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Abstract 

Despite efforts to integrate research across different subdisciplines of biology, the scale of integration remains limited. 

We hypothesize that future generations of Artificial Intelligence (AI) technologies specifically adapted for biological 

sciences will help enable the reintegration of biology. AI technologies will allow us not only to collect, connect and 

analyze data at unprecedented scales, but also to build comprehensive predictive models that span various subdisciplines. 

They will make possible both targeted (testing specific hypotheses) and untargeted discoveries. AI for biology will be the 

cross-cutting technology that will enhance our ability to do biological research at every scale. We expect AI to 

revolutionize biology in the 21st century much like statistics transformed biology in the 20th century. The difficulties, 

however, are many, including data curation and assembly, development of new science in the form of theories that 

connect the subdisciplines, and new predictive and interpretable AI models that are more suited to biology than existing 

machine learning and AI techniques. Development efforts will require strong collaborations between biological and 

computational scientists. This white paper provides a vision for AI for Biology and highlights some challenges. 
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1. Introduction 

Artificial intelligence as an idea is old. It can be dated 

back to ancient times around 700 B.C. in Greek 

mythology, for example, with the giant Talus made of 

bronze and created, not born, to protect Europa, the 

mother of King Minos in Crete [Mayor, 2018].  From then 

to more modern and scientific times, the main restriction 

to produce machines capable of thinking has been 

technology, as recognized by Alan M. Turing [Turing, 

1936] who, ahead of his time, was asking questions about 

machines, behavior, consciousness and using discrete 

processes to mimic nervous systems that operate 

continuously. John von Neuman [von Neuman, 1958], 

also ahead of his time, proposed in 1945 a computer 

architecture in which both the program instructions and 

the data are located in random-access memory. This 

design was the precursor of the modern computer, but it 

was not until the advent of the fast microchip that AI 

became a practical reality. Since its early beginnings in 

1956 [McCarthy et al., 2006, Kaplan and Haelein, 2019] 

as a field of research and development, AI has evolved 

and suffered setbacks, until early in the 21st century when 

it finally flourished with successful applications in 

academia and industry. A combination of new methods 

and availability of powerful computers along with vast 

collections of data brought large investment and 

widespread interest in AI.  
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     In biology, AI has evolved from the symbolic approach 

where complex rules are coded in computer language to 

enable machines to execute coordinated sequences of 

operations. A typical example of symbolic AI is the game 

of chess, with relatively simple rules, but a wide range of 

possible outcomes after the move of one piece. In this 

case, the rules are set, and a computer can be programmed 

to analyze all the possibilities before the next move, and 

then choose the option that produces the most beneficial 

outcome. A well-known example of successful symbolic 

AI is IBM's Deep Blue computer that in 1997 beat the 

then world chess champion Garry Kasparov. Before Deep 

Blue, computers were not capable of performing 

computations fast enough to outpace a well-trained human 

brain. Just as a reference, a smart phone today has a 

computational speed comparable to that of the Deep 

Blue.  
    Powerful as it is, symbolic AI is limited to systems that 

operate by well-defined sets of rules [Haugeland, 1985], 

which is not necessarily the case in the realm of living 

systems. Additionally, there is not much resemblance 

between symbolic AI and biological intelligence as far as 

their operation and functioning are concerned. Symbolic 
AI can only make choices based on an a priori established 

set of rules. Biological intelligence, however, can learn on 

the fly and make decisions based on information acquired 

by experience and by seeing objects, for example. 
   A similar feature was introduced with Artificial Neural 

Networks (ANNs) and Machine Learning (ML), inspired 

by the networked neurons of the biological brain. For 

instance, the mechanism behind memory in the biological 

brain is known to be related to the strength of the 

connections, or synapses, between neurons [Hebb, 1949]. 

The remarkable Hopfield network model with associative 

memory [Hopfield, 1982] has provided essential insights 

into neuronal computation. In the Hopfield model, each 

node is assigned a binary unit, and the strengths of the 

connections between nodes are quantified in terms of 

weights, and it has been successfully implemented in a 

number of applications, including the enhancement of the 

network capability for coding and information retrieval 

[Follmann et al., 2014]. 
   Another branch in AI is the Hidden Markov Model 

(HMM), applicable to stochastic processes occurring in 

systems with behaviors displaying no recurrence of fixed 

patterns. It has been implemented for example in unequal 

and unknown evolution rates at different sites in 

molecular sequences where the HMM allows for rates to 

differ between sites and for correlations between the rates 

of neighboring sites [Felsenstein and Churchill, 1996]. 

