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Abstract—This paper studies the design of host-managed
SMR HDD. To obviate any changes to existing filesystems and
applications, this paper focuses on making the host-side block
device driver solely responsible for managing SMR HDD. The
key is to make block device driver elastically utilize the host-
side memory resource to realize address translation and mitigate
SMR HDD performance degradation. Under this framework, this
paper presents a set of techniques, including defragmentation-
centric write buffer management, fragmentation-adaptive tree-
based address mapping, and fragmentation-aware GC, which
together can efficiently utilize host memory resource to realize
address translation and mitigate drive performance degradation.
Using a variety of disk access IO traces and benchmarks, we
carried out experiments that well demonstrate the effectiveness
of the proposed design techniques.

Index Terms—Shingled magnetic recording (SMR), hard disk
drive, address translation, write buffering, defragmentation

I. INTRODUCTION

This paper studies the management of SMR (shingled
magnetic recording) HDD (hard disk drive). By trading the
convenient in-place update feature for smaller disk track pitch,
SMR technology [1], [2] is the most economically viable
option to sustain the continuous bit cost reduction of HDD.
The absence of in-place update forces SMR HDD to internally
employ a per-zone append-only data structure. As a result,
SMR storage inherently mismatches with the conventional
block device interface, and is natively subject to performance
degradation caused by data fragmentation and garbage col-
lection (GC). To deploy SMR HDD in computing systems,
one option is to make SMR HDD host-managed: SMR HDD
simply exposes itself as an append-only zoned storage device,
and host-side software stack must accordingly adjust their data
management and operations in order to fully comply with
the per-zone append-only constraint. As a result, host-side
software stack must handle data fragmentation and GC on
their own. The host-managed approach simplifies the SMR
HDD implementation at the cost of higher design complexity
of the host-side software stack.

Under the host-managed design framework, one essential
question is which layer in the software stack should be re-
sponsible for realizing address translation and mitigating SMR
drive performance degradation. With the better knowledge
about the data, upper-level software layers (i.e., filesystem,
and even applications) should be able to more effectively
manage SMR HDD. Nevertheless, this demands intrusive and
potentially significant changes to existing upper-level software
stack, leading to high development/deployment cost and hence

a high barrier for its practical adoption. Therefore, this work
focuses on making the block device drive solely responsible
for realizing host-side management, which keeps the upper-
level software stack completely intact.

To facilitate the implementation of such SMR HDD block
device driver, this paper presents the following specific design
techniques: (1) Defragmentation-centric write buffer manage-
ment: We propose a write buffer management strategy that
prioritizes on minimizing the LBA-PBA mapping fragmen-
tation1. Meanwhile, we employ the simple concept of data
journaling to enable the use of write buffer without sacrificing
the data persistency. (2) Fragmentation-aware GC: We propose
a method that chooses the GC candidate zones by cohesively
considering the storage space reclaim efficiency and LBA-
PBA mapping fragmentation. Sharing the common theme of
reducing LBA-PBA mapping fragmentation, these two tech-
niques are motivated by the following observation: Modern
filesystems (e.g., ext4 and XFS) use extent-based and delayed
space allocation to reduce the fragmentation of each file
over the LBA space. Meanwhile, files on HDD are typically
accessed in a coarse granularity (e.g., 64KB and 256KB).
Lower LBA-PBA mapping fragmentation can be leveraged to
reduce the memory usage of LBA-PBA address translation.
In particular, we propose a fragmentation-adaptive address
mapping tree to implement the LBA-PBA translation, which
can make the mapping memory usage proportional to the LBA-
PBA mapping fragmentation. This can be considered as a tree-
based fragmentation-adaptive LBA-PBA address mapping.

To evaluate the effectiveness of the proposed design tech-
niques, we carried out a variety of experiments using the
Systor’17 Traces [3] and the big data benchmark suite
HiBench 7.0 [4]. Regarding the proposed defragmentation-
centric write buffer management, we compared it with the
classical LRU-based management. Under no more than 5GB
write buffer capacity, the experimental results show that, com-
pared with LRU-based write buffer management, the proposed
design approach can reduce the drive average read latency and
99-percentile read latency by up to 91% and 93%, respectively.
In the case of using conventional table-based LBA-PBA ad-
dress translation, the proposed defragmentation-centric write
buffer management can reduce the write amplification by up to
93%, compared with LRU-based management. Regarding the
proposed fragmentation-adaptive tree-based LBA-PBA address

1LBA-PBA mapping fragmentation occurs when continuous LBAs are
mapped onto discontinuous PBAs.

