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ABSTRACT. We further the classification of rational surface singularities. Suppose (S, n, £)
is a 3-dimensional strictly Henselian regular local ring of mixed characteristic (0,p > 5).
We classify functions f for which S/(f) has an isolated rational singularity at the maximal
ideal n. The classification of such functions are used to show that if (R, m, 2) is an excellent,
strictly Henselian, Gorenstein rational singularity of dimension 2 and mixed characteristic
(0,p > 5), then there exists a split finite cover of Spec(R) by a regular scheme. We give an
application of our result to the study of 2-dimensional BCM-regular singularities in mixed
characteristic.

1. INTRODUCTION

The study of surface singularities in algebraic geometry is a classical subject. Of particular
interest is the collection of normal surfaces that remain normal under blowups of singular
points. Such surfaces are seen to be cohomologically trivial; if X belongs to the set of surfaces
just described and X’ 2 X is proper and birational, then R'p,0y = 0. Such surfaces are said
to have rational singularities, their study was initiated by Du Val in [DV34a, DV34b, DV34c],
and defined by Artin in [Art66].

Suppose that X is the spectrum of a local 2-dimensional ring (R, m, £) with a Gorenstein
isolated @tional singularity at the closed point. It is known that, under these assumptions,
we have R = S/(f) where (S,n, 2) is a regular local ring of dimension 3 and f € n* —n? (see
Lemma 4.1).

Following tradition, such hypersurface singularities are referred to as rational double points.
Suppose further that S is strictly Henselian. That is, S satisfies Hensel’s lemma (e.g. S
is complete) and has separably closed residue field; see [Mil80, I, §4] for further details. If
S contains a field then it is known that there exists a finite cover Y = X such that Y is
the spectrum of a regular local ring. It is known that, in the equicharacteristic 0 and prime
characteristic p > 5 scenarios, the induced map Ox — 7,0y is split as a map of Oy-modules.
Before discussing details and appropriate references of the equicharacteristic results, we state
our main theorem which generalizes this result to the mixed characteristic setting. The proof
of this is completed in Section 4.
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Theorem A. Let (R,m, £) be an excellent and strictly Henselian local ring of mized char-
acteristic (0,p > 5)." Suppose R is a Gorenstein rational singularity of dimension 2. Then
R is a rational double point and there exists a finite cover Y = X = Spec(R) such that
Ox — .0y splits as a map of Ox-modules and Y is a reqular scheme.

In the scenario that R contains a field of characteristic 0, the existence of a finite cover of
X by a regular scheme is accomplished by realizing R as a quotient singularity of a finite
subgroup of G C SLs, see [Pri67]. Every equicharacteristic 0 normal domain is a splinter, i.e.,
it splits off from all its module-finite extension. In particular, the finite cover splits.

If R contains a field of prime characteristic p > 0, Artin provides an explicit description of
all possible functions f € n? — n3, in terms of choices of minimal generators of the maximal
ideal n, so that R = S/(f) is a rational double point. The explicit descriptions provided by
Artin can then be used to show the existence of a finite cover Y = X such that Y is regular,
[Art77] (note Lipman had previously worked out explicit equations in the Eg case, even in
mixed characteristic; see [Lip69]). It is then straightforward to use Artin’s classification of
rational double points in prime characteristic p > 5 to verify that all such singularities are
F-regular (a class of singularities coming out of Hochster and Huneke’s tight closure theory
[HHS89]). In particular, rational double points of prime characteristic p > 5 are splinters,
[HH94, Theorem 5.25], and therefore the finite cover by a regular scheme must split. However,
there exists rational double points in characteristic 2, 3, and 5 which are not F-regular.? In
particular, the finite cover by a regular scheme cannot split since direct summands of regular
rings are F-regular, [HH90, Proposition 4.12]. It is worth noting that F-regular singularities
are precisely the positive equicharacteristic BCM-regular singularities which are the subject
of Section 5 in mixed characteristic.

Similar to the methodology of Artin, to prove Theorem A we will first classify the functions
in the maximal ideal of a 3-dimensional regular local ring which define a rational double
point. In fact, Lipman already did this for the Eg case assuming the residual characteristic
p > 5 as we do; see [Lip69, Section 25]. We were heavily inspired by his work. We will prove
the following in Section 3.

Theorem B. Let (S,n, £) be a 3-dimensional complete regular local ring of mized characteris-
tic (0,p > 5) with separably closed residue field and f € n* —n® so that X = Spec(R = S/(f))
1s a rational double point. Then, there exists a choice of minimal generators x,y, z of the
mazimal ideal of S so that, up to multiplication by a unit, f can be written in one of the
following forms:

(2% +y? + 27 A,
22 +y*z+ 2t D,
2 3 4

(2?2 + P+ 2 Es

F
(AVARRYS
B

IFor instance, it could be the strict Henselization of an excellent mixed characteristic local ring or well
its completion in case its residue field is separably closed. Strict Henselizations can be thought of as the
geometric germs with respect to the étale topology. See [Mil80, I, §4].

2For example, if S is the completion of Fs [z, v, 2] at the maximal ideal (z,y, 2), then the function f = 2% +y3+2°
defines a rational double point which is not F-regular (in fact, it is easy to see using Fedder’s criterion [Fed83]
that it is not even F-pure). We will see a similar phenomenon in mixed characteristic: Example 4.14.
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Howewver, in contrast to the equicharacteristic case, one of the above forms for f can yield
two non-isomorphic rational double points S/ f; see Example 1.1 below.

The notations A, D,, Eg, E7, and Eg are referred to as the type of the ring R = S/(f)
and correspond to the graph of the minimal resolution of X obtained by quadratic transforms
as described in [Lip69, Lip78]. It is well known to experts that any complete Gorenstein
rational singularity can be expressed as a hypersurface singularity S/(f) (as we assume in
the theorem), but also see Lemma 4.1.

Example 1.1. Unlike the equicharacteristic scenario, the type of the singularity does not
determine the singularity up to isomorphism. Indeed, if S is a strictly Henselian regular
local ring of dimension 3 and of mixed characteristic (0, p), then two elements f,g € S can
define a rational double point of the same type but the rings S/(f) and S/(g) may not be
isomorphic. For example, let Z be an algebraically closed field of prime characteristic p
and W (£) the ring of Witt vectors over 2. For the sake of concreteness, one may take
% to be the algebraic closure of F,, and so W (#£) is the ring of integers in the completion
of the maximal unramified extension of Q,. More on Witt vectors can be found in [Ser79,
Chapter II, Section 6] or [Rab14]. Then, the singularities W (£)[y, 2]/ (p* + y* + 2*) and
W)y, =] / (22 + 2+ p3) are both of type A,, however are not isomorphic. To see why
these are not isomorphic, observe that any ring homomorphism in between them will send p
to p. Therefore if these were isomorphic, they are isomorphic after moding out by p. In our
case, we would get an isomorphism £[y, z]/(y* + 2%) = £[z,y]/(2* + y?) which is absurd
(the former is a cusp whereas the latter is not an integral domain). Of course, analogous
examples can be constructed likewise for the other types.

As an application of Theorem A, we will show in Section 5 that every 2-dimensional
BCM-regular singularity of mixed characteristic (0,p > 5) is a finite direct summand of a
regular ring.

