
A Quantum Interpretation of Bunched Logic &
Quantum Separation Logic

Li Zhou∗, Gilles Barthe∗†, Justin Hsu‡, Mingsheng Ying§¶ Nengkun Yu§
∗Max Planck Institute for Security and Privacy, †IMDEA Software Institute, ‡University of Wisconsin–Madison,
§University of Technology Sydney, ¶Institute of Software, Chinese Academy of Sciences and Tsinghua University

Abstract—We propose a model of the substructural logic of
Bunched Implications (BI) that is suitable for reasoning about
quantum states. In our model, the separating conjunction of BI
describes separable quantum states. We develop a program logic
where pre- and post-conditions are BI formulas describing quan-
tum states—the program logic can be seen as a counterpart of
separation logic for imperative quantum programs. We exercise
the logic for proving the security of quantum one-time pad and
secret sharing, and we show how the program logic can be used
to discover a flaw in Google Cirq’s tutorial on the Variational
Quantum Algorithm (VQA).

I. INTRODUCTION

The logic of Bunched Implications (BI) of O’Hearn and
Pym [1]–[3] is a substructural logic that features resource-
aware connectives. One such connective is ∗, known as sepa-
rating conjunction: informally, an assertion ϕ ∗ ψ holds with
respect to a resource R if the resource R can be split into
resources R′ and R′′ such that ϕ holds with respect to R′ and
ψ holds with respect to R′′. This interpretation is particularly
well suited for reasoning about programs in settings where
computations can have interfering effects. In particular, BI
has found success as an assertion language for Separation
Logic [4]–[6], a program logic for reasoning about programs
with mutable state, and Concurrent Separation Logic [7], [8], a
program logic for reasoning about shared-memory concurrent
processes.

Recent works seek to extend the separation logic framework
beyond memory-manipulating programs by considering other
notions of resources and other models of computation. Broadly
speaking, separation logics are a good fit whenever programs
manipulate resources in a local fashion: that is, there is a
natural notion of two resources being separate, and a program
can operate on the first resource without affecting the second.
This idea underlies recent separation logics for probabilistic
programs, where separation is probabilistic independence [9].

Quantum computation is another domain where the ideas
of separation logic seem relevant. Recent work [10], [11]
suggests that reasoning about resources (in particular, entan-
glement – a resource unique in the quantum world) can bring
similar benefits to quantum computing and communications.
Motivated by this broad perspective, we propose a quantum
model of BI and develop a novel separation logic for quantum
programs. Our development is guided by concrete examples
of quantum algorithms and security protocols.

Fig. 1: VQA(2) with parameters taken in Sec. V-C.

Motivating Local Reasoning for Quantum Programs:
Quantum Machine Learning [12], [13] and VQAs (Variational
Quantum Algorithms) [14], [15] are new classes of quan-
tum algorithms that emerged in recent years as a leading
application of quantum computing. These algorithms solve
problems by training parameterized quantum circuits. The
trained circuits are usually very large in terms of both their
size and the required quantum resources, i.e., the number
of involved quantum bits (qubits). This makes them partic-
ularly challenging to verify with existing techniques such
as quantum Hoare logic [16], [17] and verification based
on a density matrix representation of quantum states [18]–
[20], since the dimension of the matrices used to represent
assertions increases exponentially w.r.t. the number of qubits.
Fortunately, these algorithms can benefit from local reasoning,
since each of their operations is performed locally on a
small number of qubits. Consider for instance the quantum
circuit shown in Figure 1, that implements a VQA circuit
with 2 × 2 grid qubits. Instead of reasoning about the cir-
cuit as a whole, we would like to reason about sub-circuits
ProcC(1),ProcC(2),Proc(R)(1),ProcR(2) separately, and
then combine the results to establish the correctness of the
whole program. This is precisely the kind of reasoning enabled
by Quantum Separation Logic (QSL for short).

Technical Challenges and Contributions: QSL will be
developed by first developing a model of BI, where formulas
describe quantum states and then building a separation logic
using these assertions as pre- and post-conditions, introducing
proof rules to reason about quantum programs.

BI and Its Quantum Interpretation: To characterize the
properties of quantum systems, we first identify a quantum
interpretation of BI appropriate for our target applications. We
choose to interpret our separating conjunction ∗ as separability978-1-6654-4895-6/21/$31.00 ©2021 IEEE



of quantum states. Roughly speaking, ϕ1 ∗ ϕ2 holds in a
quantum state ρ if ρ can be factored into two quantum
states ρ1 and ρ2 over disjoint registers satisfying ϕ1 and ϕ2,
respectively.

Proof System for Program Logic: next, we define a program
logic for a quantum while-language [16] (for simplicity, we
do not consider classical variables). Our language follows the
“classical control and quantum data” paradigm. We develop
a set of proof rules that are effective for verifying quantum
programs over a large set of qubits. Our proof system has
several novel ingredients:

1) Modification on BI formulas. The basic rule for as-
signments in classical program logics is defined using
the syntactic notion of substitution. Due to the non-
cloning law of quantum information, the role of assign-
ments has to be played by initialization q := |0⟩ and
unitary transformations q := U [q], and inference rules
for these operations involve a quantum operation (e.g.,
[16], [17]). Unfortunately, the rules for initialization and
unitary transformations are not simple adaptations of the
rule for assignment, because a quantum generalization
of substitution is not straightforward. For atomic predi-
cates, substitutions are not always defined. For composite
formulas, a straightforward definition of substitution is
too weak for applications. We overcome this hurdle by
introducing a modification operation for atomic formulas
(see Definition 9), which is essentially a quantum version
of substitution. Extending this operation to composite
formulas requires some care (see Definition 10).

2) Frame rule: The frame rule is one of the most char-
acteristic structural rules in separation logic. QSL also
enjoys a frame rule FRAME that is similar in spirit to
frame rules from standard separation logics, but our new
interpretation of separating conjunction means that the
meaning of the rule is different. Furthermore, the frame
rule can be generalized slightly: even if the standard
side condition for frame rules does not hold, the frame
rule still applies if the post-condition is a supported
assertion—a concept first proposed by Reynolds [21] in
the context of standard separation logic. This extra bit of
freedom seems to be particular to the quantum setting,
and we crucially use this feature when using the frame
rule to establish uniformity. The soundness proof of our
quantum frame rule requires a nontrivial calculation based
on purification, a fundamental technique used in quantum
information for transforming mixed states to pure states
by introducing reference systems [22].

3) Reasoning about entangled predicates:1 The structural
rules FRAME and CONST enable us to lift local reasoning
to global correctness of quantum algorithms only when
no entanglement occur in the pre- and post-conditions.
However, entangled predicates play an essential role in
revealing the non-local (global) properties of a composite

1Here, entangled predicates refer to the projections that cannot be factored
as a product of projections of its local constituents.

quantum system; for instance, some entangled predicates
are used when reasoning about the (in)correctness of
VQA (see Sec. V-C). With the help of auxiliary variables,
we set up a new rule UNCR which enables us to prove
the correctness of large quantum algorithms with respect
to entangled pre- and post-conditions. Intuitively, when
the program (as the principal system) combined with
auxiliary variables (as ancillary systems), modification
can be used to create (mathematically rather than physi-
cally) entanglement and rule UNCR is used to preserve
correctness under the modification on the auxiliary vari-
ables in the pre- and post-conditions (but not in the
program). The key idea behind was first proposed in [23]
for reasoning about parallel quantum programs; UNCR
is its generalization tailored for our purpose.

QSL: Proving global correctness via local reasoning.
As motivated, our logic is designed for scalable verification
of large-scale quantum programs: once genuinely quantum
properties of small subprograms are verified, QSL can quickly
and efficiently incorporate them into larger quantum programs.
While existing tools [18], [20], [24], [25] are suitable for
reasoning about relatively small quantum algorithms with
good algebraic structure, QSL provides a way to verify larger
quantum programs and protocols containing them.

Applications: To demonstrate the breadth of the application
range of our logic QSL, we present several case studies from
two very different areas:

• Our first example given in Section V is formal verification
of Variational Quantum Algorithm (VQA) [14], [15] for
finding the ground state energy of a quantum system,
which has potential applications in quantum chemistry for
designing new materials and drugs. A typical VQA can
be split into different subprograms that are suited to local
reasoning. Then the frame rules together with UNCR are
used to derive global correctness with entangled pre- and
post-conditions. In particular, an analysis based on QSL
reveals that the VQA presented in the tutorial of Google’s
Cirq [26] is incorrect.