1



mapping, the experimental results show that it can effectively
reduce the address mapping memory usage. For example,
for the Bayes benchmark (active dataset size of 262GB)
in the HiBench benchmark suite, the proposed tree-based
design approach only consumes less than 10MB of memory
when the write buffer capacity is only 512MB. Regarding the
proposed fragmentation-aware GC candidate zone selection,
we compared it with the conventional practice that always
selects the GC candidate zones solely based on the per-zone
garbage rate. The experimental results show that, compared
with the conventional practice, the proposed fragmentation-
aware GC candidate zone selection can achieve significantly
smaller LBA-PBA mapping fragmentation. By collectively
demonstrating promising effectiveness of the proposed de-
sign approaches, the experiments show that the host-assisted
device-managed SMR HDD design strategy indeed could be
a practically viable option for future computing systems to
seamlessly deploy SMR HDD.

II. PROPOSED DESIGN TECHNIQUES

A. Defragmentation-centric Write Buffer Management

In order to effectively reduce the LBA-PBA mapping frag-
mentation, the SMR HDD block device driver must use a
write buffer, through which it can re-order and coalesce write
requests. In adaptation to the runtime system memory usage,
the block device driver can elastically adjust the write buffer
size. To ensure the data persistency, the block device driver
employs an on-disk journal as a backup for the write buffer.
This is further illustrated in Fig. 1: The block device driver
allocates a certain amount of host DRAM as a write buffer,
and meanwhile relies on data journaling to ensure the data
persistency. Its practical implementation involves two design
issues: (1) write buffer management, and (2) on-disk journal
space recycling. This subsection presents a set of techniques to
address these two issues. In the remainder of this subsection,
we first present the basic underlying design concept, and then
elaborate on the specific implementation details.

Data ZonesJournal 
zones

               Block device driverWrite Buffer

SMR 
HDD

Zone-based interface

Conventional block interface

Block layer & filesystem

Host

Fig. 1. Illustration of the envisioned host-managed SMR HDD, where the
host-side block device driver uses an on-disk journal to ensure the persistency
of its write buffer.

1) Basic Design Concept: Aiming to minimize the LBA-
PBA mapping fragmentation, we propose the following write
buffer management policy: Let the set L = {L1,L2, · · · }
represent the LBA regions of all the data in the write buffer,
where each subset Li spans over one contiguous LBA region.
None of two subsets are adjacent on the LBA space. We note
that each write request received by the block device driver

always spans over contiguous LBAs. Given an incoming write
request spanning over the LBA region Lnew, the block device
driver will update the set L as follows:
• If Lnew does not overlap with or is not adjacent to any

subsets in L, we simply insert Lnew into the set L.
• Otherwise, suppose Lnew overlaps with and/or is adjacent

to j subsets. Then we merge Lnew with these j subsets
to generate a new subset in L. Meanwhile, we remove
these j subsets from the set L.

Let Cw denote the total capacity of the write buffer, and let
|Li| denote the number of contiguous LBAs covered by Li.
Once the block device driver has updated the set L upon a
new write request, it will carry out the following operation:
• If

∑
∀i |Li| ≤ Cw (i.e., the write buffer can absorb the

incoming write request), then we accordingly update the
content of the write buffer. Meanwhile, we log the write
request in the on-disk journal.

• Otherwise (i.e., the write buffer cannot absorb the incom-
ing write request), let Lm denote the subset that spans
over the largest LBA region in the updated L, i.e.,

|Lm| ≥ |Li|, ∀Li ∈ L \ Lm. (1)

Then we evict all the data associated with Lm from the
write buffer to SMR HDD, and accordingly update the
SMR HDD LBA-PBA mapping. Meanwhile, we remove
the subset Lm from L, and log the data eviction action
in the on-disk journal.