In summary, this article concerns itself with the classification of 2-dimensional rational
hypersurface singularities R = S/(f) in the mixed characteristic case. The theory is well
understood when S is equicharacteristic and we refer the reader to [Art77, Lip69, GK90|
for details. Classification of rational double points in small mixed characteristics would be
desirable and is still open. We do not attempt it but it would be a natural project for someone
to carry out in the future.
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for valuable conversations. Related study and discussion of surface singularities also took
place at two AIM SQUARES in 2017 and 2019 attended by the authors Ma, Schwede and
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us the relation of [Kle56] to Proposition 4.11. We also thank B. Martinova for valuable
comments on a previous draft. Finally, we are very thankful to the anonymous referee for
several useful comments and suggestions, particularly for making us aware of the work [GK90]
and that Lemma 3.1 is a weak version of what is known as the “splitting lemma” among
experts (see Remark 3.2) in equal characteristic zero.
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2. PRELIMARIES

2.1. Surface singularities. All rings and schemes in this article are assumed to be excellent.
Every excellent surface, independent of characteristic, admits a resolution of singularities,
[Lip69, Lip78]. Of particular interest are surfaces with rational singularities. A surface X
has rational singularities if for some, equivalently all, resolution of singularities ¥ = X has
the property that R'7,Ox = 0. If X is a surface with rational singularities then X can be
resolved by quadratic transforms, i.e., by blowing up closed singular points one at a time.
If X is a surface with rational singularities and Z — X is a quadratic transform, then Z
has rational singularities. In particular, Z is a normal surface, [Lip69, Proposition 8.1]. The
property that a sequence of quadratic transform preserves normality characterizes rational
surface singularities and is fundamental to the proof of Theorem B.

Resolving a rational surface singularity X by quadratic transforms produces a minimal
resolution Y of X. The dual graph of X is the graph whose vertices correspond to exceptional
curves of the minimal resolution of X and edges connect two vertices provided those two
curves intersect in Y. The possible graphs that can be obtained fall under the classification
of the Dynkin diagrams A, D,, Fs, F7, and Eg and are referred to as the type of X.

2.2. Q-Cartier divisors and cyclic covers. Let X be a normal scheme. A Weil divisor D
of X is said to be Q-Cartier if there exists a natural number n > 0 such that nD is a Cartier
divisor. Suppose that D is a Weil divisor and nD ~ 0. Fix an isomorphism Ox = Ox(—nD).
Then, the index n cyclic cover of Ox relative to the Q-Cartier divisor D (and to the fixed
isomorphism Oy = Ox(—nD)) is the Ox-algebra

where multiplication in C' is determined by the natural multiplication maps
Ox(iD) ® Ox(jD) — Ox((i + j)D)

and the previously fixed isomorphism Ox(—nD) = Ox: if i + j > N then our previous
isomorphism determines an isomorphism @X((z +7)D) = Ox((i + 7 —n)D). Observe that
the map Ox — C' splits as a map of Ox-modules.

Suppose that (R, m, £) is a local normal domain and X = Spec(R). If I C R is a pure
height 1 ideal, then I = Ox (D) for some anti-effective divisor D and Ox(iD) = I is the
ith symbolic power of I for each i € N. Therefore, if nD is Cartier, that is if 1™ = (f) is a
principal ideal, then the cyclic cover of index n corresponding to D and f is the R-algebra

C=RalelPq...q 10D,

Multiplication in C'is determined by the natural multiplication maps I? @ I0) — JG+9) and

isomorphisms J(+7) M, [+ whenever g + 7 > n. The order of a Weil divisor is the least
natural number n so that nD is Cartier. Cyclic covers of index equal to the order of the Weil
divisor are domains.

Proposition 2.1. [TW92, Corollary 1.9] Let R be a normal domain, X = Spec(R), and D
a Weil divisor of order n. Then the cyclic cover

C = Ox ® Ox(D) ® Ox(2D) @ --- @ Ox((n — 1)D)

s a domain.



3. CLASSIFICATION OF RATIONAL DOUBLE POINTS IN MIXED CHARACTERISTIC

Throughout this section, we denote by (S,n,£) a regular local ring of dimension 3,
(R,m,2) = S/(f) is a 2-dimensional quotient of S of multiplicity 2, and the letters z,y, z
will be used to denote a choice of minimal generators of the maximal ideal of S (and R).
Theorem B is a combination of the results in this section. We attempt to make the results
in this section as general as possible and remark that any ring satisfying the hypotheses
of Theorem B satisfy the hypotheses of each of the statements found in this section. Our
classification techniques are characteristic free in the sense that they do not depend on the
characteristic of the ring, but only the on the characteristic of the residue field. Therefore
the techniques of this section can be used to study the classification of rational double points
in equicharacteristic 0 and p > 5. These techniques should be compared to those in [GK90].

Lemma 3.1 (cf. [AGZV12, Theorem 11.1] and [GLS07, Theorem 2.47]). Let (S,n, Z) be a
3-dimensional strictly Henselian reqular local ring and char # > 2. Suppose that f € n? — n3.
Then there exists a choice of generators x,y, z of the mazimal ideal of S so that f = f + g,
gend, and [ is either 22 + y? + 22, 22 + 42, or 22

Proof. Choose generators x,y, z of the maximal ideal n. We begin by writing f = f+ g with
g €n® and f is a “quadratic form,” in other words

f =z’ Ux
where U is a symmetric 3 X 3 matrix over S whose entries are either 0 or units and where
el =[x y 2|

After reduction modulo n, we have that the symmetric matrix U is (orthogonally) diag-
onalizable over £Z. This mean that after a linear change of variables we may assume U is
diagonal modulo n. By lifting this to S, we get that after choosing new minimal generators
of n, f can be written as

f=ur? +vy* +wz* + 4

where u, v, w are either 0 or units, and ¢’ € n®. Moreover, since S is strictly Henselian (and
p # 2), we have that

F=(u2)" + (v"%)" + (0'22)" + ¢

by extracting square roots of units (or zero). Hence, by a new choice of minimal generators
of n, we obtain the desired result. 0

Remark 3.2. Over the complex numbers, Lemma 3.1 is a weak version of what is known as
the “splitting lemma” (or even the “generalized Morse lemma”). See [AGZV12, Theorem
11.1] and [GLS07, Theorem 2.47] for further details; the key distinction above is that we do
not know if the parameters can be chosen so that those in the quadratic form do not appear
in the collection of higher order terms. In other words and in the notation of Lemma 3.1,
it would be interesting to know if one can always find a generating set z,y,z of n and an
expression f = f 4 g with g € n® so that if g = > u; jx2'y/2" is an expression of g in the
completion S , with each w; ; either a unit or 0, then

(a) if f = 22 then w; j; = 0 whenever ¢ > 1;

(b) if f =2 + y? then w; j; = 0 whenever ¢ > 1 or j > 1;

(c) if f=a®+y*+ 2% then g = 0.
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Such expressions are possible if the characteristic of 2 exceeds 5 and f defines a rational double
point, see Theorem B. In general, one might also hope that the collection of higher order
terms satisfies similar uniqueness properties as in the classical setting: if f = f1+¢1 = fo+ 9o
are two such expressions in different choices of parameters will it be the case that g, go are
analytically equivalent? We are grateful to the anonymous referee for making us aware of
the “splitting lemma” references listed above as well as the interesting questions raised in
comparison to Lemma 3.1.

Proposition 3.3. Let (S,n, 2) be a 3-dimensional reqular strictly Henselian local ring with
n = (x,y,2) and char 2 > 2. Suppose f € S defines a rational double point and is of the
form f = a? +y? + 22 + g with g € n3. Then one can choose new minimal generators of n,
say n = (Z,7,2), such that f = * + §* + Z*. In other words, S/(f) is of type A;.

Proof. Say first
9= Z Oﬁjkxiyjzk
itj+k=3
for some «;j; € S. Then f can be written as
f=a*+ aspox® + Z oy’ 2F
j+k=1
+ 9y + agsoy’ + Z 'y’
itk=1
+ 22 + 0500323 + Z ozijgxiyjf
itj=1
+ a1117y2
Now, by factoring out the squares in the first three lines, we get that
= ux vy~ + wz a1112Y 2
f=ua® + vy’ +wz® + anay

where u, v, w are units of S.3 Using that S is strictly Henselian and p # 2, we can extract
square roots of u, v, and w to absorb them into the squares. Then, by declaring new generators
of n, we may assume g = axyz for some a € S.*

Next, we proceed under the assumption g = azxyz for some o € S. There are two cases
depending on whether or not o € n. If o € n, we can just repeat the previous argument with
a “g” that has no “aj1;.” Hence, this would lead to the case ¢ = 0 after a new choice of
generators of n. Then, we may assume « is a unit, in which case:

f=22+9"+ 22 +aryz
= (v +y)’ +2° +ay(az - 2)
=(x+y)’+22+4 N az—2)((z+y)* - (z—y)?)
=(1+4(az=2))(z+y)* +4 (az = 2)(z —y)* + 2*.

