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Abstract

Despite efforts to integrate research across different subdisciplines of biology, the scale of integration remains limited.
We hypothesize that future generations of Artificial Intelligence (AI) technologies specifically adapted for biological
sciences will help enable the reintegration of biology. Al technologies will allow us not only to collect, connect and
analyze data at unprecedented scales, but also to build comprehensive predictive models that span various subdisciplines.
They will make possible both targeted (testing specific hypotheses) and untargeted discoveries. Al for biology will be the
cross-cutting technology that will enhance our ability to do biological research at every scale. We expect Al to
revolutionize biology in the 21st century much like statistics transformed biology in the 20th century. The difficulties,
however, are many, including data curation and assembly, development of new science in the form of theories that
connect the subdisciplines, and new predictive and interpretable Al models that are more suited to biology than existing
machine learning and Al techniques. Development efforts will require strong collaborations between biological and
computational scientists. This white paper provides a vision for Al for Biology and highlights some challenges.
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1. Introduction

Artificial intelligence as an idea is old. It can be dated
back to ancient times around 700 B.C. in Greek
mythology, for example, with the giant Talus made of
bronze and created, not born, to protect Europa, the
mother of King Minos in Crete [Mayor, 2018]. From then
to more modern and scientific times, the main restriction
to produce machines capable of thinking has been
technology, as recognized by Alan M. Turing [Turing,
1936] who, ahead of his time, was asking questions about
machines, behavior, consciousness and using discrete
processes to mimic nervous systems that operate
continuously. John von Neuman [von Neuman, 1958],

also ahead of his time, proposed in 1945 a computer
architecture in which both the program instructions and
the data are located in random-access memory. This
design was the precursor of the modern computer, but it
was not until the advent of the fast microchip that Al
became a practical reality. Since its early beginnings in
1956 [McCarthy et al., 2006, Kaplan and Haelein, 2019]
as a field of research and development, Al has evolved
and suffered setbacks, until early in the 21% century when
it finally flourished with successful applications in
academia and industry. A combination of new methods
and availability of powerful computers along with vast
collections of data brought large investment and
widespread interest in Al



In biology, Al has evolved from the symbolic approach
where complex rules are coded in computer language to
enable machines to execute coordinated sequences of
operations. A typical example of symbolic Al is the game
of chess, with relatively simple rules, but a wide range of
possible outcomes after the move of one piece. In this
case, the rules are set, and a computer can be programmed
to analyze all the possibilities before the next move, and
then choose the option that produces the most beneficial
outcome. A well-known example of successful symbolic
Al is IBM's Deep Blue computer that in 1997 beat the
then world chess champion Garry Kasparov. Before Deep
Blue, computers were not capable of performing
computations fast enough to outpace a well-trained human
brain. Just as a reference, a smart phone today has a
computational speed comparable to that of the Deep
Blue.

Powerful as it is, symbolic Al is limited to systems that
operate by well-defined sets of rules [Haugeland, 1985],
which is not necessarily the case in the realm of living
systems. Additionally, there is not much resemblance
between symbolic Al and biological intelligence as far as
their operation and functioning are concerned. Symbolic
Al can only make choices based on an a priori established
set of rules. Biological intelligence, however, can learn on
the fly and make decisions based on information acquired
by experience and by seeing objects, for example.

A similar feature was introduced with Artificial Neural
Networks (ANNs) and Machine Learning (ML), inspired
by the networked neurons of the biological brain. For
instance, the mechanism behind memory in the biological
brain is known to be related to the strength of the
connections, or synapses, between neurons [Hebb, 1949].
The remarkable Hopfield network model with associative
memory [Hopfield, 1982] has provided essential insights
into neuronal computation. In the Hopfield model, each
node is assigned a binary unit, and the strengths of the
connections between nodes are quantified in terms of
weights, and it has been successfully implemented in a
number of applications, including the enhancement of the
network capability for coding and information retrieval
[Follmann et al., 2014].

