LIC-Fusion 2.0: LiDAR-Inertial-Camera Odometry
with Sliding-Window Plane-Feature Tracking

Xingxing Zuo'2, Yulin Yang?, Patrick Geneva?, Jiajun Lv?, Yong Liu?, Guoquan Huang®, Marc Pollefeys!»®

Abstract— Multi-sensor fusion of multi-modal measurements
of commodity inertial, visual and LiDAR sensors to provide
robust and accurate 6DOF pose estimation holds great potential
in robotics and beyond. In this paper, building upon our
prior work (i.e., LIC-Fusion 1.0) [1], we develop a sliding-
window filter based LiDAR-Inertial-Camera odometry with
online spatiotemporal calibration (i.e., LIC-Fusion 2.0), which
introduces a novel sliding-window plane-feature tracking for
efficiently processing 3D LiDAR measurements. In particular,
after motion compensation for LiDAR points by leveraging
IMU data, low-curvature planar points are extracted and
tracked across the sliding window. During this plane-feature
tracking, a novel outlier rejection criteria is proposed for
higher quality data association. Only the tracked planar points
belonging to the same plane will be used for the initialization,
which makes the plane extraction more efficient and robust.
Moreover, we perform the observability analysis for the LiDAR-
IMU subsystem under consideration and report the degenerate
cases for spatiotemporal calibration using plane features. The
proposed LIC-Fusion 2.0 algorithm is validated extensively on
real-world experiments, shown to significantly outperform our
previous LIC-Fusion 1.0 and other state-of-the-art methods.

I. INTRODUCTION AND RELATED WORK

Accurate and robust 3D localization is essential for au-
tonomous robots to perform high-level tasks such as au-
tonomous driving, inspection, and delivery. LIDAR, camera,
and Inertial Measurements Unit (IMU) are among the most
popular sensor choices for 3D pose estimation [1-5]. Since
every sensor modality has its own virtues and inherent
shortcomings, a proper multi-sensor fusion algorithm aiming
at leveraging the “best” of each sensor modality is expected
to have a substantial performance gain in both estimation
accuracy and robustness. For this reason, Zhang and Singh
[2] proposed a graph optimization based laser-visual-inertial
odometry and mapping method following a multilayer pro-
cessing pipeline, in which the IMU data for prediction,
a visual-inertial coupled estimator for motion estimation,
and LiDAR based scan matching is integrated to further
improve the motion estimation and reconstruct the map. In
contrast to [2], our prior LIC-Fusion [1] follows a lightweight
filtering pipeline, which also enables spatial and temporal
calibrations between the un-synchronized sensors. In [3], a
depth association algorithm for visual features from LiDAR

1 Department of Computer Science, ETH Ziirich, Switzerland.

2 Institute of Cyber-System and Control, Zhejiang University, Hangzhou,
China.

3 Department of Mechanical Engineering, University of Delaware,
Newark, DE 19716, USA.

4 Department of Computer & Information Sciences, University of
Delaware, Newark, DE 19716, USA.

5 Microsoft Mixed Reality and Artificial Intelligence Lab, Ziirich,
Switzerland.

[

Fig. 1: The proposed LIC-Fusion 2.0 with sliding-window
plane-feature tracking. The stably tracked SLAM plane land-
marks from the LiDAR and SLAM point landmarks from the
camera are colored in red. High curvature LiDAR points in
blue, which are accumulated from a series of LiDAR scans,
are shown for visualizing the surroundings only. Magenta
points are extracted planar points from the latest LiDAR
scan. The estimated trajectory is marked in green, along with
the LiDAR points overlaid.

measurements is developed, which is particularly suitable for
autonomous driving scenarios. Shao, Vijayarangan, Li, and
Kantor [5] fused stereo visual-inertial odometry and LiDAR
scan matching within a graph optimization framework, in
which, after detecting loop closures from images, iterative
closet point (ICP) of LiDAR data is performed to find the
loop closure constraints.

