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ARTICLE INFO ABSTRACT

Keywords: Occupants’ comfort perception affects building energy consumptions. To improve the understanding of human
Test room comfort, which is crucial to reduce energy demand, laboratory experiments with humans in controlled envi-
Laboratory

ronments (test rooms) are fundamental, but their potential also depends on the characteristic of each research
facility. Nowadays, there is no common understanding for definitions, concepts, and procedures related to
human comfort studies performed in test rooms. Identifying common features would allow standardising test

Climate chamber
Human comfort
Human-centric experiments

Thermal comfort procedures, reproducing the same experiments in different contexts, and sharing knowledge and test possibilities.
Visual comfort This review identifies 187 existing test rooms worldwide: 396 papers were systematically selected, thoroughly
Acoustic comfort reviewed, and analysed in terms of performed experiments and related test room details. The review highlights a
Indoor air quality rising interest in the topic during the last years, since 46% of related papers has been published between 2016
Multi-domain comfort and 2020. A growing interest in non-thermal sensory domains (such as visual and air quality) and multi-domain
Energy performance studies about occupant’s whole comfort emerged from the results. These research trends have entailed a change

Indoor environmental quality in the way test rooms are designed, equipped and controlled, progressively becoming more realistic inhabitable

environments. Nevertheless, some lacks in comfort investigation are highlighted: some continents (like Africa
and South America) and climate zones are found to be underrepresented, while involved subjects are mainly
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students performing office tasks. This review aspires to guide scientists and professionals toward the improved
design or the audit of test room experimental facilities, especially in countries and climate zones where human
comfort indoors is under-studied.

List of abbreviations

IEQ Indoor Environmental Quality

WWR Window-to-wall ratio (expressed in %)
HVAC  Heating, Ventilating and Air Conditioning
ACH Air Change per Hour

VOCs Volatile Organic Compounds

SPL Sound Pressure Level (expressed in dB)
SBS Sick Building Syndrome

EEG Electroencephalogram

EDA Electrodermal activity

ECG Electrocardiogram

EOG Electrooculography

1. Introduction

People in developed countries spend 85-90% of their time indoors
[1]. Notwithstanding undeniable improvements in the quality of
building interiors in the past decades, a range of health risks and
discomfort issues associated with exposure to the indoor environment
persists. Researchers have demonstrated the strong connection between
the indoor environmental quality (IEQ) of a building and occupants’
comfort, health, and productivity [2,3]. Moreover, buildings’ energy
consumption is largely affected by occupants’ behaviour [4], triggered
by their perception of the surrounding environment [5]. Therefore,
decoding human comfort is a crucial issue in building science for
enhancing building design and operation from a sustainable perspective
and through a human-centric approach [6].

The scientific community approaches human indoor comfort by
coupling measurements of the physical environment (e.g., air temper-
ature, sound pressure level, air pollutant concentrations, illuminance)
and occupants’ feedback collected via surveys, behavioural and/or
physiological monitoring. Applied experimental protocols can be
broadly categorized into (i) in-field monitoring and (ii) laboratory
experiments.

In-field experiments allow researchers to observe subjects in a real
environment such as workplaces [7,8], residential [9] or educational
[10] buildings, or even semi-open transitional urban spaces [11]. This
approach provides essential outcomes, especially for assessing the
impact of real-space configurations on occupants’ perception [12], the
effects of building characteristics on occupants’ wellbeing [13], or the
impact of occupants’ behaviour on buildings’ energy consumption [14,
15]. However, it does not allow to directly control the environmental
parameters of the investigated spaces. Indeed, it is not feasible to isolate
the contribution of a single environmental factor or a specific combi-
nation of multiple environmental stimuli on subjective responses, for
example, overall comfort perception or productivity [16] in in-field
research, while this is fundamental to establish a cause-effect relation-
ship related to the comprehension of human comfort and the related
occupancy behaviour [17]. These issues can be solved through experi-
ments in controlled environments where desired physical boundaries
can be determined and replicated, so different subjects can be exposed to
the same stimuli and the influence of subjective factors elucidated [18].
Moreover, laboratory experiments generally allow researchers to
perform a more detailed investigation of human subjects and collect
physiological signals less commonly monitored in-field.

Many research institutions have built their own environmentally
controlled experimental facilities to perform human comfort-related
experiments worldwide and throughout the years. Each facility is
designed to achieve specific research goals, thus presenting different
dimensions, internal layouts, envelope characteristics, energy systems,
and monitoring setup. Different equipment types are also included
depending on the final aim of an experimental campaign targeting a
specific comfort domain. Examples include thermal manikins,
commonly simulating human thermal comfort [19] or inhalation
exposure [20], or different apparatus for studying the human reaction to
specific environmental input such as glare discomfort [21,22]. The test
room design influences the experimental design and the accuracy of
related modelling. The construction and technological details of the test
room decide on the extent and scope of the different stimuli that can be
provided as well as the different spatial layouts that can be generated.
Being an essential determinant of experimental methodology, a careful
design process of these facilities is of primary importance.

Due to the rising interest in better understanding human comfort,
many reviews shed light on different perspectives of the topic. Several
reviews summarise visual-related studies, reporting both lab and field
investigations, as well as simulation studies [24-27]. Others focus on
thermal comfort and different modelling approaches [28], main exper-
imental procedures [29,30], or its energy-related implications [31].
Nevertheless, none addresses the diversity of laboratory facilities, which
is a key component in the design of human-centred comfort
experiments.

The identification of standard tools for advancing knowledge in the
field would be helpful for the scientific community. An accepted glos-
sary for identifying such facilities is still missing. Many papers refer to
these facilities as test rooms or chambers or test-cells or simply labora-
tories. Here, “test room” was chosen as the most representative defini-
tion, highlighting the differences between facilities designed for human
comfort studies and laboratory equipment devoted to material testing.
Moreover, we define a “test room” as an enclosed space, environmen-
tally controlled and properly instrumented, in which human-centric
comfort studies can be performed through actual occupants’ presence
and monitoring.

This review aims at describing existing test rooms worldwide and at
summarizing experimental studies on human comfort performed in such
facilities to outline trends in the field, common components, and define
new research perspectives. Precise selection criteria of the papers have
been identified and used for the critical review (Section 2), and common
technical features and trends in construction have been taken into ac-
count (Section 3), while Section 4 focuses on the specific experiments
conducted in these facilities to deepen human comfort theory. Each
experiment was categorized based on the type of domain(s) of human
perception involved (thermal, visual, olfactory, and aural). In this
context, a distinction was made between single-domain studies, which
describe experiments focusing on thermal, visual, indoor air quality or
acoustical stimuli only, and multi-domain studies [18,32], which
simultaneously address two or more domains; for instance, the analysis
of thermal and acoustic stimuli on overall comfort perception, or the
analysis of thermal perception as influenced by lighting or air quality
conditions. The key findings and conclusions, including suggestions for
future research agenda, are summarised and critically discussed in
Sections 5 and 6, respectively.

2. Materials and methods

A systematic bibliographic search was planned and conducted to
establish a database as comprehensive as possible, looking at existing



A.L. Pisello et al.

test rooms for human comfort experiments according to available sci-
entific literature and not to miss any test rooms that the authors are
aware of. The final database is thus the result of two main steps: an
automatic search and a supplementary hand search (Fig. 1).

The automatic search was systematically conducted through Scopus
and Web of Science scientific databases to identify papers concerning
human comfort investigation in test rooms, as available up to June 2020.
The search was limited to journal papers written in English after 1985 to
keep the search consistent between the two scientific databases due to
the temporal limitation of Web of Science. To cover the scientific liter-
ature on the theme published before 1985, a further search was con-
ducted in Google Scholar. Different typologies of documents such as
books, book chapters, reviews, or conference proceedings were thus
excluded from the search to improve consistency and avoid repetitions
of the same study that may have been presented in different document
types. Five queries were designed within these boundaries, corre-
sponding to each aspect of indoor human comfort. The queries were
structured in three parts, progressively focusing on the purpose of the
review:

(i) on the laboratory facility where human comfort experiments took
place,
(ii) on the main aim of the studies, i.e., human comfort, and
(iii) on the specific comfort domain of interest (e.g., thermal, visual,
acoustic, air-quality related).