• In Section VI, we use QSL to verify the security of
quantum one-time pad (QOTP) [27], [28] and quantum
secret sharing (QSS) [29], [30]. Unlike previous work,
the QSL verification of QOTP and QSS is scalable:
increasing the number of registers that algorithms employ
does not complicate the verification. In particular, rule
FRAME with the supported assertion (SP) enables us
to avoid the very complicated mathematical calculations
used in earlier verifications of QOTP [31].

II. PRELIMINARIES

For the convenience of the reader, we briefly review basic
notions of quantum information and programming as well as
the logic of bunched implication.

A. Basics of Quantum Information

The state space of a quantum system is a Hilbert space H,
which is essentially a vector space with inner product in the



finite-dimensional case. A pure state of the system is a unit
column vector |ψ⟩ ∈ H. For example, the state space of a
quantum bit (aka qubit) is a two-dimensional Hilbert space

with basis states |0⟩ =
[︃

1
0

]︃
and |1⟩ =

[︃
0
1

]︃
, and any pure

state of a qubit can be described in the form α|0⟩ + β|1⟩ =[︃
α
β

]︃
satisfying normalization condition |α|2 + |β|2 = 1.

When the state is not completely known but could be in one
of some pure states |ψi⟩ with respective probabilities pi, we
call {(pi, |ψi⟩)} an ensemble of pure states or a mixed state,
and the system is fully described by the density operator ρ =∑︁

i pi|ψi⟩⟨ψi|. For example, the completely mixed state of a
qubit can be seen as ensemble {(0.5, |0⟩), (0.5, |1⟩)} (i.e. the
state is either |0⟩ or |1⟩ with the same probability 0.5) or

density matrix 1
2 (|0⟩⟨0|+ |1⟩⟨1|) =

[︃
0.5 0
0 0.5

]︃
.

The evolution of a quantum system is modelled by a
unitary operator U ; i.e. a complex matrix with UU† =
U†U = I where I is the identity operator and † stands
for conjugate transpose. In quantum computing, operators are
often called quantum gates. For example, the Hadamard gate

H = 1√
2

[︃
1 1
1 −1

]︃
maps |0⟩, |1⟩ to their superpositions

|±⟩ = 1√
2
(|0⟩ ± |1⟩).

Unlike a classical system which can be observed directly
without changing its state, we need to perform a quantum mea-
surement to extract information from a quantum state which
inevitably leads to state collapse. Formally, a projective quan-
tum measurement consists of a set of projections, i.e., self-
adjoint and idempotent linear operators,2 M0,M1, . . . ,Mn.
When such a measurement is applied to a quantum state ρ,
we obtain one of the classical outcome i ∈ {0, 1, . . . , n} with
probability pi = tr(Miρ), and the post-measurement state of
the system is then MiρMi

pi
.

We use variables p, q, r, ... to denote quantum systems.
Operations in quantum computing are often performed on a
composite system consisting of multiple qubits. To indicate
which system a state describes or an operation acts on, we
use subscripts; for example, Hp is the state space of system
p, |0⟩p is the pure state |0⟩ of the system p and |1⟩q⟨1| is
the density matrix of the system q. The composite system
is described by the tensor product of its subsystems; for
example, a composite system pq has the state space Hp⊗Hq ,
and |0⟩p ⊗ |1⟩q (or, |0⟩p|1⟩q for short) is a pure state in
which subsystem p is in state |0⟩ and subsystem q is in state
|1⟩. Due to the superposition principle, there exist states like
|Φ⟩pq = 1√

2
(|0⟩p|0⟩q + |1⟩p|1⟩q) that cannot be written in the

simple tensor form |ϕ⟩p|ψ⟩q , which are called entangled states.
These states play a crucial role in applications of quantum
computation and quantum communication.

The state of a composite system fully determines the state
of each subsystem. Formally, given composite system pq in
state ρ, subsystem q is then in state trp(ρ), where the partial

2That is, P : H → H is a projection over H iff P = P † = P 2.

trace trp(·) over p is a mapping from operators on Hp ⊗Hq

to operators on Hq defined by:

trp(|ϕp⟩p⟨ψp| ⊗ |ϕq⟩q⟨ψq|) = ⟨ψp|ϕp⟩ · |ϕq⟩q⟨ψq|

for all |ϕp⟩, |ψp⟩ ∈ Hp and |ϕq⟩, |ψq⟩ ∈ Hq together with
linearity. The state trq(ρ) of subsystem q can be defined
symmetrically. We often use the notations ρ|p ≜ trq(ρ) and
ρ|q ≜ trp(ρ) in order to explicitly indicate that ρ|p and ρ|q
are states of p, q, respectively.

Summary of Notations. Let V be the set of all quantum
variables. A quantum register is a list of distinct variables
q = q1, . . . , qn. Each quantum variable q has a type Hq , which
is the state Hilbert space of quantum system denoted by q.
For a set of quantum variables S = {q1, . . . , qn} ⊆ V (or a
quantum register q = q1, . . . , qn), we fix following notations:

• HS =
⨂︁n

i=1 Hqi : the Hilbert space of S.
• dim(S): the dimension of HS .
• D(S): the set of all (mixed) quantum states (i.e. density

matrices) of S. In particular, for any ρ ∈ D(S), its domain
is defined as dom(ρ) ≜ S; we write D ≜

⋃︁
S⊆V D(S)

for the set of all states.
• P(S): the set of projections on HS . In particular, for

any P ∈ P(S), its domain is defined as free (P ) ≜ S.
Since there is a one-to-one correspondence between pro-
jections and closed subspaces, we sometimes call closed
subspaces of HS projections. We write P ≜

⋃︁
S⊆V P(S)

for the set of all projections.
• ρ|S ≜ trdom(ρ)\S(ρ): the restriction of state ρ on S,

defined as a reduced density operator over S ∩ dom(ρ).

B. Quantum Programs: Syntax and Semantics

For simplicity of presentation, we consider the quantum
while-language [16] which does not include classical vari-
ables.

Definition 1 (Syntax [16]). The quantum while-programs are
defined by the grammar:

C ::= skip | C1;C2 | q := |0⟩ | q := U [q]

| if (□m ·M [q] = m→ Cm) fi

| while M [q] = 1 do C od

The program constructs defined above are explained as
follows. First, q := |0⟩ initializes the quantum variable q in a
basis state |0⟩, and q := U [q] applies a unitary transformation
U to a sequence q of quantum variables. The case statement
if · · ·fi performs the projective measurement M = {Mm} on
q, and then chooses a subprogram Cm to execute according
to measurement outcome m. In the loop while · · ·od, the
projective measurement M = {M0,M1} in the guard has
only two possible outcomes 0, 1: if the outcome is 0 the
loop terminates, and if the outcome is 1 it executes the
loop body C and enters the loop again. For simplicity of
presentation, we will use the following abbreviation: for i =
1, . . . , N do Ci od ≜ C1; . . . ;CN .



For each program C, we write var(C) for the set of all
quantum variables in C. If V ⊇ var(C) is a set of quantum
variables, and ρ ∈ D(V), then ⟨C, ρ⟩ is called a configuration
(of domain V).

Definition 2 (Operational Semantics [16]). The operational
semantics of quantum programs is defined as a transition
relation → by the following transition rules:

(Sk) ⟨skip, ρ⟩ → ⟨E, ρ⟩ (In) ⟨q := |0⟩, ρ⟩ → ⟨E, ρq0⟩
(UT) ⟨q := U [q], ρ⟩ → ⟨E, UρU†⟩

(SC)
⟨C1, ρ⟩ → ⟨C′

1, ρ
′⟩

⟨C1;C2, ρ⟩ → ⟨C′
1;C2, ρ′⟩

(IF) ⟨if (□m ·M [q] = m→ Cm) fi, ρ⟩ → ⟨Cm,MmρM
†
m⟩

(L0) ⟨while M [q] = 1 do C od, ρ⟩ → ⟨E,M0ρM
†
0 ⟩

(L1) ⟨while M [q] = 1 do C od, ρ⟩
→ ⟨C;while M [q] = 1 do C od,M1ρM

†
1 ⟩

E is the empty program. In (In), ρq0 =
∑︁

n |0⟩q⟨n|ρ|n⟩q⟨0|. In
(SC), we use the convention E;C2 = C2. In (IF), m ranges
over every possible outcome of measurement M = {Mm}.