Let = 47 (az —2). We remark that both ; and 1+ are units of S (we use that char 2 > 2
to deduce that 1+ p is a unit).

(3.3.1)

3For instance, u = 1 4+ aggoz + ZjJrk:l agjkyjzk.

“Indeed, we may set the new generators of n to be u!/2z, v1/2y, and w'/2z. Thus, o = aq11u™ /2

v—1/2—1/2.
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Observe that the maximal ideal of S is minimally generated by = + y, x — y, 2. Therefore,
as before, we may assume that there are minimal generators z, ¢, zZ of the maximal ideal of S
such that f = 2% + ¢* + 2°. O

Proposition 3.4. Let (S,n, £2) be a 3-dimensional regular strictly Henselian local ring with
n = (x,y,2) and char 2 > 2. Suppose f € S defines a rational double point and is of the
form f = 2%+ y* + g with g € n®. Then one can choose new minimal generators of n, say
n= (i,g,é), such that, up to a unit, f = 7>+ §* + 2" with n > 2. In other words, S/(f)
s of type A,, for some n > 2.

Proof. Following Proposition 3.3, we write
f=x*+9y*+ Z Oéijkl'iyjzk
i+j+k=3
for some vy, € S. Then by grouping together the terms with 2 and y? factors we have that
f= uzr? + vy2 + 22 (oqogx + ap10y + a003z) + a1y 2.

Moreover, after absorbing the units u, v into the squares by a new choice of generators, we
have

f=2*+y* + 22 (anr + oy + asz) + agryz

for some «; € S. By using the idea from (3.3.1), we may absorb the term agzyz into the sum
of squares 22 + y? by choosing new generators of n. Thus, we may assume

f=a2*+y" + 2 (az + By + 72)

for some «, 3,7 € S. By completing squares, we also have

2
f= (:c+g22)2+ <y+§z2> + 2 — (a—2+ﬁ—2> 2t

2 2 4 4
) 2
= (x + %Z2> + (y + 222) + 623

for some 0 € S. Hence, by a new choice of generators of n, we may assume
f=a+y* +02°
If § is a unit, then S/(f) is of type Ay. Indeed, we have that
U= 6 4y 4 2
and then we can let x and y to absorb the units ! by taking their square root and choosing

new generators.
If § is not a unit however, write 6 = Ax + py + vz and complete squares once again to say

f=a*+y* +ezt

for some € € S. If € is a unit we then get an A3 equation (by considering e~! f instead as
before). Otherwise, we repeat all over again. This process will eventually stop yielding that,
up to a choice of generators,

(3.4.1) f=a*+y*+

for some integer n > 2.
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To see why the above described process stops, suppose by sake of contradiction that it
does not. We can also view this process inside the completion S > S. Then we end up with
a sequence of equations

f=a2 4+ 92 +6,2" (n>1)
where 6,, € n for all n, and also

By

_ Xn n _
xn+1—xn+—z ) yn+1_yn+ 9

2
for some «y,, 3, € S.
Hence, the sequences {z,} and {y,} are Cauchy and then converge, say to z and ¥y
respectively. Moreover, from (3.4.1), we see that the sequence {:11:721 + yi} converges to f € S.
Putting these two observations together we conclude that

f=2+5€b

where actually (Z, 7, z) = nS. Then 5/(f) is not even normal and so neither is S/(f),5 which
is a contradiction. U

The remaining singularities classifying rational double points will be defined by functions
of the form f = x? + g with g € n3. We continue with a lemma which further refines the
possible forms of the function f.

Lemma 3.5. Let (S,n, £) be a 3-dimensional regular local ring. Suppose that either S is
strictly Henselian with char 2 > 3 or that S is Henselian with algebraically closed residue
field of prime characteristic p > 2. Suppose f € S defines a rational double point and is of
the form f = x* + g with g € w®. Then there exists a possibly new choice of generators x,y, z
of the mazximal ideal of S such that f is of one of the following forms:

(a) f=2®+y?2+ 2>+ h with h € (y,2)%;

(b) [ =a*+y*z+ h with h € (y, 2)*;

(c) f=a*+y>+h withh € (y,2)".

Proof. We start by writing
f=2"+ Z ety 2F
itj+k=3
for some a5, € S. Similar to the proof of Proposition 3.4, by grouping terms, we may write

f=a 4+ at B

where o, f € n. Say now o = a1 + asy + azz and § = iz + Poy + [32. Next, by completing
the squares, we can group all appearances of z in a or 5 in one single square. Thus, we may
assume

f=a?+ay® + byz + cyz® + d2?
where a, b, ¢,d are units or belong to the ideal (y, z). Moreover, at least one of these must be
a unit. Else, f is of the form f = 22 + g where g € n*. However, one readily verifies that
the blowup of S/(f) at the closed point produces a non-normal scheme,® which contradicts

"Recall that we assume R, S are excellent rings throughout the article.
Indeed, consider the chart T = S[Z,7,2] = S[z/y, y, y/z] where the strict transform of V(f) is defined by

f =22+ g/y? where we observe that g/y? € (y*)s, (since g € n*). Now, (Z,y) generates a height 2 prime in

Yy

T and so a height 1 prime Q in T/(f). However, f € Q2, and so T/(f) is not regular in codimension 1.
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[Lip69, Proposition 8.1]. Furthermore, we may assume all a, b, ¢, d are units or zero if instead
we write
f=a4ay® +by*z +cyz? +d2 + h
where h € (y, z)*. Notice that if a and d are zero, then the above “cubic form” factors as
ay® +by*z + cy2? + dz* = yz(by + cz)

which is a product of three “linear forms.” Otherwise, suppose without lost of generality that
a is a unit, say a = 1. We then consider the cubic polynomial p(t) = t3 + bt? + ct + d € A[t].
Recall that we are assuming 2 is either separably closed of characteristic p > 3 or that £ is
algebraically closed of characteristic p > 2. In either case, p(t) factors as a product of linear
factors in £[t]; see [Rom06, Page 184]. Therefore, at the residue field level, p(t) admits a
factorization

p(t) = (t— X))t — X2)(t — A3) € £[t].
Lifting the \; back to S (in some arbitrary way), we obtain that

ay’ +by’z + cyz® +d2° — (y — M2)(y — Maz)(y — Nez) € (y,2)* - (2, 2).
In other words, by a new choice of “h € (y, 2)*” if necessary, we may assume
f:I2+£1€2£3+7I+h

where the ¢; are “linear forms,” v € (y,2)3, and h € (y,2)?. Observe that 2> + yr =
(x4 2719)2 — 47141 Therefore, we may replace x by = + 271y, h by h — 47!'4% and assume
further that

f=a>+llyls+h

with h € (y, z)*. There are three cases to consider.
Case 1: 04,05, 05 define different lines.”

Then there exists a %-basis for n/n?, say z,7, 2, such that ¢, = Z, ¢, = Z + i, and
l3 = % —if in that plane.® Now, when this is lifted back to S, we simply obtain that
010505 — 2(2 + zgj)(% —1iy) € n*. Thus, we may assume that

f=2>+y* 2+ +h
and h € (y, 2)*.
Case 2: {1 # Uy = (3.

