l′−1)
ij

, (13)

for i′ = 1, 2, . . . ,ml, where w(l,v,t)
i′ ≜

∑︁ml

j=1 α
(l,v,t)
i′,j p

(l,v)
j,i′ .

The process for selecting the combining coefficients that
yield the maximum SNR gain for each auxiliary data symbol
is summarized in Algorithm 1. Condition C1 in Algorithm 1
defines the set of possible values for the combining coeffi-
cients. This implies that a specific row in P (l,v) is included
in the combing process with a positive/negative sign or it
is not included at all. Note that scaling the set of possible
values {−1, 0,+1} by a constant factor does not change
the SNR gains and the performance since it scales both the
data symbols and the noise coefficients in (13) by the same
multiplicative factor. Moreover, conditions C2 and C3 are
included to make sure that the t-th possible combining matrix
α(l,v,t) results in a diagonal matrix with the nonzero diagonal

2If for a given P (l,v) there is no any combining matrix that results in a
diagonal form, with nonzero diagonal entries, for the matrix multiplication of
α(l,v)P (l,v), we skip that matrix and do not save its attributes. Additionally,
if for a given dimension ml none of

(︁2ml−1
ml

)︁
candidates satisfy the

aforementioned property, we do not consider that dimension (i.e., ml × ml

square factor matrices) in the design of the overall pattern matrix.

entries w(l,v,t)
i ’s in α(l,v,t)P (l,v). This is required to guarantee

singleton equations, such as (13), in terms of the auxiliary
data symbols x(l

′−1)
ii′

’s at the end of the l′-th recursion. With
these constraints we can ensure that after the l′-th recursion
the maximum number of data symbols in each equation is
reduced by a factor of mL−l′+1, resulting in much simpler
sets of equations. This way we come up with a very low-
complexity recursive detection algorithm described in Section
III-B2. Note that, except for the last recursion (l′ = L),
each auxiliary data symbol x(l

′−1)
ii′

involves a combination
of several original data symbols xi’s defined according to
P

(1)
m1×m1

⊗P
(2)
m2×m2

⊗· · ·⊗P
(L−l′)
mL−l′×mL−l′

, i.e., the Kronecker
product of the L − l′ leftmost factor matrices. For instance,
in Example 1, the auxiliary data symbol x(0)1 at the beginning
of the first recursion is equal to x1 + x5 (see (9)), which is
defined according to P

(1)
3×3 as specified in (10).

After combining the auxiliary received signals in (12)
according to the combining coefficients

{︂
α
(l,v,t)
i′,j

}︂ml

j=1
, it can

be observed from (13) that the effective SNR of the ii′ -th
auxiliary data symbol x(l

′−1)
ii′

is increased by a factor of γ(l,v,t)i′ ,
defined in line 10 of Algorithm 1. This is because the auxiliary
noise components in (12) are independent, which is clarified
when we describe the detection algorithm in Section III-B2.
Finally, Algorithm 1, among all T possible sets of coefficients{︂
α
(l,v,t)
i,j

}︂ml

j=1
that satisfy the three constraints C1-3 for each i,

v, and l, picks the one that maximizes the corresponding SNR
gain γ

(l,v,t)
i as the i-th row of the combining matrix α(l,v).

By repeating this procedure for all i’s, for i = 1, 2, . . . ,ml,
we get the whole combining matrix α(l,v)=

[︂
α
(l,v)
i,j

]︂
ml×ml

and

the corresponding sets {γ(l,v)i }ml
i=1 of SNR gains given the v-

th possible square factor matrix P (l,v) for the l-th leftmost
square factor matrix used in the Kronecker product to form
the overall pattern matrix.

Remark 1. Algorithm 1 does not output a specific square
factor matrix for the l-th position in the Kronecker product.
Instead, it finds the best combining coefficients (i.e., the com-
bining matrix α(l,v)) and the resulting sets of SNR gains for
all
(︁
2ml−1
ml

)︁
possible square factor matrices P

(l,v)
ml×ml

. Among
all these possibilities for v, the best one represented by the
index v∗ that results in the optimal square factor matrix P (l)

with the corresponding set {γ(l)1 , γ
(l)
2 , . . . , γ

(l)
ml} of SNR gains

and the optimal combining matrix α(l) can be obtained by
choosing the best answer set satisfying further constraints such
as maximizing the average sum rate (see also Remark 3).
Note that, in the case of GMAC model considered throughout
Sections III and IV, Algorithm 1 needs to run only once per
dimension ml of the square factor matrix (please see Remark 9
for the clarifications on the case of fading channels). Once the
best P (l) and the corresponding α(l) are obtained for a given
dimension ml, they will be known to all users and the BS.
Note also that this is a part of the system design and not the
detection algorithm, and one needs to also take into account
the number of users K and available REs M in the design of
the overall pattern matrix and choosing the dimensions of the
underlying factor matrices.
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Finally, the following lemma is useful in the process of
finding the combining coefficients described in Algorithm 1.

Lemma 1. For a binary square factor matrix P with linearly-
independent rows, we have T ⩽ 1. In other words, there exists
at most one combining matrix α = [αi,j ], αi,j ∈ {−1, 0, 1},
that results in a diagonal form for the matrix multiplication
αP with nonzero diagonal entries.

Proof: Please refer to Appendix A.
2) Recursive Detection Algorithm: Suppose that the com-

munication protocol is established between the transmitters
and receivers, i.e., the design parameters such as the optimal
square factor matrices P

(l)
ml×ml

, for l = 1, 2, . . . , L, and their
corresponding combining matrices α

(l)
ml×ml

’s from Algorithm
1 (also recall Remark 1) are known to the receiver. Next,
we describe the low-complexity recursive detection algorithm
thanks to the underlying structure of the overall pattern matrix.
The proposed detection algorithm, which is schematically
shown through a tree diagram in Fig. 1, proceeds by combining
the received signals according to the combining matrix of the
rightmost factor matrix and involves L recursions.

First Recursion: The receiver in the first recursion takes
the vector of received signals over M =

∏︁L
l=1ml REs, i.e.,

yi’s, for i = 1, 2, . . . ,M , and divides them into ML−1 ≜
M/mL =

∏︁L−1
l=1 ml groups of mL received signals; there-

fore, the iL-th group, for iL = 1, 2, . . . ,ML−1, includes
{y(iL−1)mL+1, y(iL−1)mL+2, . . . , yiLmL

}. Each of these yi’s
contains at most K =

∏︁L
l=1ml different transmitted symbols

xk’s, k = 1, 2, . . . ,K, since each one is constructed as a linear
combination of xk’s, defined with respect to the i-th row of
the overall pattern matrix GM×K , and the noise component ni
over the i-th RE. Note that our recursive detection algorithm
attempts to reduce the maximum number of different symbols
by a factor of ml′′ , l′′ ≜ L − l′ + 1, after each l′-th
recursion, such that after all L recursions we have M equations
each containing only a single data symbol. The receiver now
combines the elements of each group using the combining
matrix α

(L)
mL×mL

to form new mL symbols at each group; the
first new symbol is constructed by combining the previous
symbols using the first row of α(L) and so on. Note that the
impact of such a combining on the involved data symbols can
be expressed in a matrix form through multiplying α(L) by a
new matrix comprising the mL rows of G corresponding to
the indices of each group. Then it is easy to verify that the jL-
th new equation of each group (which is constructed through
the jL-th row of α(L)), for jL = 1, 2, . . . ,mL, contains at
most KL−1 ≜ K/mL =

∏︁L−1
l=1 ml different symbols from

the set {xjL , xjL+mL
, . . . , xjL+(KL−1−1)mL

} (recall that the
product of α(L)P (L) is a diagonal matrix), i.e., the number
of unknown variables is reduced by a factor of mL from K
to KL−1. Also, based on the detailed discussion in Section
III-B1 (see, e.g., Eq. (13)), the effective SNR of each symbol
in the jL-th new equation is increased by a factor of γ(L)jL

.
Second Recursion: Note that after the first recursion the

jL-th new equation of each group can only contain data
symbols from the set {xjL , xjL+mL

, . . . , xjL+(KL−1−1)mL
}.

This means different equations of a given group contain
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Fig. 1. Tree diagram representation of the recursive detection algorithm.

disjoint sets of data symbols while equations with the same
index of different groups (e.g., the jL-th equation of all groups)
contain symbols from the same set. Therefore, the receiver in
the second recursion forms mL super-groups of ML−1 equa-
tions/signals by, consecutively, placing the jL-th new equation
of each of those ML−1 groups of the first recursion into the jL-
th super-group. Note that the combination of the original data
symbols over each super-group (in Section III-B1, we denoted
each of those combinations by an auxiliary data symbol
obtained after the first recursion) is defined according to the
Kronecker product P (1)

m1×m1
⊗P

(2)
m2×m2

⊗· · ·⊗P
(L−1)
mL−1×mL−1

.
Now, the receiver follows exactly the same procedure as the
first recursion over each of these disjoint mL super-groups of
the size ML−1. In other words, it divides the equations in each
of the super-groups into ML−2 ≜ ML−1/mL−1 =

∏︁L−2
l=1 ml

groups of mL−1 equations each and combines the signals
within each group using the combining matrix α

(L−1)
mL−1×mL−1

.
Following the same logic, we argue that the maximum number
of unknown variables at each of the new equations is reduced
by a factor of mL−1 from KL−1 to KL−2 ≜ KL−1/mL−1 =∏︁L−2
l=1 ml, and the SNR of the symbols in the jL−1-st new

equation, for jL−1 = 1, 2, . . . ,mL−1, of each of the groups in
the jL-th super-group is increased by a factor of γ(L−1)

jL−1
from

γ
(L)
jL

in the first recursion to γ(L−1)
jL−1

γ
(L)
jL

.
Final Recursion: It can be verified by induction that in the

L-th recursion we have
∏︁L
l=2ml super-groups of size m1. The

sets of m1 equations in each of these
∏︁L
l=2ml super-groups

is formed according to the square factor matrix P
(1)
m1×m1

.
Therefore, the receiver in the L-th recursion combines the m1

symbols of each super-group using α
(1)
m1×m1

to get equations
containing a single unknown variable. Finally, the receiver
detects the original K =M data symbols according to the M
singleton equations in the form of a single-user additive white
Gaussian noise (AWGN) channel. However, the effective SNR
of each of these K data symbols is increased to a desired level
that can guarantee a predetermined data rate, particularly for
low-capacity applications.