Transitions in rules (IF), (L0) and (L1) are essentially prob-
abilistic; but we adopt a convention from [32] to present them
as non-probabilistic transitions. For example, for each m, the
transition in (IF) happens with probability pm = tr(M†

mMmρ)
and the program state ρ is changed to ρm = MmρM

†
m/pm.

We can combine probability pm and density operator ρm into
a partial density operator MmρM

†
m = pmρm. This convention

significantly simplifies the presentation.

Definition 3 (Denotational Semantics [16]). Let V be a set of
variables. Then for any quantum program C with var(C) ⊆
V, its semantic function of domain V is the mapping JCKV :
D(V) → D(V) defined by JCKV(ρ) =

∑︁
{|ρ′ : ⟨C, ρ⟩ →∗

⟨E, ρ′⟩|} for every ρ ∈ D(V), where →∗ is the reflexive and
transitive closure of →, and {| · |} denotes a multi-set.

Note that auxiliary variables in V \ var(C) are allowed in
the above definition of semantic function JCKV. The following
proposition shows that the denotational semantics of a program
C is independent of these auxiliary variables.

Proposition 1 (Proposition 3.3.5 in [33]). For any program C
and any set V ⊇ var(C) of variables, the semantic function
of domain V is a cylindric extension of the semantic function
of domain var(C): JCKV = JCKvar(C) ⊗ IV\var(C), where
IV\var(C) is the identity quantum operation in HV\var(C).

C. Brief review of BI-Logic

Next, we briefly review the logic of Bunched Implications
(BI) [1], [2]. BI is a sub-structural logic with the following
syntax:

ϕ, ψ ::= p ∈ AP | ⊤ | ⊥ | ϕ∧ψ | ϕ∨ψ | ϕ→ ψ | ϕ∗ψ| ϕ −∗ ψ

where p ranges over a set AP of atomic propositions. Besides
standard propositional logic, BI contains a substructural frag-
ment – the separating conjunction ∗ and separating implication

−∗ (“magic wand”). A distinction between ∗ and ∧ is that ∗ is
not idempotent, i.e., P ∗P ̸= P . For example, in the standard
heap model of separation logic, the separating conjunction
P ∗Q is true of a heap if it can be split into two heaplets, one
of which makes P true and the other of which makes Q true.
The implication −∗ is adjoint to ∗. For example, P −∗ Q holds
in some heap if adding a separate heap satisfying P leads to
a combined heap satisfying Q.

The most general semantics of BI is given in terms of a kind
of Kripke structures, called BI frames. Standard BI frame is
based on a pre-ordered commutative monoid:

Definition 4 (BI frame [1], [2]). A BI frame is a tuple X =
(X, ◦,⪯, e), where X is a set equipped with a preorder ⪯,
and ◦ : X × X → X is a partial binary operation with an
unit element e and satisfying the following conditions:

1) (Unit Existence) for all x, x = x ◦ e = e ◦ x;
2) (Commutativity) x ◦ y = y ◦ x;
3) (Associativity) x ◦ (y ◦ z) = (x ◦ y) ◦ z;
4) (Compatible with ⪯) x ⪯ x′ and y ⪯ y′ and both x ◦ x′

and y ◦ y′ are defined, then x ◦ x′ ⪯ y ◦ y′.
Above, equalities state that either both sides are defined and
equal, or both sides are undefined.

Intuitively, if we choose the collections of resources as
possible worlds, then ◦ can be interpreted as a commutative
combination of resources. The identity e is an empty resource
or lack of resource, and combining any resource x and empty
resource e yields x itself. Based on the combination, a preorder
is defined: if x is a combination of resources y and z, it should
be “larger” than y since it contains y.

The semantics of formulas depends on the semantics of
atomic propositions. A valuation is a mapping V : AP →
℘(X) where ℘ represents the power set, and it is monotonic
if x ∈ V(p) and y ⪰ x implies y ∈ V(p). A BI frame X
together with a monotonic valuation V gives a BI model M.

Definition 5 (Satisfaction in BI models [1], [2]). Given a BI
formula ϕ and a BI model M = (X, ◦,⪯, e,V). For each
x ∈ X , the relation x |= ϕ is defined by induction on ϕ:

x |=M p iff x ∈ V(p)
x |=M ⊤ : always x |=M ⊥ : never

x |=M ϕ1 ∧ ϕ2 iff x |=M ϕ1 and x |=M ϕ2

x |=M ϕ1 ∨ ϕ2 iff x |=M ϕ1 or x |=M ϕ2

x |=M ϕ1 → ϕ2 iff ∀x′ ⪰ x, x′ |=M ϕ1 implies x′ |=M ϕ2

x |=M ϕ1 ∗ ϕ2 iff ∃y, z s.t. y ◦ z is defined and x ⪰ y ◦ z,
y |=M ϕ1 and z |=M ϕ2

x |=M ϕ1 −∗ ϕ2 iff ∀y s.t. x ◦ y is defined,

y |=M ϕ1 implies x ◦ y |=M ϕ2.

Following [2] (see also [11]), a sound and complete Hilbert-
style proof system of BI is presented in the our extended
version [34].



III. QUANTUM INTERPRETATION OF BI LOGIC

Now, we are ready to present our quantum model of BI,
using the resource semantics of BI. After defining the model,
we introduce some atomic propositions. To lay the groundwork
for the separation logic, we explore a technical property called
restriction—which will be important for the frame rule—and
we define a modification operation, an analog of substitution
that we will use for reasoning about initialization and unitary
transformations.

A. BI Frame of Quantum States

The basic idea of our model is to consider quantum states
over specific registers as resources. Then, the separating
conjunction is introduced to model independent combinations
of spatially separate quantum resources (quantum states over
disjoint registers). Formally, we define:

Definition 6. The partial binary functions ◦ : D×D → D on
quantum states is defined by:

ρ1 ◦ ρ2 ≜

{︄
ρ1 ⊗ ρ2 : if dom(ρ1) ∩ dom(ρ2) = ∅
undefined : otherwise.

Essentially, ◦ takes the tensor product of two quantum states
with disjoint domains. Note that in our setting, the tensor
product ⊗ is commutative since every quantum state ρ ∈ D
is tagged with its domain. For example, |1⟩p⟨1| ⊗ |0⟩q⟨0| =
|0⟩q⟨0| ⊗ |1⟩p⟨1| denote the same state in pq. For the partial
order over quantum states, we take the following:

Definition 7. Let ⪯ be the partial order over D: ρ ⪯
ρ′ iff dom(ρ) ⊆ dom(ρ′) and ρ = ρ′|dom(ρ).

Intuitively, ρ ⪯ ρ′ means that ρ describes a subsystem of ρ′;
more precisely, if we discard the subsystem dom(ρ′)\dom(ρ)
of ρ′, then the remaining subsystem is in state ρ. Combining
all of the ingredients defined, we have:

Proposition 2. (D, ◦,⪯, 1) forms a BI frame, where scalar
number 1 is understood as the state over the empty register.

B. Atomic Propositions about Quantum States

To complete our description of the quantum BI logic, we
introduce three atomic propositions and interpret them in
quantum states. In general, we have a great deal of freedom
in selecting these atomic propositions; the only requirement
is that their interpretation must be monotone with respect to
the pre-order ⪯. It worth pointing out that adding new atomic
propositions requires extending the definition of modification
(see Sec. III-D); fortunately, the most frequently used ones like
uniformity/distribution, projections, and observables, have al-
ready been studied. Our atomic propositions are fairly general,
but motivated by applications of our separation logic.
Propositions denoting free variables. We first introduce a
set of atomic propositions D[S] for each variable set S ⊆ V
with domain defined by free (D[S]) ≜ S, and interpret it as
the state with domain at least S:

JD[S]K ≜ {ρ ∈ D : S ⊆ dom(ρ)} . (1)

Propositions for qualitative analysis. For qualitative analysis
of quantum programs, we often use projection operators as
atomic propositions [17], [31], [35]–[37]. For a projection P ∈
P as an atomic proposition, its semantics JP K is defined as
the following set of quantum states:

JP K ≜
{︂
ρ ∈ D : free (P ) ⊆ dom(ρ) and supp

(︁
ρ|free(P )