Each part of the query was detailed after a discussion among the
authors that are experts in human comfort studies and come from
different countries and cultural backgrounds. These cultural differences
provide a comprehensive definition of the facilities object of the review.
The first two parts of the query were used for all the five queries and
consisted of the following keywords: (testroom OR test-room OR
chamber OR laborator* OR “test cell”) AND comfort. The term “human”
was not included for not missing any contributions that may fit the scope
but did not explicitly mention humans’ involvement. The publications
not dealing with human comfort were excluded through the double-
screening procedure, as specified in the following. In addition to these
keywords, the five queries were distinguished by including the following
specific keywords:

1. Thermal
2. Visual OR Lighting
3. Acoustic
4. Air quality OR Pollution
5. Energy
Search criteria: scientific publications on usage of test room
for conducting experimental research on human perception and exposure
~
Databases Document type: Journal paper
Language: English
Years: before 1985 (Google Scholar), after 1985 (Scopus and Web of Science)
Search query:
Terms (facility) Terms (domain)
~Ant1<
Sc( e testroom 1. thermal
© Clarivate OR test-room 2. visual OR lighting
: - OR chamber AND COMFORTAND | 3. acoustic
Web of Science OR laborator* 4. air quality OR pollution
(n=1776) OR “test cell” 5. energy
-
—
" @ Abstract reading and selection (n = 598) Records excluded (n=1178)
S L
H
1]
*
Authors screening, full-text reading (n=304)
—J)
& Included studies (n = 396) I
';=: % Authors additions (n=92)
£z papers known by the authors
- ] fitting the search criteria
\——/

Fig. 1. Papers selection workflow.
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Each specific query focused on a single comfort aspect addressed
from the perspective of the provided physical stimulus, as associated
with thermal, visual, aural and olfactory human perception. In contrast,
the fifth query focused on the theme of energy that is commonly asso-
ciated with human comfort studies aimed at improving indoor envi-
ronmental quality while reducing building energy consumption.

The automatic bibliographic search resulted in 1776 papers. A
cleaning procedure of the database was performed by focusing only on
experiments both carried out in a controlled environment and address-
ing human perception and exposure. This procedure accounts for two
main steps. The first screening was conducted through a specifically
developed script in Python language for automatic abstract screening by
excluding papers presenting specific words referred to out-of-scope
disciplines such as medicine or veterinary medicine. After this first
screening, 598 papers were still included in the review process. and went
through the second screening phase: the papers were carefully read and
selected according to the primary purpose of the review. Only papers
describing experiments performed in the controlled environments (test
rooms) whose internal dimensions and conditions were suitable for
human experiments were considered for this review.

The hand search was carried out for reducing the automatic search
biases and limiting the number of existing test rooms not covered by this
review. Additional papers were included according to the previous
knowledge of the authors and the selection criteria that is the usage of a
controlled environment for conducting experimental research on human
perception and exposure. More than half of the additional papers (49 out
of the 92) concern the visual comfort domain, meaning that common
keywords coming from the other domains were not suitable to catch all
the visual comfort studies. The final number of analysed papers was 396.

Table 1 summarises the number of analysed papers per topic and
year of publication, considering four time periods: (i) up to 2000, (ii)
2001-2010, (iii) 2011-2015, and (iv) 2016-2020. Defined time periods
highlight the considerable increase in published papers on controlled
test room experiments on human comfort. Indeed, the increase ratio
observed during the first decade of the 21st century (1.9) is comparable
to the one observed for the first (1.5) and second (1.7) part of the
following decade.

The table depicts a predominant interest of the scientific community
in thermal comfort investigations (conducted either in isolation or in
combination with other factors) followed by energy-related studies
(total of 85 papers) and visual comfort assessments. Air quality studies
are less common, especially as a single stimulus for the participants
involved in test room experiments. Indeed, the total amount of reviewed
papers related to air quality assessment is 84. Only 18 of them were
found to focus on air quality only as a single stimulus, disabling the
olfactory from the thermal perception and all the other spheres of
comfort. More detailed presentation of the aims and procedures of the
air-quality-only studies is provided in Subsection 4.4.

Fig. 2 shows trends of publication for each specific domain of com-
fort, without distinguishing between single and multi-domains experi-
ments, with respect to studies published before 2000. Thermal comfort-
related experiments present the slowest increasing ratio from the
reference scenario. Air quality-related experiments show the greatest
increase in the number of published papers, with a slight decrease in the
last five years. A similar trend can be observed for energy-related
studies. Visual comfort-related studies are gaining more attention with
currently seven times more papers compared to available publications
before 2000. Aural comfort is the least investigated domain in controlled
environments. Reviewed papers including a focus on acoustic comfort
are 32 in total, half of which published in the last five years.

3. The test rooms around the world
From the 396 papers selected according to the systematic review

process, 187 different test rooms located in 126 research institutes
around the world have been identified based on the descriptions
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Table 1
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Number of journals papers published throughout years (up to June 2020) and concerning each analysed topic.

Domain(s) Time periods
<2000 2001-10 2011-15 2016-20" Total
1 domain Thermal 26 39 50 89 204
Air quality 3 3 4 8 18
Acoustic 0 2 2 7 11
Visual 5 10 23 32 70
2 domains Thermal + Air quality 0 10 22 19 51
Thermal + Acoustic 0 3 0 3 6
Thermal + Visual 1 0 1 17 19
Air quality + Acoustic 0 1 0 1 2
Air quality + Visual 0 0 0 0 0
Acoustic + Visual 0 0 1 1 2
3 domains Thermal + Air quality + Acoustic 1 0 1 1 3
Thermal + Air quality + Visual 0 1 1 0 2
Thermal + Acoustic + Visual 1 0 0 1 2
Air quality + Acoustic + Visual 0 0 0 0 0
4 domains Thermal + Air quality + Acoustic + Visual 0 0 1 5 6
Total 37 69 106 181 396
energy related” 5 15 29 36 85

? The energy-related topic is transversal to the others.
b The count for 2020 considers only those documents indexed until June 2020.

10

74 a1 4

6- & 7/ ]

3 .
1 e 1

Increase ratio with respect to
the total amount before 2000

2001-2010 2011-2015 2016-2020
Time period

—A— Acoustic

before 2000

—=— Thermal Visual Air quality | —— Energy

Publications

before 2000 2 ¢ : N )

Fig. 2. Publication increase ratio with respect to the number of published pa-
pers before 2000 for each query.

provided in the papers.

Fig. 3 summarises the test rooms distribution across continents (a,b)
and different climate conditions (c), referring to the Koppen-Geiger
climate classification [33]. Nowadays, the great majority of test rooms
are located in Europe and Asia (82%), and in a temperate climate,
without dry seasons, characterized by hot (Cfa) and warm (Cfb) summer.
29 out of the 44 test rooms located in the Cfa climate zone are in Asia
(South and coastal area of Japan and South-Eastern China mainly),
while 54 out of the 57 test rooms located in Cfb zones are in Europe
(North-Western countries mostly). Fig. 3b presents how the worldwide
distribution of these facilities varied across time (all the test rooms were
dated per the oldest related paper available in the review dataset). Eu-
ropean countries have the oldest tradition in human-related experiments
conducted in controlled test room settings: 50% of the facilities already
existing before 2000 were located in Europe. The number of facilities in
Asia has grown over the last 20 years from 18 to 41% of the total number
worldwide in 2020, overcoming the number of facilities located in North
America (13%).

The following subsections are intended to provide helpful informa-
tion for researchers evaluating whether to create or buy a test room for
human comfort studies. These illustrate the range of test room charac-
teristics that enable the researcher to perform different experiments and
investigate specific aspects of human comfort. An overview of con-
struction and technical details is provided in section 3.1 and 3.2, in
accordance with the available information from the reviewed papers.

Then, sections 3.3 and 3.4 provide insights into the economic invest-
ment required to set up these kinds of facilities, either if these are
customized or commercially available. Since none of the reviewed pa-
pers provides information on test room costs and related economic in-
vestment, data provided in sections 3.3 and 3.4 come from an additional
search: an online survey was submitted to authors of the identified
significant and recent literature, seeking details on key aspects of the
needed economic investment (including design, construction, operation
and maintenance costs). Finally, commercial test room producers (eight
institutions from the U.S. and five institutions from Europe) were
directly contacted to provide dedicated insights for the readers, reported
in section 3.4.