   A noticeable step up in AI is Machine Learning (ML), 

where the computer is given samples of data with 

different but related patterns in connection with a topic of 

interest. The computer then learns about those patterns by 

searching features that will distinguish between diverse 

categories of patterns or tries to identify features that are 

common among the various categories. After this learning 

phase the computer’s task is to classify a given new 

pattern that it is presented with, or to predict a future 

behavior of system being studied [Rawlings and Fox, 

1994, Follmann and Rosa Jr, 2019]. The network used in 

ML has been extended in Reservoir Computing to include 

layers of connections which makes the process more 

efficient.  
   Major recent advances in AI are due to Deep Learning 

(DL), consisting of multiple processing layers in artificial 

neuronal networks aimed at pattern recognition and 

modeling complex relationships between input and 

output. In addition, DL has enhanced the potential for 

using computer-assisted discovery in prediction of protein 

structure, molecular design and macromolecular target 

identification for drug discovery [J. Gimenez-Luna et al., 

1985]. 

 

2. The need for AI to reintegrate biology 

Concern about the fragmentation of biology into 

specialized subdisciplines, and calls for its reintegration, 

have been appearing in the scientific literature for years 

[Sukumaran and Knowles, 2018, Noble, 2013, Hayes, 

2005, Drew and Henne, 2006]. So far, though, a grand 

reunification has remained elusive. Human intellectual 

limits in collecting data, integrating data, and testing 

hypotheses spanning multiple subdisciplines are the 

primary reason biology became fragmented in the first 

place. Reintegration will be impossible without 

overcoming these limitations. Stated differently, key 

biological systems and related information, at all levels of 

biological organization, are simply too complex for 

humans to understand with sufficient depth to elicit 

generalized, human-driven reintegration. Here, we make 

the case that advances in AI methods and technologies 

will provide our best hope for overcoming the human 

cognitive limitations that have splintered biology into 

ever-more-specialized subdisciplines. 
   Our vision for reintegrating biology recognizes the 

enormous potential of existing AI techniques to accelerate 

biological research. Current AI and ML methods are 

already having an impact in biology (discussed in more 

detail below), but there is room for improvement on the 

existing methods and techniques for data integration. 

While technological advances have made great strides in 

hardware for processing speed, inadequate input/output 

performance in the case of large amounts of data may 

result in severe limitations on the overall process [Isakov, 

2020]. 
We envision new suites of AI tools, developed for 

biological inquiry and perhaps even inspired by biological 

systems [Yanguas-Gil et al., 2019, Drumond et al., 2019, 

Chance et al., 2020, Follmann and Rosa Jr, 2019], 

powering biological investigation at unprecedented scales. 

 

3. What is the potential impact? 

The development of statistics and electronic computers 

transformed 20th-century biology, and we foresee AI 
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having a similarly transformative impact on 21st-century 

biology [Yu and Kumbier, 2018]. AI-driven reintegration 

of biological disciplines will establish a new kind of 

biology that will allow us to answer deep biological 

questions in ways that are impossible today. Such 

questions will cut across biological subdisciplines and 

integrate across the scales of biological inquiry (spatial, 

temporal, and organizational). We offer some examples as 

illustrations, arranged in approximate order of increasing 

difficulty of implementation. 
 

Example 1: Biological knowledge discovery and 

assembly 
Surely all research biologists have at some point spent 

countless hours searching for relevant literature and 

sifting through various data sources to assemble 

information relevant to a particular research question. As 

the volume of published literature and data continues to 

grow at a nearly exponential rate, this process becomes 

increasingly difficult and frustrating. In fact, for human 

researchers, comprehensive collection, assembly, 

integration, and analysis of published literature and data at 

even modest scales is nearly impossible today. We predict 

that AI-driven data generation and integration across the 

spectrum of data modalities and sources will eventually 

largely solve this problem. AI will utilize a variety of 

known and new techniques to collect and assemble these 

data: text mining [Cohen and Hunter, 2008], semantic 

analysis [Berners-Lee et al., 2001], and missing link 

prediction [Ahmad et al., 2020] in existing multilevel and 

hierarchical knowledge graphs. Simply put, we need a 

next-generation search engine capable of unearthing 

known and predicted biological knowledge. Ultimately, 

we envision a system that can aid biological research by 

retrieving all known information relevant to a particular 

question, organized and visualized in a coherent and 

potentially customizable way, while also highlighting 

missing information. We do not anticipate AI to perform 

biological research totally independent from human 

supervision and control. However, there is potential for AI 

to become a powerful and necessary tool for information 

discovery.  
 