)︁
⊆ P

}︂
(2)

where the support of a state ρ ∈ D is the (topological) closure
of the subspace spanned by its eigenvectors with nonzero
eigenvalues, or equivalently, supp(ρ) = {|ϕ⟩ ∈ Hdom(ρ) :
⟨ϕ|ρ|ϕ⟩ = 0}⊥.3 Let us carefully explain the definition of JP K.
In the case that ρ has the same domain of P , it is natural to
define ρ ∈ JP K if its support supp(ρ) lies in P , or equivalently,
ρ is invariant under projection operator P . In the case where
dom(ρ) and free (P ) are not the same, in order to make JP K
upward-closed (i.e., monotonic): ρ ∈ JP K and ρ ⪯ ρ′ imply
ρ′ ∈ JP K, it is appropriate to require that ρ ∈ JP K iff (i)
dom(ρ) ⊇ free (P ); and (ii) the restricted state of ρ on free (P )
is in JP K.
Atomic propositions expressing uniformity in quantum
security. As is well-known, probabilistic uniformity is a basic
property in verification of security protocols. To describe
uniformity in quantum protocols, we introduce an atomic
proposition U[S] for each S ⊆ V denoting finite-dimensional
quantum systems [38]. Its domain is free (U[S]) ≜ S. The
semantics of U[S] is defined as the following set of quantum
states:

JU[S]K ≜
{︃
ρ ∈ D : S ⊆ dom(ρ) and ρ|S =

IS
dim(S)

}︃
, (3)

where IS is the identity density on the quantum system over
registers S. The intuition behind defining equation (3) is quite
simple: for a state ρ in JU[S]K such that S ⊆ dom(ρ), its
restriction on S should be the completely mixed state, IS

dim(S) ,
which means “uniformly distributed” over all orthonormal
bases of the system denoted by S.
Axiom schema for atomic formulas. With the interpretation
of atomic propositions, we have:

Proposition 3.
1) For all S ⊆ V and identity operator IS over HS , we

have: |= D[S] ↔ IS .
2) For all P,Q ∈ P with disjoint domains, we have: |=

P ∧Q↔ (P ⊗Q);
3) If S1 ⊆ S2, then |= U[S2] → U[S1].
4) If S1 ∩ S2 = ∅, then |= (U[S1] ∗U[S2]) ↔ U[S1 ∪ S2].

Note that ⊗ is not a connective in BI: instead, it stands for
the mathematical tensor product. Thus, P ⊗Q is a projection
and can be considered as atomic formula.

C. Restriction Property

After choosing (the interpretation of) atomic propositions
in the quantum frame (D, ◦,⪯, 1), the semantics of all BI
formulas can be defined using Definitions 5. As is well-known,

3⊥ stands for ortho-complement.



the frame rule plays an essential role in separation logic, and in
turn it heavily relies on the restriction property that satisfaction
only depends on the free variables appearing in a BI formula
ϕ. The restriction property was also identified and generalized
in prior work on probabilistic separation logic [9]. However,
the restriction property:

ρ |= ϕ⇒ ρ|free(ϕ) |= ϕ

where free (ϕ) stands for the free variables occurring in ϕ,
does not hold for our quantum setting, even for the ordinary
implication ϕ = ϕ1 → ϕ2 (see Definition 5 for its semantics).
Essentially, the validity of the restriction property in the
probabilistic setting can be attributed to a fundamental fact
in probability theory—the existence of extensions.4 Unfortu-
nately, this does not always hold for quantum systems. Indeed,
it is violated by the well-known phenomenon of “Monogamy”
– one of the most fundamental properties of entanglement.5

Since we wish to have a frame rule in QSL, we need to
recover the restriction property to a certain extent. While not
all formulas satisfy this property, we can identify a subset of
them that do satisfy it.

Definition 8. The formulas generated by following grammar
are denoted by Res.

ϕ, ψ ::= p ∈ AP | ⊤ | ⊥ | ϕ ∧ ψ | ϕ ∨ ψ | ϕ ∗ ψ

Proposition 4. Any formula ϕ ∈ Res is restrictive; that is, for
any ρ |= ϕ, ρ|free(ϕ) |= ϕ.

The above simple treatment of restriction property is suf-
ficient for the purpose of this paper. A more intrinsic way
for recovering this property in the quantum setting will be
discussed in Section VII-A.

D. Quantum Modification of BI Formulas

In classical program logic, substitution is used in the infer-
ence rule about assignment statements. In the quantum setting,
due to no-cloning of quantum data, the role of assignment
is played by two basic constructs: unitary transformation and
initialization. We conclude this section by defining a technique
of modifying BI formulas, which we will need reasoning about
these operations.

Definition 9 (Modification of atomic propositions). Let C be a
unitary transformation q := U [q] or an initialization q := |0⟩.
For any p ∈ AP , we write p[C] for the C-modification of p.
For the three classes of atomic propositions defined in Sec.
III-B, p[C] is defined as follows:

1) For an atomic proposition D[S] defined in Eq. (1),
D[S][C] ≜ D[S];

4For two joint-distributions µAB and µBC over sets A,B and B,C
respectively, if they are consistent on B (with the same marginal on B)
then there exists joint-distribution µABC over A,B,C which takes µAB

and µBC as marginals.
5If two qubits A and B are maximally correlated, then they cannot be

correlated at all with a third qubit C; more precisely, if A and B are in a
maximally entangled state, then A and C cannot be in any entangled state.

2) For an atomic proposition P ∈ P as a projection defined
in Eq. (2),

P [q := U [q]] ≜

⎧⎨⎩ PU [q] if q ⊆ free (P );
P q ∩ free (P ) = ∅;
undefined otherwise;

P [q := |0⟩] ≜
{︃

D[q] ∧ ⌈P ⌉q if q ∈ free (P );
P otherwise;

where projections PU [q] and ⌈P ⌉q are given as follows:

PU [q] = (Uq† ⊗ Ifree(P )\q)P (U
q ⊗ Ifree(P )\q),

and ⌈P ⌉q =
⨆︁
{ closed subspaces T : |0⟩q⟨0| ⊗ T ⊆

P} ∈ P(free (P )\q). Here, ⊔ is the disjunction of
projections in quantum logic, that is, for projections P,Q
with the same domain, P ⊔Q = span(P ∪Q) with “ ·”
standing for (topological) closure.

3) For any atomic proposition U[S] ∈ U for uniformity
defined in Eq.(3),

a) If q ⊆ S or q ∩ S = ∅, then U[S][q := U [q]] ≜ U[S];
otherwise, U[S][q := U [q]] is undefined;

b) If q /∈ S, then U[S][q := |0⟩] ≜ U[S];
otherwise, U[S][q := |0⟩] is undefined.

The modification of some atomic propositions/BI formulas
may not exist; we write ϕ[C]↓ whenever ϕ[C] is defined.
The notion of modification can be easily extended to all BI
formulae:

Definition 10 (Modification of BI formulas). Let C be uni-
tary transformation q := U [q] or initialization q := |0⟩. The
modification ϕ[C] of BI formula ϕ is defined by induction on
the structure of ϕ:

1) if ϕ ≡ ⊤ or ⊥, then ϕ[C] ≜ ϕ;
2) if ϕ ≡ p ∈ AP , then ϕ[C] is defined according to

Definition 9;
3) if ϕ ≡ ϕ1 △ ϕ2 where △ ∈ {∧,∨} and ϕ1[C]↓ and

ϕ2[C]↓, then ϕ[C] ≜ ϕ1[C] △ ϕ2[C];
4) if ϕ ≡ ϕ1∗ϕ2, ϕi[C]↓ and q ⊆ free (ϕi) or q∩free (ϕi) =

∅ for i = 1, 2, then
a) if C ≡ q := U [q], then ϕ[C] ≜ ϕ1[C] ∗ ϕ2[C];
b) if C ≡ q := |0⟩, then

• if q /∈ free (ϕ1)∪ free (ϕ2), ϕ[C] ≜ ϕ1[C] ∗ ϕ2[C];
• if only one of q ∈ free (ϕ1), q ∈ free (ϕ2)

is satisfied, then ϕ[C] ≜ (ϕ1[C] ∧ ϕ2[C]) ∧
(D[free (ϕ1)\q] ∗D[free (ϕ2)\q]);

The reason for the complexity of this case will be seen
in the program logic; roughly speaking, initialization
on q is special because it can introduce independence:
it makes q independent from all variables.

5) otherwise, ϕ[C] is undefined.

A close connection between the semantics of a BI formula
ϕ and its modification ϕ[C] is shown in the following:

Proposition 5. Let C be unitary transformation q := U [q]
or initialization q := |0⟩, and ϕ be any BI formula. If its
modification ϕ[C] is defined, then:



1) ϕ and ϕ[C] have the same domain: free (ϕ) =
free (ϕ[C]);

2) for all ρ ∈ D(free (ϕ) ∪ var(C)), if ρ |= ϕ[C], then
JCK(ρ) |= ϕ.