Substantial research efforts have been devoted on pro-
cessing 3D LiDAR measurements to find the relative pose
between two LiDAR scans. To do so, ICP [6] is among
the most widely used algorithms to compute the relative
motion from two point clouds. However, traditional ICP can
easily get poor results when applied on registering two 3D
LiDAR scans, which have vertical sparsity and ring structure.
To cope with the sparsity in LiDAR scans, in [7], raw
LiDAR points are converted into line segments, and the
closest points from two line segments are minimized iter-
atively. Similarly, in the well-known LOAM algorithm [8],
registration of LiDAR scans leverages the implicit geomet-
rical constraints (point-to-plane and point-to-line distance)
to perform “feature” based ICP. This algorithm is more
robust and efficient since only a few selected points with
high/low curvatures are processed. However, both ICP and
LOAM provide constraints only between two consecutive



scans, and it is hard to accurately model the relative pose
uncertainty. An alternative approach is to directly extract
features (e.g., plane) and construct a feature-based SLAM
problem [9]. However, not only the plane extraction is
often computationally intensive, but the plane-feature data
association (e.g., based on Mahalanobis distance test) needs
ad-hoc parameter tuning in cluttered environments.

To address these issues, in this paper, building upon our
prior work of LIC-fusion [!], we propose a novel plane-
feature tracking algorithm to efficiently and robustly process
the LiDAR measurements and then optimally integrated into
a sliding-window filter-based multi-sensor fusion framework
as in [1]. (see the overview of the system in Fig. 1). In
particular, after removing the motion distortion for LiDAR
points, during the current sliding window, we extract and
track planar points associated with some planes. Only tracked
planar points will be used for plane feature initialization,
which makes the plane extraction more efficient and robust.
While abundant of work exists on observability analysis
of visual-inertial systems with point features [10, 1], we
perform observability analysis for the proposed lidar-inertial-
visual system and identify degenerate cases for online cal-
ibration with plane features. The main contributions of this
work can be summarized as follow:

o We develop a novel sliding-window plane-feature track-
ing algorithm that allows for multi-scan tracking of
3D environmental plane features (which associate to
multiple LIDAR measurements over a sliding-window),
which is optimally integrated into the efficient sliding-
window filter-based multi-sensor fusion framework as in
our prior LIC-Fusion [1]. In this plane-feature tracking,
a novel rejection criterion is advocated, which allows
for higher quality matching by taking to account the
uncertainty between LiDAR frame transformations.

o We perform in-depth the observability analysis of the
LiDAR-inertial-camera system with planar features and
identify the degenerate cases that cause the state and
calibration parameters unobservable.

o We conduct extensive validations of the proposed LIC-
Fusion 2.0 in a series of real-world experiments, which
is shown to outperform the state-of-the-art algorithms.

II. LIC-FUSION 2.0 PROBLEM FORMULATION
A. State Vector

In addition to LIC-Fusion’s [1] original state containing
IMU state x;, camera clones x¢, LiDAR clones xj,, and
spatial-temporal calibration of IMU-CAM xX_4;;5.c and IMU-
LiDAR X5, We store environmental visual fo and
LiDAR landmarks “x . These features are “long lived” and
through frequent matching can limit estimation drift. The
state vector is
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In the above, {I}} is the local IMU frame at time instant ¢.
g”‘(j is a unit quaternion in JPL format [12], which represents
3D rotation (4R from {I;,} to {G}. ®v;,, “py, denotes the
velocity and position of IMU in {G}. Moreover, b, and
b, are the gyro and accelerator biases that corrupt the IMU
measurements respectively. The system error state for z is
defined as ¥ = x — & where Z is the current estimate'. For
details on the calibration parameters please see the original
LIC-Fusion paper [1].