Another branch in Al is the Hidden Markov Model
(HMM), applicable to stochastic processes occurring in
systems with behaviors displaying no recurrence of fixed
patterns. It has been implemented for example in unequal
and unknown evolution rates at different sites in
molecular sequences where the HMM allows for rates to
differ between sites and for correlations between the rates
of neighboring sites [Felsenstein and Churchill, 1996].

A noticeable step up in Al is Machine Learning (ML),
where the computer is given samples of data with
different but related patterns in connection with a topic of
interest. The computer then learns about those patterns by
searching features that will distinguish between diverse
categories of patterns or tries to identify features that are
common among the various categories. After this learning
phase the computer’s task is to classify a given new

pattern that it is presented with, or to predict a future
behavior of system being studied [Rawlings and Fox,
1994, Follmann and Rosa Jr, 2019]. The network used in
ML has been extended in Reservoir Computing to include
layers of connections which makes the process more
efficient.

Major recent advances in Al are due to Deep Learning
(DL), consisting of multiple processing layers in artificial
neuronal networks aimed at pattern recognition and
modeling complex relationships between input and
output. In addition, DL has enhanced the potential for
using computer-assisted discovery in prediction of protein
structure, molecular design and macromolecular target
identification for drug discovery [J. Gimenez-Luna ef al.,
1985].

2. The need for Al to reintegrate biology

Concern about the fragmentation of biology into
specialized subdisciplines, and calls for its reintegration,
have been appearing in the scientific literature for years
[Sukumaran and Knowles, 2018, Noble, 2013, Hayes,
2005, Drew and Henne, 2006]. So far, though, a grand
reunification has remained elusive. Human intellectual
limits in collecting data, integrating data, and testing
hypotheses spanning multiple subdisciplines are the
primary reason biology became fragmented in the first
place. Reintegration will be impossible without
overcoming these limitations. Stated differently, key
biological systems and related information, at all levels of
biological organization, are simply too complex for
humans to understand with sufficient depth to elicit
generalized, human-driven reintegration. Here, we make
the case that advances in Al methods and technologies
will provide our best hope for overcoming the human
cognitive limitations that have splintered biology into
ever-more-specialized subdisciplines.

Our vision for reintegrating biology recognizes the
enormous potential of existing Al techniques to accelerate
biological research. Current Al and ML methods are
already having an impact in biology (discussed in more
detail below), but there is room for improvement on the
existing methods and techniques for data integration.
While technological advances have made great strides in
hardware for processing speed, inadequate input/output
performance in the case of large amounts of data may
result in severe limitations on the overall process [Isakov,
2020].

We envision new suites of Al tools, developed for
biological inquiry and perhaps even inspired by biological
systems [Yanguas-Gil et al., 2019, Drumond et al., 2019,
Chance et al., 2020, Follmann and Rosa Jr, 2019],
powering biological investigation at unprecedented scales.

3. What is the potential impact?

The development of statistics and electronic computers
transformed 20th-century biology, and we foresee Al



having a similarly transformative impact on 21st-century
biology [Yu and Kumbier, 2018]. Al-driven reintegration
of biological disciplines will establish a new kind of
biology that will allow us to answer deep biological
questions in ways that are impossible today. Such
questions will cut across biological subdisciplines and
integrate across the scales of biological inquiry (spatial,
temporal, and organizational). We offer some examples as
illustrations, arranged in approximate order of increasing
difficulty of implementation.

Example 1: Biological knowledge discovery and
assembly

Surely all research biologists have at some point spent
countless hours searching for relevant literature and
sifting through various data sources to assemble
information relevant to a particular research question. As
the volume of published literature and data continues to
grow at a nearly exponential rate, this process becomes
increasingly difficult and frustrating. In fact, for human
researchers, comprehensive collection, assembly,
integration, and analysis of published literature and data at
even modest scales is nearly impossible today. We predict
that Al-driven data generation and integration across the
spectrum of data modalities and sources will eventually
largely solve this problem. Al will utilize a variety of
known and new techniques to collect and assemble these
data: text mining [Cohen and Hunter, 2008], semantic
analysis [Berners-Lee ef al., 2001], and missing link
prediction [Ahmad et al., 2020] in existing multilevel and
hierarchical knowledge graphs. Simply put, we need a
next-generation search engine capable of unearthing
known and predicted biological knowledge. Ultimately,
we envision a system that can aid biological research by
retrieving all known information relevant to a particular
question, organized and visualized in a coherent and
potentially customizable way, while also highlighting
missing information. We do not anticipate Al to perform
biological research totally independent from human
supervision and control. However, there is potential for Al
to become a powerful and necessary tool for information
discovery.