IV. SEPARATION LOGIC FOR QUANTUM PROGRAMS

Now we are ready to present our separation logic for
quantum programs, using quantum BI formulas as the assertion
language.

A. Judgments and Validity

Let us first define judgments (correctness formulas) in
quantum separation logic. A judgment is a Hoare triple of the
form {ϕ}C{ψ} with both precondition ϕ and postcondition ψ
being restrictive BI formulas (cf. Definition 8).

Definition 11 (Validity). Let V be a set of quantum vari-
ables with free (ϕ), free (ψ), var(C) ⊆ V. Then a correctness
formula {ϕ}C{ψ} is true in the sense of partial correctness
with respect to V, written V |= {ϕ}C{ψ}, if we have:

∀ρ ∈ D(V), ρ |= ϕ⇒ JCKV(ρ) |= ψ.

Here, satisfaction relation ρ |= ϕ and JCKV(ρ) |= ψ are
defined according to the quantum interpretation of BI logic
given in Section III.

The following theorem indicates that satisfaction does not
depends on auxiliary variables.

Theorem 1. For any two sets V and V′ containing all free
variables of ϕ, ψ and C,

V |= {ϕ}C{ψ} if and only if V′ |= {ϕ}C{ψ}.

As a consequence, we can drop V from V |= {ϕ}C{ψ}
and simply write |= {ϕ}C{ψ}.

In the remainder of this section, we gradually develop the
proof system for our quantum separation logic. For better
readability, this proof system is organised as several sets of
inference rules.

B. Inference Rules for Program Constructs

The first set of our inference rules are designed for reasoning
about basic quantum program constructs and displayed in Fig.
2. Some of them deserve careful explanations:

• Rules INIT and UNIT: With the definition of modifi-
cation of BI formulas and Proposition 5 in mind, the rules
INIT and UNIT are similar to the (backwards) inference rule
{ϕ[e/x]}x := e{ϕ} for assignment in classical program logics.

• Rules RIF and RLOOP: These two rules use the separating
conjunction to perform reasoning about different execution
paths. Note that condition ϕ ∈ CM is imposed in the premises
of the rules RIF and RLOOP.

The set CM of assertions is formally defined as follows:

Definition 12. A formula ϕ is closed under mixtures (CM),
written ϕ ∈ CM, if for any ρ, ρ′, whenever dom(ρ) =

SKIP
{ϕ}skip{ϕ}

INIT
ϕ[q := |0⟩]↓

{ϕ[q := |0⟩]} q := |0⟩{ϕ}

UNIT
ϕ[q := U [q]]↓

{ϕ[q := U [q]]}q := U [q] {ϕ}

SEQ
{ϕ}C1{ψ} {ψ}C2{µ}

{ϕ}C1;C2{µ}

RIF
{ϕ ∗Mm}Cm{ψ} for all m ψ ∈ CM

{ϕ ∗D(q)}if (□m ·M [q] = m→ Cm) fi{ψ}

RLOOP
{ϕ ∗M1}C{ϕ ∗D(q)} ϕ ∈ CM

{ϕ ∗D(q)}while M [q] = 1 do C od{ϕ ∧M0}

Fig. 2: Inference Rules for Program Constructs. In INIT and
UNIT, ↓ means the existence of modification. In RIF and
RLOOP, M0,M1,Mm in assertions are regarded as projective
predicates acting on q.

dom(ρ′), ρ |= ϕ and ρ′ |= ϕ, we have: ∀ λ ∈ [0, 1], λρ+(1−
λ)ρ′ |= ϕ.

Example 1. For two projections P0 = |0⟩⟨0| and P1 = |1⟩⟨1|,
P0 ∧ P1 is CM, but P0 ∨ P1 is not CM (both states |0⟩⟨0|
and |1⟩⟨1| satisfies P0 ∨P1, but their affine combination I

2 =
|0⟩⟨0|+|1⟩⟨1|

2 does not satisfy P0 nor P1 and thus does not
satisfy P0 ∨ P1).

To see why the condition ϕ ∈ CM necessary, we note that a
quantum program can be executed in different paths with non-
zero probabilities, and its semantic function maps the input to
a weighted summation of the outputs from different execution
paths. The condition ϕ ∈ CM is introduced so that satisfaction
relation is preserved under affine combination. The following
proposition identifies a class of formulas closed under mixture.

Proposition 6. The formulas generated by following grammar
are CM:

ϕ, ψ ::= p ∈ AP | ⊤ | ⊥ | ϕ ∧ ψ | U[S] ∗ ϕ

We need to pay special attention on the application of sep-
arating conjunctions ∗ in RIF and RLOOP. Since the quantum
measurement in the guards of if-statements and while loops
may change the quantum state, we hereby consider a special
kind of inputs that satisfying ϕ∗Iq . Thus the subsystem being
measured is uncorrelated to the part of the state described by
ϕ, which ensures that the post-measurement state still satisfies
ϕ. In RLOOP, although ϕ ∗ M0 is satisfied for each path,
it does not belong to CM in general. Thus, only a weaker
postcondition ϕ ∧M0 ∈ CM can be achieved.

C. Structural rules

The second set of rules consists of the structural rules,
presented in Fig. 3. The rules CONJ and DISJ are similar to
their counterparts in classical program logics. To explain the
other rules, let us fist define the global implication:



CONSEQ
ϕ→G ϕ′ {ϕ′}C{ψ′} ψ′ →G ψ

{ϕ}C{ψ}

CONJ
{ϕ1}C{ψ1} {ϕ2}C{ψ2}
{ϕ1 ∧ ϕ2}C{ψ1 ∧ ψ2}

DISJ
{ϕ1}C{ψ1} {ϕ2}C{ψ2}
{ϕ1 ∨ ϕ2}C{ψ1 ∨ ψ2}

CONST
{ϕ}C{ψ} free (µ) ∩ var(C) = ∅

{ϕ ∧ µ}C{ψ ∧ µ}

FRAME

{ϕ}C{ψ} free (µ) ∩ var(C) = ∅
free (ψ) ∪ var(C) ⊆ free (ϕ) or ψ ∈ SP

{ϕ ∗ µ}C{ψ ∗ µ}

Fig. 3: Structural Rules. Since →G is strictly weaker than →,
CONSEQ is stronger than ordinary weak rule.

Definition 13 (Global implication). For any BI formulas ϕ, ψ,
the global implication ϕ→G ψ is defined as the abbreviation of
D[free (ϕ) ∪ free (ψ)] → (ϕ→ ψ).

Trivially, →G is strictly weaker than →. The difference is
that, ϕ→G ψ is already enough to ensure that for any state ρ
with dom(ρ) ⊇ free (ϕ)∪ free (ψ), ρ |= ϕ implies ρ |= ψ. For
example, we have following proposition:

Proposition 7. For all ϕ ∈ Res and S ⊆ V, it holds that
|= ϕ↔G ϕ ∧D[S].

Now we are ready to carefully examine the remaining rules
in Fig. 3.

• Rules CONSEQ: This rule is also similar to its counterpart
in classical program logics, but there is a subtle difference
between them. Since only global states (i.e. the states whose
domain contains all free variables appearing in the assertions
and programs) are considered in defining the validity of the
Hoare triple, we use →G in the premise of the CONSEQ rule
for comparing assertions. It is easy to see that the rule is also
sound when using →, but the CONSEQ rule with →G is stronger.

• Rules CONST: This rule states that if any variable appearing
in program C is not free in µ, then µ is preserved and thus
can be conjoined to the pre- and post-conditions. The principle
behind is that µ is restrictive, i.e., the satisfaction of µ depends
only on the reduced state over subsystem free (µ), which
trivially remains unchanged after executing C. An interesting
application of this rule is proving product predicates from local
reasoning using Proposition 3.

• Rules FRAME: The condition free (µ) ∩ var(C) = ∅ in the
premise ensures that µ can be conjoined with the pre- and
post-conditions. The condition free (ψ) ∪ var(C) ⊆ free (ϕ)
guarantees that, if the input satisfies ϕ ∗ µ, which asserts that
subsystems free (ϕ) and free (µ) are uncorrelated, then after
executing C, these two subsystems are still independent since
var(C) ⊆ free (ϕ), and furthermore, by the downward closed

property of independence6, subsystems free (ψ) and free (µ)
are uncorrelated as free (ψ) ⊆ free (ϕ). It is particularly
interesting to note that the latter condition can be altered by
ψ ∈ SP defined in the following:

Definition 14 (Supported Assertion, c.f. [21]). A formula ψ
is called supported, written ψ ∈ SP, if JψK is nonempty then
it has a least element, or equivalently, there exists a S ⊆ V
such that 1. at most one ρ ∈ D(S) satisfies ψ and 2. if σ |= ψ,
σ ⪰ ρ.