We additionally store environmental visual features, Gp I
represented in the global frame of reference, and store
environmental plane features represented in an anchored
frame {A}. The plane is represented by the closest point [9,

], and the anchored representation can avoid the singularity
when the norm of “p,; approaches zero [9]. These long-lived
planar features will be tracked in incoming LiDAR scans
using the proposed tracking algorithm until they are lost.

B. Point-to-Plane Measurement Model

Considering a LiDAR planar point measurement, “p » that
is sampled on the plane “p|. We can define the point-to-
plane distance measurement model:
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defining “d *HLp H and 'n = /HLp7r Ap,
can be transformed into the local frame by:
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C. LiDAR Plane Feature Update

Analogous to point features [14], we divide all the tracked
plane features from the LiDAR pointclouds into “MSCKF”
and “SLAM?” based on the track length. Note that the sliding-
window-based plane tracking will be explained in detail in
Section III-B. Considering we have a series of measurements
collected over the whole sliding window of the plane feature

p7r , we can linearize the measurement z;) in Eq. (9) at
current estimates of Apﬂ and the states x as:

¥ =029 2~ HOx + HY Lep, +HIRY (1)

where n/) denotes the stacked noise vector. HY, H{ and
H(] ) are the stacked Jacobians with respect to pose states,
the plane landmark and the measurement noise, respectively.
Analytical form of HY), HY) H{ can be found out in our
companion technique report [15].

1Z holds tor velocity, position, bias, except for the quaternion, which fol-
lows: q >~ [ 507 1]T ®§ where ® denotes quaternion multiplication [12],
and 66 is the corresponding error state.



If Apﬂ]. is a MSCKF plane landmark, the nullspace
operation [16] is performed to remove the dependency on
Ap,rj by projection onto the left nullspace N:

NTrl) = NTHYx + NTHO /b, + NTHYRY  (12)
= rf) = H@)x + n{? (13)
Due to the special structure that Hgf )HS T = I, the

measurement covariance is still is isotropic and thus the
nullspace operation is still valid (i.e. O’?NTH%] )Hgf TN =
O'J% I,,). By stacking the residuals and Jacobians of all MSCKF
plane landmarks, we obtain:

rro = HyoX + 1, (14)

This stacked system can then update the state and covariance
using the standard EKF update equations.

If “p,, is a SLAM plane landmark that already exists in
the state, we can directly update its estimate and the state
using Eq. (11). To determine whether a plane feature with
a long track length should be initialized into the state as
a SLAM feature, we note that planes constrain the current
state estimate based on their normals. In the case that three
planes that are not parallel to each other are observed,
then the current state estimate can be well constrained
[17]. Thus, we opt to insert “informative” planes whose
normal directions are significantly different from the planes
currently being estimated (in our implementation, we only
insert planes whose normal directions have greater than ten
degrees difference). After augmenting a plane feature into
the state vector, future LiDAR scans can also match to this
feature.

III. SLIDING-WINDOW LIDAR PLANE TRACKING
A. Motion Compensation for the Raw LiDAR Points

Since the raw LiDAR points are deteriorated by motion
distortion, we can remove the distortion by utilizing the high-
frequency IMU pose estimation. When propagating IMU
state, we save the propagated IMU poses at each timestep
into a buffer, which can then be used to remove the distor-
tion. Since LiDAR points occur at a higher frequency than
IMU, we perform linear interpolate between each of these
buffered poses to the corresponding time of each LiDAR
ray. For orientation, we perform the interpolate on the SO(3)
manifold, similar to [18], while linear interpolate between the
two positions. Using this pose, we transform all 3D points
into the pose at the sweep start time, eliminating the motion
distortion.

B. Planar Landmark Tracking

We now explain how we perform temporal planar feature
tracking across sequential undistorted LiDAR scans. We
first extract planar points from each LiDAR scan using the
method proposed by [8], where low-curvature points are
classified as being sampled from the plane. A planar point
indexed by i in LiDAR frame {L,} will be tracked in the
latest LiDAR frame {L;} by finding its nearest neighbour
point j after projection into {L;}. We then find another two
points (indexed by k, [), which are the nearest points to j on
the same scan ring and the adjacent scan rings, respectively.