3) Detection and SNR Evolution Trees: For the sake of
clarity, we have separately explained the second and the final
recursions in Section III-B2. Note that the same procedure
is applied in all of the recursion steps for l′ = 2, . . . , L.
In particular, the receiver at the beginning of the l′-th recur-
sion, first, forms

∏︁L
l=l′′+1ml super-groups each containing



8

Ml′′ ≜
∏︁l′′

l=1ml equations/signals defined according to the
pattern matrix P

(1)
m1×m1

⊗P
(2)
m2×m2

⊗· · ·⊗P
(l′′)
ml′′×ml′′

, where
l′′ ≜ L − l′ + 1. The receiver then applies similar steps to
the first recursion, i.e., it combines the equations/signals inside
each super-group according to the rightmost combining matrix
α

(l′′)
ml′′×ml′′

to reduce the (maximum) number of unknown data
symbols included in each equation/signal by a factor of ml′′

from Kl′′ ≜
∏︁l′′

l=1ml to Kl′′−1. Finally, as a result of this
combining, the effective SNR of each data symbol involved
in the jl′′ -th combined signal, jl′′ = 1, 2, . . . ,ml′′ , is increased
by a factor of γ(l

′′)
jl′′

. The whole process is, schematically,
shown in Fig. 1. Each node in the tree diagram of Fig.
1 represents a super-group while the weights of the edges
characterize the SNR gains after combining the signals inside
each super-group. Moreover, the pattern matrix governing
the way data symbols involved in each super-group, at the
beginning and end of each recursion, are merged together is
also specified in Fig. 1 which further clarifies how after L
recursions we end up with M singleton equations over single-
user AWGN channels with increased effective SNRs.

It is worth mentioning that the M overall SNR gains
obtained by multiplying the edge weights involved from the
topmost node to each of the M bottommost nodes in Fig. 1
specify the set of M overall SNR gains for the M data symbols
in an unsorted fashion. In order to get the overall SNR gains
sorted, we need to shuffle the edge weights, i.e., the SNR
gains, according to Fig. 2. This way we can assure that the
overall SNR gain obtained by multiplying the edge weights
involved from the topmost node to each i-th bottommost
node in Fig. 2, for i = 1, 2, . . . ,M , exactly specifies the
overall SNR gain on the i-th data symbol xi after L layers
of combining. This can be understood from the detection
algorithm elaborated in Section III-B2, especially the parts
emphasizing on the data symbols that remain in each new
combined equation/signal and the gain those data symbols
attain after each combining. Now, according to Fig. 2, we
have the following lemma for the overall SNR gain on the
i-th data symbol, denoted by γt,i.

Lemma 2. The overall SNR gain γt,i on the i-th data symbol,
for i = 1, 2, . . . ,M , can be obtained as

γt,i =

L∏︂
l=1

γ(l)sl , (14)

where the integers sl ∈ {1, 2, . . . ,ml}, for l = 1, 2, . . . , L,
constitute a unique representation of i as follows:

i = sL +

L−1∑︂
l=1

(sL−l − 1)×
L∏︂

l1=L−l+1

ml1 . (15)

Equivalently, xi is the single data symbol remained in the
singleton equation of the final recursion indexed by the path
(sL, sL−1, . . . , s2, s1) of super-groups in Fig. 1.

Example 2. For the factor matrices considered in Example
1 and their corresponding combining matrices, according to
the detailed discussions in Section III-B1, we have γ

(1)
1 =

γ
(1)
2 = γ

(1)
3 = γ

(2)
1 = γ

(2)
2 = γ

(2)
3 = 4/3, and γ(2)4 = 1. Then,
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Fig. 2. Tree diagram illustrating the progressive development of SNR gains.

according to Lemma 2, we have, for instance, s1 = 2 and
s2 = 4 for i = 8. Hence, γt,8 = γ

(1)
2 γ

(2)
4 = 4/3. Similarly,

γt,4 = γt,12 = 4/3, and γt,i = (4/3)2, i /∈ {4, 8, 12}. □

C. Rectangular Factor Matrices

In this subsection, we describe the detection algorithm when
the data symbols are mixed using the Kronecker product
of rectangular factor matrices over GMAC. Specifically, we
consider the overall pattern matrix as GM×K = F

(1)
m1×k1 ⊗

F
(2)
m2×k2 ⊗· · ·⊗F

(L)
mL×kL , where F

(l)
ml×kl , for l = 1, 2, . . . , L,

is an ml × kl binary matrix with kl > ml. In this case, the
overload factor β = K/M is greater than 1 resulting in an
improved spectral efficiency compared to the case of square
factor matrices considered in Section III-B. We begin with the
following illustrative example that helps better understand the
recursive detection algorithm provided afterward.
Example 3. Consider the transmission of K = 18 users
(symbols) over M = 4 REs realized using the Kronecker
product of the following rectangular factor matrices

F
(1)
1×2 =

[︁
1 1

]︁
, F

(2)
2×3 = F

(3)
2×3 =

[︃
1 0 1
1 1 0

]︃
. (16)

Hence, y4×1 = G4×18x18×1 +n4×1, with G4×18 = F
(1)
1×2 ⊗

F
(2)
2×3 ⊗ F

(3)
2×3, represents the received signals vector.

The detection starts by defining 6 auxiliary symbols Z(3)
3i+j ,

for i = 0, 1 and j = 1, 2, 3, each obtained by spreading the
j-th data symbol of F (3) according to the (i + 1)-st row of
R(2) ≜ F (1) ⊗ F (2), i.e.,

Z
(3)
j = xj + xj+6 + xj+9 + xj+15,

Z
(3)
3+j = xj + xj+3 + xj+9 + xj+12. (17)

Now, it is easy to observe that the original set of equations
can be rewritten as the following two sets of equations each
defined according to F (3) as[︃

y1
y2

]︃
= F

(3)
2×3

[︂
Z

(3)
1 Z

(3)
2 Z

(3)
3

]︂T
+

[︃
n1
n2

]︃
,[︃

y3
y4

]︃
= F

(3)
2×3

[︂
Z

(3)
4 Z

(3)
5 Z

(3)
6

]︂T
+

[︃
n3
n4

]︃
. (18)

Therefore, at the beginning of the first recursion in the receiver,
the sets of equations are formed according to F

(3)
2×3 as (18).

The receiver first detects Z(3)
1 , Z

(3)
2 , . . . , Z

(3)
6 , using any MUD

algorithm performed over the set of equations in (18), and
then groups Z(3)

j with Z(3)
3+j to obtain three sets of equations
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each defined according to R(2). Let us consider the first group
containing Z(3)

1 and Z(3)
4 . According to (17),[︄

Z
(3)
1

Z
(3)
4

]︄
=

[︃
1 0 1
1 1 0

]︃
⏞ ⏟⏟ ⏞

F
(2)
2×3

⎡⎢⎣Z
(2)
1

Z
(2)
2

Z
(2)
3

⎤⎥⎦ , (19)

after setting Z(2)
1 ≜ x1+x10, Z(2)

2 ≜ x4+x13, Z(2)
3 ≜ x7+x16

each according to R(1) ≜ F (1). Now, the receiver first detects
Z

(2)
1 , Z(2)

2 , and Z
(2)
3 , using any arbitrary MUD algorithm,

from the system of equations in (19) defined according to
F

(2)
2×3, and then detects the corresponding 6 original data

symbols from the three subsequent sets of equations each
defined according to F (1). Finally, by applying the same
procedure to the other two groups, we detect all of the 18
original data symbols. □

The above example illustrates how the detection proceeds
recursively by processing, at each recursion, sets of equations
with smaller number of variables each formed according to one
of the rectangular factor matrices. In the following, we present
the detailed description of the recursive detection algorithm
over rectangular factor matrices. Same as in Section III-B2,
we assume that the rectangular factor matrices F

(l)
ml×kl , for

l = 1, 2, . . . , L, are known to the receiver. The proposed de-
tection algorithm entails L recursions while the l′-th recursion,
for l′ = 1, 2, . . . , L, involves sets of equations formed by the
factor matrix F

(l′′)
ml′′×kl′′

with l′′ ≜ L− l′ +1. Note that when
L = 1 we directly detect the K data symbols mixed over M
REs using the single factor matrix. Hence, in the algorithm it
is assumed that L > 1. Also, no specific structure is imposed
here on the rectangular factor matrices. Instead, we assume a
generic form for the factor matrices such that a given advanced
MUD algorithm can properly work to detect the unknown
variables of the l′-th recursion defined according to F

(l′′)
ml′′×kl′′

.
However, one can impose further constraints on the rectangular
factor matrices to improve the detection performance of the
scheme at each recursion. For example, one can potentially
apply the results of [32] to more efficiently design each
of the middle rectangular factor matrices and improve the
detection performance of the MUDs performed over each of
them at each recursion. Further investigation on this matter
is left for future studies. Throughout this subsection, we
define R

(l)
Ml×Kl

≜ F
(1)
m1×k1 ⊗ F

(2)
m2×k2 ⊗ · · · ⊗ F

(l)
ml×kl with

Ml ≜
∏︁l
i=1mi and Kl ≜

∏︁l
i=1 ki, l = 1, 2, . . . , L.

First Recursion: Given that GM×K = R
(L−1)
ML−1×KL−1

⊗
F

(L)
mL×kL , in the first recursion, the receiver forms sets of

equations each defined according to F
(L)
mL×kL . To this end,

it detects QL ≜ kLML−1 new/auxiliary symbols Z(L)
kLiL+jL

,
for iL = 0, 1, . . . ,ML−1 − 1 and jL = 1, 2, . . . , kL, each
defined as the expansion of the jL-th data symbol of F (L)

mL×kL
according to the (iL + 1)-st row of R(L−1) as

Z
(L)
kLiL+jL

=r
(L−1)
iL+1

[︁
xjL xjL+kL . . . xjL+(KL−1−1)kL

]︁
T, (20)

where r
(L−1)
iL+1 is the (iL + 1)-st row of R(L−1)

ML−1×KL−1
. Using

(20), the original set of equations yM×1 = GM×KxK×1 +

nM×1 can be decomposed into ML−1 sets of equations each
having mL consecutive yi’s as the input and kL consecutive
auxiliary symbols Z(L)

kLiL+jL
’s as the unknown variables. The

(iL + 1)-st such set of equations is expressed as⎡⎢⎢⎢⎣
yiLmL+1

yiLmL+2

...
y(iL+1)mL

⎤⎥⎥⎥⎦= F
(L)
mL×kL

⎡⎢⎢⎢⎢⎣
Z

(L)
iLkL+1

Z
(L)
iLkL+2...