Trivially, any uniformity proposition U[S] and any atomic
proposition defined by a projection of rank 1 are in SP; more
examples of SP are given in the extended version [34]. The
frame rule with SP condition is nontrivial and it will be very
useful in our later case studies on verification of quantum
information-theoretic security; indeed, this application uncov-
ered the condition ψ ∈ SP. Note that under this condition, the
frame rule is sound even without any restriction on free (ψ),
free (ϕ) and var(C). This seems counter-intuitive; but in fact,
the premise {ϕ}C{ψ} is much stronger than it looks at first
sight, given that the postcondition ψ ∈ SP. If the input satisfies
precondition ϕ, then an execution of C is almost equivalent
to first erasing any information on subsystem free (ψ) (of
course, it is now uncorrelated with the rest part of the whole
system), and then regenerating the singleton that satisfies the
postcondition ψ.

D. Reasoning about Entangled Predicates

Many quantum algorithms are designed following the same
pattern: start from a large entangled state, and then operate
on various subsystems. Inevitably, entanglements often appear
in the preconditions and/or postconditions of Hoare triples
appropriate for specifying the correctness of these algorithms.
But the frame rule itself is not strong enough to verify them.
To see this more clearly, let us consider the following simple
example:

Example 2. Let |Φ±⟩ = 1√
2
(|00⟩ ± |11⟩) be two Bell states

(entanglement). Define projections Φ± = |Φ±⟩⟨Φ±| and let S
be the phase gate. The program C ≡ S[q1];S[q2] transforms
one Bell states to the other; that is, both {Φ+}C{Φ−} and
{Φ−}C{Φ+} are true. However, they cannot be proved by
using FRAME or CONST to lift local correctness of S[q1] and
S[q2] to global predicates Φ±, since Φ± cannot be written in
the form of Φ± ̸≡ ϕq1 ∗ ψq2 or Φ± ̸≡ ϕq1 ∧ ψq2 .

Fortunately, our frame rule can be combined with a tech-
nique for reasoning about entangled predicates proposed in
[23] to handle this problem. Originally, this technique was
introduced for parallel quantum programs. Here, we need to
reformulate it in a way convenient for our purpose. A combi-
nation of this technique with the frame rule can significantly
broaden the range of applications of our quantum separation
logic. To this end, we need to generalise Definition 9 from

6Roughly speaking, if subsystems S1 and S2 are independent, then sub-
systems S′

1 and S′
2 are also independent if S′

1 ⊆ S1 and S′
2 ⊆ S2.



UNCR
{ϕ}C{ψ} q ∩ var(C) = ∅ ϕ[E [q]]↓ ψ[E [q]]↓

{ϕ[E [q]]}C{ψ[E [q]]}

Fig. 4: Proof rule for dealing with entangled predicates. ↓
means the existence of modification.

modification by a unitary transformation, and initialization to
modification by a general quantum operation.7

Definition 15 (E-Modification). Let E be quantum operation
on q. The E-Modification ϕ[E [q]] acting on register q of a BI
formula ϕ is defined inductively:

1) (Atomic Proposition) For any P ∈ P , we have:8

a) if q ⊆ free (P ),

P [E [q]] ≜
(︁(︁
E∗
q ⊗ Ifree(P )\q

)︁
(P⊥)

)︁⊥
;

b) if q ∩ free (P ) = ∅, P [E [q]] ≜ P ;
c) otherwise, P [E [q]] is undefined;

2) (Composite) Write ϕ[E [q]]↓ if ϕ[E [q]] is defined.
a) if ϕ ≡ ⊤ or ⊥, then ϕ[E [q]] ≜ ϕ;
b) if ϕ ≡ p ∈ AP , then ϕ[E [q]] is defined by Clause (1);
c) if ϕ ≡ ϕ1 △ ϕ2 where △ ∈ {∧,∨} and both ϕ1[E [q]]↓

and ϕ2[E [q]]↓, then ϕ[E [q]] ≜ ϕ1[E [q]] △ ϕ2[E [q]]
d) otherwise, ϕ[E [q]] is undefined.

Now we can introduce a new inference rule UNCR (stands
for “uncorrelated”) in Fig. 4. This rule plays an essential
role in the verification of VQA (see Section V). We divide
VQA into several pieces and reason locally, but the global
predicate we desired is an entangled predicate that cannot be
constructed using FRAME. UNCR is the bridge for structural
reasoning from local to global predicates. In addition, a formal
verification of Example 2 using UNCR can be found in the
extended version [34].

Auxiliary variables are the key to using UNCR. In com-
parison, Unruh [38] also employs the ghost variables. We
would like to point out that the uses of auxiliary variables
are essentially different: ghost variables in [38] are interpreted
by existential quantifiers and used for dealing with mixed
states/distributions; in contrast, auxiliary variables in our QSL
can be regarded as actual variables since we define the
resource semantics of BI and provide Theorem 1, so they can
be introduced freely and removed if they are used separately
from the prime system and do not appear in pre and post-
conditions. Furthermore, UNCR is strictly more powerful than

7Quantum operation is used to describe the evolution of a (open) quantum
system and can be characterized by an superoperator E , namely a completely-
positive and trace-non-increasing linear map from D to D. For every super-
operator E , there exists a set of Kraus operators {Ei}i (linear operators that
satisfy completeness condition

∑︁
i E

†
iEi = I) such that E(ρ) =

∑︁
i EiρE

†
i

for any input ρ.
8Here ⊥ stands for the ortho-complement, for not only the projections but

Hermitian operators, in the sense that A⊥ = span{|ψ⟩ ∈ Hfree(A) : A|ψ⟩ =
0}. E∗ is dual of E ; in detail, E∗(A) =

∑︁
i E

†
iAEi if E has the operator-sum

representation E(ρ) =
∑︁

i EiρE
†
i .

TRANSMUTE in [38] when dealing with entangled predicates;
in fact, [23] shows the completeness of this idea if predicates
are projections.

E. Soundness

To conclude this section, we show that quantum separation
logic QSL consisting of all the proof rules listed in Figure 2–4
are sound. The detailed proof can be found in [34].

Theorem 2 (Soundness of QSL). A program C is al-
most surely terminating if for all inputs ρ, tr(JCK(ρ)) =
tr(ρ). If C is a most surely terminating program, then ⊢
{ϕ}C{ψ} implies |= {ϕ}C{ψ}.

V. LOCAL REASONING: ANALYSIS OF VARIATIONAL
QUANTUM ALGORITHMS

From now on we present a couple of examples to demon-
strate applicability of our quantum separation logic. Vari-
ational quantum algorithms (VQA) are a class of hybrid
quantum/classical algorithms solving a fundamental problem
in quantum chemistry – determine the ground state of a
quantum system [14], [15]. It has been identified as one of
the first practical applications of near-term Noisy Intermediate
Scale Quantum (NISQ) computers [39], and thus were chosen
as an example in the tutorials of several quantum programming
platforms including Google’s Cirq [26]. Surprisingly, using the
inference rules presented in the last section, we are able to
show that the implementation of VQA in the tutorial of Cirq is
actually incorrect; that is, the approximation of ground energy
computed by the quantum circuit given there is sometimes far
from the real one.

A. Variational Quantum Algorithm (VQA)

A typical VQA uses a hybrid computing system consisting
of a QPU (quantum processing unit) and CPU to find a good
approximation of the ground energy and ground state of a
given Hamiltonian of the form:

H =
∑︂
i,α

hiασ
i
α +

∑︂
i,j,α,β

hijαβσ
i
ασ

j
β + · · ·

where h’s are real numbers, and superscripts i, j, . . . identify
the subsystem and subscripts α, β, . . . ∈ {x, y, z} indicate the
appropriate Pauli operators σ. The algorithm can be described
in four steps:

1) Define a set of ansatz states |f(θ)⟩, which are char-
acterized by parameters θ = (θ1, θ2, . . . , θn) and can
be efficiently prepared by a quantum circuit C(θ). The
goal of the algorithm is to find the optimal parameters
θmin which minimize the energy ⟨f(θ)|H|f(θ)⟩. Then
⟨f(θmin)|H|f(θmin)⟩ and |f(θmin)⟩ can be set as an
approximation of the ground energy and ground state,
respectively.