These three points (7, k, [) are guaranteed to be non-collinear
and form a planar patch corresponding to planar point :. If the
distance between the projected ¢ and j or distances between
any two points € {j, k,l} are larger than a given threshold,
we will reject to associate ¢ to (j, k, (), and thus lose track of
this planar LiDAR feature. An overview of this algorithm is
shown in Algo. 1 and an additional outlier rejection scheme
is presented in the following section. To prevent the reuse of
information, we employ a simple strategy that a planar point
can only be matched to a single common plane feature.

Algorithm 1 LiDAR Plane Tracking Procedure

Extract planar points from {L;}
Project prior planar points from {L,} into {L;}, find the
nearest corresponding point to each in {L}.
for all (p;, p;) € projected plane points do
Find two closest points pg, p; in {Lp}
Ensure pj scan ring is the same
Ensure p; scan rings is the adjacent
Ensure that selected points are not already used
if |pr, — Pm| <d Y(n,m) € (i,4,k,1) then
Compute plane normal ’n, transformed into {L,}
Compute measurement covariance matrix P,
if x?(2z,,H,P,,) == Pass then
Pj, Pk, P; are measurements of p;’s plane
Pj, Pk, P; Will be tracked into the next scan
end if
end if
end for

C. Normal-based Plane Data Association

We now discuss our novel plane normal-based data associ-
ation method, which rejects invalid plane associations based
on the calculated plane normal. Consider the case that we
have extracted a plane on the floor next to a vertical wall.
If the tracking algorithm discussed in the previous section is
used, then points that are on the wall but are near to the set of
floor points could be classified as being the same plane. This
can have huge implications on the estimation accuracy due to
incorrectly saying that the wall and floor are the same plane
even though their normal directions should be perpendicular
to each other.

To handle this, we propose leveraging the current state un-
certainty and the uncertainty of the planar points to perform
a Chi squared Mahalanobis distance test between the normal
vectors of the candidate match. Specifically, we have a
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Fig. 2: Plane landmark tracking across multiple LiDAR
frames within a sliding window.



possible planar match of the points, (““p fp, “eprn, “ep o)
in frame {La}, and (*'pyg, “pyn, *pyi) in frame {Ly}.
We define a synthetic measurement z,, reflecting the “par-
allelarity” between the two normal vectors of each of these
planes as:

z, = [“*n1|"Rln, (15)

Lanl = |_Lapfn - L“mej (L“Pfo - Lapfm) (16)
Frng = [Mpgn — e (“"Pri = F'py) (17)

We can define two simplified stacked “states” as:
T
Pt = [“Pl, "Dl L P, (18)
T
Pn2 = |:pr;9 Loply pr;‘ri} (19)

The corresponding covariances of p,; and p,2 can be
computed from LiDAR points noises and denoted as P,,; =
P, = U?Ipm. The Mahalanobis distance d, of z, can be
computed as:

d, =z Pz, (20a)
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where P,,.; is the known covariance of relative rotation fg R
based on the current EKF covariance and the Jacobians:
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Based on the Mahalanobis distance test, we can kick out
false tracking planar points. Note that, this check can only
be performed once we have more than two sequential LIDAR
frames, see Fig. 2 for illustrating the measurements on the
same plane while across multiple LiDAR frames.