In addition to managing the write buffer, the block device
driver should also manage the on-disk journal. For each zone
in the on-disk journal area, let the set D(k) = {D(k)

1 ,D(k)
2 . · · · }

represent the LBA regions of all the data on this zone that
still reside in the write buffer, where each subset D(k)

i spans
over one contiguous LBA region that maps to one contiguous
PBA region on the zone. When the block device driver admits
or evicts data into/from the write buffer, it must accordingly
update the related D(k)’s. In the on-disk journal area, we keep
only one zone as open and can only journal data into this open
zone. Once the open zone is completely filled, we will seal
this zone, and designate another empty zone as the open zone.
When the number of sealed zones in the on-disk journal area
exceeds a pre-defined threshold, the block device driver will
recycle a sealed zone as follows: Among all the sealed zones
in the on-disk journal area, we choose the one that contains the
minimal amount of active data, i.e., the one with the minimum∑
∀i |D

(k)
i | among all the sealed zones. Let D(s) denotes the

set associated with the chosen sealed zone. Each subset D(s)
i ∈

D(s) must be equal or belong to one subset Lj ∈ L. Therefore,
we can form a set L(s) = {Lj , · · · } that just sufficiently covers
the entire LBA regions of D(s). Accordingly, the block device
driver will evict the data associated with L(s) from the write
buffer to SMR HDD. As a result, D(s) = ∅ for the chosen
sealed zone, and it can be readily recycled.

2) Practical Implementation: The above presents the ba-
sic design concept underlying the proposed defragmentation-
centric write buffer management strategy. Its practical im-
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plementation is non-trivial and must effectively manage L
for the write buffer and D(k)’s for all the zones in the on-
disk journal area. This subsection elaborates on our proposed
implementation approach.

First, based upon the classical red-black tree structure,
we propose an LBA-size tree to implement the write buffer
management. In Fig. 2, a node’s color is black or red, which
is the flag of each node in red-black tree structure for balancing
the tree. As illustrated in Fig. 2, each node in the LBA-size
tree represents a subset from L = {L1,L2, · · · }, (i.e., each
node represents one contiguous LBA region). The node’s key
is the starting LBA of the LBA region, and the node’s value
is the size of the LBA region (i.e., the number of contiguous
LBAs). Upon receiving a new write request, if there is no
such a node whose key is the same as the starting LBA of the
write request after searching the tree, the block device driver
first creates a virtual node: its key and value are the starting
LBA and size of the write request. We temporarily put the
virtual node at the place where the search ends, and find the
predecessor and successor of the virtual node. For example,
as illustrated in Fig. 2 (a), assuming the virtual node’s key is
between 144 and 184, we find the predecessor and successor
of the virtual node, i.e., node 144 and node 184 in the tree. A
node’s predecessor and successor could be located very easily
according to the node’s location. Once we have identified the
predecessor and successor of the virtual node, we will handle
the following different scenarios (Let KV denote the key of
the virtual node, and let SV denote the recorded size of the
virtual node):

1) If the virtual node could not be merged with either its
predecessor or successor, we will insert the virtual node
into the tree, and re-balance the tree if necessary. For
example, if KV = 168 and SV = 8, the tree is updated
as shown in Fig. 2 (b).

2) If the LBA range of the virtual node falls into the LBA
range of its predecessor, the tree would not be updated at
all, and we simply update the existing data in the write
buffer.

3) If the virtual node could be merged with the predecessor,
the predecessor’s recorded size is updated. If the virtual
node could be merged with one or even more successors,
we delete all of the related successors. For example, if
KV = 160 and SV = 48, then the virtual node could
be merged with the nodes 144, 184 and 200. The tree
is updated as Fig. 2 (c) shows.

4) If the virtual node could be merged with the successor
but not with the predecessor, we update the key and
value (i.e., recorded size) of its successor. If the virtual
node could be merged with more than one successors,
we delete all of the related successors except the first
successor. For example, if KV = 168 and SV = 40,
then the virtual node could be merged with node 184
and 200. The tree is updated as Fig. 2 (d) shows.

If there is a tree node whose key is the same as the starting
LBA of the write request, the block device driver does not

create a virtual node. The node’s size value is updated if it
is less than the size of the write request. If the node with the
new size value could be merged with one or several successors,
these successors would be deleted and the node’s size value
will be further updated.
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Fig. 2. Examples to illustrate the proposed LBA-size tree (using the red-black
tree structure), where the nodes with the red or black color are the red and
black nodes in the red-black tree.