2) Use the QPU to execute the quantum computation repre-
sented as quantum circuit C(θ) in order to generate state
|f(θ)⟩ and compute the expectations of σi

α, σ
i
ασ

j
β , . . .

in all the terms of H;



3) Use the CPU to sum up the expectations of all the
terms of H with the weights h’s and thus evaluate
⟨f(θ)|H|f(θ)⟩;

4) Feed ⟨f(θ)|H|f(θ)⟩ to an classical minimization algo-
rithm. If the optimization is not completed, prepare the
parameters θ for the next round and go to step (2);
otherwise, terminate and return θ as output.

B. VQA in the Tutorial of Cirq

The VQA presented in the tutorial of Google’s Cirq 9 deals
with a 2D +/− Ising model of size N × N with objective
Hamiltonian (observable)

H =
∑︂
(i,j)

hijZij +
∑︂

(i,j;i′,j′)∈S

Jij;i′j′ZijZi′j′ ,

where each index pair (i, j) is associated with a vertex in a the
N×N grid, S is the set of all neighboring vertices in the grid,
and all hij and Jij;i′j′ are either +1 or −1. The algorithm for
preparing the ansatz state with real parameters (α, β, γ) given
in the tutorial of Cirq can be rewritten in the quantum-while
language with N ×N grid of qubits as follows:

VQA(N) ≡ for j = 1, . . . , N do ProcC(j) od;

for i = 1, . . . , N do ProcR(i) od.

Here, subprogram ProcC(j) acts on the jth column of qubits
and ProcR(i) acts on the ith row of qubits; each of them is
a sequential composition of unitary transformations (see the
extended version [34] for detailed subprograms).

C. Specifying and Proving Incorrectness in Quantum Separa-
tion Logic

As pointed out at the beginning of this section, we can
use our quantum separation logic to show that algorithm
VQA(N) is indeed incorrect. Let us first describe its incor-
rectness in our logical language. Suppose the Hamiltonian H
has eigenvalues E0, E1, ... ranged in increasing order, with
corresponding eigenspaces (projections) Q0, Q1.... If for each
i ≤ n, we can find a precondition Pi ∈ P such that
|= {Pi}VQA(N){1 −

∑︁i
k=0Qi} (i = 0, 1, ..., n), then by

showing that |0⟩ (the initial state of quantum circuit) is close
to Pi; that is, ⟨0|Pi|0⟩ ≥ δi, we can conclude that the
approximate ground energy computed by VQA(N) is at least:

E0 +

n∑︂
i=1

(Ei+1 − Ei)δi. (4)

Therefore, whenever the quantity in (4) is far away from the
real ground energy E0, then VQA(N) is incorrect.

To illustrate our idea more explicitly, let us consider the
simplest case of 2× 2 grid (N = 2) with parameters:

h =

[︃
−1 −1
1 1

]︃
, Jc =

[︃
−1
−1

]︃
, Jr =

[︁
−1 1

]︁
and Jij;(i+1)j = Jrij and Jij;i(j+1) = Jcij ; see Fig. 1 for its
circuit model. The eigenvalues of the Hamiltonian H in this

9https://quantumai.google/cirq/tutorials/variational algorithm

case are E0, . . . , E5 = −6,−4,−2, 0, 2, 4 with corresponding
eigenspaces Q0, Q1, . . . , Q5, respectively. Using QSL, we are
able to prove: ⊢ {Pi}VQA(N)

{︂
1−

∑︁i
k=0Qi

}︂
for i = 0, 1

where

⟨0|P0|0⟩ = 1− 1

16
sin(απ)4 ≥ 15

16

⟨0|P1|0⟩ = 1− 1

32
(7 + cos(2απ)) sin2(απ) ≥ 13

16
,

by first reasoning about each subprogram ProcC(1),
ProcC(2), Proc(R)(1), ProcR(2) and then using CONST and
UNCR to lift these local reasoning to global correctness above
(details can be found in [34]). Then it follows from (4) that the
approximate ground energy of VQA is at least −2.5, which is
much higher than the real ground energy E0 = −6.

Our quantum separation logic can also apply to higher
dimensional versions of this program. In general, since the
number of qubits in each subprogram of VQA is 1

N of that of
the entire system, there is no extra cost for local reasoning no
matter how large N is. Besides revealing the incorrectness of
ground energy, we can prove that parameters β, γ are helpless
for finding the ground energy in the sense that the expectation
of measurement outcome10 is independent of β, γ.

VI. SCALABLE REASONING: VERIFICATION OF SECURITY

A major distinction between classical and quantum in-
formation can be stated as the no-cloning theorem that it
is impossible to create an identical copy of an arbitrary
unknown quantum state. Exploiting this fundamental property
among others, many quantum cryptographic protocols with
information-theoretical security have been proposed, including
quantum key distribution, quantum one-time pad [27], [28] and
quantum secret sharing [29], [30].

In this section, we show how quantum separation logic
developed in this paper can be used to verify the security
of quantum one-time pad and quantum secret sharing. In
particular, such verification is scalable in the sense that only a
constant computational resource is required in the verification
as the length of protocols and the involved qubits increase.

Uniformity is essential in proving the information-
theoretical security of many quantum cryptographic protocols.
For convenience, let us first present a useful rule:

FRAMEU
{⊤}C{U[S1]} S2 ∩ (var(C) ∪ S1) = ∅

{U[S2]}C{U[S1 ∪ S2]}
. (5)

This rule is derived by instantiating ϕ ≡ ⊤, ψ ≡ U[S1] and
µ ≡ U[S2] in the frame rule FRAME and using axiom scheme
(see Proposition 3 (4)).

A. Security of Quantum One-Time Pad

Let us first verify the security of quantum one-time pad
(QOTP) [27], [28], one of the basic quantum encryption
schemes in quantum cryptography. Similar to the classical one-
time pad, a one-time pre-shared secret key is employed to
encrypt and decrypt the quantum data.

10The QPU executes VQA(N) and then measures each qubit in computa-
tional basis and feed the outcome to CPU.

https://quantumai.google/cirq/tutorials/variational_algorithm


1) Single-Qubit Case: To warm up, we consider the sim-
plest case for protecting one-qubit data. The QOTP scheme
consists of three parts: key generation KeyGen, encryption
Enc and decryption Dec, which can be written as programs:

KeyGen[a, b] ≡ a := |0⟩; b := |0⟩; a := H[a]; b := H[b];

if M[a, b] = 00 → skip □ 01 → skip

□ 10 → skip □ 11 → skip fi

Enc[a, b, q] ≡ if M[a, b] = 00 → skip □ 01 → q = Z[q]

□ 10 → q = X[q] □ 11 → q = Z[q]; q = X[q] fi

QOTP[a, b, q] ≡ KeyGen[a, b];Enc[a, b, q]

Here, registers a and b are used as the secret key, and
measurement M consisting of operators Mij = |ij⟩ab⟨ij| for
i, j = 0, 1 is introduced to generate and detect the value of
secret key, which returns a two-bit classical outcome with a
certain probability. Register q is the input quantum data which
we want to protect. H is the Hadamard gate and X,Z are Pauli
gates as usual.

Security of QOTP for the single-qubit case can be specified
as the following uniformity:

⊢ {⊤}QOTP[a, b, q]{U[q]}. (6)

This fact has been formally verified using quantum Hoare logic
with ghost variables [38] and relational quantum Hoare logic
in [31].

2) Multi-Qubit Case – Scaling Up: Now we show how
can the verification for single-qubit be easily scaled up to
the multi-qubit case using the frame rule in our quantum
separation logic. The protocol for protecting n-qubit data
stored in register q = q1, . . . , qn can be written as:

QOTP(n) ≡ for i = 1, . . . , n do QOTP[ai, bi, qi] od

where a1, b1, . . . , an, bn are secret key of size 2n. Its security
can be stated as the following uniformity:

⊢ {⊤}QOTP(n){U[q1, . . . , qn]}, (7)

which shows that, no matter what is the plain text initialised
on q, after encryption, the cipher text is always uniform and
the eavesdropper cannot release any useful information. This
judgment is proved as follows. First, it follows from (6) that

⊢ {⊤}QOTP[ai, bi, qi]{U[qi]} (i = 1, ..., n).