Then we may assume ¢, = {3 =y and ¢; = z. This gives that
f=2>+y*2+h

with h € (y, 2)*.
Case 3: (1,5, 5 are the same.
Then we may assume £; = y and f is of the form f = 2? + y3 + h with h € (y, 2)%. O

"Meaning that these are different lines in the A-plane generated by y, z in the cotangent space n/n2.
8Indeed, we may assume f5 = a1f; + azls in the A-plane spanned by v, z in n/n?, this for some 0 # a; € 2.
Then by relabeling ¢; by a;{;, we may assume {3 = {1 + {5, or even better /3 = %51 + %52. Then we may
choose our coordinates for this plane, say g, z, so that ¢; and {5 are the orthogonal lines z + iy and z — iy
respectively. Then we would have /3 = Z.
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Proposition 3.6. Let (S, n, ) be a 3-dimensional complete reqular local ring of with separably
closed residue field of characteristic p > 2. Suppose f € S defines a rational double point and,
up to a unit, is of the form f = x>+ y?z + 2>+ h with h € (y,2)*. Then, there exists a choice
of minimal generators T,4, 2 of the maximal ideal of S such that f = T* + §°Z + 23, that is
R =S/(f) is of type Dy.

Proof. Observe that h is an S-linear combination of 3*, y3z, 1?22, y23, and z*. Then,

f=a*+uyz + v + ay
where u, v are units and a € S. Using y? to absorb the unit u, and then multiplying by v~

and using 22, 42 to absorb v™!, we may assume that, after replacing f by a unit multiple of
f, we have

1

f=2+y*2+ 22 + ay’.
If a =0, we are done. Otherwise, notice we may express f as
f=2a* —i—y2(z + ozyZ) + 22,
If we let 2; = z + ay?, we then have
f=22+y"x+ (a1 — ay2)3 =22 + 2 + 28 — 3aziy? + 3’2yt — oy’
= 2>+ wy’n + 2 — a’y’

= g2 + yle + zf + aly?,

where u; = 1—3az; +3a2y? is a unit, y; = u)’*y where we choose u)’? =, 1, and a; = —a3u;>.
Since o # 0, we let 29 = 21 + oy} and write
3
f=2"+ izt (2 —awy))” =2 +yiz + 25 — 3azy; + 3aizy) — oy’

2 2 3 3,12

=2+ uyiz2 + 25 — ajy;
2 2 3 12

=2+ Y322 + 25 + oYy

where uy = 1 — 312297 + 3aiy? is a unit, yo = ué/

3, 3
ay = —ajus”.
Note this process can be repeated indefinitely yielding sequences {z,}, {yn}, {u,} and
{a,,}, as well as equations

(3.6.1) f=2* 492z + 20 + oyl

where the exponents e,, are strictly increasing: indeed, one readily checks that they satisfy
the recursive formula e, 1 = 3(e,, — 2) with ey = 4. Certainly, «, is never zero. However, the
sequence of equations (3.6.1) implies that the sequence {xZ + 2z, + Zf;} converges to f. On
the other hand, we notice that z,,; = z, + oznyf[b_?’. Therefore, the sequence {z,} is Cauchy
and so convergent, denote its limit by Z.

We also claim the sequence {y,} is Cauchy. To show this, we first write:

2 1/2
y1 where we choose u2/ =, 1, and

_ en—1—4 2 2(ep—1—3)
Up = 1- 3C¥n71znynn—1 + Ban—lyn—T )

whereby the units u,, are so that
Up+1 — le (yfzn_4)'

Hence, from the relation y2,, = u,41y2, we have

en—2

Ynt+1 = Yn) WUns1 +Yn) = ZUZH - yi = (Upg1 — 1)9721 € (yn ) cn

en—2
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Next, notice that, since we chose u,llfl =, 1, we have that ui/fl + 1 is a unit since char 2 > 2.

Nonetheless, we note that by induction on n, the sum y,.1 + v, = (u,ll/fl + 1)y, belongs to
n ~ n?. Consequently, y,.1 — vy, € n® 2. Hence, the sequence {y,} is Cauchy. Let § be the
limit of {y,}.

By taking limits, we then obtain:
f — I‘Q + ng 4 23
which is an equation of type Dy, as desired. 0

Proposition 3.7. Let (S,n, £) be a 3-dimensional complete regular local ring with separably
closed residue field of characteristic p > 2. Suppose f € S defines a rational double point
and is of the form f = 2% + 4?2 + h with h € (y, 2)*. Then, there exists a choice of minimal
generators 7,7, Z of the mazimal ideal of S and an integer n > 5 such that f = 22+ 22+ 2",
that is R = S/(f) is of type D,, for some n > 5.

Proof. As before, we note that h is an S-linear combination of y*, y3z, y?22, yz*, and z*.
Then, by the above arguments and simplifications, we may assume

f=2>+v*2 +ay' + 32°

for some a € S and € (y,z). Next, we may use an identical argument to the one in
Proposition 3.6 (where we had f = 1) to show that we may assume a = 0. Since the
argument is essentially the same, we isolate it in the following claim yet provide it for sake of
completeness (pointing out the differences).

Claim 3.8. We may assume that o = 0.

Proof of claim. Indeed, we set zp = z, yo = vy, ag = «, ug = 1, and eq := 4. Then,
we define sequences {e,},{z.}, {yn}, {a@n}, and {u,} recursively as follows. First, we
define e, 11 = 3(e, — 2) (which is a strictly inceasing sequence of even positive integers),

Zna1 = Zn + apye 2 Next, we define the units,

Ungr = 1= 3Ban 1297 4 38a]_yn

Finally, we set 4,41 == u;flyn where ui/fl = 1modn, and a4, = —ﬁaf’bu;ﬁ“/z.
With those definitions in place, we have:

f=2"+ypz + Bz + anyy

for all n > 0.

Of course, this process recovers the sequences in the proof of Proposition 3.6 by specializing
to B = 1. Just as in the proof of Proposition 3.6, we have that both {z,} and {y,} (as well
as {u,}) are Cauchy sequences. By taking limits, we obtain the desired statement (observing
S stayed unchanged). d

Assuming o = 0, and writing 8 = a1y + (12, we have
f=22+ v’z + a2’ + Bz = 2% + (¥ + awy2?) 2 + B2t

o 2
=%+ <y+ 7122> z+mzt
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where in the last step we completed the square and for this we may need to add an extra
multiple of z° that was absorbed by the term (3;2* under a new coefficient ~;. In conclusion,
we may assume

f=22+9*2 + 2zt
for some 4, € S. If 7, is a unit then f, or more precisely ;' f (after absorbing 4~'/2 into x
and y), gives an equation of type Dj. Otherwise, we write ;3 = any + (22 and we obtain

f=2"+ 9’2+ apyz' + B2 = 2° + (92 + 042923)2 + B12°
2 g 3\? 5
=x"+ (y—l-?z) zZ+ 72z
=2’ +yiz + 72°
for y; = y+ (a/2)23. If 45 is a unit, we end up with a singularity of type Dg. Otherwise, we
repeat this process until we get an equation of type D,, for n > 5. We remark this process

must stop because else we would get a Cauchy sequence {y,}, whose limit is say g, so that
the sequence {x? + y2z} converges to f. Then, we would have (z, 7, z) = n such that

f:a:2—|—y_2z

this, however, is not a rational singularity. Indeed, this is not even normal, for x/y € Frac R
is integral over R but not in R. U

Proposition 3.9. Let (S,n, 2) be a 3-dimensional strictly Henselian reqular local ring with
residue field of characteristic p > 5. Suppose that f € S defines a rational double point and,
up to a unit, is of the form f = x?+ >+ h with h € (y, 2)*. Then one of the following cases
0CCUTS.