Z
(L)
(iL+1)kL

⎤⎥⎥⎥⎥⎦+
⎡⎢⎢⎢⎣
niLmL+1

niLmL+2

...
n(iL+1)mL

⎤⎥⎥⎥⎦. (21)

Therefore, the first recursion involves ML−1 separate sets of
equations, each defined according to the rectangular factor
matrix F

(L)
mL×kL , as specified in (21), such that QL aux-

iliary symbols are detected. Next, the receiver forms kL
disjoint super-groups, given that all of the ML−1 auxiliary
symbols Z

(L)
kLiL+jL

, for iL = 0, 1, . . . ,ML−1 − 1, contain
the same disjoint set of data symbols for a fixed jL (see
(20)). The jL-th super-group contains ML−1 auxiliary sym-
bols Z

(L)
jL
, Z

(L)
kL+jL

, . . . , Z
(L)
(ML−1−1)kL+jL

. Therefore, the set
of equations in the jL-th super-group can be expressed as⎡⎢⎢⎢⎣

Z
(L)
jL

Z
(L)
kL+jL...

Z
(L)
(ML−1−1)kL+jL

⎤⎥⎥⎥⎦=R
(L−1)
ML−1×KL−1

⎡⎢⎢⎣
xjL

xkL+jL
...

x(KL−1−1)kL+jL

⎤⎥⎥⎦. (22)

Middle Recursions (1 < l′ < L): When L > 2, the
detection algorithm involves L− 2 middle recursions exclud-
ing the first and the last recursions. Each of these middle
recursions involves a procedure that is somewhat similar to
the first recursion. For example, in the second recursion we
start with kL disjoint super-groups each containing a set of
equations as (22) and then we apply similar steps as the
first recursion to this set of equations. However, since the
indices of the data and the auxiliary symbols matter in the
detection done at each recursion, here, we carefully describe
these middle recursions. In general, at the l′-th recursion, for
1 < l′ < L, the algorithm processes the κSl′−1 ≜

∏︁L
i=L−l′+2 ki

disjoint super-groups of the (l′ − 1)-st recursion separately.
It then comes up with kL−l′+1 smaller size super-groups
for each of those κSl′−1 starting super-groups, resulting in
kL−l′+1κ

S
l′−1 = κSl′ super-groups at the end. Particularly,

consider the path (jL, jL−1, . . . , jL−l′+2) of the super-groups
from the previous recursions, with jl = 1, 2, . . . , kl for
l = 1, 2, . . . , L, (a similar tree diagram to Fig. 1 can be
considered for the recursive detection here). The indices in
the path correspond to the super-groups considered from the
previous recursions while there are total of κSl′−1 such paths,
i.e., starting super-groups. By induction, the set of equations in
the super-group indexed by the path (jL, jL−1, . . . , jL−l′+2)
can be expressed as follows:⎡⎢⎢⎢⎢⎢⎣

Z
(l′′+1)
ψl′−1,1

Z
(l′′+1)
ψl′−1,2...

Z
(l′′+1)
ψl′−1,Ml′′

⎤⎥⎥⎥⎥⎥⎦ = R
(l′′)
Ml′′×Kl′′

⎡⎢⎢⎢⎣
xτl′−1

xκS
l′−1

+τl′−1

...
x(Kl′′−1)κS

l′−1
+τl′−1

⎤⎥⎥⎥⎦, (23)
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where ψl′−1 ≜ jL−l′+2 +
∑︁l′−2
i=1 (jL−i+1 − 1)

∏︁L−i
i′=L−l′+2 ki′

is the index of the super-group represented by the path
(jL, jL−1, . . . , jL−l′+2), and τl′−1 ≜ jL+

∑︁l′−2
i=1 (jL−i−1)κSi .

Moreover, Z(l′′+1)
ψl′−1,1

, . . . , Z
(l′′+1)
ψl′−1,Ml′′

are Ml′′ auxiliary symbols
defined in the (l′−1)-st recursion, similar to (20), correspond-
ing to the ψl′−1-st super-group. Note that tracking the indices
of the auxiliary symbols is not needed since the algorithm
processes each super-group separately. More specifically, these
symbols are defined at the beginning of a recursion and they
are known when the detection is done at the end of that
recursion. However, the indices of the data symbols matters
since we need to know the data symbols in each super-
group/path and the order they appeared in the corresponding
equations.

The algorithm involves κSl′−1 sets of equations at the be-
ginning of the l′-th recursion. Each such a set of equations
is processed separately and simpler sets of equations defined
according to F

(l′′)
ml′′×kl′′

are derived. Let us consider the ψl′−1-
st super-group with the set of equations given by (23). Similar
to the first recursion, the receiver assumes Ql′′ ≜ kl′′ML−l′

auxiliary symbols Z(l′′)
kl′′ il′′+jl′′

, for il′′ = 0, 1, . . . ,ML−l′ − 1
and jl′′ = 1, 2, . . . , kl′′ , each defined as the expansion of the
jl′′ -th data symbol according to r

(L−l′)
il′′+1 , i.e., the (il′′ + 1)-st

row of R(L−l′)
ML−l′×KL−l′

, as

Z
(l′′)
kl′′ il′′+jl′′

=r
(L−l′)
il′′+1

[︂
xτl′ xτl′+κS

l′
. . . xτl′+(KL−l′−1)κS

l′

]︂
T.

(24)

Note that the jl′′ -th data symbol of (23) is xτl′ since τl′−1 +

(jl′′ − 1)κSl′−1 ≜ τl′ . Now, instead of detecting the original
data symbols from rather complex equations such as (23), the
receiver forms ML−l′ simpler sets of equations each defined
according to the rectangular factor matrix F

(l′′)
ml′′×kl′′

. The
(il′′ + 1)-st such set of equations can be expressed as⎡⎢⎢⎢⎢⎢⎣

Z
(l′′+1)
ψl′−1,il′′ml′′+1

Z
(l′′+1)
ψl′−1,il′′ml′′+2

...
Z

(l′′+1)
ψl′−1,(il′′+1)ml′′

⎤⎥⎥⎥⎥⎥⎦ = F
(l′′)
ml′′×kl′′

⎡⎢⎢⎢⎢⎢⎣
Z

(l′′)
il′′kl′′+1

Z
(l′′)
il′′kl′′+2

...
Z

(l′′)
(il′′+1)kl′′

⎤⎥⎥⎥⎥⎥⎦ . (25)

After detecting the Ql′′ auxiliary symbols Z(l′′)
kl′′ il′′+jl′′

’s from
the sets of equations as (25), the receiver then forms kl′′

disjoint super-groups, given that all of the ML−l′ auxiliary
symbols Z(l′′)

kl′′ il′′+jl′′
, il′′ = 0, 1, . . . ,ML−l′ − 1, contain the

same disjoint set of data symbols for a fixed jl′′ . The set of
equations in the jl′′ -th super-group can be expressed as⎡⎢⎢⎢⎢⎣

Z
(l′′)
ψl′ ,1

Z
(l′′)
ψl′ ,2...

Z
(l′′)
ψl′ ,Ml′′−1

⎤⎥⎥⎥⎥⎦=R
(l′′−1)
Ml′′−1×Kl′′−1

⎡⎢⎢⎢⎣
xτl′

xκS
l′+τl′

...
x(Kl′′−1−1)κS

l′+τl′

⎤⎥⎥⎥⎦ , (26)

given that l′′ − 1 = L − l′. Note that in (26) Z(l′′)
kl′′ il′′+jl′′

is denoted by Z
(l′′)
ψl′ ,il′′+1 in order to be consistent with (23)

given that the index of the super-group represented by the

path (jL, jL−1, . . . , jL−l′+2, jL−l′+1) is ψl′ ≜ jL−l′+1 +∑︁l′−1
i=1 (jL−i+1−1)

∏︁L−i
i′=L−l′+1 ki′ . Finally, repeating the same

procedure for all of the κSl′−1 starting super-groups results in
kL−l′+1κ

S
l′−1 = κSl′ super-groups, each of the form given by

(26), at the end of the l′-th recursion.
Final Recursion: The receiver in the L-th recursion starts

with κSL−1 ≜
∏︁L
i=2 ki super-groups each containing a dis-

joint subset of the original data symbols of size k1. The
set of equations in the ψL−1-st such super-group, where
ψL−1 ≜ j2 +

∑︁L−2
i=1 (jL−i+1 − 1)

∏︁L−i
i′=2 ki′ , indexed by the

path (jL, jL−1, . . . , j2) can be expressed as (see, e.g., (23)):⎡⎢⎢⎢⎢⎣
Z

(2)
ψL−1,1

Z
(2)
ψL−1,2...

Z
(2)
ψL−1,m1

⎤⎥⎥⎥⎥⎦ = F
(1)
m1×k1

⎡⎢⎢⎢⎣
xτL−1

xκS
L−1+τL−1

...
x(k1−1)κS

L−1+τL−1

⎤⎥⎥⎥⎦ , (27)

where τL−1 ≜ jL +
∑︁L−2
i=1 (jL−i − 1)κSi , and

Z
(2)
ψL−1,1

, . . . , Z
(2)
ψL−1,m1

are m1 auxiliary symbols defined in
the (L − 1)-st recursion and their values are known at the
beginning of the L-th recursion. Finally, after detecting the
k1 disjoint data symbols of each of the κSL−1 super-groups of
the form (27), the receiver obtains the values of all K data
symbols. Note that the indices of the data symbols contained
in each super-group is fully known according to (27).
Remark 2. The recursive algorithm proposed in this sub-
section can readily be applied to the Kronecker product of
any general square factor matrices by inserting kl = ml,
l = 1, 2, .., L. In that case, any given MUD scheme can
be applied to sets of equations defined according to the
corresponding factor matrix at each recursion. This is while
the algorithm presented in Section III-B2 provides a very low-
complexity detection.

D. General Pattern Matrices

In this subsection, we turn our attention to the general case
of pattern matrices by building upon the analysis in Sections
III-B and III-C specifically on square and rectangular factor
matrices, respectively. In particular, the general case of the
pattern matrix is considered as

GM×K =F
(1)
m1×k1 ⊗ F

(2)
m2×k2 ⊗ · · · ⊗ F

(Lr)
mLr×kLr

⊗ P
(1)
m′

1×m′
1
⊗ P

(2)
m′

2×m′
2
⊗ · · · ⊗ P

(Ls)
m′

Ls
×m′

Ls

, (28)

where Lr is the number of rectangular factor matrices
F

(lr)
mlr×klr

’s, for lr = 1, 2, . . . , Lr, and Ls is the number of

square factor matrices P
(ls)
m′

ls
×m′

lr

’s, for ls = 1, 2, . . . , Ls, in

the scheme. Moreover, let Mr ≜
∏︁Lr

lr=1mlr , Kr ≜
∏︁Lr

lr=1 klr ,
and Ms ≜

∏︁Ls

ls=1m
′
ls

. Then M = MrMs, K = KrMs, and
the overall overload factor β is Kr/Mr > 1. This is because
klr > mlr for lr = 1, 2, . . . , Lr. In addition to the structure of
the overall pattern matrix given by (28), it is assumed that
the combining matrices α

(ls)
m′

ls
×m′

ls

’s corresponding to each

P
(ls)
m′

ls
×m′

lr

are also known to the receiver. As discussed in
Section III-B2, our proposed detection algorithm with only
the Kronecker product of Ls square factor matrices as the
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pattern matrix results in Ms singleton equations with the SNR
gain on each equation obtained using Lemma 2.3 The detection
algorithm for the general case of the pattern matrix is then
summarized as the following two phases each incurring Ls
and Lr recursions, respectively.