Example 2: Behavioral ecology 

Suppose that, for some species of bird, we would like to 

understand the relationship between individual fitness and 

environment, including the birds’ social environment 

[Hawkins and DuRant, 2020]. Ideally, this task would 

draw upon data from a wide range of biological and 

spatial scales (e.g., vocalizations and communication, 

social networks, movement, morphometrics, parasite 

loads, genetics, biomarkers, etc.) and sources (e.g., 

images, videos, audio recordings, tracking tags, DNA 

sequencers, etc.). Currently, such analysis is usually done 

using one or a few data modalities with relatively small 

numbers of individuals (e.g., using radio-frequency 

identification (RFID) tags to collect movements and 

social network analysis to understand social behaviors of 

birds). We hypothesize that simultaneous advances in AI 

and automated data collection will make it possible to 

answer these questions using a holistic approach that goes 

far beyond current capabilities, which will allow us to 

answer ever more complicated biological questions; for 

example: How does genetics affect social behaviors that 

in turn affect collective behaviors like migration 

[Sukumaran et al., 2016]? Another example would be the 

integration of AI in hierarchical decision-making models 

of behavior extended to the foraging of large herbivores 

[Saarenmaa, 1988]. 
 

Example 3: Genes to phenotypes 

Predicting an organism’s phenotype is extraordinarily 

difficult because it requires integrating processes and 

information across multiple scales of biological 

organization, from molecules to an organism’s 

environment [Burnett et al., 2020]. The general solutions 

to this problem are beyond the grasp of today’s AI 

technologies, but future advances in machine reasoning, 

learning, and causal inference, combined with continual 

growth in data, collection, and computational capacity, 

will help transform our understanding of how phenotypes 

emerge. Specifically, these technologies will allow us to 

use heterogeneous data (e.g., DNA sequence data, 

phylogenetic information, environmental data) and 

knowledge (e.g., gene function, results of prior 

experiments) to elucidate and test hypotheses about the 

inputs that shape phenotypes. For instance, we could 

investigate how data collected over diverse labs and fields 

(e.g., imaging of cells, genomics, epigenomics, 

proteomics, metabolomics, metagenomics in soils) can 

predict the cellular decision making or phenotypic 

changes that affect productivity of crops like corn. 

Example 4: Prediction, evolution and control of 

infectious diseases 

Infectious diseases are caused by pathogenic 

microorganisms, and their spread may be based on direct 

(i.e., human-to-human) and/or indirect (such as 

environment-to-human and vector-to-human) 

transmission routes. Infectious diseases can be deadly, 

very contagious, and display incubation periods of days or 

weeks with no visible symptoms. Add to this equation the 

lack of knowledge or means to detect and treat novel 

diseases, and we have a problem that can be as big as the 

situation we are living today with the COVID-19 

pandemic. While traditional mathematical and statistical 

models are capable of making predictions, albeit limited, 

developing strategies for disease control may require more 

elaborate approaches for making well informed decisions. 

A number of recent studies have already started applying 

AI and ML methods to the investigation of COVID-19 

[Lalmuanawma et al., 2020, Abd-Alrazaq et al., 2020].  
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    COVID-19 in particular, as a current dramatic example, 

not only has led to unprecedented cases and deaths, but 

also exhibited a high level of unpredictability from the 

classical modeling point of view. Most (if not all) of the 

traditional epidemic models based on early COVID-19 

data have failed to correctly predict the pandemic 

progression, often by an order of magnitude [Kuhl, 2020]. 

These traditional modeling and computing techniques do 

not possess the capability to react or adapt when an 

unexpected situation is encountered, and they generally 

have difficulty in handling heterogeneous sources of data. 