D. Planar Landmark Initialization

If a plane landmark L“pﬁj can be tracked across several
LiDAR frames, we will initialize this plane landmark in the
oldest LiDAR frame {L,} with all its valid planar point
observations, denoted as set Py;, within the sliding window.
L“‘pgcjrzli = L*pg) + n%) is the

145, measurement in Py, with n(fj ) denoting the measurement

A planar point observation

noise. We compute the distance between = p(fz ) and La Pr;
as:

() _ “Px G )

_ 7 [ La Lo () G La |z
zfi _HL“Pw]H (I‘1R< pfnzl nfz )Jr pL£> H Pr;
By stacking Eq. (22) and constructing a linear system,
We can compute the initial guess for plane normal vector
Lapr. /|| Pr,|| and plane distance scalar |[“ep, ||. The
initial guess of the plane landmark can be further refined
by minimizing following objective function:

(22)

(23)

where n is the amount of observations in Py;. The entire
proposed LIC-Fusion 2.0 LiDAR processing pipeline can be
seen in Algo. 2 in detail.

Algorithm 2 LIC-Fusion 2.0 LiDAR Processing Pipeline
Propagation:

« Propagate the state forward in time by IMU measure-
ments

« Buffer propagated poses for LiDAR cloud motion
compensation

Update: Given an incoming LiDAR Scan,

o Clone the corresponding IMU pose.

« Remove motion distortion for the scan as Sec. III-A

o Extract and track planar points as Sec. I1I-B.

o For SLAM plane landmarks, use the tracked planar
points to compute the residuals & measurement Jaco-
bians, and perform EKF update [Eq. (11)].

o For planar points that tracked across the sliding win-
dow or lost track in the current scan:

— Query its associated observations over the sliding
window.

— Check the association validity by Mahalanobis gat-
ing test as Sec. III-C.

— Construct the residual vectors and the Jacobians in
Eq. (22) with all the verified observations.

— Determine whether the plane landmark should be
a SLAM landmark by checking the track length
and the normal vector “parallelity” to the existing
SLAM plane landmarks.

— If it should be a SLAM plane, add it to the state
vector and augment the state covariance matrix.
Otherwise, treat it as a MSCKF feature.

« Stack the residuals and Jacobians of all MSCKF plane

landmarks, and perform EKF update [Eq. 14]
Management of States:

e SLAM plane landmarks that have lost track are
marginalized out.

e SLAM plane landmarks anchored in the frame that
needs to be marginalized are moved to the newest
frame.

o Marginalize the cloned pose corresponding to the
oldest LiDAR frame in the sliding window state.

IV. OBSERVABILITY ANALYSIS

The observability analysis of vision-aided-inertial nav-
igation system with online calibration has been studied
extensively in iteratures [10, 11, 17], however, the analysis
for LiDAR-aided-Inertial navigation with online calibration
using plane features are still missing. In addition, since the
calibration between IMU-CAM and IMU-LiDAR calibration
are independent, previously identified degenerate motions for
VINS calibration cannot be directly applied to IMU-LiDAR
cases with plane features. Hence, in this paper, we focus on
the subsystem of LIC-Fusion 2.0 with IMU and LiDAR only
and study specifically the degenerate cases for online spatial-
temporal IMU-LiDAR calibration using plane features. In



particular, the observability matrix M (x) is given by:

M(x) = {(Hx,ﬁp(l,l))—r . (Hx,kCP(k,l))T]T

where Hy ; represents the measurement Jacobians at time-
step k. The right null space of M(x), denoted by N, indi-
cates the unobservable directions of the underlying system.

(24)

A. State Vector and State Transition Matrix

As in our previous work [ 1], we have already studied the
observability for IMU-CAM subsystem with online calibra-
tion and point features, this analysis will only focus on IMU-
LiDAR system with online calibration and plane features.
Hence, with closest point representation for plane feature, the
state vector with a plane feature and IMU-LiDAR calibration
can be written as:

X = [X] Xl GP:]T (25)
The state transition matrix can be written as:
®;  O15x7 O15x3
D1,1) = |O7x15 Peativ.r O7xs (26)
O3x15 O3x7  Px
Where ®; denotes the IMU state transition matrix [10, 19].