3.1. Construction details

The construction details were specifically examined to determine
how passive elements of the test room, including windows, shades,
layout, size, and position within or external to an existing building, may
allow or hinder different types of investigations. Unfortunately,
comprehensive descriptions of the test rooms construction details are
not always available. It was not possible to assess whether the test rooms
are located inside a building or are entirely independent buildings for
10% of the 187 test rooms identified. According to the available infor-
mation, only 7% of the facilities are independent buildings, external to
any other building [34-47]. Five of these independent test rooms are
located on a platform that allows the whole structure to rotate [34-37,
41]. The great majority are situated inside the related research institute.
Among these, it is possible to distinguish between facilities completely
detached from the surrounding structure (43%) and test rooms that are
specifically equipped rooms within the hosting building (32%).

Some test rooms include more than one room. These rooms could be
adjacent, but with independent entrances, or connected through an in-
termediate door. The latter configuration allows researchers to contin-
uously monitor participants’ reactions when exposed to different
controlled environmental conditions [48]. Eight of the external facilities
have just one room, but the possibility to work with movable internal
partitions is mentioned for four of them [38,41,43,44]. The other six
outdoor test rooms present two rooms, and four out of the six have
movable partitions for changing the interior space layout [34,35,40,45].
For the inside test rooms, single room configurations are most common
(79%), some of which can be modified through movable interior parti-
tions (19%). More information about the number of rooms embedded in
the test rooms and their dimensions are summarised in Table 2.
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Fig. 3. (a) Number of test room facilities located in the seven continents; (b) amount of test rooms located in each continent for each defined time period; (c)
frequency distribution of test rooms with respect to Koppen-Geiger climate classes [33].

Table 2
Test rooms composition and dimensions with respect to their position (inside or outside another building).
Test rooms position Number of rooms Dimensions [m®] Total
1 2 >2 N/A <9 9-20 >20 N/A
Inside Detached” 53 8 1 4 5 16 36 9 66
Integrated” 37 8 2 2 0 43 2 49
N/A 32 2 0 6 1 5 20 14 40
Outside 8 6 0 0 0 4 10 0 14
N/A 7 1 0 10 0 1 4 13 18
Total 137 25 3 22 6 30 113 38 187

# With respect to the building structure of the related research centre.

It was not possible to define whether the described test rooms present
any type of openings for 41% of the recognized facilities, 25% of the test
rooms located inside have no openings, 18% have windows facing the
outside, 16% have windows to interior spaces, and just 2% have both
windows to the outdoors and the indoors (Fig. 4). Among the 14
experimental facilities built outside, only one does not have windows
[46]. At the same time, five include an adjustable envelope to vary the
window-to-wall ratio (WWR) [35,37,41,43,45], five have a WWR lower
than 0.5 [38,39,42,44,47], and three have a WWR in between 0.6 and
0.8 [34,36,40]. Concerning the shading system, it is clearly stated that
there are external blinds in three test rooms [34,36,47], four present
internal shading systems [38,40,42,44], while just one has both [39].

Half of the test rooms have no specific internal layout, meaning that
there is no intention to simulate a real space but only to expose subjects
to controlled environmental stimuli. Equipment for performing physical
exercises are included in 10% of these test rooms [49-64]. All the others

o ind
position detached | integrated ’ N/A ’ D HO-WINCOWS
facing the interior
| H ‘ ‘ TTTTTT ’ \H ‘ l | Dfacinglhe outside
window | Na N/A
both
0 10 20 30 40 50 60 70 80 90 100

Reviewed internal test rooms [%]

Fig. 4. Overview of the most common combination of characteristics for inside
test rooms, in terms of its position with respect to the main structure and the
windows availability.

have no specific furniture, even if 49% are larger than 20 m®. Finally,
12% of the analysed test rooms are presented in different papers with
different internal layouts, 32% are equipped as offices, 3% as classrooms
[65-69], and less than 1% present other configurations [70-73].

The above presented physical characteristics of the reviewed test
rooms can be associated with their capability of performing different
types of experiments, focusing on different domains of human comfort.
The external test rooms are more commonly devoted to visual-related
experiments. Indeed, six out of the 14 exterior test rooms are associ-
ated with visual-only experiments, while only one was used for testing
human comfort conditions due only to thermal boundaries. When more
than one domain is explored, four test rooms hosted experiments
providing combinations of thermal and visual stimuli; the air quality
influence was additionally explored in one test room while all the four
domains of comfort were explored in only two of the 14 external test
rooms.

With respect to performed experiments, it is more complicated to
deduce the most common combination of construction details for the
test rooms located inside other facilities due to a lack of information on
all the analysed features. Only 82 out of 155 reviewed test rooms are
described in terms of both (i) their position in the hosting facility (de-
tached or integrated) and (ii) windows availability facing the inside or
the outside. Accounting for these two aspects, detached test rooms
generally have no window (56%) and are more commonly adopted for
investigating human comfort under thermal stimuli only (46%). Those
test rooms that are integrated into the main structure, as specially
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equipped rooms, commonly have windows facing the outside (68%) and
are mainly used for experiments on visual domain only (54%).

3.2. Technical details

Similar to the presentation of construction details, the technical ca-
pabilities of the test rooms directly inform what types of experiments
can be conducted. Specifically, this subsection outlines which parame-
ters are controllable and to what degree. As a first step, an analysis of the
most common parameters that could be controlled by the test room
systems was conducted. For this purpose, the relevant information was
extracted from the corresponding papers for each test room and cate-
gorized as presented in Table 3.

This categorization is more granular than the multi-physics domains
introduced in Section 2 (thermal, visual, air quality and acoustic com-
fort) to better characterize the specific system types used to influence
each domain parameter. Indeed, in some cases, multiple controlled
parameters will impact a single domain such as air temperature, mean
radiant temperature and incoming solar radiation, all impacting thermal
comfort. Additionally, the controlled parameters were subdivided into
centralized and personalized systems (generally located at a desktop or
at a participant/manikin). In the process of this categorization, 91 test
rooms were selected for further analysis because related publications
provided relevant and sufficient information. Fig. 5 summarises the
number of test rooms which can control each of the listed parameters. In
some cases, one test room is counted multiple times in this plot, once for
each parameter its system controls.

The most common centrally controlled parameter is air temperature,
followed by humidity and air quality control. All these three parameters
can potentially be controlled by HVAC (Heating, Ventilation and Air
Conditioning) systems with a humidifier and/or dehumidifier equip-
ment, heating and/or cooling coils, and air filtering. The common
practice of controlling thermal conditions in actual buildings, together
with the predominant focus on thermal comfort studies (highlighted in
Section 2), is likely why these controlled parameters are found to be so
common. Fig. 6 summarises the ranges for each of these three controlled
parameters for all of the test rooms where ranges were reported. As
shown, nearly all the test rooms can control air temperature between 15
and 30 °C, and relative humidity between 30 and 70%, but air-speed
control was more variable. Almost all test rooms were able to control
these parameters at least in the ranges covered by indoor comfort
standards such as ISO 7730 [74] and, in many cases, well beyond this
range, particularly with respect to the seven low-temperature chambers.

Only a few papers included details of the other parameter ranges.
Control of air change rates in the test rooms, which is accomplished
through multi- or variable speed fans, ranged from O to 36 air changes
per hour (ACH) but generally allowed for control within the minimums
required by the EN 12931 (0.5-3.6 ACH for residential buildings) [75]

Table 3
Categorization of technological systems and related controlled parameters.

Technological control
system for comfort

Controlled parameters

Ventilation and space
conditioning

Air temperature

Air velocity

Air humidity

Air quality (gas concentration, air changes per hour)
Envelope superficial temperature

Radiator or other element temperature (e.g., clothes,
furniture)

Mluminance

Solar radiation (artificial, e.g., solar simulator)
Solar radiation (natural, e.g., actively controlled
blinds and shades, electrochromic glass)
Background noise level (sound intensity, sound
pressure level)

Sound typology (soundscape)

Heating/cooling surfaces

Light sources

Acoustic systems
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Fig. 5. Frequency distribution of reviewed test rooms which can control the
listed parameters.

and by EN 16798 part 3 for offices (1-8 ACH) [76]. Only five test rooms
reported the temperature range at which their radiant wall systems
(either electric or hydronic panels) could be controlled (generally be-
tween 10 and 40 °C). For rooms with reported artificial lighting, the
range 100-800 Ix covered and exceeded the requirements (e.g., EN
12464) [77]. A few publications also reported the ability to vary the
correlated colour temperature of the artificial light (2000 K to 10,
000 K). There was insufficient information about artificial solar radia-
tion and acoustic systems to report ranges here.