(a) There exists a choice of minimal generators &,7, Z of the maximal ideal of S such that
f s of one of the following forms:
i f=2 49+ 2
i. f=2+7°+ 2.
(b) There exists a choice of minimal generators &, 7, Z of the mazximal ideal of S such that
in S, f is of the form f =%+ 7> + §23.
Therefore R = S/(f) is of type Eg, E7, or Eg.
Proof. We may assume
f =2 +y+ 3ay*2” + By2° +v2*
for some «, 3,7 € S (absorbing units into y as necessary). Our first observation is that by
completing the cube one gets

f=2*+ (y+ az2)3 + By2® + 72t
for some new ;. Then by declaring 4, = y + a2? we have that
f=a" 4yl + By’ + 2t

for some other 5. It is worth mentioning that the completion of the cube did not require
the term y2® to be changed, this will be an important observation paragraphs below. This
means that we may assume a = 0, or in other words that

(3.9.1) f=a?4+9y°+0yz® + ezt
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¢ is a unit, the Eg case. Suppose ¢ is a unit, then e~ f can be written as
e f =2 P 446y + 2
after a new choice of generators of the maximal ideal. Thus, we may “complete the tesseract”
to get
e f =2+ uy® — 667227 4 (Oy + 2)*
where u € S is a unit. By letting z; = 0,y + 2z, we have
e f = 2% 4 uy® — 6023 (21 — 01y)? + 2}
= 2% + uy® — 60%y% (21 — 01y)? + 2}
=2® + oy’ + 6y + 2]
with v a unit and some 0, € S. Now, after absorption of the unit v into y (here we need
p > 3) and completing the cubes, we obtain, after a new choice of “y,” that
el f =2+ +wzl
for some unit w. Absorbing w into z;, we see that e~!f is of type Eg.

¢ is mot a unit. Suppose now that ¢ is not a unit in (3.9.1), then we can rewrite that
equation as

f=a? 4+ + py2® + 02 + k2t
for some p,x,0 € S. Relabeling x + (k/2)z* as z, we may assume that x = 0 (absorbing
additional terms into o), and obtain:

(3.9.2) f=a> 4+ + py2® + 02

p is a unit, the E; case. Suppose now that p is a unit and replace S by its completion.
By replacing z with p~'/3z, we may assume

f=a+*+ 2y + 0122,
Let § = y + 0122, then this equation becomes
f=az*+ (g] — 01z2)3 + g2°
=2+ §° — 3019° 2 +ugz’ — o) 20
for some unit u. We write Z = z — (01 /u)g and so after expanding obtain

=247 =307 (Z + (al/u)gj)Q +ug(Z + (al/u)gj)3 —oi(Z+ (Jl/u)gj)ﬁ

3

2 ~3 ~ =3 6
=z + vy +uyz” —ojz.

for some units u; and v; (one can check this easily, with for instance Macaulay2, [GS]). Let
y absorb vy, and Z absorb wuy, so that we may assume
f=+ 9y +y+708 =27+ + P (y+ 727
for some 7 € S. Let y; = y + 723, so that
f=a>+ (y1 — 7'23)3 + 2 =2+ y? — 37’ny3 + 372128 — 7320 4y 2B
= 2% + yi’ + u1y123 — 7320
=2® + 1y +y12d + 2

=% + yi’ + zf (y1 + le?)
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where w; is a unit satisfying u; — 1 € (yy, 23), z2 = ui/ 32, and we have chosen the cubic root
u}/‘g’ so that u1/3 — 1 €n. Letting y» = y; + 7128, a similar computation yields
[ = z? + (yz - 7121) + y2z1 =2’ + 1/2 - 37'13/231 + 37 yzz%z - 7'52118 + 9221

=2’ + ?JQ + U2?J2Z1 752118

=2 + 45 + Y22 + 12"

= 2%+ 5 + 25 (2 + 25")
for some unit u, satisfying us — 1 € (y22,2}), 20 = u;/ ®21, and we have chosen ué/ ® 5o
that ul/ % _ 1 € n. This process can be repeated inductively yielding sequences {v:}, {z},
{7}, {ul} in S, and a sequence {¢;} in N, so that y;11 = y; + 72{", €;41 = 3e; — 3, g = 3,
Zip1 = ulﬁzl, Uis1 — 1 € (Y12 =3 25T 3) C n%2 and ulﬁ is always chosen so that
ul? —1en. Furthermore, we have that

i+1
f=a 4y} +yz
since the sequence {e;} is strictly increasing, we have that the sequence {x2 + 2 + yizf}

converges to f. Moreover, we observe that both sequences {y;}, {z;} are Cauchy. To see that
the sequence {z;} is Cauchy, notice that

(zi+1 — z,») (Z?_H + Zig12i + zf) = zE’H — 223 = Z?(Ui_ﬁrl —-1)e (yl+1zl , ?6’) c natt

due to u;y 1 — 1 € (yiﬂzf"*g zzei’g) C n%~2. Nonetheless, we claim that

)

2 2 2(, 2/3 1/3 2 3
Ziv + Ziv1zi + 2 :zi< Z+1+u1+1+1> en’ \n’,

or in other words that u?ﬁ +uy ﬁ +1 is a unit. However, u, ﬁ —1l€nand u?ﬁ +uy ﬁ +1=

(u 22431 1)+ (u Zlfi — 1) + 3 which is clearly a unit. Therefore,

e, +1 . .2

Ziv1 — L en n

and so {z} is Cauchy (because [, (n“*': n?) = 0). Hence, we may write
f=2"+y*+y°
and f is E.
p is not a unit, the Eg case. Finally, we return to the strictly Henselian scenario and
equation (3.9.2) and consider the case p is not a unit. Then we may assume
f=2+ 9" + pory2® + p1y?2° + payzt + 02°

for some p;,0 € S. Completing the square, or in other words relabeling = + (py/2)y2* as =,
we may assume that py = 0 (absorbing terms into p;). Additionally, by completing the cube,
relabeling y + (p1/3)2? as y, we may likewise assume p; = 0 and so obtain

(3.9.3) f=24+9" + pyzt + 02
If o’ is unit (and for simplicity of notation, we call it o also), then

o' f =2 +y* + boay2t + 2°
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for a new choice of generators of n and possibly changing g, up to a unit (here we are also
using that 5 is a unit). Then, we may complete the quintic in ! f to obtain

o f =" +uy’ + vy’ + (0oy + 2)5
for some unit v and some v, € S. Relabeling g,y + 2 as z, we obtain
o f =2 fuy’ +uyt(z = 00y)’ + 27 = 2 + Y’ oy 4 20
Completing the cube again, we obtain

oM f =2ty + 2P

Hence, o~ f is of type Eg.
Finally, suppose ¢’ is not unit. From (3.9.3), we obtain

f=2 4+ +yyzt +012° +vad®

for some vy, 07. As before, we may assume v = 0 by completing the square. In this way, the
only case that remains is

f=a?+ 9y +myzt + .25

Nevertheless, we claim that in that case R = S/ f is not a rational singularity. We will show
that the blowup along the closed point is not rational, but if R is a rational singularity then
such a blowup have to be rational by [Lip69, Proposition 8.1]. Precisely, let X be the blowup
of R along m = n/f. Then one chart of X is given by the spectrum of S[z/z,y/z]/(f/?),
where by f/z? we mean

f12° = (/2" + (y/2)* 2+ m(y/2)2" + n2*

Setting 7 = (z/z) and § = (y/z), the above equation is 7% + 732 + m1§2% + ne2? so it is not
a rational singularity as in the proof of Lemma 3.5 (note that this equation has the form
7? + g where g has order 4). O

4. FINITE COVERS OF RATIONAL DOUBLE POINTS BY REGULAR SCHEMES

In this section we prove Theorem A, we first notice that any 2-dimensional Gorenstein
rational singularity is a rational double point (in particular, it is a hypersurface of multiplicity
2). This fact is well-known but we cannot find a good reference in mixed characteristic. Thus
we include a short argument.

Lemma 4.1. Let (R,m, £) be a Gorenstein rational singularity of dimension 2 that is not

reqular. Then R has multiplicity 2 and embedding dimension 3. In particular, R = S/(f)

where (S,n, £) is a reqular local ring of dimension 3 and f € n* —n3.