Phase I: In the first phase, the receiver applies Ls
recursions, by following combining and (super-) grouping
as described in Section III-B2, to the system of equation
yM×1 = GM×KxK×1+nM×1 with GM×K defined in (28).
Then the receiver obtains Ms super-groups each containing
a set of equations defined according to the pattern matrix
FMr×Kr ≜ F

(1)
m1×k1 ⊗ F

(2)
m2×k2 ⊗ · · · ⊗ F

(Lr)
mLr×kLr

. The
set of equations in the ψ′

Ls
-th super-group, where ψ′

Ls
≜

j1 +
∑︁Ls−1
i=1 (jLs−i+1 − 1)

∏︁Ls−i
i′=1 m

′
i′ , indexed by the path of

super-groups (jLs , jLs−1, . . . , j2, j1), for jls = 1, 2, . . . ,m′
ls

,
is expressed as⎡⎢⎢⎣

ỹψ′
Ls
,1

ỹψ′
Ls
,2

...
ỹψ′

Ls
,Mr

⎤⎥⎥⎦=FMr×Kr

⎡⎢⎢⎣
xτ ′

Ls

xMs+τ ′
Ls...

x(Kr−1)Ms+τ ′
Ls

⎤⎥⎥⎦+
⎡⎢⎢⎣
ñψ′

Ls
,1

ñψ′
Ls
,2

...
ñψ′

Ls
,Mr

⎤⎥⎥⎦, (29)

where τ ′Ls
≜ jLs

+
∑︁Ls−1
i=1 (jLs−i − 1)

∏︁Ls

i′=Ls−i+1m
′
i′ .

Moreover, ỹψ′
Ls
,1, ỹψ′

Ls
,2, . . . , ỹψ′

Ls
,Mr

are the combined ver-
sions of the channel outputs in yM×1, after Ls rounds of
combining, and their values are fully known to the receiver at
the end of Phase I. Furthermore, ñψ′

Ls
,1, ñψ′

Ls
,2, . . . , ñψ′

Ls
,Mr

are independent noise terms each having a variance equal to
σ2/γt,τ ′

Ls
. Note that, as a result of Ls square factor matrices,

the effective SNR of the equations in the ψ′
Ls

-th super-group
in (29) is increased by a factor of γt,τ ′

Ls
, where, by Lemma 2,4

γt,τ ′
Ls

≜
∏︁Ls

ls=1 γ
(ls)
jls

with γ
(ls)
jls

defined the same way as in

Section III-B for P (ls)
m′

ls
×m′

lr

.
Phase II: The receiver in the second phase separately

processes each of the Ms disjoint sets of equations of the
form given by (29). According to the detailed description of
the detection algorithm in Section III-C, the receiver, after
applying Lr recursions, detects the Kr symbols of each of the
aforementioned Ms sets of equations resulting in K = KrMs

data symbols in total.

IV. PERFORMANCE CHARACTERIZATION

A. Average Sum-Rate

Based on the detailed analysis provided in Section III, we
have the following theorem on the average sum-rate of the
proposed scheme over GMAC5.

3Note that the proposed detection algorithm for the Kronecker product of
square factor matrices in Section III-B is different than the proposed detection
algorithm in Section III-C for the Kronecker product of rectangular factor
matrices. Indeed, the former cannot be obtained as a special case of the latter
simply by inserting kl = ml. In particular, we carefully designed the square
factor matrices and the corresponding combining matrices to enable a much
more efficient detection algorithm for the Kronecker product of square factor
matrices.

4Observe that jls here has the same meaning as sls defined in Lemma 2
and τ ′Ls

has the same value as the variable i defined in Eq. (15).
5Note that, in general, the average sum-rate should depend on the statistical

properties of the channel. One needs to account on our explanations in Section
V-A to extend Theorem 3 to the case of fading channels.

Theorem 3. The per-RE average sum-rate CM of the pro-
posed code-domain NOMA with the general pattern matrix
GM×K , specified in (28), and the proposed recursive detection
algorithm is expressed as

CM =
1

2M

m′
Ls∑︂

jLs=1

m′
Ls−1∑︂

jLs−1=1

· · ·
m′

2∑︂
j2=1

m′
1∑︂

j1=1

log2 det

(︄
IMr

+ ρ

Ls∏︂
ls=1

γ
(ls)
jls

FF T

)︄
, (30)

where IMr
is an Mr × Mr identity matrix, FMr×Kr

≜
F

(1)
m1×k1 ⊗ F

(2)
m2×k2 ⊗ · · · ⊗ F

(Lr)
mLr×kLr

, ρ ≜ Px/σ
2 with

Px ≜ E
[︁
x2j
]︁
, for j = 1, 2, . . . ,K, and σ2 = E

[︁
n2i
]︁
, for

i = 1, 2, . . . ,M .

Proof: It is well known that for a PDMA system with the
pattern matrix AM×K and the SNR of ρ for all of the received
original data symbols, the per-RE average sum rate is given
by CPDMA

M = 1
2M log2 det

(︂
IM + ρAAT

)︂
for the optimal

MAP detection [36]. As elaborated in Phase I of the detection
algorithm in Section III-D, we end up with Ms sets of equation
each defined according to (29). Therefore, the per-RE average
sum-rate CMr

(ψ′
Ls
) of the ψ′

Ls
-th super-group, indexed by the

path (jLs
, jLs−1, . . . , j2, j1), is obtained as

CMr (ψ
′
Ls
) =

1

2Mr
log2 det

(︂
IMr + ργt,τ ′

Ls
FF T

)︂
. (31)

Averaging (31) over all Ms paths completes the proof.
In the special case with all the square factor matrices being

identical, i.e., P (ls)
m′

ls
×m′

lr

= Pmp×mp
, for ls = 1, 2, . . . , Ls,

we have the following corollary given that γ(ls)j = γj , for
j = 1, 2, . . . ,mp.

Corollary 4. The per-RE average sum-rate of the proposed
code-domain NOMA with the pattern matrix GM×K =
FMr×Kr

⊗ P⊗Ls
mp×mp

, where P⊗Ls denotes the Ls-times
Kronecker product of P with itself, is given by

CM =
1

2M

∑︂
r1+r2+···+rmp=Ls

Ls!

r1!r2! . . . rmp
!

× log2 det
(︂
IMr + ργr11 γ

r2
2 . . . γ

rmp
mp FF T

)︂
, (32)

where the summation is over all disjoint sets {r1, r2, . . . , rmp
:

r′i ∈ {0, 1, . . . , Ls},
∑︁mp

i′=1 ri′ = Ls}.

Remark 3 (Optimal Factor Matrices). When the design tar-
get is to maximize the average sum rate, the design of the opti-
mal pattern matrix can be formulated as the selection of an ap-
propriate rectangular matrix F ∗ (that can properly trade off be-
tween the performance and complexity) together with the v∗ls -
th square matrices, ls = 1, 2, . . . , Ls, from Algorithm 1 with
the corresponding set of SNRs {γ(ls)v∗ls ,1

, γ
(ls)
v∗ls ,2

, . . . , γ
(ls)
v∗ls ,mls

},
such that they result in the maximum sum rate in (30).
Remark 4 (Rate-Reliability Trade-off). After the detection of
a properly chosen subset of data symbols, one can successively
cancel the interference on some detection equations such that
higher SNR gains are achieved for the detection of some
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remained symbols (see Example 4). This, in addition to
increasing the average sum rate in (30), may also increase
the error probability due to the error propagation issue in
SIC detection, resulting in a trade-off between the rate and
reliability. This mechanism also increases the latency because
we should wait for the detection of some symbols before
starting the detection of the others.
Example 4. For the system parameters in Example 1, by
using Theorem 3 and Example 2 the average sum rate is
C12 = (1/8) log2 (1 + (4/3)ρ) + (3/8) log2

(︁
1 + (4/3)2ρ

)︁
.

However, after detecting x1 and x5 from the first two equa-
tions in (11), we can apply SIC to form ỹ

(2)
9 ≜ y

(1)
5 +

y
(1)
9 − 2x1 − 2x5 = 4x9 + n

(1)
5 + n

(1)
9 , instead of the

third equation in (11). Applying the same procedure to all
of the four sets of equations defined according to P

(1)
3×3,

increases the SNR gain γ
(1)
3 on the third data symbols from

4/3 to 2. Therefore, the average sum rate is increased to
C12 = (1/12) log2 (1 + (4/3)ρ)+(1/4) log2

(︁
1 + (4/3)2ρ

)︁
+

(1/8) log2 (1 + (8/3)ρ) + (1/24) log2 (1 + 2ρ). □

B. Latency Analysis

Given our proposed fully parallel detection algorithm, we
have the following theorem for the system latency.

Theorem 5. The maximum execution time Tmax
exe for the

detection of K data symbols in the proposed code-domain
NOMA with the general pattern matrix GM×K , specified in
(28), using the detection algorithm in Section III is as follows:

Tmax
exe = ta

Ls∑︂
ls=1

(m′
ls−1)+T noisy

MUD(F
(Lr)
mLr×kLr

, C(KLr−1, C0))+

Lr−1∑︂
lr=2

T noiseless
MUD (F (lr), C(Klr−1, C0))+T noiseless

MUD (F (1), C0), (33)

where ta is the required time for an addition/subtraction,
C(Klr , C0) denotes the constellation space of the sum of (at
most) Klr original data symbols each from a modulation with
the constellation space C0, T noisy

MUD(F
(lr)
mlr×klr

, C) is the required
time for a given MUD algorithm to detect the klr symbols with
the constellation space C from a set of mlr equations defined
according to the pattern matrix F

(lr)
mlr×klr

in the presence of

additive noise, and T noiseless
MUD (F

(lr)
mlr×klr

, C) is defined similar

to T noisy
MUD(F

(lr)
mlr×klr

, C) in the absence of noise.

Proof: The detection algorithm processes Ls square fac-
tor matrices through Ls recursions. The l′s-th recursion, for
l′s = 1, 2, . . . , Ls, involves combining sets of m′

l′′s
equa-

tions, where l′′s ≜ Ls − l′s + 1, according to the rows of
α

(l′′s )

m′
l′′s

×m′
l′′s

requiring at most m′
l′′s

− 1 additions/subtractions.

Thus, assuming all such operations are done in parallel, the
l′s-th recursion requires at most ta(m′

l′′s
− 1) units of time.