D v = Iz and &, = I3. Note that without loss of
generality for analysis, we represent the plane feature in the
global frame {G}. We only consider one plane in our state
vector, for more planes cases please refer to our technical
report [15].

B. Measurement Jacobians and Observability Matrix

Therefore, we can get the overall measurement Jacobians
based on (9) as:

013 1
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where H, = L bn m» Hi7j7i € {152}5.7 €
{1...9} can be found in [15]. Following the observability
analysis in [10], we can construct the k-th block of the
observability matrix as:
IRLR 035, N
O;x3 1
71 03 03 T'ris 03 T'zig 03 T'zig T'rig
Iro1 Gn' GHTAtk T'ro4 Tras Troe T'raz T'rog T'rog
where I'r;;,4 € {1,2},5 € {1...9} can be found in [15].
For LiDAR aided INS, if the state vector contains IMU
state, spatial/temporal IMU-LiDAR calibration and a plane

feature, the system will have at least 7 unobservable direc-
tions as N(™),

. n, [RER 0,

27)
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where “R, = [“n{ “ng “n]. The N{™ relates to the

global yaw around the gravity direction, Ng;l) relate to the

aided INS sensor platform, Néfrﬁ) relates to the velocity

parallel to the plane and N;ﬂ) relates to the rotation around
the plane normal direction.

Given 3D random motions, I' 1, I'x18, I'zr26, I'zo7 and
I" ;25 tend to have full column rank and make both the spatial
and temporal calibration between IMU-LiDAR observable.

C. Degenerate Cases Analysis for IMU-LIiDAR Calibration

Given the LiDAR-aided-inertial navigation system with
plane features, the online calibration will suffer from de-
generate cases that make the calibration parameters to be
unobservable. These degenerate cases can be affected by
(1) plane structure and (2) system motion. In this section,
we will use one-plane case with several degenerate motions
to illustrate our findings (see Table. I). Two-plane or three-
plane cases will be also included in our companion technique
report. Note that the one-plane case refers to the cases when
there is only one plane or all planes in the state vector are
parallel. We have identified the following degenerate motions
for the IMU-LiDAR calibration:

o If the system undergoes pure translation, the rigid
transformation (including orientation and translation)
between IMU-LiDAR will be unobservable with unob-
servable subspace as:

O15x1 015%3
- LRER%n 0;
s
Ngi1=| 031  FRERCR, (29)
0 0
03><1 e;Gn

o If the system rotates with the fixed axis as "k, the
translation between IMU-LiDAR is not observable with
unobservable directions as Ngg). Note that if the rota-
tion axis is perpendicular to the plane direction, we will
have an extra unobservable direction Ngg).

03x1 03x1

- GRIRIKk 034
Ni5s = O12x1  O12x1 (30)

Lk Lk

04x1 04x1

o Similar to IMU-CAM calibration, if the system under-
goes motions with constant Yw& v or constant ‘w&a,
the IMU-LiDAR calibration will also be unobservable
with unobservable directions as Ng? and NYQ, respec-
tively. In addition, for one-plane case, we have an extra
degenerate motion (“w || “n and “n 1 “v;?) for time

offset as N{T.

Osx1  Ogx1 Ogx1
0351 “a; 03x1
() Osx1  Ogx1 Ogx1
N14:16: %le %le 03><1 (31)
—IRIv 0341 0341
-1 -1 1
| 03x1 03x1 O3x1]

2« || ” and “ L ” denote parallel and perpendicular relationship,

respectively.



Fig. 3: The self-mounted sensor suite with a Velodyne VPL-
16, xsens IMU, and a monocular camera. The Vicon markers
are attached for ground truth pose recording.

It can be seen that in the one-plane case, the degenerate
motions that cause IMU-CAM calibration to fail will also
make IMU-LiDAR calibration unobservable. Pure translation
will cause both the orientation and translation of IMU-
LiDAR extrinsic calibration unobservable, whereas it just
causes the translation to be unobservable in IMU-CAM cali-
bration. In addition, one-plane case will also introduce extra
unobservable directions, such as t;z;, will be unobservable if
Sw || “n and “n L “v. The combination of degenerate
motions will also be degenerate. In application, we need to
avoid these degenerate motions to make sure the estimator
is healthy.