Proof. We may assume £ is an infinite field. Let (z,y) be a minimal reduction of m. By
[LT81, Theorem 2.1], m? C (z,y). Thus, m/(z,y) C 0 :g/(x,) m. Now we have

e(R) = UI(R/(z,y)) = 1+ 1(m/(z,y)) S T+U0 gy M) =2,

where the last equality is because R/(x,y) is an Artinian Gorenstein ring so it has a 1-
dimensional socle. Thus, e(R) = 2. But then we know that the embedding dimension of R is

less than or equal to e(R) + 1 = 3. Therefore, Risa hypersurface. O
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For the rest of the proof of Theorem A, we aim to show that if X is a strictly Henselian
rational double point of mixed characteristic (0,p > 5) then there exists a split finite cover of
X by a regular scheme. Throughout the rest of this section, (S, n, 2) is a regular local ring
and we are in the end concerned with the case where it is of mixed characteristic (0,p > 5)
and (R,m,2) = S/(f) is the local ring of a rational double point. The proof of Theorem A
is separated into the cases defined by the type of the singularity of R and is organized as
follows:

o If X is a rational double point of type A,, then there exists a cyclic cover of X by a
regular scheme by Proposition 4.2;

o If X is a rational double point of type D,, then there exists a cyclic cover of X by a
rational double point of type A,,_5 by Proposition 4.4 and Corollary 4.6;

o If X is a rational double point of type Eg then there is a cyclic cover of X by a rational
double point of type D4 by Proposition 4.7;

o If X is a rational double point of type E; then there is a cyclic cover of X by a rational
double point of type Eg by Proposition 4.9 and Corollary 4.10;

o If X is a rational double point of type Eg then an explicit description of a finite split
cover of X by a regular scheme is provided in Proposition 4.11.°

Proposition 4.2 (Type A,,). Suppose that S is strictly Henselian of residual characteristic
p > 2, let R be of type A,,, and write R = S/(2® + y* + z"™') where x,y, z is a choice of
minimal generators of the maximal ideal of S; see Proposition 3.3 and Proposition 3.4. Then,
p = (z+ iy, z) is a pure height-1 prime ideal of R of order n+ 1 as an element of the divisor

class group, p"Y) = (z +1iy), and the corresponding index n + 1 cyclic cover is regular.

Proof. For sake of notation, we write xg = z — iy and yo = = + 1y. We will first show that
the divisor class of p = (yo, z) in CI(R) has order n + 1, and p® = (yo, 2¥).

Claim 4.3. p¥) = (yo, %) for all k < n, and p™™) = (yo).

Proof. First notice that p*R, = 2*R, = (yo,zk)Rp for all 0 < k < n + 1, since xgyy =
—z"H 1=k and g ¢ p. Therefore, by [AM69, Proposition 4.8 (ii)], it suffices to prove that
(yo, 2%) is a p-primary ideal of R. However, this is clear as every zerodivisor of the ring

R/ (yo.2") = S/ (0, 2")

is nilpotent, and the ring has depth 1 as it is a complete intersection. In particular, m =
(0, Yo, 2) cannot be an associated prime of (yo, Zk). Thus, (yo, 2%) is p-primary. O

We construct the cyclic cover associated to the isomorphism p™*" = (y,) = R where
Yo — 1. We write

¢= @(ykﬂ Zlf)R
k=0

where y;, denotes the copy of yg in the degree-k direct summand of the cyclic cover C'
corresponding to p, and z; denotes the copy of z in the degree-1 direct summand of C.

We have that C' is a domain by Proposition 2.1, and is local with maximal ideal ¢ =
m @ @_, p¥), see [Carl7, Proposition 4.21]. Therefore, in order to show C' is regular it

9Rational double points of type Eg are seen to be unique factorization domains, [Lip69, Theorem 25.1].
Therefore the only cyclic cover of an Eg singularity is the identity map and therefore an alternative approach
to finding a split finite cover of Eg singularities by a regular scheme is necessary.
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suffices to prove that ¢ is generated by two elements. To this end, notice that we have
¢ = (%0, Y0, 2, 21, Y1, - - -, Yn). However, these elements are subject to the following relations:
(1) sz = —o,

(2) v = v

(3) y1 =Y Y

(4) ¥1Yn = Yo, and

(5) z21Yn = 2,

where k = 1,...,n. These relations imply that ¢ = (yo, 21,91, - - -, Yn). If we raise the fourth
relation y1y, = yo to the n + 1 — k power (with 0 < k <n — 1), we obtain

n+l1—k, nt+l—k n+1— k
n Yn =Y

By multiplying this equation by y* (in case k # 0) and using the second relation, we see that

n, n+l—=k n+1—k_ k
Yo Yn =Y Y-

The third relation, however, implies that the right hand side is equal to y{yx (even if k = 0).
Then, by canceling yj out on both sides (as C' is a domain), we obtain the new relation

yZ—H k __ = Y.
for all k =0,...,n. Therefore, ¢ = (21,y,) is indeed generated by 2 elements. O

Proposition 4.4 (Type D,,: complete case). Assume that S is complete with separably closed
residue field of characteristic p > 3, let R be of type D,,, and write R = S/(x? 4+ y?*z + 2"71)
where x,y, z is a choice of minimal generators of the maximal ideal of S; see Lemma 3.5,
Proposition 3.6, and Proposition 3.7. Then p = (x,z) is a pure height 1 prime ideal of R
of order 2 as an element of the divisor class group and the corresponding cyclic cover is a
singularity of type As,_s.

Proof. First, we prove that the divisor corresponding to p has index 2.
Claim 4.5. p@ = (z).
Proof. First of all, notice that
pQRp (x T2, 2 )Rp = 2R,
as 12 = —y?z — 2”1, In this way, it suffices to observe that (z) is a p-primary ideal of R
[AMG69, Proposition 4.8 (ii)]. O

Let C' = R @ (x1, z1) g be the cyclic cover corresponding to p. Then, we have the following

relations:

2 2 _ n-2, — e L2
=y =27 mm=w 2 =z

This implies that the maximal ideal of C'is ¢ = (z,y, 2z, %1, 21) = (y, x1, 21). Therefore, there
is an isomorphism of R-algebras

= R[fa C]/(fQ + y2 + Zn727£<. - .T,C2 - Z) — CJ é = X1, C = Z1.
Observe that C” is local with maximal ideal ¢ = (y, £, () and residue field £. On the other
hand, note that

C, = S[éa C]/($2 + yQZ + Zn717£2 + y2 + Zn727£< -, Cz - Z)'
However, the ideal we are modding out by equals

(52 + y2 + C2n_47£C -, C2 - Z)
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as
4y 2T = (P ()

and similarly

1

=€+ + ) mod (6 — 2, — 2),

§2 _|_y2 +zn—2 E§2+y2 +C2n—4 mod (5(_1,’ g? o Z)

Therefore,
C" 2 S[g Q1 (€ +yP+ ¢ e~ P = 2) = (S[6.C/ (6~ 2.2 —2) ) /(€492 + (™)

where we see that S[¢, (] / (f( —x,(% - z) is a 3-dimensional complete regular local ring
with maximal ideal (&,y,(). Thus, we have shown that C' is isomorphic to a ring of type

Ags. O

Corollary 4.6 (Type D,,: Henselian case). Assume that S is strictly Henselian of residual
characteristic p > 3 and suppose that R is of type D,,. Then there exists a finite split cover
of Spec(R) by a reqular scheme.

Proof. The divisor class group of a strictly Henselian 2-dimensional local ring with rational
singularity is unchanged under completion by results of [Lip69]. Indeed, by [Lip69, Proposi-
tion 17.1], the divisor class group of R is the same as the group H defined on [Lip69, Page 222
(3)]. But by [Lip69, Proposition 16.3 and Correction on page 279|, the group H is unaffected
when passing from R to R. Therefore the divisor class group of R agrees with the divisor
class group of R. By Proposition 4.4 there exists a height 1 prime ideal p C R of order 2 as
an element of the divisor class group corresponding to the p in Proposition 4.4. Since the
characteristic does not divide 2, the cyclic cover is unique étale locally, see [Kol13, Definition
2.49], and thus the corresponding cyclic cover is a singularity of type Asg, 5. O

Proposition 4.7 (Type Eg). Assume that S is strictly Henselian of residual characteristic
p > 5, let R be of type Eg, and write R = S/(x*+y3 + 2*) where x,y, z is a choice of minimal
generators of the maximal ideal of S, see Proposition 3.9. Then p = (y, T+ 2'22) is a height 1
prime ideal of R of order 3 as an element of the divisor class group and the corresponding
cyclic cover is a singularity of type Dy.