Example 2: Behavioral ecology

Suppose that, for some species of bird, we would like to
understand the relationship between individual fitness and
environment, including the birds’ social environment
[Hawkins and DuRant, 2020]. Ideally, this task would
draw upon data from a wide range of biological and
spatial scales (e.g., vocalizations and communication,
social networks, movement, morphometrics, parasite
loads, genetics, biomarkers, etc.) and sources (e.g.,
images, videos, audio recordings, tracking tags, DNA
sequencers, etc.). Currently, such analysis is usually done
using one or a few data modalities with relatively small
numbers of individuals (e.g., using radio-frequency
identification (RFID) tags to collect movements and

social network analysis to understand social behaviors of
birds). We hypothesize that simultaneous advances in Al
and automated data collection will make it possible to
answer these questions using a holistic approach that goes
far beyond current capabilities, which will allow us to
answer ever more complicated biological questions; for
example: How does genetics affect social behaviors that
in turn affect collective behaviors like migration
[Sukumaran et al., 2016]? Another example would be the
integration of Al in hierarchical decision-making models
of behavior extended to the foraging of large herbivores
[Saarenmaa, 1988].

Example 3: Genes to phenotypes

Predicting an organism’s phenotype is extraordinarily
difficult because it requires integrating processes and
information across multiple scales of biological
organization, from molecules to an organism’s
environment [Burnett ef al., 2020]. The general solutions
to this problem are beyond the grasp of today’s Al
technologies, but future advances in machine reasoning,
learning, and causal inference, combined with continual
growth in data, collection, and computational capacity,
will help transform our understanding of how phenotypes
emerge. Specifically, these technologies will allow us to
use heterogeneous data (e.g., DNA sequence data,
phylogenetic information, environmental data) and
knowledge (e.g., gene function, results of prior
experiments) to elucidate and test hypotheses about the
inputs that shape phenotypes. For instance, we could
investigate how data collected over diverse labs and fields
(e.g., imaging of cells, genomics, epigenomics,
proteomics, metabolomics, metagenomics in soils) can
predict the cellular decision making or phenotypic
changes that affect productivity of crops like corn.

Example 4: Prediction, evolution and control of
infectious diseases

Infectious diseases are caused by pathogenic
microorganisms, and their spread may be based on direct
(i.e., human-to-human) and/or indirect (such as
environment-to-human and vector-to-human)
transmission routes. Infectious diseases can be deadly,
very contagious, and display incubation periods of days or
weeks with no visible symptoms. Add to this equation the
lack of knowledge or means to detect and treat novel
diseases, and we have a problem that can be as big as the
situation we are living today with the COVID-19
pandemic. While traditional mathematical and statistical
models are capable of making predictions, albeit limited,
developing strategies for disease control may require more
elaborate approaches for making well informed decisions.
A number of recent studies have already started applying
Al and ML methods to the investigation of COVID-19
[Lalmuanawma et al., 2020, Abd-Alrazaq et al., 2020].