To ensure the data persistency, we use an on-disk journal to
recover data in case of power failure or system crash. Fig. 3(a)
shows the data written on the journal zones and Fig. 3(b)
shows the content of a journal file before power off or system
crash. For each continuous data segment being written in the
journal, the journal file records its starting LBA/PBA, segment
size, and a timestamp. When the block device driver evicts one
continuous data segment from the write buffer, it will append
a record to the journal, where the record contains the starting
LBA, size, and timestamp (as shown in Fig. 3(b), the starting
PBA is set as -1). In case of power failure or system crash, the
block device driver can reconstruct the write buffer content by
scanning the journal file.
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…
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Fig. 3. Examples to illustrate the on-disk journal.
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B. Fragmentation-Adaptive LBA-PBA Address Translation

In this work, we are only interested in sector-based LBA-
PBA mapping (i.e., each LBA can be mapped to any PBA)
in order to reduce the write amplification caused by address
translation. The most straightforward implementation is a
sector-based LBA-PBA mapping table, where each table entry
corresponds to one unique LBA. However, it suffers from
significant memory usage (i.e., the mapping table size is
about 0.1% of the SMR HDD capacity). As discussed above,
the block device driver employs a host-side write buffer to
reduce the LBA-PBA mapping fragmentation. Intuitively, with
sufficiently low LBA-PBA mapping fragmentation, we can use
a tree structure to implement sector-based LBA-PBA mapping
at small memory usage.

Based upon the classical red-black tree structure, we pro-
pose a sector-based fragmentation-adaptive address mapping
tree to realize fragmentation-adaptive LBA-PBA address trans-
lation (i.e., its memory usage is adaptive to the LBA-PBA
mapping fragmentation). The reason why the proposed trees
are based on the red-black tree rather than the B+ tree is that
the proposed trees are totally stored in DRAM due to their
small memory usage. Each node in the proposed mapping tree
represents a continuous LBA-PBA mapping region (i.e., data
in this region are continuous in terms of both LBA and PBA).
Each node’s key is the starting LBA of a continuous LBA-PBA
mapping region, and there are two values in each node: (1)
the size of this region, and (2) the starting PBA of this region.
When the block device driver flushes data from the host-side
write buffer to SMR HDD, it first creates a virtual node: its
key is the starting LBA of this region, its size value is the
size of the region and its PBA value is the starting PBA on
SMR HDD. If none of the existing nodes in the fragmentation-
adaptive address mapping tree has the same key as this virtual
node, we temporarily put the virtual node at the place where
the search ends, and find the predecessor and successor of the
virtual node. For example, as illustrated in Fig. 4(a), assuming
the virtual node’s key is between 100 and 320, we find the
predecessor and successor of the virtual node, i.e., node 100
and node 320 in the tree. To maintain the LBA-PBA mapping
tree, we need to handle the following different scenarios(Let
KV denote the key of the virtual node, and let SV denote
the recorded size of the virtual node, and let PV denote the
recorded PBA of the virtual node):

1) There is a node in the tree whose key is KV :
a) If the node’s size is equal to SV , just update the

node’s PBA value as PV .
b) If the node’s size is larger than SV , this node

will be divided into two nodes. For example, if
KV =100, SV =50 and PV =8,100, the mapping tree
will be updated as shown in Fig. 4(b). The previous
node 100 is divided into two nodes: node 100 and
node 150.

c) If SV is larger than the node’s size, update both
this node’s size value as SV and PBA value as PV .

d) If the virtual node covers part of the successor

in terms of LBA, the successor’s key, recorded
size and recorded PBA will be updated. If the
virtual node entirely covers the successor in terms
of LBA, then we delete the successor, and repeat
the process until the virtual node does not cover
the next successors in terms of LBA. For example,
as shown in Fig. 4(c), assume KV =100, SV =400
and PV =8100, we have that the node 320 will be
deleted. Meanwhile, since the virtual node overlaps
with the next successor (i.e., node 430), the key,
and value size and value PBA of the node 430 are
all updated.

2) None of the existing nodes in the tree has the same key
as KV :

a) If the virtual node does not cover the predecessor
and the successor in terms of LBA, then we directly
insert the virtual node into the tree.

b) If the virtual node covers a mid part of the prede-
cessor in terms of LBA, the predecessor is divided
into three nodes. For example, assume KV =120,
SV =50, and PV =8100, then we update the tree as
shown in Fig. 4 (d), where the node 100 is divided
into three nodes: node 100, node 120 and node
170.

c) If only a part of the virtual node covers the prede-
cessor in terms of LBA, then we insert the virtual
node and update the predecessor’s size value.

(a) 

(b) 

(c) 

(d) 
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Fig. 4. Illustration of the proposed fragmentation-adaptive LBA-PBA address
mapping tree (using the red-black tree structure), where the nodes with the
red or black color are the red and black nodes in the red-black tree.