Now, after at most ta
∑︁Ls

ls=1(m
′
ls

− 1) units of time, we
get sets of equations defined according to the Kronecker
product of Lr rectangular factor matrices, as (29), requiring Lr
recursions. According to the analysis in Section III-C, the first
recursion involves processing sets of equations in the form of

(21) each requiring at most T noisy
MUD(F

(Lr)
mLr×kLr

, C(KLr−1, C0))
units of time. Furthermore, the middle recursions require
processing sets of equations in the form of (25) each incur-
ring at most T noiseless

MUD (F
(l′′r )
ml′′r

×kl′′r
, C(Kl′′r −1, C0)) time6, where

l′′r ≜ Lr − l′r + 1. Finally, the last recursion contains sets
of equations defined according to (27) each necessitating
T noiseless
MUD (F

(1)
m1×k1 , C0) time. Summing up the execution times

of all Ls + Lr recursions completes the proof.
Remark 5. Theorem 5 characterizes the latency in the worst-
case scenario. However, the actual execution time might be
smaller. For example, the unknown variables of the mid-
dle recursions of rectangular factor matrices are obtained
according to (24). Therefore, if, for instance, half of the
elements of r

(Lr−l′r)
il′′r

+1 are zero, the constellation space is
C(1/2Kl′′r −1, C0). Hence, the l′r-th recursion will require
T noiseless
MUD (F

(l′′r )
ml′′r

×kl′′r
, C(1/2Kl′′r −1, C0)) time which is, in gen-

eral, smaller than T noiseless
MUD (F

(l′′r )
ml′′r

×kl′′r
, C(Kl′′r −1, C0)). Similar

arguments hold for all other recursions.
Remark 6. Note that (33) holds for Lr > 2. It can be observed
that with Lr = 1 the last three terms of (33) should be replaced
by T noisy

MUD(F
(1)
m1×k1 , C0). Moreover, for Lr = 2, the third term

in (33) becomes zero.
Remark 7. As shown throughout this section, the proposed de-
tection algorithm leads to a latency that grows logarithmically
with the total number of users/REs. Thanks to the proposed
parallel structure of the detection algorithm, a powerful BS can
simultaneously process all the branches of the detection tree
in uplink. Also, a given user with a typical processing power
during the downlink phase can focus only on the detection of
the branch containing its data symbol to avoid unnecessary
detections.

C. Detection Complexity

Recall that the proposed recursive approach results in a
relatively small size for each factor matrix, even for a large
M and K; hence, it is highly desired to exactly characterize
the maximum number of required operations.

Theorem 6. The maximum number of additions/subtractions
Nmax

add and multiplications Nmax
mul for the detection of K data

symbols in the proposed code-domain NOMA system with the
general pattern matrix GM×K , specified in (28), using the
recursive detection algorithm in Section III is as follows:

Nmax
add =M

Ls∑︂
ls=1

(m′
ls − 1) +MsN

max
add (FMr×Kr

),

Nmax
mul =MsN

max
mul (FMr×Kr

), (34)

where Nmax
add (FMr×Kr ) (Nmax

mul (FMr×Kr )) is the maxi-
mum number of additions/subtractions (multiplications) for a
NOMA system with the pattern matrix FMr×Kr

≜ F (1) ⊗

6Observe that one might be able to employ much simpler MUD algorithms
in the absence of noise. Therefore, the current characterization which accounts
for any difference on the detection latency (or complexity in Theorem 6), given
the presence or absence of noise, provides a more general formulation.
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TABLE I
COMPUTATIONAL COMPLEXITY FOR THE DETECTION OF ALL K DATA SYMBOLS.

Algorithm Maximum number of additions/subtractions Maximum number of
multiplications

SIC over GM×K O
(︁
K2M3

)︁
O

(︁
K2M3

)︁
Ours with SIC over FMr×Kr

O
(︁
M +K2M3/M4

s

)︁
O

(︁
K2M3/M4

s

)︁
BP over GM×K O

(︁
TindgMK|C0|dg log2|C0|

)︁
O

(︁
dgMK|C0|dg

)︁
Ours with BP over FMr×Kr O

(︂
M + TindfMK|C0|df log2|C0|/Ms

)︂
O

(︂
dfMK|C0|df /Ms

)︂
BP-IDD over GM×K O

(︁
TinToutdgMK|C0|dg log2|C0|

)︁
O

(︁
dgMK|C0|dg

)︁
Ours with BP-IDD over FMr×Kr O

(︂
M + TinToutdfMK|C0|df log2|C0|/Ms

)︂
O

(︂
dfMK|C0|df /Ms

)︂

· · · ⊗ F (Lr) and the recursive detection algorithm in Section
III-C. Nmax

X (FMr×Kr ), X ∈ {add,mul} is given by

Nmax
X (FMr×Kr )=MLr−1N

noisy
X (F

(Lr)
mLr×kLr

, C(KLr−1, C0))

+

Lr−1∑︂
l′r=2

κSl′r−1MLr−l′rN
noiseless
X (F (Lr−l′r+1), C(KLr−l′r , C0))

+ κSLr−1N
noiseless
X (F

(1)
m1×k1 , C0), (35)

where Mlr ≜
∏︁lr
i=1mi, Klr ≜

∏︁lr
i=1 ki, κSl′r−1 ≜∏︁Lr

i=Lr−l′r+2 ki, N
noisy
X (F

(lr)
mlr×klr

, C) is the required number
of operations for a given MUD algorithm to detect the klr
symbols with the constellation space C from a set of mlr

equations defined according to the pattern matrix F
(lr)
mlr×klr

in the presence of additive noise, and Nnoiseless
X (F

(lr)
mlr×klr

, C)
is defined similarly in the absence of noise.

Proof: The proof is based on the details of the detection
algorithm presented in Section III and following similar steps
to the proof of Theorem 5 while counting the maximum
number of operations at each recursion.
Remark 8. Note that (35) is obtained assuming Lr > 2. For
Lr = 1, (35) should be replaced by Nnoisy

X (F
(1)
m1×k1 , C0).

Moreover, the second term in (35) is zero for Lr = 2.
Note that (35) provides the full flexibility to characterize

the overall complexity of the system with respect to any
particular MUD algorithm, such as MAP, ML, AMP, belief
propagation (BP), etc. (see, e.g., [31]–[34]), applied to the sets
of equations defined according to each of Lr rectangular factor
matrices at each recursion (see Section III-C). In order to gain
further insight into the complexity of the proposed detection
algorithm, in the following, we consider the case where the
overall pattern matrix is GM×K = FMr×Kr ⊗ P

(1)
m′

1×m′
1
⊗

P
(2)
m′

2×m′
2
⊗ · · · ⊗ P

(Ls)
m′

Ls
×m′

Ls

, i.e., the Kronecker product of
Ls square factor matrices with a large Mr ×Kr rectangular
factor matrix FMr×Kr . Therefore, the overall complexity
of the system is given as (34). In Section VI, we provide
further numerical results to demonstrate that recursion over
rectangular factor matrices also helps in reducing the detection
complexity, as formulated in (35).

Assuming GM×K =FMr×Kr
⊗P

(1)
m′

1×m′
1
⊗· · ·⊗P

(Ls)
m′

Ls
×m′

Ls

,

we have Ms ≜
∏︁Ls

ls=1m
′
ls

, M = MsMr, and K =

MsKr. Note that in (34), M
∑︁Ls

ls=1(m
′
ls

− 1) = O(M)

since
∑︁Ls

ls=1(m
′
ls

− 1) is a constant much smaller than
Ms ≜

∏︁Ls

ls=1m
′
ls

and hence than M and K. Table I then
compares the complexity of our scheme, for the case of the
pattern matrix considered here, with some other well-known
detection algorithms, i.e., SIC, BP, and BP-based iterative
detection and decoding (BP-IDD) [31], [40], [41]. Note that
the computational complexities in Table I are for the detection
of all K data symbols (per symbol of all users) using our
proposed scheme or by directly applying the aforementioned
algorithms to the overall pattern matrix GM×K . In Table I,
|C0| denotes the size of the modulation constellation for the
original data symbols. Note that our detection algorithm for
the Kronecker product of square factor matrices results in sets
of equations defined according to FMr×Kr

over subsets of size
Kr of original data symbols. Therefore, the constellation space
of detections performed over both FMr×Kr and GM×K is C0.
Moreover, Tin and Tout in Table I represent the BP-IDD inner
and outer iteration numbers, respectively. Additionally, df and
dg denote the maximum row weights of the pattern matrices
FMr×Kr

and GM×K , respectively. Note that df ≪ dg since
Kr = K/Ms ≪ K. As seen, applying our recursive detection
algorithm in conjunction with other MUD algorithms results in
significantly lower complexities compared to directly applying
an MUD algorithm. It is worth mentioning that the results
in Table I are without applying recursion over the overall
rectangular pattern matrix FMr×Kr

. As numerically shown
in Section VI, applying our proposed recursive detection
algorithm for the Kronecker product of rectangular factor ma-
trices further lowers the complexity. Therefore, our proposed
recursive detection algorithm not only significantly reduces the
latency, thanks to fully parallel detection, but also noticeably
lowers the overall detection complexity.

V. EXTENSIONS TO PRACTICAL SCENARIOS

In this section, we discuss how the results of the paper can
be applied to several other practical scenarios.

A. Downlink and Uplink Fading Channels

Throughout the paper, we focused on the case of GMAC
where unit/equal gains are assumed for the channels between
the users and the BS in different REs. In practice, the channel
gain hmk between the k-th user, for k = 1, 2, . . . ,K, and the
BS at the m-th RE, for m = 1, 2, . . . ,M , can be different. In



14

this subsection we discuss how the results of the paper can be
readily extended to downlink and uplink fading channels.

1) Downlink Transmission: According to (4), the re-
ceived signal vector at the k-th user is given by yk =
diag(h1k, h2k, . . . , hMk)GM×Kx + nk. By dividing the m-
th equation in yk by hmk we get a new set of equations as
ỹk = GM×Kx + ñk, where ñk(m) is Gaussian with mean
zero and variance σ̃2

m ≜ σ2/h2mk. Therefore, all the results can
be extended to the case of downlink fading channels with the
slight change that the noise components over different REs do
not have identical variances though they are still independent.

2) Uplink Transmission: Here, we assume in this paper that
for a given user the channel gains over all M REs are equal,
i.e., hmk = hk, ∀m, k. This is a reasonable (and common)
assumption, e.g., if the M REs are the adjacent sub-channels
of a slowly changing channel, they have almost equal gains.
However, if the channel gains are different, the users can
adjust their power at each RE in such a way that equal gain is
observed on the received signals over different REs. Note that
this assumption for the case of downlink transmission yields
exactly the same channel model yk/hk = GM×Kx + nk as
GMAC with identical noise variances over different REs.