Proof. For notation ease, we write xy = x +422. Thus, the defining equation f = 2%+ y3 + 2z*
becomes

f= (:c + z'zQ) (x—i2®) +y° = a:‘o(xo — 21’22) + 3 = a:‘o(:vo + 2(2)) + 9,

where zg = (—22')1/22. Note that g, ¥y, zo is a choice of generators of the maximal ideal of S.
As before, we start off with the following claim proving the order of p = (xg,y) is 3.

Claim 4.8. p® = (z0,9?) and p® = ().

Proof. Let k < 3, we prove p¥ = (z0,y*). To this end, we notice that these two ideals coincide
after we localize at p, for z (a:o + zg) +y® =0 and xo + 23 ¢ p. Hence, it is enough to prove
that (xo, yk) is a p-primary ideal of R. This follows, as in Claim 4.3 above, from observing

that
R/(x()»yk) = S/(%ayk),

so that all zerodivisors of are nilpotent, and the depth of this ring is 1, whereby m is not
primary to (3:0, yk). U
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Next, we consider the corresponding Veronese-type cyclic cover
C=R& (x1,1)r ® (22,91)

where xp denotes the copy of xy in the degree-k direct summand of C' = @zzop(’“), and
similarly, y; denotes the copy of y in the first direct summand. These variables are subject
to the following relations:

(4.8.1) 73 =2,
(4.8.2) YP +mo+ 25 =0,
(4.8.3) T1T2 = To,
(4.8.4) r1ys =y,
(4.8.5) Y12 = .

Additionally, we deduce that
rizy = (1179)° = x5 = a7,

by using the third and first relations. By canceling 2% out on both sides (as C'is a domain),
we obtain the extra relation

(4.8.6) T3 =11

Then, we see that the fourth relations follows from this equation and the fifth relation. A
priori, the maximal ideal of C' is ¢ = (x, y, 20, 21, Y1, T2), but given the above constraints, we
see that ¢ = (2o, y1,22). Also, we conclude that

(4.8.7) Ty = 1579 = 1Ty = T

by using (4.8.6) and (4.8.3). In summary, we can see that we have an isomorphism of
R-algebras

C" = Ry, €]/ (7’ + w0+ 25,6 — 20,76 —y) = C, v =y, £ 2.
On the other hand, we note that C’ is isomorphic to S|, ] modulo the ideal
(v° + a5 + 2025, 7* + 20 + 25,6 — 0,76 — y).
However, modulo (£* — o, 7€ — y), we have
Prad+a= (1) + (8) + 82 =E(P+E+22) and P+ + 2 =70+ + 2.
Hence, the above ideal equals the ideal
(7° + &+ 25,6 —20,79€ — y).
In this manner,

C (S[%f]/(ﬁ?’ — T, 7€ — y))/(f’ +&+ Z§>

where S|, ¢] / (53 — X9, Y€ — y) is a 3-dimensional regular local ring with maximal ideal
(z0,7,&). To see this last quotient is a D, singularity, we may pass to the completion and
notice that the sum of cubes can be factored as the product of three different lines; see
Lemma 3.5 and Proposition 3.6. O
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Proposition 4.9 (Type E;: complete case). Assume that S is complete with separably closed
residue field of characteristic p > 5, let R be of type E;, and write R = S/(x* + y3 + y23)
where z,y, z is a choice of minimal generators of the mazimal ideal of S, see Proposition 3.9.
Then p = (IL‘, y) 1 a height 1 prime ideal of R of order 2 in the divisor class group and the
corresponding cyclic cover is a singularity of type Eg.

Proof. From the relation 2 4+ 3 + yz% = 0, we see that p® = (y), so the assertion about the
torsion of the divisor class of p follows. Consider the associated cyclic cover

C=RD(v1,n)r

with relations 2% + y? + 23 = 0, 21y, = z, and y} = y. In particular, the maximal ideal of C'
is ¢ = (21,11, 2).
Next, we consider the isomorphisms:

C=REAN/(E+y+2°&y—x,7° —y)

SEN/ (P +y* +y2, €+ + 2,6y — 2,77 —y)
SEAN/(E+7+ 26y — .97 —y)

= (5[577]/(57 — 1,7 —y)>/(§2 +* +z3)

where S[¢,7]/(§y — ,7* — y) is a 3-dimensional regular complete local ring with maximal
ideal (§,7, z). Hence, C' is of type Eg. O

1%

Corollary 4.10 (Type E;: Henselian case). Assume that S is strictly Henselian with residual
characteristic p > 5 and suppose that R is of type E;. Then there exists a finite split cover of
Spec(R) by a reqular scheme.

Proof. The proof technique is identical to that of Corollary 4.6. U

Proposition 4.11 (Type Eg: complete case). Assume that S is complete with separably
closed residue field of characteristic p > 5, let R be of type Eg, and write R = S/(z*+ y3 + 2°)
where x,y, z 1s a choice of minimal generators of the maximal ideal of S, see Proposition 3.9.
Then there exists a split finite cover of Spec(R) by a regular scheme. Furthermore, this cover
1s €tale on the punctured spectrum.

Proof. Let f1, fo, and f3 be the following polynomials in Q(+v/2, v/3)[u, v]:
fi = u® 4 522u%0v° — 10005u*v1% — 1000560 — 522:°v*° + v*°;
fo = —V/25 341 — 228u'%0° + 494100 4 228u°0"0 + v?);
fz = —uttv — 11u%0° + wo't.
By direct computation, one checks these polynomials satisfy the equation
(4.11.1) i+ f+f=0.

Note we initially found these f; by using the InvariantRing package [Haw] for Macaulay?2
[GS], see also [Haw13]. Explicitly, we considered the action of the icosahedral group on a
polynomial ring over a field. J. Lipman pointed out to us that the same expressions appear
also in [Kle56, Chapter 13]. These f; also work in our more general setting, as we demonstrate
below.



21

Now, we fix an isomorphism

S = W(é)[[x,y,z]]/(p - Q(I7y7 Z))

where p is the residual characteristic of S and Q(z,y, z) € W(£)[z,y, 2]."° In this fashion,
our singularity R can be assumed to be

R=W(A)[z,y,2]/(p - Qz,y,2),2° + y* + 2°).
Next, we let A be the (possibly ramified) 2-dimensional complete regular local W (2)-algebra

A=W (A)[u,v]/(p— QUfr, far f5),

here we view fi, fa, f3 € W(£)[u,v] in the obvious way. Consider the map of W (#2)-algebras
R — A given by sending z,y, z to fi, fa, f3, respectively. This map is well-defined because
the f; satisfy the equation (4.11.1).

It remains to prove that R — A is a finite split extension. To this end, it suffices to prove
it is a finite extension of degree 120, an invertible element in W (£), for in that case the trace
map Try p: A — R can be used to split the extension R — A.

In order to prove that R — A is a finite extension of degree 120, we notice that the map
of W(#£)-algebras

W (#)[z,y, 2]/ (2° +y* + 2°) — W(#)[u,v]

obtained by sending x, y, z to fi, fa, f3, respectively, is a finite extension of degree 120. Indeed,
if we invert p, this follows from the equicharacteristic zero case. Hence, the result follows
from the following general fact applied to p = (p — Q).

Claim 4.12. Let A — B be a finite extension of domains of (generic) degree d such that B
is Cohen—Macaulay. For any prime ideal p of A such that pd(A/p) is finite, we have that
A/p — B/pB is a finite extension of (generic) degree d.