Only 11 of the reviewed test rooms included parameters that could
be controlled at a personal level. Furthermore, most of these personal-
ized systems were only temporary for specific experiments and not a
fixed part of the test room. Typical setups would be ventilation tubes
aimed at a desktop, heated/cooled clothing and chairs, electrical heated
mats or computer equipment (mouse, keyboard), and electrical
radiators.

The parameters controlled by the test rooms were also examined
based on the estimated date of construction of the test room to identify
trends or most prevalent innovative technologies, as shown in Fig. 7. It is
also unknown if or when test rooms have been upgraded, nor do we have
insight about the upgrades made. Thus, the results in Fig. 7 represent the
latest built stage of the test rooms according to the publications and may
differ from their technologies at the given date of construction. The
graph suggests a trend towards incorporating the control of acoustic
sources, artificial and natural solar radiation, illumination, and radiant
heat sources, including radiators and radiant wall panels.

Furthermore, the analysis revealed that personalized control systems
are becoming popular in newer test rooms constructed after 2000.
Finally, in the latest test rooms built between 2011 and 2020, there also
seems to be a trend for controlled multi-domain installations with six
test rooms since 2013, controlling at least three domains.

3.3. Economic investment

The economics of test rooms is rarely reported. Therefore, a survey to
assess key elements related to this topic was designed. All co-authors of
this manuscript and authors of identified literature were invited to
complete it. In total, 18 responses related to separate test rooms were
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obtained, of which 14 have been completed, and four are still under
construction. Except for one completed in 1990, all others have been
built within the last ten years. The majority of the test rooms is either a
test room constructed within an existing building (N = 8) or a building
itself (6). Three test rooms are newly built test rooms within a new
building, and one test room is an existing room refurbished and
upgraded to serve as a test room. The vast majority is located in Europe
(13), followed by Asia (3) and North America (2).

Local currencies have been converted to EURO based on currency
rates from September 4th’ 2020. The total budget ranges from EUR
45,500 to EUR 943,000 (mean = EUR 347,000 =+ 299,000,
median = EUR 240,000). For eight test rooms, information was pro-
vided in more detail. On average, shell construction costs (especially for
those test rooms built as stand-alone test rooms within new buildings)
are highest (mean = EUR 175,000), followed by costs for design,
contracting, and commission (EUR 91,000), heating and cooling system
(EUR 31,000 and 34,000), and in-built sensors and the Building Man-
agement System (EUR 33,000 and 19,000). This large variety can be
explained partly by the variety in the type of construction, controlled
and monitored variables and the ranges within which these variables
can be controlled. In addition, it can be expected that prices vary locally
and between countries. Seven out of 18 test rooms were fully funded by
governmental sources, either from basic funding (N = 3) or project

funding (4). In addition to public and project funding, five test rooms
were partially funded by the industry (min 5%, mean 24%, max 70%).

In addition to initial construction and installation costs, running
costs (e.g., electricity, gas, water) and/or maintenance costs were
assessed. Running costs were reported solely for three test rooms, but
differed largely (EUR 2500 to 17,500 per year). Interestingly, the source
of funding for running costs was provided for 14 test rooms, of which
nine responded that the university pays for running costs, three state
project funding, and the other shared funding either between the uni-
versity and the lab (10/90%) or the university and project funding (20/
80%). The large discrepancy in response numbers between actual costs
and funding source may signify that researchers are not aware of the
running costs. Maintenance costs were provided for eight test rooms and
range between EUR 930 to EUR 10,000 per year (EUR 5100 + 3500).
Funding sources for maintenance costs vary more than running costs for
12 out of 14 facilities, for which such information was provided. In three
cases each, maintenance is paid fully from the laboratories’ basic
funding or project funding. In two cases, the university covers all
maintenance costs. In the other cases, maintenance costs were shared
between the university, basic funding of laboratory and project funding
with varying degrees. Only in one case, 25% of maintenance costs are
provided by industrial partners.

3.4. Commercial test rooms

Commercial test rooms are available on the market to provide re-
searchers who want to use an already existing and tested product with
an off-the-shelf option. These test rooms tend to use a similar structure
and envelope materials as prefabricated foam-insulation panels with
stainless steel, galvanized or coated aluminium (usually white) interior
surfaces for fast and easy installation. This is for protecting the test room
surface from being damaged or corroded by moisture and chemicals.
The stainless-steel chamber can also help minimize the adsorption of
VOCs by the surfaces, which is critical to some indoor air quality studies.
However, for human-centred thermal studies, the reflective properties of
the interior surfaces also determine the radiative heat exchange in the
space, thus additional materials or painting are needed to simulate a
‘real-life’ condition. The test room usually has at least one hinged door
made of the same material and optional windows of different sizes.
Important differences between offerings tend to be in the type of airflow
achieved in the test room. Cheaper and smaller systems tend to have the
heat exchangers inside the room and achieve spatial stability by
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producing turbulent flows. More laminar flows are achieved with wall-
to-wall or floor-to-ceiling air flows across the whole wall/floor, which
requires a plenum space inside the test room, thereby increasing the
external size. Most of the rooms come with predesigned and pre-
packaged conditioning systems that can provide space heating and
cooling, ventilation, humidification, and dehumidification to the room.
Air temperature, relative humidity, and ventilation rate are under con-
trol and monitored. Some test rooms are even equipped with pressure,
CO», and O, sensors.

The operating condition of commercial test rooms depends on their
application that can be testing equipment, storing experimental mate-
rials, and also human-centric tests. Here, since we only focus on the test
rooms for the human-centric test, the surveyed test rooms only include
those capable of providing conditions indicated by the green box in
Fig. 8.

These commercial test rooms can be as small as 1.5 m? and as large
asup to 10 m? with a height in between 2.4 and 2.6 m. The price of the
test rooms (N = 13 units personally contacted by the authors) ranges
from EUR 54,600 to 210,000. The average quote from U.S. companies is
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around EUR 128,100 with a standard deviation of EUR 44,000, while the
average quotation from Europe is around EUR 99,800 with a standard
deviation of EUR 27,400. On average, the test rooms from the U.S. (8)
are a little more expensive than in Europe (5). The explanation may
include regional reasons such as shipping and labour, material and
sensors cost, and size difference. One should note that the size and
quotes obtained in this study are based on the smallest test room with
the basic features of temperature, relative humidity, and ventilation
control with at least one occupant. The quotes were obtained in August
2020, and for the commercial test rooms made in the U.S., the quote was
converted to EUR based on the exchange rate on September 4th, 2020 [1
USD = 0.84 EUR].

4. Test room experiments on human-environmental comfort

This section focuses on the experiments conducted in the test room
above presented in terms of their structure and main functionalities.
Each subsection presents an overview of the main aims and procedures
of test room experiments answering the question, what is the scientific

Mollier-Diagram (p= 1013 mbar)
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Fig. 8. Required operating conditions of the surveyed commercial test rooms.
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community looking for through test room experiments? Scopes of the
experiments are broadly clustered in the presented subsections with
respect to (i) the comfort domain of interest (sections 4.1-4.5), (ii) the
subjects’ involvement (possibility to interact with the test room during
an experiment, section 4.6), and (iii) the investigation of the energy
related aspects (section 4.7), which are all relevant aspects for human
comfort studies. Concerning the applied procedures, the main distinc-
tion is adopted between stationary and dynamic conditions.