Recall, based on (3), that the uplink signal received by the
BS can be expressed as y = Hx+n, where H ≜ H⊙GM×K
and H ≜ [h1,h2, . . . ,hK ]. With the above assumption, we
have hk = hk1M×1, ∀k. The received signal vector can then
be rewritten as y = GM×K x̃+n, where x̃k ≜ x̃(k) = hkxk.
Therefore, all of our earlier results can be readily extended to
the case of uplink fading channels with the slight change that
each k-th data symbol is scaled by the channel gain hk.
Remark 9. As clarified in this section, one can readily extend
the results of the paper from the case of GMAC model to fad-
ing channels. One of the important extensions is the extension
of Algorithm 1 to the case of fading channels. The discussions
in this section demonstrate that, in the case of downlink fading
channels, given a square factor matrix P , the corresponding
optimal combining matrix α and SNR gains are dependent
to the statistical properties of the channel and should update
every time the downlink channel gains change. This is because
for the case of downlink fading channels the noise components
have different variances (inversely proportional with the square
of the channel gains); hence, we need to revise the definition
of the SNR gains with respect to the noise variances which
intuitively suggests assigning higher weights to the stronger
channels to maximize the SNR gains. Therefore, it is more
desirable to apply the proposed algorithm in this paper to
slow fading downlink channels. Note that this is also the case
with other code-domain NOMA schemes where the overall
pattern matrix should be updated after each change of the
channel matrix. However, as discussed in Section III-A, the
complexity of such updates is much smaller here due to the
factorization of the overall pattern matrix which significantly
reduces the search space for our proposed algorithm compared
to conventional PDMA algorithms. Additionally, in the case
of downlink fading channels, the BS potentially has the
computing power to run Algorithm 1 every time the downlink
channel matrix changes. On the other hand, in the case of
uplink fading channels, we have y = GM×K x̃+n. Although

this changes the SNRs of different users according to their
channel gains, it does not require Algorithm 1 to run again.
Therefore, Algorithm 1, in its current form, can be applied to
find the corresponding combining matrices and the SNR gains,
and one can use the pre-stored results from Algorithm 1 for
different factor matrices.

B. Joint Power- and Code-Domain NOMA (JPC-NOMA)

The code-domain NOMA scheme proposed in this paper
can be combined in many ways with power-domain NOMA.
For instance, if, for some l, 2ml − 1 < kl, then we cannot
satisfy distinct nonzero columns for the factor matrix G

(l)
ml×kl .

Consequently, the overall pattern matrix GM×K will have
some repeated columns, i.e., same pattern vectors for some
of the users (see, e.g., [1, Example 1]). Therefore, one cannot
distinguish between the data of the users with an equal pattern
vector. In other words, the data symbols of the users with an
equal pattern vector will be paired together, i.e., they coexist in
all sets of equations containing any of those symbols. In such
a case, we propose to assign different power coefficients to the
users having the same pattern vector in order to differentiate
between them using power-domain NOMA techniques. Then,
the receiver after detecting the paired symbols using our pro-
posed detection algorithm, detects the individual data symbols
contained in each paired symbol according to the principles
of power-domain NOMA. In this case, users with the most
disparate channel qualities should be paired together.

More importantly, we can incorporate power-domain
NOMA principles to increase the reliability of the detection
performed over sets of equations at each layer of the detection
algorithm proposed in Section III-C. Recall that each of those
sets of equations contains a disjoint subset of symbols. For
example, considering the general case of pattern matrix, spec-
ified in (28), the final recursion involves Ms

∏︁Lr

l1=2 klr sets of
equations defined similar to (27), each containing k1 disjoint
symbols while the indices of the symbols are known. As shown
in [31], assigning different power scaling and phase shifting
factors to the data symbols in a PDMA system improves
the detection reliability. Therefore, the transmitter can group
each subset of k1 users together. Then different power levels
(as well as, possibly, phase shifts) are assigned to the data
symbols of the users in each group according to the principles
of power-domain NOMA in order to increase the reliability of
the detection over the aforementioned Ms

∏︁Lr

l1=2 klr sets of
equations.

VI. NUMERICAL RESULTS

In this section, we numerically compare the average sum-
rate of various configurations, including the traditional OMA,
regular PDMA with the reported optimal pattern matrices in
[31] such as 3 × 6 and 4 × 8 matrices with the maximum
row weight df = 4, and our proposed recursive code-
domain NOMA with the square factor matrices obtained from
Algorithm 1. For our numerical analysis in this section, we
consider the GMAC model that corresponds to the case where
all channel gains are equal to one. Additionally, we assume
that each user transmits with power Px, and the noise variance
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Fig. 3. Average sum-rate of various multiple access mechanisms including
the traditional OMA, regular PDMA, and our proposed recursive method.

of the receiver at each RE is σ2. By running Algorithm 1 for
ml = 3 and 4, we get the optimal square factor matrices
P

(1)
3×3 and P

(2)
4×4 in (7) with the combining matrices as (8)

and individual SNR gains reported in Example 2.
Fig. 3 shows the per-RE average sum-rate of various mul-

tiple access techniques. Here, for our proposed scheme, we
considered GM×K = F⊗P⊗r with F = [1 1], P being either
P

(1)
3×3 or P (2)

4×4, and r = 1 or 2. It is observed that both the reg-
ular PDMA and our proposed scheme significantly outperform
the traditional OMA method. Moreover, for relatively similar
system parameters, our proposed method with the recursive
detection performs very close to the capacity of regular PDMA
with the optimal pattern matrix AM×K and optimal MAP
detection, i.e., CPDMA

M = 1
2M log2 det

(︂
IM + ρAAT

)︂
. Note

that the negligible loss in the sum-rate performance of our
scheme compared to that of PDMA, for a given dimension M
and K of the pattern matrix, is because of two major reasons.
First, for PDMA we assumed optimal MAP detection over
the overall pattern matrix and plotted the capacity formula
given the pattern matrix. However, for our scheme we are
applying our low-complexity detection scheme which has a
much lower complexity than MAP. Second, the design of
the pattern matrix for PDMA is more complex. Indeed, it
searches for the best M × K pattern matrix to maximize
the sum rate. Our scheme, on the other hand, designs the
pattern matrix as the Kronecker product of smaller factor
matrices such that each factor matrix has some properties to
render a low-complexity detection. On the positive side, due to
significantly lower complexity of our scheme, we can utilize
pattern matrices with higher dimensions (e.g., by increasing r)
and, also, apply SIC detection at some recursions similar to
Example 4 (see also [1, Example 4]) to get larger sum rates.
This can significantly boost the performance of our scheme
for a fixed overload factor.

Fig. 3 also shows the capacity formula curve (i.e., the
best performance one can achieve) for the SCMA method
having a 16 × 32 pattern matrix H16×32 with a row weight
of 6 and a column weight of 3. This sparse pattern matrix
is formed by picking the parity-check matrix of a regular
low-density parity-check (LDPC) code according to [42]. It is

Fig. 4. Average sum-rate of various multiple access schemes at low SNRs.

observed that the performance of the SCMA method with this
pattern matrix is almost the same as the green curve, i.e., our
method with a 9×18 pattern matrix decoded recursively (with
SIC applied at some recursions), according to our proposed
detection algorithm. This further highlights the potentials of
our proposed scheme given that it is capable of achieving
almost the same performance as SCMA with a twice smaller
dimension and a low-complexity decoder. Additionally, the
performance of our proposed scheme is significantly improved
by increasing the dimensions of the overall pattern matrix
(as shown in Fig. 4) while the SCMA performance does
not change much by increasing the pattern matrix dimension
(given the sparsity constraint on the pattern matrix which does
not allow transmitting the symbols of the users over many
REs).

In Fig. 4, the focus is specifically on low-SNR regimes.
Here, we consider GM×K = F 4×8⊗P

(1)
3×3

⊗r
for the proposed

scheme with F 4×8 being the 4×8 PDMA matrix with df = 4
from [31]. In this case, M = 4 × 3r, K = 8 × 3r, and the
overload factor β = 2. It can be observed in Fig. 4 that having
large pattern matrices are essential at low SNRs to avoid get-
ting close-to-zero sum rates. While it is not practically feasible
to implement conventional code-domain NOMA schemes at
such large dimensions considered in this setting, our low-
complexity recursive approach makes it possible to spread the
data symbols of the users using desirably large pattern vectors.
As a consequence, 2.74 and 3.46 times larger average sum
rates are achieved for our recursive scheme with G324×648

(i.e., r = 4) and G972×1944 (i.e., r = 5), respectively,
compared to 4 × 8 PDMA scheme at the SNR of −15 dB.
These gains are as large as 10.25× and 12.91×, respectively,
when compared to OMA. One may deduce that such gains
are directly as a result of the development of the SNR gains
through the proposed recursive detection algorithm in Section
III-B2. Indeed, using Corollary 4, the average sum-rate per RE
for the pattern matrix design of GM×K = F 4×8 ⊗ P

(1)
3×3

⊗r

is CM = 1
8 log2 det

(︂
I4 + ρ(4/3)rF 4×8F

T
4×8

)︂
. Therefore,

starting from r = 0, each unit increase of r improves the
average sum-rate by 10 log10(4/3) ≈ 1.25 dB.

In order to analyze the bit error rate (BER) and also observe



16

-2 0 2 4 6 8 10
10

-6

10
-4

10
-2

10
0

0

0.5

1

1.5

2

2.5

Fig. 5. Average sum-rate and BER comparison for the detection with and
without SIC.

the impact of SIC detection on the BER, we consider the setup
in Example 1. The average sum-rate C12 of the system is
characterized in Example 4. Additionally, we have considered
a sample way of incorporating SIC detection in the middle
of the detection process, in Example 4. The increase on the
average sum-rate by incorporating SIC detection is evident
from Example 4 and is also confirmed in Fig. 5. For the BER
performance we assume that all users employ binary phase
shift keying (BPSK) modulation and, similar to Example 1,
we only focus on the detection of the users U1, U5, and U9.
Using Monte-Carlo simulations with 107 trials, it is confirmed
that all three users have the same BER performance (without
SIC detection) since the overall SNR gain for all of them
is γt,i = (4/3)2, i = 1, 5, 9 (see Example 2). Additionally,
as shown in Example 4, incorporating the SIC detection,
according to Example 4, increases the overall SNR gain of U9

from (4/3)2 to 8/3. This is equivalent to 10 log10(3/2) ≈ 1.76
dB gain on the BER performance of U9, assuming perfect
SIC detection, which is also verified in Fig. 5. However, due
to the error propagation on the SIC detection, the gain on
the BER of U9 with SIC detection is much smaller than 1.76
dB, demonstrating the impact of imperfect SIC detection. In
particular, there is around 1.3 − 1.5 dB gap between perfect
and imperfect SIC detection over almost all ranges of SNR.
Nevertheless, interestingly, the performance of SIC detection
(according to the sample way of incorporation as explained
in Example 4) improves both average sum-rate and the BER
performance. This is mainly because we only employed SIC
detection over the last step of the detection, and once the
detection of the earlier symbols is reliable, the gain of the
SNR is dominant to the imperfection of the SIC detection.
In general, the the BER performance may degrade if we
incorporate SIC detection in many middle steps, calling for
an interesting trade-off between the rate and reliability (see
also Remark 4).