COVID-19 in particular, as a current dramatic example,
not only has led to unprecedented cases and deaths, but
also exhibited a high level of unpredictability from the
classical modeling point of view. Most (if not all) of the
traditional epidemic models based on early COVID-19
data have failed to correctly predict the pandemic
progression, often by an order of magnitude [Kuhl, 2020].
These traditional modeling and computing techniques do
not possess the capability to react or adapt when an
unexpected situation is encountered, and they generally
have difficulty in handling heterogeneous sources of data.
In contrast, Al could enable machines to better act or react
to evolving and heterogeneous pandemic data [Wiemken
and Kelly, 2020, Agrebi and Larbi, 2020]. With the fast
improvement of computational power and wide
availability of demographic, epidemic and human
mobility data, the application of Al to infectious diseases,
particularly COVID-19, has become increasingly popular
and practically indispensable. Furthermore, Al and
machine learning methods can be integrated with classical
mechanistic models to infer critical disease parameters in
real time from reported case data, which could lead to
more accurate forecasts of the pandemic progression and,
consequently, more effective policy making. Given all
these new developments, we believe that Al has become a
vital tool in epidemiology where potential breakthroughs
will soon take place with the application of Al and its
integration with other cutting-edge computational,
mathematical and statistical approaches. However, we
also note that many recently published applications of Al
techniques to COVID-19 are of limited use due to
methodological flaws or bias issues [Roberts et al. 2020.
Nevertheless, facing a sea of data in the digital age, it is
imperative that we leverage the power of Al to deepen our
understanding of infectious diseases, to improve our
practice in the control and management of disease
outbreaks, and to help promote public health. This is
especially important for the prevention of and intervention
on future pandemics.

Meanwhile, state-of-the-art supercomputing models can
give us a glimpse of what to expect from the
implementation of Al in epidemiological studies [ALCF].
Given the recent technological advances in capability for
data collection, analysis and storage, Al has the potential
not only for forecasting the outbreak of new diseases but
also for helping in the implementation of methods and
techniques for tracking [AlGaradi ef al., 2016], diagnosis
and treatment, leading to effective control and potential
termination of a pandemic.

In summary, the new Al-augmented biology we
envision will generate tools, methods, and knowledge that
will translate to a host of biology-adjacent disciplines,
such as bioengineering, biophysics, biochemistry and
medicine. In particular, new developments in drug
discovery using Al will play a seminal role in disease
prevention and treatment [Fleming, 2018, Smith, 2018].
Additionally, we anticipate that new Al tools, in concert
with open data, will help democratize participation in

biology, allowing researchers at institutions with more
limited resources to participate in cutting-edge biological
research.

4. Why now?

The time for Al in biology has arrived. There are now
sensors, Internet of Things (IoT), and environmental
monitors that allow the collection of data at
unprecedented scales. Large, heterogeneous datasets at the
confluence of multiple information streams are rapidly
growing in size. We now have multivariate data across
time, space, and biological scales that need to be analyzed
in an integrated manner to discover system-wide,
multiscale phenomena that can lead us to understand
fundamental rules of life and their application to other
systems. The Al infrastructure to support these efforts is
beginning to emerge. There are now unprecedented
computational capabilities in the form of storage,
CPU/GPU computing, and large-scale distributed
computing which, combined with the increasing
availability of software tools for Al, is enabling the rapid
exploration and development of novel techniques and
applications. These resources continue to grow and will
enable the next generation of Al for the most complex
problems in biology. However, all these features are not
free from challenges which include, for example, still
limited computational input/output capability [Meena,
2014, Ben-David, 2016] as well as critical ethical issues
[Tonkens, 2009]. Both these topics are further discussed
below.

5. State-of-the-art technologies and
applications

Although machine learning (ML) has recently entered the
popular lexicon and is often conflated with Al in general,
Al is a broad field with a long history, and it provides a
diverse set of tools and approaches that encompass much
more than ML. A variety of these tools have already been
used to help solve some biological problems. For
example, methods from symbolic Al have been used to
develop sophisticated software pipelines for integrating
highly heterogeneous sources of information about plant
development and to help elucidate possible links between
gene function and phenotype [Stucky et al., 2018, Braun
and Lawrence-Dill, 2020, Edmunds et al., 2015].
Statistical learning, and deep learning [Lamba et al.,
2019] in particular, have recently found application in the
automated analysis of biological imagery at various scales
including unmanned aerial vehicle (UAV) and field
photographs of plants [Gao, 2020], satellite imagery
[Kislov et al., 2020], biomedicine [Tian, 2021]
bioacoustic data [Bermant et al., 2019], genomic analyses
[Libbrecht and Noble, 2015], and classifying protein



function from amino acid sequences [Nikam and
Gromiha, 2019].