4.1. Thermal-only experiments

This subsection reviews 204 papers on test room studies that
explored the effects of thermal conditions on participants. The scope of
the reviewed thermal experiments can be broadly classified into three
categories: (i) fundamental research aiming at providing a better un-
derstanding of human thermal comfort; (ii) technology-oriented exper-
iments, whose purpose is to test the thermal comfort performances of
specific types of heating and/or cooling systems or newly developed
clothing; (iii) predictive studies with the purpose of data collection to
test and train novel predictive models. Fundamental studies are more
common than technology-oriented and predictive studies, respectively
57%, 36% and 7%, and their distribution over the last four decades is
shown in Fig. 9a. Fundamental studies include research focusing on a
variety of different aspects influencing human thermal comfort such as
thermal adaptation [78-82], thermal acclimatization [83-86],
increased air velocity [87-90], relative humidity [60,91-94], gender
[95-98], age [52,99-102], transient thermal conditions [93,103-107],
perceived control [108], and the influence of emotional states [109,
110]. About 30% of the thermal experiments are dedicated to the study
of non-uniform thermal conditions. Non-uniformities and thermal
asymmetries are not seen only as a cause of discomfort; indeed, many
recent studies aim to understand how comfort can be enhanced with
local thermal stimuli [111-120].

The technology-oriented experiments mainly look at the thermal
comfort performances of specific types of equipment, such as innovative
heating and/or cooling systems (thermo-electric air cooling systems [38,
121], stratum, mixing and displacement ventilation [122-124],
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underfloor air distribution systems [122,125], radiant cooling/heating
panels, floors and ceilings [126-129], ceiling fans [130], etc.). In
particular, the last 20 years have seen a progressive increase in the
number of experiments dedicated to local heating and/or cooling sys-
tems (personal cooling with phase change materials [112,113], hea-
ted/cooled chairs [114-116], seats heated with encapsulated
carbonized fabric [120], feet heaters [117,118], etc.). About 40% of the
technology-oriented experiments aim to test new clothing (uniforms for
heat strain or cold thermal stress attenuation in the construction in-
dustry [50,51,131,132], sports clothing [53,133-135], protective
clothing systems [136,137], cooled/heated garments [138,139], etc.).
The distribution of the technology-oriented experiments based on the
type of system studied (heating or cooling, local heating and/or cooling,
clothing) over the four different climate groups is shown in Fig. 8b. As
expected, in tropical climates there is a prevalence of experiments
studying cooling systems, while in continental climates, the focus is on
new clothing systems.

The predictive studies provide experimental data to either develop,
test and train novel data-driven predictive models. Many of them aim to
predict either thermal comfort or thermal stress (e.g., heat strain indexes
[140,141]). Instead, others are attempting to build models for predicting
metabolic rate and clothing insulation levels [64,142].

A majority (46%) of the reviewed thermal experiments deal with
both warm and cold thermal conditions, 39% of them only focus on
warm conditions and the remaining 15% on cold conditions. They
mainly consider sedentary activity levels (77%), only a few of them
focus on high metabolic rate activities (21%) and a minority on sleeping
(2%). Furthermore, most of them consider stationary thermal environ-
ments, while the experiments dealing with dynamic conditions mainly
study step-change transients [93,103-107]. In the last 20 years, female
and male participants have been equally represented in the thermal
experiments; nevertheless, elderly and children continue to be under-
represented groups (in only 3% of the experiments). Concerning the
sample size, a majority of the experiments (57%) employ between 10
and 50 participants, 31% of them recruit less than 10 participants, and
only 12% more than 50 participants. In most of the experiments (about
70%), participants are passive recipients of thermal stimuli without any
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possibility of adaptation/control.

The ASHRAE 7-point thermal sensation scale is the most used metric
of thermal perception, followed by thermal comfort, thermal accept-
ability, thermal preferences, and cognitive performances. Air tempera-
ture is the most frequently monitored environmental variable (in 90% of
the experiments), followed by relative humidity (75%), air velocity
(63%), globe temperature (36%), and wall surface temperatures (9%).
Air turbulence intensity, luminance, and solar irradiation (artificially
provided) are more rarely monitored. Oxygen and carbon dioxide
measurements are mainly used to estimate the metabolic rate, less often
as a proxy of air quality. Skin temperature is the most common personal
measurement (60% of the experiments), followed by heart rate/heart
rate variability (27%), rectal/body core temperature (18%), body
weight for sweat rate determination (7%), skin wetness (6%), ear/oral
temperature (5%), skin surface blood flow (4%), blood pressure (3%),
and skin heat flux (2%). Some very recently emerging topics are the use
of immersive virtual reality [143-145] and the monitoring of brain
electrical activity patterns [109,146].

4.2. Acoustic-only experiments

This subsection looks at 11 test room studies exploring the effects of
acoustic conditions on participants by investigating different human
responses and developing or evaluating new metrics for soundscapes
description (Fig. 10). The test room experiments’ aims include investi-
gating maximum heavy-weight impact sound levels for perceived com-
fort [147], effects of sound pressure levels (SPL) and sound types on
children’s task performance [148], factors that contribute to sound
complexity [149], effects of speech noise and speech transmission index
(STD) in offices on cognitive performance [150,151], suitable masking
sound frequency distribution for offices [152], effects of low-frequency
noise in offices [153], effects of various noise sources on occupants in
multi-family buildings [154], useful acoustic parameters that effectively
describe to perceived sensations of urban sounds [155,156], and effects
of introducing natural sounds to urban noise [157].

Many of the studies followed the general procedure of exposing
participants to stimuli (recordings of sounds at various SPLs, fre-
quencies, or decay rates) while performing cognitive tests and/or
completed subjective assessments of the acoustic environments.

Test room setups and specific data collection procedures varied
considerably among the studies. For instance, the provided stimuli
length ranged from 10 s to 45 min, and the time that participants were
given to respond to objective and subjective assessments ranged from
5 sto aslong as the participants wanted to take. Most of the studies used
loudspeakers to play the studied sounds, except Hermida and Pavén
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[156] and Hong et al. [157], who used headphones, and Jeon et al.
[1471, who used both loudspeakers and headphones. Only three studies
[150-152] had test room setups that mimicked the type of real-world
environment that they were investigating. Concerning the overall
environmental control, three studies [150,152,153] mentioned that
other indoor environmental conditions (such as temperature and light-
ing level) were kept constant in the test rooms. In contrast, others did not
give any description of non-acoustic environmental conditions in the
test rooms that could potentially affect the study outcomes.

For acoustic experiments involving human participants, it is common
practice to screen participants’ hearing abilities before conducting
listening tests to avoid bias in the perception analysis. However, only
four studies [147,149,153,157] screened their participants’ hearing
abilities using audiometers and other devices, and three studies [148,
152,155] used subjective assessments to determine hearing abilities.
Other studies either did not do similar screening or did not specify how
they determined participants’ hearing abilities. In addition, only three
studies included evaluation of the effects of demographics, for example,
age [147,148,150] and gender, and personal factors, such as personality
traits [150], on participants’ responses. Finally, just one study [153]
monitored the physiological responses of participants (including the
electrical activity of the brain, eye activity, heart rate, and heart rate
variability) to low-frequency sound exposure using electroencephalog-
raphy (EEG), electrocardiogram (ECG), electromyography (EMG), and
electrooculography (EOG) signals.

Regarding sample size, six out of the 11 reviewed studies involved
between 10 and 50 participants, with a minimum of 23 [152], while all
the others involved more than 50 participants up to a maximum of 290
[148].

4.3. Visual - lighting-only experiments

The following overview focuses on visual-related experiments aim-
ing at studying subjective evaluations of the visual environment per-
formed in controlled environments. Studies conducted with the use of a
scale model (e.g. Refs. [158-160]), with a small apparatus (e.g. Refs.
[161-163]), in a booth (e.g. Ref. [164]) or in virtual reality (e.g. Refs.
[165,166]) were excluded from the analysis as they were not performed
in real-scale controlled environments. Investigations on electric lighting
evaluations primarily aiming at testing lamp brightness and colour
rendition based on lamp characteristics (e.g. Refs. [167-170]) were also
not included. The resulting sample analysed consisted of 70 papers.