When the block device driver receives a read request, it
searches the LBA-PBA mapping tree to obtain the correspond-
ing PBAs. If there is a node in the tree whose key is the same
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as the starting LBA of the read request, then we can get the
information of the related PBA from this node. If the read
request’s size is larger than the node’s size value, then we can
obtain the PBAs from this node and its successors. If none of
the nodes in the LBA-PBA mapping tree has the same key as
the read request’s starting LBA, we can find the predecessor
from where the search ends according to the feature of tree
structure. Then it’s easy to determine the starting PBA of the
read request.

C. Fragmentation-aware SMR HDD GC

The block device driver is also responsible for scheduling
SMR HDD GC, where one critical task is to choose the
candidate zone for recycling. Intuitively, one may want to
always choose the zone that contains the least amount of valid
data. Indeed this intuition works well for SSD because the GC-
induced operational latency overhead is strictly proportional
to the amount of valid data in the to-be-recycled flash block.
Nevertheless, in the context of SMR HDD, the GC-induced
operational latency overhead is weakly dependent on the
amount of valid data, which can be explained as follows:
Let τGC denote the GC-induced operational latency overhead,
which can be expressed as

τGC = τseek + τr + τw, (2)

where τseek denotes the total head seek latency, τr denotes the
latency of reading all the valid data from the to-be-recycled
zone, and τw denotes the latency of writing all the valid data
to another open zone. Let Cv denote the amount of valid data
in the to-be-recycled zone. Clearly, τseek is independent from
Cv . Suppose each zone in SMR HDD contains nt (e.g., 256)
shingled tracks. Since the valid data most likely scatter among
all the nt tracks, regardless of the value of Cv , SMR HDD
may always spend close-to-nt disk rotations to read out all
the valid data. Hence, τr is almost independent from Cv . The
write latency τw is linearly proportional to Cv . As long as Cv

is substantially smaller than the capacity of one zone, τw will
be significantly lower than τr. Therefore, it is reasonable to
draw the conclusion that the GC-induced operational latency
overhead τGC is weakly dependent on the amount of valid
data in the to-be-recycled zone.

Motivated by the above observation and the importance of
reducing LBA-PBA mapping fragmentation in SMR HDD,
we propose a fragmentation-aware strategy that chooses the
candidate zone by cohesively taking into account of the valid
data amount and LBA-PBA mapping fragmentation. This
proposed strategy can be described as follows: Among all
the sealed zones, we first find a relatively small number nc
(e.g., 20) of zones that contain less amount of valid data than
all the others. Within the nc sealed zones that contain small
amount of valid data, we further choose nr (e.g., 3) zones
for recycling, solely based on the fragmentation criterion. In
particular, for each zone, let L(k)

v = {L(k)
v,1,L

(k)
v,2, · · · } denote

the set of valid data, where each subset L(k)
v,i denotes the LBA

region of a valid data segment with contiguous LBA-PBA
mapping inside the zone. Define M(L(k)

v ) as the function

that merges all the adjacent subsets (i.e., two or more subsets
whose LBA regions are adjacent to each other) in L(k)

v into a
single larger subset. Let |L(k)

v | denote the number of subsets in
the set L(k)

v , we have that |L(k)
v | ≥ |M(L(k)

v )|. As discussed
above, out of the total nc zones, we should choose nr zones
that can minimize the LBA-PBA mapping fragmentation. This
can be formulated as follows: Let U(nr)

i denote the union set
of the sets L(k)

v ’s of nr zones. Given the total nc zones, there
are

(
nc

nr

)
different union sets U(nr)

i ’s. In order to minimize
the LBA-PBA mapping fragmentation, we should choose the
union set U(nr)

d that can enable the largest number of subsets
to be merged, i.e.,

|U(nr)
d | − |M(U(nr)

d )| ≥ |U(nr)
i | − |M(U(nr)

i )|, ∀U(nr)
i . (3)