6. Barriers

Many important barriers need to be addressed to enable
the next generation of Al for biology.

6.1. Data are critical to all aspects of this vision

New technologies need to be developed for the automatic
collection of biological data with varied data modalities
(e.g., images, videos, molecular profiles) and
comprehensive measurements of biological systems at
various biological, spatial and temporal scales.
Furthermore, data quality is a concern with large, noisy
datasets, so data scientists must work with biologists to
ensure the data we generate are as useful as possible. Key
challenges include identifying outliers and biases,
mitigating known biases, understanding variation, and
improving signal-to-noise ratios. To enable the open
sharing of data, tools should be developed to allow for
transparent data sharing, with consideration of
provenance, security, privacy, and fairness. Other
researchers can use these shared data to form new
hypotheses and build new theories. Beyond new
technologies for gathering biological data, high-quality
reference datasets for benchmarking Al applications in
biology will also be critical. For example, over the last
decade, the availability of the ImageNet dataset has been a
major factor in the development of new Al methods for
image processing [Deng, 2009, Russakovsky, 2015].
Similarly, reference datasets for evaluating Al methods
across a range of biological applications will be needed to
support future innovation in the biological domain.

6.2. Theory

Development of theory from multiple disciplines will
enable the development of new Al technologies for
biology. For example, theory in biology, chemistry,
physics, and social sciences could be utilized to develop
more appropriate Al models for understanding biological
systems. Mathematical and statistical theory should be
developed to not only design new Al methods but also
further our understanding of the fundamental principles
[Deisenroth et al., 2020] underlying current and emerging
Al technologies. Novel development and incorporation of
evolving and updated theory will be conducted in a
feedback loop, with Al data analysis and evaluation
leading to the development of improved methods.

6.3. Models

Novel Al models need to be developed that are bio-
meaningful, bio-inspired, and bio-integrated at scale
[Alber et al., 2019]. Al models should incorporate
biological hierarchical structures and feedback/loops.
Notably, deep learning, which dominates current Al

research, arose from biological inspiration. Deep learning
systems are based on artificial neural networks, which
originated with efforts to mimic the way computation
happens in biological brains. Many other biological
systems are characterized by highly complex interactions
leading to system-level emergent properties and
behaviors, and we suspect the mechanisms behind such
systems might present opportunities for new approaches
to Al Although black-box models are appropriate for
some types of modeling tasks, Al models that are
interpretable, explainable, and visualizable should be
encouraged. Al models should be robust and resilient,
allowing for redundancy and plasticity. AI models should
enable unsupervised learning or semi-supervised learning
when labeled data are missing, limited or insufficient.

Al models and software should be open-source to allow
not only accessibility for all but also for taking advantage
of collaborative public efforts that can bring a plethora of
perspectives and development contributions. Open
availability of scientific data will directly benefit society
as a whole by promoting transparency, reproducibility and
more efficient use of information. However, challenges
exist including limited control over how the data will be
used, and lack of recognition and of incentive to the
generators of data. These challenges are not simple
problems and will take some time to resolve [Molloy,
2011].

6.4. Computing Infrastructure

Current computing storage and throughput will be
challenged by the amount and scale of future biological
data. Accordingly, storage and performance of computing
systems must also scale. Traditional computing models
(von Neumann architectures) [von Neumann, 1958] may
not be well suited for biological tasks. Emerging
technologies such as quantum and neuromorphic
computing might provide appropriate alternatives.
Focusing Al on biology will open up novel opportunities
for developing hardware, software, and new computing
mediums that are more appropriate for biological
applications. There are also exciting opportunities to
explore novel computing-biological interfaces at the
intersection of biology and computing.