As introduced in Section 2, visual-related studies in controlled ex-
periments have increased over the last decade, with more than 77% of
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the considered studies conducted between 2010 and 2020 (Fig. 11). The
type of light source investigated has been relatively constant throughout
the years, with an equal number of studies focusing on electric light and
daylight (Fig. 11b). The majority of studies focused on glare (more than
50%), either to evaluate subjective perceptions due to variations of
lighting conditions or other factors’ influences (such as time of the day
or openings and blinds features) [21,22,37,39,42,66,171-182], develop,
evaluate or validate metrics, thresholds or indexes [35,68,183-193],
investigate glare influence on performance and physiology [187,
194-196] or study a combination of such objectives (Fig. 11a). Other
studies investigated visual perceptions of the visual environment, sur-
face finishing preference, physiological responses, performance, sleepi-
ness, vitality, arousal, tension, mood, self-control and
cognitive-biological processes (light-reactive hormones of melatonin
and cortisol) mainly related to the light quantity and correlated colour
temperature (CCT), but also in relation to light uniformity, wall lumi-
nance, light source type, flicker rate, view and chromatic glazing [164,
197-216]. The majority of the studies did not allow for personal control
of the environment, testing pre-defined conditions, and were conducted
with 10-50 participants. Only in a few studies participants were
requested or simply allowed to vary their visual environment through
the operation of blinds and electric lights, either to evaluate glare con-
ditions or to assess how occupants perceived their visual environments
associated with diverse luminous ambiences created by daylight in
apartment buildings [73,189,191].

Most of the investigations were conducted in re-configured office
spaces located in existing buildings, transformed into experimental test
rooms in which it was possible to control or at least measure visual
parameters. The traditional configuration was a side-lit single office,
generally bigger than 20 m>. Still, some investigations used a corner
office [193], a mock-up of an open-plan office with multiple workplaces
[209], a re-configured classroom [66], a full-scale mock-up conference
room [208], or divided an existing office room with internal vertical
partitions, resulting in smaller experimental spaces [217,218]. Some
glare experiments used full-size apparatuses consisting of a semi hex-
agonal lighting chamber equipped with a chin rest [22,172,173,176] or
of a semi-spherical screen with two halogen lamps mounted on a 1-m
radius round boom [21,185]. Only fewer studies were conducted in a
stand-alone test room, either located indoor [197,198,200-204,
210-213,219] or outdoor [35,42,179,188,192,194,220,221]. Some of
the outdoor facilities were rotating structures [35,179,192,195,220],
allowing daylight conditions to be tested with a reduced impact of the
daylight variations due to the season and time of the day. Very few test
spaces were designed to have a side-by-side configuration with two
identical spaces, one for participants and the other for measurements
[35,171,183,187,189,190,194,220]. This particular setting, aiming at
decreasing interventions in lab experiments, is particularly suitable for
visual-related investigations as photometric data are relatively affected
by the presence of people, contrary to the other indoor factors that have
to be measured close to participants. The presence of a window to the
outdoors was linked to the type of experiment investigated. Almost all
experimental spaces provided with a window investigated daylight,
except for those studies that performed the experiments at night [222]
or in which windows were shaded with a black-out fabric or blocked
[164,180,199,207,217]. The studies investigating a mix of daylight and
electric light were provided with shading devices [189,190,205,220,
223]. On the other hand, not all the studies on daylight were provided
with a real window to the outdoor (intended as an opening with a view),
but used artificial windows [37,177,181,192,204] or anidolic systems
on the southern facade [224]. Non-visual factors were measured,
controlled, or balanced across experimental conditions in almost all
stand-alone test room experiments, and only in fewer re-configured of-
fices [199,205,217,218,223,225]. The factors considered were primar-
ily air temperature and humidity, but also noise [217,218] and air
quality [37,197,198].
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4.4. Air quality-only experiments

This subsection describes the controlled air quality-only experiments
in test rooms summarised in 18 papers according to the reviewed
database. Additional four papers that fall under two-domain experi-
ments are included in the analysis since thermal and air quality aspects
are hard to disentangle as the thermal analysis is ancillary to the air
quality assessment [72,226-228]. Among the representative selections
of 22 air quality studies in test rooms, researchers have focused on the
three main topics: (i) understanding perceived air quality, productivity
and health under a range of environmental parameters [71,72,
229-235]; (ii) human inhalation exposure and spatio-temporal variation
of air pollution in a space [20,228,236-241]; and (iii) airflow distribu-
tion in occupied spaces and ventilation effectiveness [226,227,
242-244] (Fig. 12). These topics were pursued through a combination of
questionnaire surveys, environmental measurements (near a study
participant, in bulk air or ventilation ducts), and physiological mea-
sures. Discrepancies in facilities among the selected studies include test
room layouts (office space, classroom, aircraft cabin, hospital room),
test room volumes (small below 10 m®, medium 10-50 m?, or larger
than 50 m3), surface materials (stainless steel, polytetrafluoroethylene,
aluminium, glass or their combination), type of air pollutant generation
(continuous or episodic), ventilation type (mechanical or mix-mode
ventilation), ventilation strategy (mixing, displacement, underfloor or
personalized ventilation), degree of air mixing (ventilation only or
additional use of mechanical fans), operating procedure (dynamic or
stationary conditions), and participant type (real occupancy or use of
breathing thermal manikins).

In the reviewed air quality papers, all test rooms were located inside
of the building and had control over the ventilation rate, air temperature
and relative humidity. While nearly all studies reported air temperature
and relative humidity values and associated uncertainties, only 12 out of
22 studies reported air change rate values (mean = 3.89 h’l), out of
which only three described the method of estimation [237-239]. These
studies used the tracer gas decay method by means of low adsorption
tracer gases such as CO,. The majority of the selected studies were
performed in test rooms larger than 20 m® (mean floor
area = 30 + 27 mz), which is important for mimicking various indoor
layouts occupied with people and for studying air contaminant distri-
bution in the space. Twelve studies focused on mimicking office envi-
ronments, whereas other studies focused on aircraft (2), classroom (1),
hospital (1) and other unspecified environments (6). Studies involving
perceived air quality, Sick Building Syndrome (SBS) symptoms and
productivity under variable levels of gas-phase pollutants [71,72,
229-235] had a significantly higher number of study participants
(76 £ 9.3) compared to studies focusing on human inhalation exposure
and spatio-temporal variation of indoor air pollutants (8.2 + 13.6) [20,
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228,236-241] and airflow distribution in occupied spaces and ventila-
tion effectiveness (2.3 + 2.1) [226,227,242-244]. The majority of
studies focused on measurements of CO5 (9), followed by VOCs (7),
particulate matter (4), and other inorganic gasses such as NO3, N2O, Os,
and CO. Measurements of these air pollutants were performed with
scientific instruments, which were not an integral part of the test rooms.
None of those studies reported the adoption of the optimal inner coating
of the test room surfaces, which is essential to determine how these
coatings influence heterogeneous reactions with volatile organic com-
pounds and other gaseous pollutants. Among the selected papers, only a
fraction (2) reported issues that could arise due to pollutant uptake or
emissions in the test rooms. Furthermore, in all studies, there was a lack
of integration between advanced online and offline instrumentation and
analytical techniques within the test rooms.

4.5. Multi-domain and whole comfort experiments

The goals of a multi-domain experiment can be categorized into (i)
evaluate the effect of specific building technologies or control strategies
on occupant multi-domain comfort [119,245-250]; (ii) understand
cross-modal and interaction between different domains [46,72,
251-268]; (iii) model the physiological [97,100,228,269,270] or
behavioural [271-273] response of occupant to combined multi-domain
stimuli and to understand the effect of IEQ on stress [274,275]; (iv)
identifying new multi-domain metrics such as air enthalpy [251], air
distribution index [276] and bio-signals such as skin temperature [277]
for the whole comfort. In some cases, the energy consequences of such
multi-domain interactions are also captured, as for the studies investi-
gating novel personalized thermostats [272,278,279] or novel visual
comfort systems [39,45] to improve energy efficiency and comfort.
Among the studies focusing on the effect of specific building technolo-
gies or control strategies on occupant multi-domain comfort, the
development of novel personal comfort systems in buildings [113,116,
245,246,248,280-286] and vehicles [118] has received particular
attention.

The interest in studying occupant response to multi-domain stimuli
has increasingly grown since 2000, especially after 2010. Multi-domain
experiments constitute 23% of the overall 396 occupant comfort ex-
periments in test rooms, as given by the review database. Most of these
studies investigated the relationship between two physical domains,
while studies focusing on three or more physical domains were just 4%
of the whole database. In terms of investigated combinations of do-
mains, thermal and air quality represent the most studied one, followed
by thermal with visual and thermal with acoustic (Fig. 13).