In contrast, AI could enable machines to better act or react 

to evolving and heterogeneous pandemic data [Wiemken 

and Kelly, 2020, Agrebi and Larbi, 2020]. With the fast 

improvement of computational power and wide 

availability of demographic, epidemic and human 

mobility data, the application of AI to infectious diseases, 

particularly COVID-19, has become increasingly popular 

and practically indispensable. Furthermore, AI and 

machine learning methods can be integrated with classical 

mechanistic models to infer critical disease parameters in 

real time from reported case data, which could lead to 

more accurate forecasts of the pandemic progression and, 

consequently, more effective policy making. Given all 

these new developments, we believe that AI has become a 

vital tool in epidemiology where potential breakthroughs 

will soon take place with the application of AI and its 

integration with other cutting-edge computational, 

mathematical and statistical approaches.  However, we 

also note that many recently published applications of AI 

techniques to COVID-19 are of limited use due to 

methodological flaws or bias issues [Roberts et al. 2020. 

Nevertheless, facing a sea of data in the digital age, it is 

imperative that we leverage the power of AI to deepen our 

understanding of infectious diseases, to improve our 

practice in the control and management of disease 

outbreaks, and to help promote public health. This is 

especially important for the prevention of and intervention 

on future pandemics.     
    Meanwhile, state-of-the-art supercomputing models can 

give us a glimpse of what to expect from the 

implementation of AI in epidemiological studies [ALCF]. 

Given the recent technological advances in capability for 

data collection, analysis and storage, AI has the potential 

not only for forecasting the outbreak of new diseases but 

also for helping in the implementation of methods and 

techniques for tracking [AlGaradi et al., 2016], diagnosis 

and treatment, leading to effective control and potential 

termination of a pandemic. 

   In summary, the new AI-augmented biology we 

envision will generate tools, methods, and knowledge that 

will translate to a host of biology-adjacent disciplines, 

such as bioengineering, biophysics, biochemistry and 

medicine. In particular, new developments in drug 

discovery using AI will play a seminal role in disease 

prevention and treatment [Fleming, 2018, Smith, 2018]. 
Additionally, we anticipate that new AI tools, in concert 

with open data, will help democratize participation in 

biology, allowing researchers at institutions with more 

limited resources to participate in cutting-edge biological 

research. 
 

4. Why now? 

The time for AI in biology has arrived. There are now 

sensors, Internet of Things (IoT), and environmental 

monitors that allow the collection of data at 

unprecedented scales. Large, heterogeneous datasets at the 

confluence of multiple information streams are rapidly 

growing in size. We now have multivariate data across 

time, space, and biological scales that need to be analyzed 

in an integrated manner to discover system-wide, 

multiscale phenomena that can lead us to understand 

fundamental rules of life and their application to other 

systems. The AI infrastructure to support these efforts is 

beginning to emerge. There are now unprecedented 

computational capabilities in the form of storage, 

CPU/GPU computing, and large-scale distributed 

computing which, combined with the increasing 

availability of software tools for AI, is enabling the rapid 

exploration and development of novel techniques and 

applications. These resources continue to grow and will 

enable the next generation of AI for the most complex 

problems in biology. However, all these features are not 

free from challenges which include, for example, still 

limited computational input/output capability [Meena, 

2014, Ben-David, 2016] as well as critical ethical issues 

[Tonkens, 2009]. Both these topics are further discussed 

below.  

5. State-of-the-art technologies and 

applications 

Although machine learning (ML) has recently entered the 

popular lexicon and is often conflated with AI in general, 

AI is a broad field with a long history, and it provides a 

diverse set of tools and approaches that encompass much 

more than ML. A variety of these tools have already been 

used to help solve some biological problems. For 

example, methods from symbolic AI have been used to 

develop sophisticated software pipelines for integrating 

highly heterogeneous sources of information about plant 

development and to help elucidate possible links between 

gene function and phenotype [Stucky et al., 2018, Braun 

and Lawrence-Dill, 2020, Edmunds et al., 2015]. 

Statistical learning, and deep learning [Lamba et al., 

2019] in particular, have recently found application in the 

automated analysis of biological imagery at various scales 

including unmanned aerial vehicle (UAV) and field 

photographs of plants [Gao, 2020], satellite imagery 

[Kislov et al., 2020], biomedicine [Tian, 2021] 

bioacoustic data [Bermant et al., 2019], genomic analyses 

[Libbrecht and Noble, 2015], and classifying protein 
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function from amino acid sequences [Nikam and 

Gromiha, 2019]. 