Whatever new technologies might be realized in the
future, it will be critical to ensure that leading-edge
computing infrastructure is available to as many
researchers as possible, not just researchers fortunate
enough to be affiliated with the most well-funded
universities, government agencies, and NGOs. As an
example, the NSF-funded Extreme Science and
Engineering Discovery Environment (XSEDE -
https://www.xsede.org) is a virtual organization that
provides advanced computing infrastructure to researchers
across the United States, including many who might not
otherwise have access to high-performance computing
resources. Efforts like XSEDE will be crucial in the
future to help democratize access to Al-related computing



tools and to facilitate the pooling of resources required for
extremely large-scale projects. The cost associated with
the development of this infrastructure is expected to be a
barrier for its implementation, unless private investors and
public sectors can foresee the benefits of the investment.

In the context of the last two subsections, it is
imperative for a mechanism to be created to ensure long
term maintenance and updating of data storage and
coding. This should guarantee reproducibility of results
and also that the scientific community as a whole will
have easy access to the methods and tools to stay up-to-
date with potentially fast-paced developments.

6.5. Ethics

In a wide range of fields, biology included, a growing
number of functions are being outsourced to Al with less
direct human participation and control. This raises
concerns about biases, unfairness and discrimination, and
effort must be made to guarantee equitability [Piano,
2020]. Central to this effort is to develop mechanisms that
ensure transparency, fairness, access, equity, diversity,
shared governance, privacy and security of data at all
development stages. There are already well-known cases
of biases in ML data and algorithms [Garcia, 2016], which
can then be exacerbated as data and models become more
complicated. Black box models, for example, restrict
shared-decision and make it difficult to effectively
implement real-time error-checking [Rudin ef al., 2021].
One venue to tackle ethics in Al would be through
governance. However, while Al is evolving rather
quickly, the governance of Al is in its infancy [Renda,
2019, Taeihagh, 2021]. Ethical issues in Al must be
addressed head-on as a first-class concern. Developers
and users need to be trained to be aware of these issues,
and our workforce must be sufficiently diversified to
ensure no one is left behind. Further, we all should be
aware of potential misuse of Al to harm humans or the
environment and the utmost care must be taken to assess
and address these issues.

6.6. Training

Training must be addressed in a more systematic and
cross-institutional/disciplinary manner. A new generation
of diverse scientists must be trained at the intersection of
biology and computer science, starting with undergraduate
studies and through graduate and postdoctoral
opportunities. In line with much of the recent NSF-funded
STEM educational research, training of future AI/ML
researchers may need to commence even earlier [Jones et.
al, 2020; Paul and Jefferson, 2019]. According to a
Brookings Institute Report on the Future of Education in
the Al Age, America’s early education must reflect a
deliberately tuned and calibrated system that proactively
emphasizes AI/ET, big data analytics, and super-
computing. [J.R. Allen, 2019]. As energy-efficient neural
coding is required to control individual neurons and brain
circuits, so too is balance and inputting-outputting of Al

and ML data. Balance requires distribution and diversity.
Users of Al systems must be trained to interpret the
results and use the various tools judiciously. Vocational
pathways need to reward cross-disciplinary work.

7. Concluding remarks

The rapid growth and consequent fragmentation of
biology has created a wealth of subdisciplines that would
benefit greatly from being part of an integrated collective
rather than remaining individualized. Given the
overwhelming complexity of contemporary biological
knowledge, placing subdisciplines of biology under a
single umbrella has become a task of insurmountable
proportions. Nevertheless, certain technological tools
available today and still evolving, can help amalgamate
different subdisciplines of biology, each realizing the
inherent advantages of working in unison with the others.
Al is one such a tool. It has the potential for broad and
long-lasting impacts on biological science and beyond. Al
will equip biologists with powerful tools to ask and solve
ambitious questions, such as investigating and integrating
complex mechanisms across a wide range of scales (from
genes, to cells, to organisms, populations, and
ecosystems), and developing theoretical machines to
understand biological and ecological systems at extremely
large scales, all of which would be severely limited
without Al. Meanwhile, feedback from biology will help
to re-define Al concepts and improve Al computing. We
expect these developments will lead to better integration
of biological knowledge and enable exciting new
collaborations among researchers across biology and
adjacent disciplines, including computer science and
engineering. Such interdisciplinary collaborations are
critical in promoting the next generation of Al in biology,
and in addressing the barriers of data, theory, model
development and various other challenges the Al field is
currently facing.
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