The majority of the studies were conducted under stationary condi-
tions, while only a third of the studies exposed occupants to changing
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Fig. 13. Multi-domain experiments by combination of each domain.
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environmental or dynamic conditions. Dynamic conditions were ach-
ieved either by step changes in indoor conditions [246,248,251,257,
274,287-289] or, especially concerning thermal-related studies, by fast
and long changes [79,265,275,290], meaning that a rate of change
greater than 2 K per hour is provided for more than 1 h of exposure.
Only a few studies investigated multi-domain effects under high-speed
conditions [91,250,291] or slow and long dynamical changes [263,
271,292].

In addition to highly accurate monitoring of environmental param-
eters, most studies capture occupants’ responses as a combination of
subjective and physiological parameters. Nearly half of the studies
(53%) relied only on subjective occupants’ responses. Table 4 shows the
subjective metrics and physiological parameters monitored in the ex-
periments. In terms of subjective measurements, based on survey or
behavioural observations, environmental sensations are the most
employed, followed by environmental preference and acceptability. In
terms of physiological parameters, skin temperature and heart rate are
the most monitored ones, also due to the thermal domain being inves-
tigated at least in 94% of the overall multi-domain experiments. Lastly,
the use of EEG, ECG, and EDA has just recently started to be adopted,
mostly after 2015, to understand multi-physical occupants’ responses in
test rooms, especially when investigating interactions between different
comfort domains.

Table 4
Different approaches for capturing occupants’ responses in multi-domain ex-
periments in test rooms.

Occupant response References

Subjective (survey Environmental sensation

based or from

[44,46,47,60,67,78,79,
85,86,89-91,99-101,118,

behavioural 120,122,124-126,245,

observations) 250,253,256,257,264,
267-269,273,275-277,
290-297]

Environmental comfort [44,47,60,72,85,89,91,
99,100,118,120,122,125,
245,252,253,267-269,
291,294,296-299]

Environmental preference [44,47,79,86,99,102,122,
248,252,253,257,267,
268,291,295,297]

Acceptability [47,85,86,91,122,124,
248,249,253,275,294,
295,297]

Environmental satisfaction [46,78,252]

Emotion response [46,264,289]

Alertness [50]

Stress level [274]

Work performance [90,268,273,275,289,
294,295]

Clothing level [125,249,261,269,277]

Physiological Skin temperature [44,46,79,86,99-102,117,

parameters (sensing
device based)

Skin moisture

Core temperature
Electrodermal activity
(EDA)

Electrocardiogram (ECG)
Electrooculography (EOG)
Electroencephalogram
(EEG)

Acceleration

Heart rate

Nasal dimension by
acoustic rhinometry
Photoplethysmography
Metabolic rate

Frequency of blinking
Mucociliary transport
Saliva and tear mucus film
samples

120,125,253,258,259,
292,300]

[301]
[86,102,258,259]
[44,46]

[47,100,294]
[297]
[47,274,289,294,297]

[46,302]
[44,46,266,289,292,303]
[301]

[302]
[277]
[303]
[303]
[295]
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4.6. Participants interacting with the environment

This section focuses on those experiments whose protocol allowed
participants to freely interact with the test room components and sys-
tems. The interactions taken into account for this further classification
include adjusting settings of the test room conditioning system,
dimming/switching lights, opening/closing windows and shading sys-
tems, adjusting personal comfort devices. According to the reviewed
scientific publications, this section is based on 21 papers (see Table 5).
Nine of those 21 have been published in 2018-2020, and ten originate
from European universities or institutes.

Two papers describe a test room facility developed and constructed
to test all environmental factors (lighting, acoustics, air, and thermal
quality) [43,304], including interactions with the environment through
design and systems, making it possible to provide both input data to and
output data from the occupants. Most of the publications were con-
cerned with thermal quality in relation to thermal comfort, sensations
and/or preferences [102,124,305-307], in combination with (personal)
control [36,111,281-283,308,309], together with air quality [232] or
visual quality [45,310]. The latter was studied in three reported studies
[73,189,1911, of which one was concerned with daylight, glare, shading
and control [73]. Only one study included all the IEQ aspects [311].

The participants involved in the different studies mostly comprise of
students and healthy young adults. Only one study was concerned with
children (primary school children with an average age of 10 years)
[311]. One study included a comparison between young (average23
years) and older males (average 67 years) [102], and one study looked at
the impact of ethnicity [309]. In most publications, the responses or
interactions of a participant with an object or variable/parameter in the
environment are reported. The studied controlling devices varied from
(local) heating or ventilation devices [283], light dimmers [310] or
blind/solar shading control device [73], wearable conditioning devices
[111], and furniture [281]. Table 5 summarises the 21 papers con-
cerning those experiments where the building occupant is able to
interact with the test room in the form of personal judgments or specific
actuator-to-reaction.

4.7. Energy-related human comfort experiments

Out of 396 reviewed papers, 85 considered energy-related issues
while carrying out thermal-, visual-, indoor air quality-, and acoustic-
related experiments. Of these, 28 papers had a multi-domain focus
with 22 papers considering both thermal and air quality-related exper-
iments, five papers presenting thermal- and visual-related experiments
[97,232,281,312-314], and only one paper discussing the effect of
personal control on thermal, visual, and air quality perceived by
building occupants [310]. Among the single comfort domain studies,
thermal investigations are by far the most widely carried out (50), fol-
lowed by visual investigation (5). Olfactory and aural comfort were
studied together with energy considerations in just one article each
[156,232].

The first document of the database was published in 1978. For the
following 30 years, much slower growth was observed in the number of
publications on energy-related human comfort experiments. After 2008,
the scientific interest in this topic has progressively increased because of
the increasing research interest in human-centric building design [315],
personalized control strategies [316], and perceptual and behavioural
environmental studies [32] (Fig. 14).

The majority of experiments have been conducted in test rooms
located inside buildings with controlled environmental conditions, and
only three experiments were run considering the actual outdoor weather
[46,97,312]. Furthermore, 45 experimental procedures employed dy-
namic conditions and 32 studies used steady-state conditions. Dynamic
studies are generally more recent (the average publication year is 2013),
while steady-state conditions are more common in older studies (the
average publication year is 2011); this can be explained by the recent
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List of reviewed studies concerning human comfort experiments in test rooms
where the participants could directly interact with the facility.

Year Investigated Studied Interaction Reference

pub. domain parameters/object between the

participant and
the test room

1991 Thermal Adjust ambient Adjustment of test ~ [307]
temperature room temperature

1995 Thermal Two age groups Adjustment of test ~ [102]

room temperature

2000 Thermal Adjusting air Adjustment of the [308]
movement Personal Comfort
(supplied via System (PCS)
ceiling)

2007 Thermal 3 task air- Adjustment of the [306]
conditioning Personal Comfort
systems System (PCS)

2009 Thermal Control of 2 fans at Adjustment of the [282]
chair (under seat, Personal Comfort
behind backrest) System (PCS)

2009 Visual Dimming of light; Adjustment of the [310]
airflow from Personal Comfort
ceiling-based System (PCS)
nozzle

2012 Thermal 4 fans at corners Adjustment of the [124]
chair to enhance Personal Comfort
displacement vent System (PCS)

2012 Thermal & Air Air movement (air Adjustment of the [232]

quality terminal device), Personal Comfort
air pollution, System (PCS)
temperature and
RH

2012 Visual Artificial lighting Adjustments of [73]
and blinds control, shading system
daylight

2014 Thermal Ceiling fan Adjustment of [36]

shading system,
ceiling fan,
operable windows

2014 Visual Daylight Adjustment of [189]

shading system

2015 Thermal Heated/cooled Adjustment of the [281]
chair Personal Comfort

System (PCS)

2018 Thermal Control of Adjustment of the [283]
personalized Personal Comfort
heating system System (PCS)

2018 Visual & Facades, controls, Adjustment of [43]

Thermal & Air interior, etc. shading system,
quality & facade properties,
Acoustics thermal settings
2018 Visual & Walls, lighting, Control of HVAC [304]
Thermal & Air sound, thermal, air, and lighting
quality & interior, etc. system
Acoustics
2019 Thermal & Windows, blinds Adjustment of [45]
Visual and ceiling lights desk light, ceiling
light, solar
shading, operable
windows
2019 Visual & IEQ in their own IEQ problems in [311]
Thermal & Air classroom classrooms and
quality & solutions for those
Acoustics problems

2020 Visual Daylight, glare, Adjustment of [191]
shading shading system

2020 Thermal Thermal sensation, Adjustment of the [305]
thermal preference Personal Comfort

System (PCS)

2020 Thermal Wearable wrist Adjustment of the [111]
devices for Personal Comfort
warming or cooling  System (PCS)

2020 Thermal Self-selected air Adjustment of the [309]

temperature,
thermal sensation,
comfort and
preferences; skin
temperature

personal comfort
system
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Fig. 14. Cumulative number of publications describing energy-related issues in
human comfort experiments in test rooms.

availability of easier and user-friendly control interfaces and power
modulation for electric motors and pumps.