6. Barriers 

Many important barriers need to be addressed to enable 

the next generation of AI for biology. 

6.1. Data are critical to all aspects of this vision 

New technologies need to be developed for the automatic 

collection of biological data with varied data modalities 

(e.g., images, videos, molecular profiles) and 

comprehensive measurements of biological systems at 

various biological, spatial and temporal scales. 

Furthermore, data quality is a concern with large, noisy 

datasets, so data scientists must work with biologists to 

ensure the data we generate are as useful as possible. Key 

challenges include identifying outliers and biases, 

mitigating known biases, understanding variation, and 

improving signal-to-noise ratios. To enable the open 

sharing of data, tools should be developed to allow for 

transparent data sharing, with consideration of 

provenance, security, privacy, and fairness. Other 

researchers can use these shared data to form new 

hypotheses and build new theories. Beyond new 

technologies for gathering biological data, high-quality 

reference datasets for benchmarking AI applications in 

biology will also be critical.  For example, over the last 

decade, the availability of the ImageNet dataset has been a 

major factor in the development of new AI methods for 

image processing [Deng, 2009, Russakovsky, 2015]. 

Similarly, reference datasets for evaluating AI methods 

across a range of biological applications will be needed to 

support future innovation in the biological domain. 
 
6.2. Theory 

Development of theory from multiple disciplines will 

enable the development of new AI technologies for 

biology. For example, theory in biology, chemistry, 

physics, and social sciences could be utilized to develop 

more appropriate AI models for understanding biological 

systems. Mathematical and statistical theory should be 

developed to not only design new AI methods but also 

further our understanding of the fundamental principles 

[Deisenroth et al., 2020] underlying current and emerging 

AI technologies. Novel development and incorporation of 

evolving and updated theory will be conducted in a 

feedback loop, with AI data analysis and evaluation 

leading to the development of improved methods. 

 

6.3. Models 

Novel AI models need to be developed that are bio-

meaningful, bio-inspired, and bio-integrated at scale 

[Alber et al., 2019]. AI models should incorporate 

biological hierarchical structures and feedback/loops. 

Notably, deep learning, which dominates current AI 

research, arose from biological inspiration. Deep learning 

systems are based on artificial neural networks, which 

originated with efforts to mimic the way computation 

happens in biological brains. Many other biological 

systems are characterized by highly complex interactions 

leading to system-level emergent properties and 

behaviors, and we suspect the mechanisms behind such 

systems might present opportunities for new approaches 

to AI. Although black-box models are appropriate for 

some types of modeling tasks, AI models that are 

interpretable, explainable, and visualizable should be 

encouraged. AI models should be robust and resilient, 

allowing for redundancy and plasticity. AI models should 

enable unsupervised learning or semi-supervised learning 

when labeled data are missing, limited or insufficient.   

   AI models and software should be open-source to allow 

not only accessibility for all but also for taking advantage 

of collaborative public efforts that can bring a plethora of 

perspectives and development contributions. Open 

availability of scientific data will directly benefit society 

as a whole by promoting transparency, reproducibility and 

more efficient use of information. However, challenges 

exist including limited control over how the data will be 

used, and lack of recognition and of incentive to the 

generators of data. These challenges are not simple 

problems and will take some time to resolve [Molloy, 

2011]. 
 
6.4. Computing Infrastructure 

Current computing storage and throughput will be 

challenged by the amount and scale of future biological 

data. Accordingly, storage and performance of computing 

systems must also scale. Traditional computing models 

(von Neumann architectures) [von Neumann, 1958] may 

not be well suited for biological tasks. Emerging 

technologies such as quantum and neuromorphic 

computing might provide appropriate alternatives. 

Focusing AI on biology will open up novel opportunities 

for developing hardware, software, and new computing 

mediums that are more appropriate for biological 

applications. There are also exciting opportunities to 

explore novel computing-biological interfaces at the 

intersection of biology and computing. 
   Whatever new technologies might be realized in the 

future, it will be critical to ensure that leading-edge 

computing infrastructure is available to as many 

researchers as possible, not just researchers fortunate 

enough to be affiliated with the most well-funded 

universities, government agencies, and NGOs.  As an 

example, the NSF-funded Extreme Science and 

Engineering Discovery Environment (XSEDE - 

https://www.xsede.org) is a virtual organization that 

provides advanced computing infrastructure to researchers 

across the United States, including many who might not 

otherwise have access to high-performance computing 

resources.  Efforts like XSEDE will be crucial in the 

future to help democratize access to AI-related computing 
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tools and to facilitate the pooling of resources required for 