To practically implement the above fragmentation-aware
zone selection, we developed the following approach by
leveraging the LBA-PBA mapping tree (discussed above in
Section II-B): Within the LBA-PBA mapping tree, let Ri,j

denote the reduced number of nodes if we choose zone i
and zone j for recycling, and let Ri,i denote the reduced
number of nodes if we choose only zone i for recycling. Then
we can carry out fragmentation-aware zone selection using
a recursive heuristic method: Suppose we choose the top 10
zones that have less amount of valid data than the others (i.e.,
nc is 10), from which we select nr zones for recycling in
a fragmentation-aware manner. If we aim to select only one
zone for recycling (i.e., nr = 1), then we simply choose the
zone with the largest Ri,i. If we aim to select two zones for
recycling (i.e., nr = 2), we simply select the two zones so
that the associated Ri,j is the largest. If we aim to select
nr > 2 zones for recycling, we first select the two zones with
the largest Ri,j , then we select the remaining zones one-by-
one as follows: To select the k-th zone (k > 2), let Nk−1
denote the set that contains the selected k − 1 zones so far,
and we select the k-th zone so that it has the largest Rk,j for
all j ∈ Nk−1. Although such as recursive heuristic method
does not guarantee to find the truly optimal set of zones,
it can achieve a good approximation at very small search
computational complexity.

III. EVALUATION

We carried out experiments on a server with dual-socket
Intel Xeon E5-2630 2.2GHz CPUs (10 cores per socket), and
64GB DRAM. The server runs Linux Kernel 4.10.0 in the
Ubuntu 16.04.03 distribution. We use three traces (LUN0,
LUN2 and LUN4, and each trace contains 10-hour trace
files) from Systor’17 Traces [3] and five benchmarks (Bayes,
Kmeans, PageRank, Sort, and TeraSort) from the big data
benchmark suite HiBench 7.0 [4]. We set up one master node
and three slave nodes to run the benchmarks of HiBench 7.0,
and each slave node has a 2TB HDD. The total time to run
each benchmark is 10 hours. The traces from HiBench 7.0
have relatively larger average write and read size than traces
from Systor’ 17. Since we cannot directly implement the
proposed schemes inside commercial SMR HDDs due to the
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limitation of the current commercial SMR HDDs, we simulate
the SMR HDD using conventional 2TB SATA HDD in user
space and replay the traces mentioned above. We set each zone
as 256MB.

A. Defragmentation-centric Write Buffer Management

We first evaluate the effectiveness of the proposed
defragmentation-centric write buffer management approach.

1) Improving drive speed performance: For the purpose
of comparison, we also implemented the LRU-based write
buffer management. Each read request spans over contiguous
LBA region, which nevertheless may be broken into multiple
disjoint PBA regions on SMR HDD due to the LBA-PBA
mapping fragmentation. When the amount of data in the write
buffer reaches 90% of the buffer capacity or when the number
of sealed zones in the journal area reaches 90% of the total
number of journal zones, we flush the data from write buffer
to the drive. For all the experiments, we use the fragmentation-
adaptive address mapping tree (discussed in Section II-B) to
realize LBA-PBA mapping.

Fig. 5 and Fig. 6 show the average and 99-percentile tail
read latency when using LRU and the proposed design ap-
proach, respectively. Latencies take into account data transfers
with LBA-size tree and the on-disk journal. The results show
that the proposed design approach can effectively reduce the
drive read latency. When the write buffer capacity is 5GB,
compared to LRU, the proposed design approach could reduce
the average and the 99-percentile tail read latency by 87%
and 77% for LUN2 trace, and can reduce the average and
the 99-percentile tail latency remarkably by 91% and 93% for
PageRank benchmark.

2) Reducing write amplification in table-based address
translation: LBA-PBA address translation can be realized by
using table or tree data structure. If we use table-based address
translation, the LBA-PBA mapping granularity determines the
trade-off between write amplification and table memory size.
Let nm denote the number of contiguous LBAs associated
with each table entry, i.e., each table entry records a contiguous
LBA-PBA mapping over nm sectors. As we increase the value
of nm, we can reduce the mapping table size, but suffer from
a higher write amplification. For example, when we update
ns < nm sectors, we have to read all the nm sectors from the
drive and write the updated nm to the drive, leading to a write
amplification.

We carried out experiments to measure the write amplifi-
cation when using table-based LBA-PBA address translation
with different mapping granularity: 10 and 100 contiguous
sectors. We compared the proposed write buffer manage-
ment approach with the LRU-based write buffer management.
Fig. 7∼Fig. 8 show the measured write amplification under
different LBA-PBA mapping granularity. The results show
that, by reducing the LBA-PBA mapping fragmentation, the
proposed write buffer management approach can enable much
smaller write amplification than LRU-based approach. As the
mapping granularity increases (e.g., from 10 sectors per table
entry to 100 sectors per table entry), the write amplification of

LRU-based approach increases much more significantly than
that of the proposed design approach. For example, for the
trace LUN0 with 1GB write buffer capacity, when we increase
the mapping granularity from 10 sectors to 100 sectors, the
write amplification of the LRU-based approach increases from
2.1 to 11.8, while the write amplification of the proposed
approach increases only from 1.1 to 2.3. The results show
that the write amplification of Hibench benchmarks is much
smaller than that of Systor’17 traces (i.e., LUN0, LUN2, and
LUN4). This is because the Hibench benchmarks have much
larger write request size, which naturally leads to small write
amplification in the case of table-based address mapping.