In Section IV-C, by considering the overall pattern matrix
as GM×K =FMr×Kr

⊗P
(1)
m′

1×m′
1
⊗· · ·⊗P

(Ls)
m′

Ls
×m′

Ls

, we have
shown that applying our recursive detection algorithm in con-
junction with other MUD algorithms significantly lowers the
detection complexity compared to directly applying an MUD
algorithm. Here, we provide a numerical example to show

that applying our proposed recursive detection algorithm for
the Kronecker product of rectangular factor matrices further
lowers the complexity. To see this, let us consider the overall
pattern matrix as F 2×6 = F

(1)
1×2 ⊗ F

(2)
2×3, where F

(1)
1×2 and

F
(2)
2×3 are given in Example 3. Let us further assume that

we want to apply MAP for the detection over the system
of equations defined as y2×1 = F 2×6x6×1 + n2×1, and
we consider the number of possibilities that a MAP detector
has to search for as a rough approximate of the detection
complexity. In this case, directly applying MAP to this system
of equations requires searching over all |C0|6 possibilities. On
the other hand, applying our recursive detection algorithm
requires |C(2, C0)|3 + 3|C0|2 searches, where C(2, C0) is the
constellation space of the sum of 2 original data symbols each
from a modulation with the constellation space C0 (see (35) for
the details). Assuming quadrature phase shift keying (QPSK)
modulation as an example, |C0| = 4 and |C(2, C0)| = 9.
Therefore, our scheme requires computations of 777 cases
which is much smaller than 46 = 4096, i.e., direct application
of MAP to F 2×6x6×1.

VII. CONCLUSIONS AND FUTURE DIRECTIONS

We proposed a low-complexity and scalable recursive ap-
proach toward code-domain NOMA by constructing the over-
all pattern matrix as the Kronecker product of several factor
matrices. We then developed detection algorithms that reduce
to several layers/recursions, each dealing with disjoint subsets
of equations corresponding to certain factor matrices, that
can be executed in parallel. For the Kronecker product of
square factor matrices we proposed a systematic way of
choosing the factor matrices that enables a remarkably low-
complexity detection involving only few linear operations
(additions/subtractions). Furthermore, for the Kronecker prod-
uct of rectangular factor matrices we provided a recursive
detection algorithm that can work on the general case of
factor matrices. Given the proposed schemes and the detection
algorithm we characterized the system performance in terms
of average sum rate, latency, and detection complexity. We
further discussed possible extensions of the work to the case
of fading channels and joint power- and code-domain NOMA.
We showed that the proposed scheme has significantly lower
complexity and latency compared to straightforward code-
domain NOMA schemes. Moreover, it is numerically verified
that by utilizing large pattern matrices the proposed scheme
significantly improves the average sum rate.

The proposed approach in this paper can be extended in
various directions. Here, we highlight several directions for
the future research.

1) Optimal design of factor matrices: Theorem 3 and Co-
rollary 4 naturally lead to a design strategy for optimal factor
matrices that maximize the average sum rate (see Remark
3). The characterization of other performance metrics, such
as individual rates [43], and then finding the optimal factor
matrices with respect to these metrics is a direction for future
research.

2) Rate-Reliability-Latency Trade-offs: Given the set of
factor matrices and the overall recursive approach discussed in
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Section III, various detection schemes can be applied at each
layer/recursion trading off between the rate, reliability, and
latency, as exemplified in Remark 4 and Example 4. Detailed
characterizations of such trade-offs is another direction for
future research.

3) Joint Power- and Code-Domain NOMA (JPC-NOMA):
As discussed in Section V-B, power-domain NOMA can be
combined with the proposed code-domain NOMA in several
ways to improve the system design in terms of various perfor-
mance metrics including reliability, throughput, fairness, etc.
Designing such joint networks and analytically characterizing
their performance metrics to show the advantages of the joint
design is another important future research direction.

4) Grant-Free Transmission: In many use cases of massive
communication, it is essential to reduce the coordination
overhead of the communication protocol. Grant-free protocols
attempt to serve a massive number of users with minimal (or
even without any) coordination. Incorporating the proposed
low-complexity code-domain NOMA scheme in the context
of grant-free transmission is a vital future direction.

APPENDIX A
PROOF OF LEMMA 1

Let P = [pi,j ]m×m. If there exists no such a combining
matrix α = [αi,j ]m×m with αi,j ∈ {−1, 0,+1}, then we
are done. Otherwise, if such a matrix exists, then we prove
the uniqueness of the i-th row of α, for i = 1, 2, . . . ,m, by
contradiction.

Assume to the contrary that there are T = 2 distinct sets
of coefficients {α(1)

i,j }mj=1 and {α(2)
i,j }mj=1 for the i-th row of α

that result in singleton vectors with nonzero elements at the
i-th position of the i-th row of αP . In other words, we have

m∑︂
j=1

α
(t)
i,jpj,i = wt ̸= 0, (36)

m∑︂
j=1

α
(t)
i,jpj,i′ = 0, i′ ̸= i = 1, 2, . . . ,m, (37)

for t = 1, 2, where w1 and w2 are two nonzero integers. Then
we can define a new set of combining coefficients {α(3)

i,j }mj=1

with α(3)
i,j ≜ w1α

(2)
i,j − w2α

(1)
i,j . Note that

m∑︂
j=1

α
(3)
i,j pj,i = w1

m∑︂
j=1

α
(2)
i,j pj,i − w2

m∑︂
j=1

α
(1)
i,j pj,i

= w1w2 − w2w1 = 0, (38)
m∑︂
j=1

α
(3)
i,j pj,i′ = w1

m∑︂
j=1

α
(2)
i,j pj,i′ − w2

m∑︂
j=1

α
(1)
i,j pj,i′

= 0− 0 = 0, i′ ̸= i = 1, 2, . . . ,m. (39)

Now, two cases are possible:
• α

(3)
i,j = 0, i.e., α(2)

i,j = (w2/w1) × α
(1)
i,j for all j =

1, 2, . . . ,m. This implies that there is only one set of
coefficients {α(1)

i,j }mj=1 for the i-h row of α since scaling
the combining coefficients by a constant factor (here,
w2/w1) does not change the performance and the SNR
gains as explained for the condition C1 in Section III-B1.

• At least for one j, α(3)
i,j ̸= 0. This is in contradiction

with the linear independence of the rows of P since the
linear combination of the rows with nonzero combining
coefficients is equal to zero as shown by (38) and (39).

This proves that the i-th row of α is unique. Repeating the
same procedure for i = 1, 2, . . . ,m completes the proof.

REFERENCES

[1] M. V. Jamali and H. Mahdavifar, “A low-complexity recursive approach
toward code-domain NOMA for massive communications,” in Proc.
IEEE Global Communications Conference (GLOBECOM), Abu Dhabi,
UAE, Dec. 2018, pp. 1–6.

[2] M. Fereydounian, M. V. Jamali, H. Hassani, and H. Mahdavifar, “Chan-
nel coding at low capacity,” in IEEE Information Theory Workshop
(ITW). IEEE, 2019, pp. 1–5.

[3] Y.-P. E. Wang, X. Lin, A. Adhikary, A. Grovlen, Y. Sui, Y. Blankenship,
J. Bergman, and H. S. Razaghi, “A primer on 3GPP narrowband Internet
of Things,” IEEE Commun. Mag., vol. 55, no. 3, pp. 117–123, 2017.

[4] R. Ratasuk, N. Mangalvedhe, Y. Zhang, M. Robert, and J.-P. Koskinen,
“Overview of narrowband IoT in LTE Rel-13,” in Proc. IEEE Conf.
Standard Commun. Netw. (CSCN), 2016, pp. 1–7.

[5] Z. Ding, X. Lei, G. K. Karagiannidis, R. Schober, J. Yuan, and V. K.
Bhargava, “A survey on non-orthogonal multiple access for 5G networks:
Research challenges and future trends,” IEEE J. Sel. Areas Commun.,
vol. 35, no. 10, pp. 2181–2195, 2017.

[6] D. Wan, M. Wen, X. Cheng, S. Mumtaz, and M. Guizani, “A promising
non-orthogonal multiple access based networking architecture: Motiva-
tion, conception, and evolution,” IEEE Wireless Commun., vol. 26, no. 5,
pp. 152–159, 2019.

[7] O. Ordentlich and Y. Polyanskiy, “Low complexity schemes for the
random access Gaussian channel,” in Proc. IEEE Int. Symp. Inf. Theory
(ISIT), 2017, pp. 2528–2532.

[8] L. Liu, E. G. Larsson, W. Yu, P. Popovski, C. Stefanovic, and E. De Car-
valho, “Sparse signal processing for grant-free massive connectivity: A
future paradigm for random access protocols in the Internet of Things,”
IEEE Signal Process. Mag., vol. 35, no. 5, pp. 88–99, 2018.

[9] W. Yuan, N. Wu, Q. Guo, D. W. K. Ng, J. Yuan, and L. Hanzo,
“Iterative joint channel estimation, user activity tracking, and data
detection for FTN-NOMA systems supporting random access,” IEEE
Trans. Commun., vol. 68, no. 5, pp. 2963–2977, 2020.

[10] S. Shahsavari, F. Shirani, and E. Erkip, “Opportunistic temporal fair
scheduling for non-orthogonal multiple access,” in 2018 56th Annual
Allerton Conference on Communication, Control, and Computing (Aller-
ton). IEEE, 2018, pp. 391–398.

[11] S. R. Islam, N. Avazov, O. A. Dobre, and K.-S. Kwak, “Power-domain
non-orthogonal multiple access (NOMA) in 5G systems: Potentials and
challenges,” IEEE Commun. Surveys Tuts., vol. 19, no. 2, pp. 721–742,
2016.

[12] Z. Ding, M. Peng, and H. V. Poor, “Cooperative non-orthogonal multiple
access in 5G systems,” IEEE Commun. Lett., vol. 19, no. 8, pp. 1462–
1465, 2015.

[13] X. Li, J. Li, Y. Liu, Z. Ding, and A. Nallanathan, “Residual transceiver
hardware impairments on cooperative NOMA networks,” IEEE Trans.
Wireless Commun., vol. 19, no. 1, pp. 680–695, 2020.