extremely large-scale projects. The cost associated with 

the development of this infrastructure is expected to be a 

barrier for its implementation, unless private investors and 

public sectors can foresee the benefits of the investment. 
   In the context of the last two subsections, it is 

imperative for a mechanism to be created to ensure long 

term maintenance and updating of data storage and 

coding. This should guarantee reproducibility of results 

and also that the scientific community as a whole will 

have easy access to the methods and tools to stay up-to-

date with potentially fast-paced developments.  
 

6.5. Ethics 
In a wide range of fields, biology included, a growing 

number of functions are being outsourced to AI with less 

direct human participation and control. This raises 

concerns about biases, unfairness and discrimination, and 

effort must be made to guarantee equitability [Piano, 

2020]. Central to this effort is to develop mechanisms that 

ensure transparency, fairness, access, equity, diversity, 

shared governance, privacy and security of data at all 

development stages. There are already well-known cases 

of biases in ML data and algorithms [Garcia, 2016], which 

can then be exacerbated as data and models become more 

complicated. Black box models, for example, restrict 

shared-decision and make it difficult to effectively 

implement real-time error-checking [Rudin et al., 2021]. 

One venue to tackle ethics in AI would be through 

governance. However, while AI is evolving rather 

quickly, the governance of AI is in its infancy [Renda, 

2019, Taeihagh, 2021]. Ethical issues in AI must be 

addressed head-on as a first-class concern. Developers 

and users need to be trained to be aware of these issues, 

and our workforce must be sufficiently diversified to 

ensure no one is left behind. Further, we all should be 

aware of potential misuse of AI to harm humans or the 

environment and the utmost care must be taken to assess 

and address these issues.  

6.6. Training 

Training must be addressed in a more systematic and 

cross-institutional/disciplinary manner. A new generation 

of diverse scientists must be trained at the intersection of 

biology and computer science, starting with undergraduate 

studies and through graduate and postdoctoral 

opportunities. In line with much of the recent NSF-funded 

STEM educational research, training of future AI/ML 

researchers may need to commence even earlier [Jones et. 

al, 2020; Paul and Jefferson, 2019]. According to a 

Brookings Institute Report on the Future of Education in 

the AI Age, America’s early education must reflect a 

deliberately tuned and calibrated system that proactively 

emphasizes AI/ET, big data analytics, and super-

computing. [J.R. Allen, 2019]. As energy-efficient neural 

coding is required to control individual neurons and brain 

circuits, so too is balance and inputting-outputting of AI 

and ML data. Balance requires distribution and diversity.   

Users of AI systems must be trained to interpret the 

results and use the various tools judiciously. Vocational 

pathways need to reward cross-disciplinary work. 
 

7. Concluding remarks 

The rapid growth and consequent fragmentation of 

biology has created a wealth of subdisciplines that would 

benefit greatly from being part of an integrated collective 

rather than remaining individualized. Given the 

overwhelming complexity of contemporary biological 

knowledge, placing subdisciplines of biology under a 

single umbrella has become a task of insurmountable 

proportions. Nevertheless, certain technological tools 

available today and still evolving, can help amalgamate 

different subdisciplines of biology, each realizing the 

inherent advantages of working in unison with the others. 

AI is one such a tool. It has the potential for broad and 

long-lasting impacts on biological science and beyond. AI 

will equip biologists with powerful tools to ask and solve 

ambitious questions, such as investigating and integrating 

complex mechanisms across a wide range of scales (from 

genes, to cells, to organisms, populations, and 

ecosystems), and developing theoretical machines to 

understand biological and ecological systems at extremely 

large scales, all of which would be severely limited 

without AI. Meanwhile, feedback from biology will help 

to re-define AI concepts and improve AI computing. We 

expect these developments will lead to better integration 

of biological knowledge and enable exciting new 

collaborations among researchers across biology and 

adjacent disciplines, including computer science and 

engineering. Such interdisciplinary collaborations are 

critical in promoting the next generation of AI in biology, 

and in addressing the barriers of data, theory, model 

development and various other challenges the AI field is 

currently facing. 
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