B. LBA-PBA Mapping Tree

The purpose of the proposed fragmentation-adaptive LBA-
PBA address mapping tree is to make the address transla-
tion memory usage become adaptive to the runtime LBA-
PBA mapping fragmentation. Hence, once we have employed
techniques (e.g., defragmentation-centric write buffer manage-
ment) to reduce the LBA-PBA mapping fragmentation, it can
accordingly reduce the address mapping memory usage.

Table I shows the memory usage of the proposed address
mapping tree. For each trace/benchmark, the table shows the
active dataset size and the corresponding address mapping tree
size under different write buffer capacity. As demonstrated
above in Section III-A, as we increase the write buffer capac-
ity, the defragmentation-centric write buffer management can
more effectively reduce the LBA-PBA mapping fragmentation.
Therefore, as shown in Table I, the address mapping tree size
always reduces as the write buffer capacity increases. The
results show that, even without using the write buffer, the
address mapping tree size still tends to be small, especially
for the HiBench benchmarks where the write request size is
large. For example, for the Kmeans benchmark with the active
dataset size of 151GB, the address mapping tree memory
usage is only 8.6MB even without write buffer.

TABLE I
ADDRESS MAPPING TREE MEMORY.

Trace Active Buffer Capacity
Dataset Size 0 512MB 1GB 5GB

LUN0 125GB 104MB 68MB 55MB 27MB
LUN2 146GB 101MB 86MB 75MB 38MB
LUN4 139GB 96MB 79MB 66MB 31MB
Bayes 262GB 15MB 9.2MB 7.1MB 1.5MB

Kmeans 151GB 8.6MB 2.9MB 1.5MB 0.25MB
PageRank 205GB 11MB 4.1MB 2.5MB 0.58MB

Sort 160GB 17MB 6.7MB 3.8MB 0.79MB
TeraSort 69GB 4.6MB 1.2MB 0.58MB 0.14MB

C. Fragmentation-aware GC

The key idea of fragmentation-aware GC is to cohesively
take into account of garbage rate and LBA-PBA mapping
fragmentation during the candidate zone selection. The number
of nodes in the LBA-PBA address mapping tree can be used
as a metric to quantify the overall LBA-PBA mapping frag-
mentation, i.e., the less number of nodes the address mapping
tree contains, the less fragmented the LBA-PBA mapping is.
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Fig. 5. Measured average read latency when using LRU and the proposed design approach.
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Fig. 6. Measured 99-percentile read latency when using LRU and the proposed design approach.
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Fig. 7. Average write amplification when each LBA-PBA mapping table entry corresponds to 10 sectors.
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Fig. 8. Average write amplification when each LBA-PBA mapping table entry corresponds to 100 sectors.

TABLE II
ADDRESS MAPPING TREE NODE NUMBER REDUCTION.

Baseline Proposed
Trace Buffer Capacity Buffer Capacity

0 512M 1B 5B 0 512B 1B 5B
LUN0 2691 547 236 32 8955 2538 822 277
LUN2 392 211 208 25 1518 1281 1006 179
LUN4 712 493 430 193 2955 1724 1138 756
Bayes 34 9 13 0 116 30 29 3

Kmeans 147 32 15 1 707 106 65 5
PageRank 87 27 9 2 286 97 43 9

Sort 47 14 5 0 122 45 25 6
TeraSort 95 13 1 0 202 52 28 4

For comparison, we also evaluate a baseline case where the
GC candidate zones are selected solely based on the garbage
rate. During each GC process, the baseline always selects 2

TABLE III
THE GARBAGE RATE OF THE SELECTED TWO ZONES.