Using FRAMEU we obtain for all i = 1, ..., n:

⊢ {U[q1, . . . , qi−1]}QOTP[ai, bi, qi]{U[q1, . . . , qi]}

Then (7) is derived by repeatedly using rule SEQ.
3) Discussion: A comparison between the security verifi-

cation of QOTP in quantum Hoare logic [31], [38] and in
quantum separation logic presented above is interesting. Only
the single-qubit case was considered in [38]. A crucial step
in the verification for the multi-qubit case given in [31] is
based on a complicated transformation of quantum predicates,
which cannot be proved by the logic itself, but is derived from
a mathematical result proved by quite involved calculations
in the previous literature [28]. In contrast, the verification in
quantum separation logic avoids such complicated calculations
by using the frame rule FRAMEU.

B. Security of Quantum Secret Sharing

Now we turn to verify the security of another quantum
cryptographic protocol: quantum secret sharing. Similar to
classical secret sharing [40], [41], quantum secret sharing
addresses the problem of how to distribute a secret amongst a
group of participants so that the secret can be reconstructed by
a sufficient number of participants while any individual has no
information about it [29], [30]. For concreteness, let us focus
on a typical scheme.

1) Quantum (2, 3) Threshold Scheme: The (2, 3) threshold
scheme for sharing a single secret qutrit p (a 3-dimensional
quantum state) takes p as the input and outputs three qutrits
p′, q′, r′ so that each of them has no information about the
input secret while any two of them can recover the input.
Formally, it can be written as the following program:

Enc[p, q, r] ≡ q := |0⟩; r := |0⟩; p, q, r := Uenc[p, q, r]

where unitary transformation Uenc maps |i⟩|0⟩|0⟩ to |ei⟩ for
i = 0, 1, 2, where |ei⟩ are three orthonormal states:

|ei⟩ =
1√
3

2∑︂
k=0

|k⟩|k ⊕3 i⟩|k ⊕3 2i⟩

where ⊕3 stands for the addition modulo 3. For secretly
sharing information of multiple qutrits p = p1, . . . , pn, this
scheme can simply be generalised to:

QSS(n) ≡ for i = 1, . . . , n do Enc[pi, qi, ri] od.

2) Security as Uniformity: Quantum secret sharing is de-
signed against both dishonest agents and eavesdroppers [29],
[30], [42]. Let us first consider the case without any eavesdrop-
per during transmission. In this case, the security of QSS(n)
can be specified as the following judgment:

⊢ {⊤}QSS(n){U[q1, . . . , qn]}. (8)

The above judgment can be easily proved in our quantum
separation logic. First, using rules UNIT, INIT and SEQ
directly we obtain:

⊢ {⊤}Enc[p, q, r]{PS [p, q, r]}, (9)

where projection PS = |e0⟩⟨e0| + |e1⟩⟨e1| + |e2⟩⟨e2|.
It is easy to check that |= PS [p, q, r] → (U[p] ∧
U[q] ∧ U[r]). Based on this we can conclude: ⊢
{⊤}Enc[p, q, r]{U[α]} for α ∈ {p, q, r}. This proves the
security for the case of a single qutrit. To generalise it
to the case of multiple qutrits, we can use FRAMEU
to derive: ⊢ {U[q1, . . . , qi−1]}Enc[pi, qi, ri]{U[q1, . . . , qi]}
from ⊢ {⊤}Enc[pi, qi, ri]{U[qi]}. Then by setting for-
mulas ϕi = U[q1, . . . , qi−1] and ϕ1 = ⊤, we have ⊢
{ϕi}Enc[pi, qi, ri]{ϕi+1} for all 1 ≤ i ≤ n, and (8) is
obtained by repeatedly using rule SEQ.

VII. DISCUSSION AND RELATED WORK

In this section, we briefly discuss an issue about restriction
property left open in Subsection III-C as well as some previous
work on verification of quantum programs.



A. Restriction property and BI with domain
Our quantum interpretation of standard BI logic is sufficient

for the applications discussed in this paper. However, it has
a drawback: the restriction property does not hold for all BI
formulas, and thus the assertions in our QSL (Quantum Sep-
aration Logic) are confined in a special class of BI formulas
(see Def. 8), which do not include implication and separating
implication. One possible solution to this issue is to redefine
the BI logic so that the restriction property becomes intrinsic
– similar to the monotonicity. We can introduce a notion of
domain into BI: the domain dom(x) of a state x is the set of
variables specified by the state. Then a basic idea in classical
separation logic [5]–[8], called the domain assumption for
stack, can be adopted in defining satisfaction relation: x |= ϕ
is defined only when dom(x) ⊇ free (ϕ), where free (ϕ) is the
set of free variables in a BI-formula ϕ. The domain assumption
guarantees that the restriction property is true even when the
extension of joint quantum states does not exist (see Sec.
III-C). In this way, BI is upgraded to BID (BI with domain),
and all BID formulas can be safely used as assertions in QSL.
See our extended version [34] for details of this approach.

B. Related work
Quantum programming has become an active research field

in recent years after two decades of development [43]. Various
analysis, verification, testing and debugging methodologies
and techniques for quantum programs have been developed
[33], [35], [37], [44]–[53]. In particular, several quantum
program logics have been established, including quantum
Hoare logic [16], [17], [38] for verifying correctness of one
quantum program, and relational quantum Hoare logic [31],
[36], [54] for verifying equivalence of two quantum programs.
Furthermore, the need of quantum separation logic is also
motivated in quantum Hoare type theory [55], [56]; the authors
define predicates from [38] to characterize local properties by
introducing ghost variables.

The frame rule plays a key role in our QSL. We should
mention that a frame rule was also introduced in relational
quantum Hoare logic [31], [36], [54]. But it was defined
using the ordinary conjunction ∧ and thus is similar to our
CONST. The frame rule in QSL is given using the separating
conjunction ∗. Of course, the intuitions behind them are
the same—an assertion is preserved by a program if it is
independent of the program.

Partition of programs/computations is a basic approach to
use separation logic; routed quantum circuits (RQC) [57]
explores a similar idea in a different line of research, with
even more refined structures of partitions, i.e., direct sums of
Hilbert spaces. It worth exploring if our QSL can be extended
to general RQC dealing with partitions of Hilbert spaces.

The target application of our QSL is verification of large-
scale quantum programs, where the size of the representation
of assertions and the complexity of the involved calculations
can increase exponentially w.r.t the number of qubits. Two
different approaches to this issue were proposed in [20] and
[25]. They have achieved success, in particular for those

large-scale quantum programs with a good algebraic structure
that can be inductively defined. It seems that sometimes our
QSL can be used in combination with them; for example,
some larger VQAs (Variational Quantum Algorithms) can be
divided into several blocks, each of which has a good algebraic
structure and thus can be verified using the tools developed in
[20], [25]. Then our QSL can be employed to lift these local
reasoning to the global correctness of VQAs.

VIII. CONCLUSION

In this paper, we have developed a quantum separation logic
QSL that enables local reasoning for scalable verification of
quantum programs written in a simple quantum programming
language, namely the quantum extension of while-language.
The applicability of QSL has been demonstrated in the for-
mal verification and analysis of several practical quantum
algorithms and cryptographic protocols, including a VQA
(Variational Quantum Algorithm), quantum one-time pad, and
quantum secret sharing.

There are several interesting topics for future research:
(1) We would like to explore more applications of our logic

QSL in the verification of those algorithms identified as prac-
tical applications of near-term Noisy Intermediate Scale Quan-
tum (NISQ) computers [39]; for example, quantum machine
learning from quantum data. We will also try to apply QSL in
the security analysis of more quantum cryptographic protocols
rather than those considered in this paper, in particular QKD
(Quantum Key Distribution).

(2) Currently, QSL can only be used to quantum while-
programs without indexed variables, like arrays. However,
indexed variables has already been frequently used in writ-
ing large quantum algorithms. We would like to extend our
logic for a more sophisticated quantum program language
with indexing. Extending the language with quantum control
[58]–[63] and exploring how local reasoning works in these
constructs is also a valuable future direction.

(3) Resource theory has been emerging as a subarea of
quantum information theory in recent years. Roughly speak-
ing, it aims at understanding how the resources with quantum
advantage in computing and communication can be generated
and transformed (e.g. only using LOCC (local operations and
classical communication)) [64]–[66]. As briefly mentioned in
the Introduction, some connections between resource theory
[10], [67] and the resource semantics of BI were already
noticed in [11]. We would like to see how quantum separation
logic can be used to reason about these quantum resources.
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