TABLE I: Summary of Degenerate Motions for IMU-LiDAR
calibration with One Plane feature

Unobservable

Pure Translation IR, Ip;
1-axis Rotation Lp;

One Plane / Parallel Planes

Constant Yw and {v tar, Ipr
Constant ‘w and Ga tar, 'pr
Gw| “nand n L Cv tar

V. EXPERIMENTAL RESULTS

To widely evaluate the proposed plane enhanced LiDAR-
Inertial-Camera odometry, we collect data by our self-
assembled sensors consisting of a 16-beam Velodyne, an
xsens IMU, and a global-shutter monocular camera, as shown
in Fig. 3. Note that we do not perform hardware time
synchronization between these sensor modalities. Instead, we
estimate the time offsets online with the zero initial guess.
The image processing pipeline is based on our prior work
OpenVINS [20], while the fused LiDAR processing pipeline
is proposed in this work. In this LiDAR-Inertial-Camera

TABLE II: Parameters used during our experiments.

Parameter Value Parameter Value
Cam Freq. (hz) 20 IMU Freq. (hz) 400
LiDAR Freq. (hz) 10 Image Res. (px) 19201200
Num. Clones Image 11 Num. Clones LiDAR 8
Num. Point SLAM 20 Num. Plane SLAM 8

Fig. 5: Snapshots of Vicon Room sequences.

odometry system, IMU is necessary as the base sensor, while
the LiDAR or camera is optional. Videos® are recorded when
generating experimental results.

A. Teaching Building Sequences

The proposed system is evaluated by Teaching Building
sequences, which are collected by hand-holding the sen-
sor suite and transverses a teaching building in Zhejiang
University. These sequences cover most of common indoor
scenarios (shown in Fig. 4) such as long corridors, consec-
utive stairs, highly-dynamic motion, lighting changes, etc.
The major configuration parameters for the experiments and
sensors are shown in Table. II.

Since no ground truth is available, we evaluate the per-
formance by the start-to-end drift, which is supposed to
be zero as we started and ended in the same position
when collecting data. The averaged start and end errors
of 5 runs tested on 7 sequences are shown in Table. III.
In the experiments, we compare the proposed plane land-
marks enhanced LiDAR-Inertial-Camera odometry (LIC-
Fusion2) with its subsystems (Inertial-Camera system: Open-
VINS, LiDAR-Inertial system: Proposed-LI) and the other
state-of-the-art algorithms, such as the LiDAR odometry*
(LOAM [8]), the tightly-coupled LiDAR-Inertial odometry
and mapping method (LIO-MAP [21]), and our prior work
(LIC-Fusion [1]). It should be noted that both LOAM and
LIO-MAP have one additional mapping thread that maintains
a global map, while all other methods just have one serial
odometry thread for localization. Due to aggressive motion,
degraded structures, lighting changes, some algorithms fail to

3 https://drive.google.com/open?id=1cLczzQVpsgtRQ
huCXAHOO563gFJSZckX

4Note that LOAM also leverage IMU data to remove the motion distor-
tion.
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Fig. 6: Estimated trajectories by LIC-Fusion 2.0 on Teaching
Bulding Seq 1, 2, 3, 5 (left to right, up to bottom).
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Fig. 7: Estimated trajectories by LIC-Fusion 2.0 on Vicon
Room Seq 2 (left) and Seq 6 (right) sequences overlaid with
groundtruth.