Baseline Proposed
Trace Buffer Capacity Buffer Capacity

0 512M 1G 5G 0 512M 1G 5G
LUN0 91% 92% 94% 92% 84% 82% 85% 81%
LUN2 97% 96% 95% 93% 96% 92% 85% 88%
LUN4 90% 92% 93% 85% 81% 83% 81% 81%
Bayes 94% 96% 95% 93% 88% 93% 92% 90%

Kmeans 85% 90% 91% 84% 81% 81% 82% 82%
PageRank 92% 87% 89% 88% 82% 82% 83% 82%

Sort 98% 98% 97% 92% 95% 93% 93% 88%
TeraSort 92% 89% 92% 84% 87% 82% 82% 82%

GC candidate zones that have higher garbage rate than all the
other zones. In the case of our proposed fragmentation-aware
GC, we first choose the 20 zones that have higher garbage rate

7



than the other zones, from which we select 2 GC candidate
zones based on the LBA-PBA fragmentation.

Table II shows that, compared with the baseline, the pro-
posed defragmentation-aware zone selection can significantly
reduce the LBA-PBA mapping fragmentation. As we increase
the write buffer capacity, the absolute value of the node
number reduction reduces. This is because, under larger write
buffer capacity, the LBA-PBA mapping fragmentation will
reduce, which will reduce the chance that multiple small data
segments will be merged into a large segment during GC.
Compared with the HiBench benchmarks, we can reduce much
more tree nodes for Systor’ 17 traces, because of the very
small write request size in the Systor’ 17 traces.

Table III further shows the garbage rate of the selected two
zones during the GC process. Since the baseline selects the
candidate zones solely based on the per-zone garbage rate,
it can always achieve the highest garbage rate. In contrast,
the fragmentation-aware GC has less garbage rate since it
takes into account of LBA-PBA mapping fragmentation as
well. Nevertheless, when using the fragmentation-aware GC,
it can still achieve very high garbage rate, meanwhile it
can much better contribute to reducing LBA-PBA mapping
fragmentation. For example, for the Systor trace LUN2 under
512MB write buffer, the baseline reduces 211 tree nodes and
has a garbage rate of 96%, while fragmentation-aware GC
reduces 1281 tree nodes and has a garbage rate of 92%. The
results in Table II and Table III suggest that the proposed
fragmentation-aware GC can achieve a more desirable trade-
off between the GC garbage rate and mapping fragmentation.

IV. RELATED WORK

Prior research has studied the potential of applying write
buffer/cache to mitigate the speed performance degradation
of SMR HDD. Xie et al. [5] proposed an endurable SMR-
oriented SSD Caching framework that uses SSD as a cache
in front of SMR HDD. Ma et al. [6] proposed a persistent
cache management scheme for SMR HDD, which can alleviate
the hot-data write-back effect. Yang et al. [7] developed a
virtual persistent cache design approach to improve the write
responsiveness of host-aware SMR drives. Prior research also
developed techniques to reduce the LBA-PBA mapping mem-
ory usage. He et al. [8] studied the track-based LBA-to-PBA
mapping table and developed a hybrid update strategy that
performs in-place update for certain qualified tracks. Shafaei
et al. [9] proposed a track-based static mapping translation
layer, which allows in-place data update by caching data on
the adjacent track. Researchers also explored other options to
enhance the real-world deployment of SMR HDD. Aghayev et
al. [10] demonstrated that one could slightly modify existing
filesystem in order to embrace the append-only write nature
of SMR HDD. Manzanares et al. [11] developed a data
management approach for SMR HDD that can minimize the
metadata overhead of indirect writes. Hajkazemi et al. [12]
developed techniques that can reduce the head seek latency
in SMR HDD. Liang et al. [13] proposed a sequential-write-
constrained B+-tree index scheme that better embraces the

operational characteristics of SMR HDD. Zhang et al. [14]
developed techniques that can reduce the impact of intra-drive
data cleaning process on the drive IO performance.

V. CONCLUSION

With the goal of allowing computing systems to seam-
lessly deploy SMR HDD and meanwhile minimizing the
performance degradation due to the loss of in-place update,
this paper advocates a host-managed design framework. The
essence is to make host-side block device driver responsible
for realizing LBA-PBA address translation and improving
drive performance. The key is to elastically and effectively
utilize the host memory resource. Under this framework, we
developed several techniques to enhance the block device
driver, including defragmentation-centric write buffer manage-
ment, fragmentation-adaptive tree-based LBA-PBA mapping,
and fragmentation-aware SMR HDD GC. We carried out
extensive experiments using a variety of IO traces, and the
results well demonstrate the effectiveness of the proposed
design techniques.
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