Proof. Since pd(A/p) is finite, we have that A, is a regular local ring. Since B is Cohen—
Macaulay, so is B, and thus the extension A, — B, is finite free, whose rank must be d. Of
course, the rank A, — B, is nothing but its residual degree, which is the (generic) degree of
A/p — B/pB. O

Finally, we prove that R — A is étale on the punctured spectrum. It suffices to show that
the map W (#)[z,y, 2]/ (z* + y* + 2°) — W (#)[u,v] is étale on the punctured spectrum.
But this can be checked by hand (or in a computer algebra system working over Z with 2, 3,5
inverted). This completes the proof. O

Corollary 4.13 (Type Es: Henselian case). Assume that S is strictly Henselian of residual
characteristic p > 5 and suppose that R is of type Eg. Then there exists a finite split cover of
Spec(R) by a regular scheme.

Proof. Using [Elk73, Page 579], ¢f. [BGO17, Page 3|, the local fundamental group (the
fundamental group of the punctured spectrum) of R, is unchanged by passage to completion.
Hence, there exists a finite extension R — A’, étale on the punctured spectrum, such that
R— Alis isomorphic to the extension constructed in Proposition 4.11. Since the completion
of A’ is regular, so is A’, and the result follows. O

10We are not assuming Q € n2, e.g. if Q = z, then S = W (#)[z,y] corresponds to the unramified case.
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We end this section by giving an example showing that, similar to the equicharacteristic
p > 0 scenario, rational double points of mixed characteristic (0,p) with p small are not
always direct summands of regular rings.

Example 4.14. Let R = W(£)[y, z]/(p* + y* + 2°) where £ is an algebraically closed field
of characteristic p = 3. One can check that R has a rational singularity (for example, use
[Lip69, Proposition 8.1]). We claim that R cannot be a direct summand of a regular ring.
In fact, direct summands of regular rings are splinters (in mixed characteristic this follows
from [And18]). Thus if R is a direct summand of a regular ring, then for any module-finite
extension T of R, y* & (p, 2)T (since y* ¢ (p, z)R). However, this is not true by the following
claim.

Claim 4.15. There exists a module-finite extension T of R such that y* € (p, z)T.

Proof. Recall that p = 3, so we write y?> = 3v + zu and we will solve v and v using monic
equations over R. Since v = (y? — uz)/3, we have

6

5 yb =t 4+ 3yt — 3ytuz 2 _ 3y® — 6ytuz + 3y*uz?

= T
v o an Yy o
Thus we have
5 9.9 =205 —uly® + 3ytuz
v0 — Yyt = o .

Plug in 32 = —9 — 2° and % = 81 + 2!° + 182° to the above equation to have
23(ud + 3yz3u + 227 + 362%)
27

v? — y*0® + (6 + yuz) + = 0.

Consider the following equations on u, v:
ud + 3yz3u+ (227 + 362%) = 0
v¥ — %% + (6 + yuz) = 0.
Since both equations are monic, it is clear that there exists a module-finite extension 7" of R

such that u, v has solutions in 7. Thus working backwards we see that y* € (p, 2)T. O

5. CYCLIC COVERS OF BCM-REGULAR SINGULARITIES

In this final section, we give an application of Theorem A to BCM g-regular singularities
introduced in [MS18]. We first collect some notations from [MS18]. Let (R, m) be a complete
local ring of dimension d. For every big Cohen—Macaulay R-algebra B we define

0374 gy = ker (Ha(R) — Ha(B)).
We further define
d
Tp(wgr) = Ann,,, OHd(R <H /OHd(R) C wg

to be the BCM parameter test submodule. If (R, m) is a complete normal local domain,
A > 0is an effective Q-divisor such that Kr+ A is Q-Cartier, and B is a big Cohen—Macaulay
R*-algebra,™ then we can define the BCM test ideal T5(R,A) as a variant of Tg(wg) (see
[MS18, Definition 6.9] for the detailed definition). A Q-Gorenstein complete normal local
domain (R, m) is called BCMg-regular if t5(R) := 15(R,0) = R. For the purpose of this

HHere Rt denote the absolute integral closure of R: the integral closure of R inside an algebraic closure of
its fraction field.



23

paper, we point out that (R, m) is BCMp-regular if and only if R — B is pure [MSI8,
Theorem 6.12, Proposition 6.14].

Lemma 5.1. Suppose that (R, m) is a normal Q-Gorenstein local ring of mized chamctem’stz’c
(0,p). Suppose that D > 0 is a Weil divisor of index n on Spec R. Let S = @._, R(iD)
denote the cyclic cover. Let B be a big Cohen—Macaulay R+—algebm Then R is BCMB reqular
if and only if S is BCM g-regular.

Proof. Without loss of generality, we may assume that R is complete. If S is BCM g-regular,
it is a normal domain, then R is BCM g-regular since R — S splits, this follows from [MS18,
Theorem 6.12, Proposition 6.14].

Conversely, suppose that R is BCMpg-regular. In the case that p does not divide n, S is
normal and [MS18, Corollary 6.20] implies that S is BCM g-regular.

Thus, we assume noe p | n. Note that S is still a domain by Proposition 2.1. Even though
S is not necessarily normal, it is G1 (Gorenstein in codimension 1) since in codimension 1 it is
a cyclic cover of a Gorenstein ring (localizing at a height one prime, we are adjoining a single
variable and modding out by a single equation). Write the induced map 7 : Spec S — Spec R
and notice that we can pull back 7*D to obtain an almost Cartier divisor in the sense of
[Har94]. We also have that 7*D and 7* Ky are Q-Cartier. Notice finally that 7*D is in fact
Cartier since we took a cyclic cover. Recall that the ring S is local with maximal ideal
n:=m@®R(D)®R(2D)®---®R((n—1)D). There is also a trace-like map T': S — R which
projects onto the first coordinate, which satisfies 7'(n) C m and which generates Hompg(S, R)
as an S-module, see for example [Carl7, Section 4.4].

Let Tr € Hompg(S, R) denote the field trace and write Tr(—) = T'(s- —) for some s € S; we
define Ramg,p := divg(s). Even though S is not necessarily normal, since it is G1 and S2,
we may define a canonical divisor Kg with Kg = 7Kg — Ramg/p ~ 7" K. It follows that
Ky is also Q-Cartier with nKg Cartier. In this setting we may define 15(S5) := 15(ws, Kg)
as in [MS18, Definition 6.2], it is still an ideal of S just as in [MS18, Lemma 6.8].

Choose a Cartier divisor H = divg(r) on R such that 7*H > Ramg/z. We know from
[MS18, Theorem 6.17], whose proof does not use that S is normal, that

rT(tp(S)) = T(rtp(S)) = T(rtp(S, Rams/r — Ramg)r)) = T(st5(S,7"H — Ramg/p))
= TI”(TB(S, nrH — R&H’ls/R)
= TB(R, H) = TTB(R).
Hence T'(t5(S)) = tp(R). However, since tg(R) = R, and T'(n) C m, we must have
t5(S) ¢ n. Hence tp(S) = S, which also proves, arguing exactly as in [MS18, Theorem
6.12] (again working in the G1 and S2 instead of the normal case), that S — B is pure.
Among other things, since S — B factors through the normalization of S, S¥, this implies

S — SN splits, and hence S is normal. Thus [MS18, Proposition 6.14] implies that S is
BCM pg-regular. ([l

Theorem 5.2. Let (R,m,2) be a strictly Henselian 2-dimensional local ring of mized

characteristic (0,p > 5). Let B be a big Cohen—Macaulay ﬁ*—algebm. Suppose that R is
BCMg-regular. Then there exists a finite split extension R C T with T regular.

Proof. Since Ris BCMp-regular, Ris BCM p-rational and hence pseudo-rational by [MS18,
Theorem 6.12, Proposition 3.7]. Since R has dimension 2, R is thus a rational singularity and
so R is Q-Gorenstein by [Lip69, Proposition 17.1]. Let S be the canonical cover of R. Then
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S is BCM p-regular by Lemma 5.1, so by the same reasoning S is a rational singularity (i.e.,
by [MS18, Theorem 6.12, Proposition 3.7]). But now since S is Gorenstein, we can invoke
Theorem A to see that there exists a finite split extension S C T such that T is regular.

Since R — S splits, the composition of extensions R C T completes the proof. 0
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