work on certain sequences. In the Table. III, we omit severe
failures marked by “-” when the norm of final drift is larger
than 30 meters. In Seq 1, the camera-based OpenVINS fails
to track visual features due to huge camera exposure changes
when we go upstairs under poor lighting conditions. The
proposed-LI subsystem has a larger drift on Seq 3 and Seq
6, in which the sensor suite traversed long corridors with
only two groups of parallel planes observed. LIO-MAP also
fails on Seq 3 with long corridors even with a maintained
global map. In general, the proposed LIC-Fusion2 and the
LIC-fusion are more robust and succeed in estimating poses
in all the sequences. Comparing to LIC-Fusion, we can find
LIC-Fusion2 can achieve higher accuracy on most sequences.
The trajectories estimated by LIC-Fusion2 on Seq 1,2,3,5 are
shown in Fig. 6.

B. Vicon Room Sequences

We also evaluated the proposed method using data se-
quences with VICON ground truth. There is lots of clutter
in the environment (shown in Fig. 5), which poses challenges
for data associations of LiDAR points. The averaged Root
Mean Square Error (RMSE) of Absolute Trajectory Error
(ATE) [22] are computed with the provided ground truth to
compare the LIC-Fusion 2.0, OpenVINS-IC, Proposed-LlI,
LOAM, LIO-MAP, and LIC-Fusion. The results are shown

in Table. IV, the cases with transitional errors more than
20 meters are marked with “-”. Our previous method, LIC-
Fusion, which is based on scan to scan matching, fails on
Seq 4, probably because of error-prone data associations.
The proposed LIC-Fusion 2.0 with reliable data associations
over the sliding window outperforms the other algorithms.
We have tuned parameters in LIO-MAP to achieve better
accuracy. However, it still fails on some sequences due
to error-prone data association in clutter environment and
lack of time synchronization between LiDAR and IMU. We
appreciate the help from the author of LIO-MAP [21] for
analyzing the failures. LOAM on Seq 3 and LIO-MAP on
Seq 6 output relative larger orientation errors while with
smaller translation errors because the global map succeeds
in constraining the drift of translation while fails to improve
the orientation at certain time instants due to wrong data
associations for LiDAR points. The estimated trajectories by
LIC-Fusion 2.0 overlaid with the ground truth on Seq 2 and
Seq 6 are shown in Fig. 7. The results demonstrate that LIC-
Fusion 2.0 with the novel temporal plane tracking and online
spatial/temporal calibration can achieve better accuracy than
existing LiDAR-Inertial-Camera fusion algorithms. We fur-
ther examine the computational cost of proposed LIC-Fusion
2.0 by showing the processing time (shown in Fig. 8) of the
main stages when running it on Seq 6 on a desktop computer
with Intel 17-8086k CPU at 4.0GHz. The averaged processing
time for its IMU-CAM subsystem is 0.0168 seconds, and for
its LIDAR-IMU subsystem is 0.0402 seconds. Thus LIC-
Fusion is suitable for real-time applications in this indoor
scenario.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have developed a robust and efficient
sliding-window plane-feature tracking algorithm to process
excessive 3D LiDAR point cloud measurements, which
has been integrated into our prior MSCKF-based LiDAR-
Inertial-Camera Odometry (or LIC-Fusion) estimator and
thus, we termed the proposed algorithm as the LIC-Fusion
2.0. In particular, during the proposed plane-feature tracking,
we have advocated a new outlier rejection criteria to improve
feature matching quality by taking to account the uncer-
tainty of the LIDAR frame transformations. Additionally, we
have investigated in-depth the observability properties of the
linearized LIC system model that the proposed LIC-Fusion
2.0 estimator is built based on and identified the degenerate
cases for spatiotemporal IMU-LiDAR calibration with plane
features. The proposed approach has been validated in real-
world experiments and shown to achieve better accuracy than
the state-of-the-art algorithms In the future, we will perform
further study through simulations [9] on the identified degen-
eration cases to better understand their impacts on estimation.
We will also incorporate the sliding-window edge-feature
tracking of LiDAR measurements into the proposed LIC-
Fusion 2.0.
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