[14] X. Pei, H. Yu, M. Wen, Q. Li, and Z. Ding, “Secure outage analysis for
cooperative NOMA systems with antenna selection,” IEEE Trans. Veh.
Technol., vol. 69, no. 4, pp. 4503–4507, 2020.

[15] Y. Liu, Z. Ding, M. Elkashlan, and H. V. Poor, “Cooperative non-
orthogonal multiple access with simultaneous wireless information and
power transfer,” IEEE J. Sel. Areas Commun., vol. 34, no. 4, pp. 938–
953, 2016.

[16] Q. Sun, S. Han, I. Chin-Lin, and Z. Pan, “On the ergodic capacity of
MIMO NOMA systems,” IEEE Wireless Commun. Lett., vol. 4, no. 4,
pp. 405–408, 2015.

[17] Z. Ding, P. Fan, and H. V. Poor, “Random beamforming in millimeter-
wave noma networks,” IEEE Access, 2017.

[18] M. V. Jamali, S. M. Azimi-Abarghouyi, and H. Mahdavifar, “Out-
age probability analysis of uplink NOMA over ultra-high-speed FSO-
backhauled systems,” in Proc. IEEE Globecom Workshops (GC Wkshps),
Abu Dhabi, UAE, Dec. 2018, pp. 1–6.

[19] M. V. Jamali and H. Mahdavifar, “Uplink non-orthogonal multiple access
over mixed RF-FSO systems,” IEEE Trans. Wireless Commun., vol. 19,
no. 5, pp. 3558–3574, 2020.



18

[20] T. Hou, Y. Liu, Z. Song, X. Sun, and Y. Chen, “Exploiting NOMA
for UAV communications in large-scale cellular networks,” IEEE Trans.
Commun., vol. 67, no. 10, pp. 6897–6911, 2019.

[21] K. N. Doan, M. Vaezi, W. Shin, H. V. Poor, H. Shin, and T. Q.
Quek, “Power allocation in cache-aided NOMA systems: Optimization
and deep reinforcement learning approaches,” IEEE Trans. Commun.,
vol. 68, no. 1, pp. 630–644, 2020.

[22] H. Nikopour and H. Baligh, “Sparse code multiple access,” in Proc.
IEEE Int. Symp. Pers. Indoor Mobile Radio Commun., London, U.K.,
Sep. 2013, pp. 332–336.

[23] F. Wei and W. Chen, “A low complexity SCMA decoder based on list
sphere decoding,” in Proc. IEEE Global Communications Conference
(GLOBECOM), Washington, D.C., USA, Dec. 2016, pp. 1–6.

[24] C. Zhang, C. Yang, X. Pang, W. Song, W. Xu, S. Zhang, Z. Zhang,
and X. You, “Efficient sparse code multiple access decoder based on
deterministic message passing algorithm,” IEEE Trans. Veh. Technol.,
vol. 69, no. 4, pp. 3562–3574, 2020.

[25] D. Fang, Y.-C. Huang, Z. Ding, G. Geraci, S.-L. Shieh, and H. Claussen,
“Lattice partition multiple access: A new method of downlink non-
orthogonal multiuser transmissions,” in Proc. IEEE Global Communi-
cations Conference (GLOBECOM), Washington, D.C., USA, Dec. 2016,
pp. 1–6.

[26] M. Qiu, Y.-C. Huang, S.-L. Shieh, and J. Yuan, “A lattice-partition
framework of downlink non-orthogonal multiple access without SIC,”
IEEE Trans. Commun., vol. 66, no. 6, pp. 2532–2546, 2018.

[27] M. Qiu, Y.-C. Huang, J. Yuan, and C.-L. Wang, “Lattice-partition-based
downlink non-orthogonal multiple access without SIC for slow fading
channels,” IEEE Trans. Commun., vol. 67, no. 2, pp. 1166–1181, 2019.

[28] Q. Xiong, C. Qian, B. Yu, and C. Sun, “Advanced NoMA scheme for
5G cellular network: Interleave-grid multiple access,” in Proc. IEEE
Globecom Workshops (GC Wkshps), Singapore, Dec. 2017, pp. 1–5.

[29] S. Hu, B. Yu, C. Qian, Y. Xiao, Q. Xiong, C. Sun, and Y. Gao,
“Nonorthogonal interleave-grid multiple access scheme for industrial
Internet of Things in 5G network,” IEEE Trans. Ind. Inform., vol. 14,
no. 12, pp. 5436–5446, 2018.

[30] X. Dai, S. Chen, S. Sun, S. Kang, Y. Wang, Z. Shen, and J. Xu,
“Successive interference cancelation amenable multiple access (SAMA)
for future wireless communications,” in Proc. IEEE Int. Conf. Commun.
Syst. (ICC), 2014, pp. 222–226.

[31] S. Chen, B. Ren, Q. Gao, S. Kang, S. Sun, and K. Niu, “Pattern
division multiple access—a novel nonorthogonal multiple access for
fifth-generation radio networks,” IEEE Trans. Veh. Technol., vol. 66,
no. 4, pp. 3185–3196, 2017.

[32] G. Song, K. Cai, Y. Chi, J. Guo, and J. Cheng, “Super-sparse on-off
division multiple access: Replacing repetition with idling,” IEEE Trans.
Commun., vol. 68, no. 4, pp. 2251–2263, 2020.

[33] Y. Chi, L. Liu, G. Song, C. Yuen, Y. L. Guan, and Y. Li, “Practical
MIMO-NOMA: low complexity and capacity-approaching solution,”
IEEE Trans. Wireless Commun,, vol. 17, no. 9, pp. 6251–6264, 2018.

[34] L. Liu, C. Liang, J. Ma, and L. Ping, “Capacity optimality of AMP in
coded systems,” arXiv preprint arXiv:1901.09559, 2019.

[35] Z. Yang, J. Cui, X. Lei, Z. Ding, P. Fan, and D. Chen, “Impact of
factor graph on average sum rate for uplink sparse code multiple access
systems,” IEEE Access, vol. 4, pp. 6585–6590, 2016.

[36] O. Shental, B. M. Zaidel, and S. Shamai, “Low-density code-domain
NOMA: Better be regular,” in Proc. IEEE Int. Symp. Inf. Theory, Aachen,
Germany, Jul. 2017, pp. 2628–2632.

[37] E. Arikan, “Channel polarization: A method for constructing capacity-
achieving codes for symmetric binary-input memoryless channels,” IEEE
Trans. Inf. Theory, vol. 55, no. 7, pp. 3051–3073, 2009.

[38] H. Mahdavifar, M. El-Khamy, J. Lee, and I. Kang, “Compound polar
codes,” in Information Theory and Applications Workshop (ITA). IEEE,
2013, pp. 1–6.

[39] ——, “Polar coding for bit-interleaved coded modulation,” IEEE Trans-
actions on Vehicular Technology, vol. 65, no. 5, pp. 3115–3127, 2015.

[40] D. N. Liu and M. P. Fitz, “Low complexity affine MMSE detector
for iterative detection-decoding MIMO OFDM systems,” IEEE Trans.
Commun., vol. 56, no. 1, pp. 150–158, 2008.

[41] B. Ren, X. Yue, W. Tang, Y. Wang, S. Kang, X. Dai, and S. Sun,
“Advanced IDD receiver for PDMA uplink system,” in Proc. IEEE/CIC
Int. Conf. Commun. China (ICCC). IEEE, 2016, pp. 1–6.

[42] M. M. Mansour and N. R. Shanbhag, “A 640-Mb/s 2048-bit pro-
grammable LDPC decoder chip,” IEEE J. Solid-State Circuits, vol. 41,
no. 3, pp. 684–698, 2006.

[43] P. Xu, Z. Ding, X. Dai, and H. V. Poor, “A new evaluation criterion for
non-orthogonal multiple access in 5G software defined networks,” IEEE
Access, vol. 3, pp. 1633–1639, 2015.

Mohammad Vahid Jamali is a Ph.D. candidate in
the Department of Electrical Engineering and Com-
puter Science at the University of Michigan, Ann
Arbor, MI, USA. He received the B.Sc. degree from
K.N. Toosi University of Technology, Tehran, Iran,
in 2013, and the M.Sc. degree from Sharif University
of Technology (SUT), Tehran, Iran, in 2015, both
in electrical engineering. From 2013 to 2017, he
was a member of the technical staff of the Optical
Networks Research Laboratory (ONRL) at SUT. He
received several awards and honors including The

2017 Best M.Sc. Thesis Award by the IEEE Iran Section, Rackham Graduate
Fellowship by the University of Michigan in 2017-2018, Minuchehr Kashef
Scholarship Award by the University of Michigan in 2018, Best Paper Award
of IEEE GLOBECOM Workshops on UHS5G, Abu Dhabi, UAE, 2018, and
Exemplary Reviewer of the IEEE Transactions on Communications in 2019.
His general research interests are in coding, information theory, wireless
communications, machine learning, and optics.

Hessam Mahdavifar (S’10, M’12) is an Assistant
Professor in the Department of Electrical Engi-
neering and Computer Science at the University
of Michigan Ann Arbor. He received the B.Sc.
degree from the Sharif University of Technology,
Tehran, Iran, in 2007, and the M.Sc. and the Ph.D.
degrees from the University of California San Diego
(UCSD), La Jolla, in 2009, and 2012, respectively,
all in electrical engineering. He was with the Sam-
sung US R&D between 2012 and 2016, in San
Diego, US, as a staff research engineer.

He received the NSF career award in 2020. He also received Best
Paper Award in 2015 IEEE International Conference on RFID, and the
2013 Samsung Best Paper Award. He also received two Silver Medals at
International Mathematical Olympiad in 2002 and 2003, and two Gold Medals
at Iran National Mathematical Olympiad in 2001 and 2002. His main area
of research is coding and information theory with applications to wireless
communications, storage systems, security, and privacy.


	Introduction
	Preliminaries and System Model
	Design and Detection over Gaussian MAC
	Design Principles
	Square Factor Matrices
	Pattern Matrix Design and Recursive Combining
	Recursive Detection Algorithm
	Detection and SNR Evolution Trees

	Rectangular Factor Matrices
	General Pattern Matrices

	Performance Characterization
	Average Sum-Rate
	Latency Analysis
	Detection Complexity

	Extensions to Practical Scenarios
	Downlink and Uplink Fading Channels
	Downlink Transmission
	Uplink Transmission

	Joint Power- and Code-Domain NOMA (JPC-NOMA)

	Numerical Results
	Conclusions and Future Directions
	Optimal design of factor matrices
	Rate-Reliability-Latency Trade-offs
	Joint Power- and Code-Domain NOMA (JPC-NOMA)
	Grant-Free Transmission


	Appendix A: Proof of Lemma1
	References
	Biographies
	Mohammad Vahid Jamali
	Hessam Mahdavifar