Regarding the technical systems used during the experiments, only
considering the documents where this information was expressed, most
of the investigations used air-conditioning systems and only a few tested
hypotheses under radiant systems (9 papers), controlled mechanical
ventilation (8), artificial lighting (10), and sound equipment (1) [156].
Additionally, 38 papers reported experiments, which adopted personal
environmental control systems, which are effective means of testing
energy-saving control strategies and are well received by the occupants.

5. Summary of key findings

This review analysed a wide range of test rooms for the experimental
investigation of human comfort indoors and provided an overview of
scientific experiments that are conducted in such facilities and that were
published in scientific papers. All reported information was deducted
from reviewed papers. According to such an approach, it has to be
mentioned that experimental facilities may exist which have not (yet)
published any results in peer-reviewed journal articles. The reason may
be because (i) it is too new to present results, or (ii) the facility is
dedicated to industrial or other research not meant for public sharing of
results. This limitation may affect some of our conclusions. Nevertheless,
while accepting this limitation, we believe that the number of facilities
not included in our review is small due to the two search strategies
applied and that the knowledge generated in those facilities not pub-
lishing their work, for one reason or the other, is in any case not directly
available for the scientific community and less suitable to enhance
human comfort theories.

A general observation pertains to the growing number of such fa-
cilities. The total number of 187, specifically referred to in the present
contribution, is about eight times higher than the number of comparable
facilities before 2000. However, the geographic distribution of these
facilities does not reflect the variance of climatic regions around the
world: 82% are located in moderate climatic regions. Notwithstanding,
the increasing number of test rooms may reflect the growing realization
of the influence of indoor environments on human health, comfort, and
productivity. This trend is reflected in the increasing number of publi-
cations reporting research conducted in these facilities. In this review, a
total number of 396 publications were considered.

Looking at the publications from a topical standpoint reveals the
scientific community’s primary interest in human thermal comfort (204
papers), followed by energy-related studies (85), visual comfort (70), air
quality (18), and acoustic comfort (11). Roughly a quarter of the
reviewed publications explored indoor-environmental exposure situa-
tions involving more than one domain. Only a small number of publi-
cations (21) investigated circumstances in which participants could
assume an active role and had the opportunity to interact with relevant
features of the indoor environment.

Our findings suggest that about 92% of the test rooms were built
inside of a building. This is interesting: while the performance
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characterization of building components has mainly been tested in
outdoor testing facilities [317], the investigation of indoor comfort has
been conducted either in actual occupied buildings or in dedicated test
rooms located indoors with potential better controlled experimental
procedures and microclimate conditions. However, based on the
reviewed publications alone, it is not possible to draw up a more detailed
picture of the test rooms’ design and construction. For instance, in 47%
of the reviewed publications, it was not possible to ascertain whether the
test room envelope entailed any type of openings. Lack of such details
makes it difficult to independently replicate and subsequently validate
the results coming from experiments in test rooms. Our review also
addresses another critical point: there is a lack of information regarding
investment, operation, and maintenance costs associated with the fa-
cilities. A dedicated survey designed and distributed on our side
received responses only from 18 facility owners or operators, pointing to
the need for further efforts in the transferability of know-how with the
test rooms.

Certain observations apply to studies that focused exclusively on
thermal comfort: studies on fundamental issues dominate in this area
(57%) versus technology-oriented (36%) and predictive studies (7%).
An increasing number of experiments in the last 20 years focus on local
heating/cooling systems. A large share of technology-oriented studies
(40%) focuses on developing new, insulating, and thermally active
clothing. This may indicate a shift in the industry from the traditional
room-air-conditioning design perspective to a more personalized ther-
mal comfort approach. The majority of the reviewed studies were con-
ducted in office-like environments with small samples (10-50 people)
engaging in sedentary activities. Few papers focused on the elderly or
children (3%), and in 70% of the studies, participants were passive re-
cipients only. Some studies introduced new, recently emerging methods
such as immersive virtual reality and monitoring of brain activity
patterns.

Studies related to acoustic comfort mostly followed a general pro-
cedure where participants were exposed, on a short-term basis, to
stimuli while performing cognitive tasks or completed subjective tests.
Interestingly, only four studies (less than 40%) screened the hearing
abilities of the participants. This may have introduced bias in their
results.

Studies on lighting and visual comfort significantly increased in the
last decade, addressing both daylight and electric light: their bulk is
concerned with glare problems in the workplace, primarily deal with
glare perception and entail the development and evaluation of related
metrics, thresholds or indexes. The investigations also pertain to various
human responses related to light quantity and CCT. Most of these latter
investigations focused on the non-image-forming effects of light. Only a
few studies allowed participants to change the visual conditions by
interacting with blinds and electric lights.

IAQ-related studies mostly addressed three topics, namely the
perceived air quality’s impact on productivity and health, the spatio-
temporal variation of air pollution and inhalation exposure, and the
airflow distribution and ventilation effectiveness. Some reviewed pub-
lications did not report the experimental conditions (e.g., ventilation
rates) in detail. In contrast, none of the studies reported surface mate-
rials, which is essential concerning how they influence heterogeneous
reactions with volatile organic compounds and other gaseous pollutants.
The majority of the studies were conducted in sufficiently large test
rooms, hence allowing for the consideration of realistic room layouts
and air contaminant distribution patterns.

About investigations of multi-domain exposure situations, thermal
and indoor air quality represent the most frequently studied combina-
tion, followed by thermal-visual and thermal-acoustic combinations.
Only one-third of the studies exposed participants to dynamic environ-
mental conditions. 53% of the studies relied solely on subjective re-
sponses. In the last few years, a new trend can be seen in the related
scientific literature, whereby diagnostic methods from neurophysiology
(such as EEG, ECG and EDA) have been applied to explore multi-domain
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exposure situations.

6. Research gaps and future trends in test room experiments for
human comfort

Despite a growing interest in multi-domain studies, we still do not
have an agreed-upon conceptual framework and a systematic method-
ology for a mature and holistic science of human-centric indoor envi-
ronments. Common design guidelines and a shared terminology for
innovative test rooms and experimental procedures would allow estab-
lishing a shared understanding of the driving phenomena and the in-
clusion of the non-physical (psychological and contextual factors)
dimensions. This can be further supported by the deployment of low-
invasive physiological sensing techniques. A better understanding of
the visual, IAQ and acoustic factors and their mutual influence on
human comfort and occupants’ perception requires further investiga-
tion. Future trends in test room experiments (and thus facility design)
must account for a multi-domain and multi-disciplinary approach.

On a geographical and demographic basis, despite the increased in-
terest in human comfort and the large availability of test room setups,
these facilities are limited to specific climatic regions, while concerning
tested subjects’ composition, these are mainly students and faculty
members. These sociological and geographical weak points may cause a
non-negligible bias in the interpretations of experimental results and
knowledge generation. We see the need for dedicated studies in those
climatic and demographic contexts where experimental data are still not
available to increase diversity and cross-validation.

In terms of test room design: test rooms mostly emulate office spaces
with a limited number of occupants. Therefore, another research gap to
close is the analysis of other settings and contexts, such as realistic open-
plan offices and different building typologies (educational, residential,
hospitals, etc.). This factor may affect the quality of the collected data
and limit the research findings to office-only investigations (difficult to
replicate and extend).

Concerning experiments, increased attention is being paid to occu-
pants, also driven by the recent trends toward human-centric building
design and operation. This is also reflected in the fast growth of multi-
domain studies in the last decade, where the focus is the whole com-
fort perception analysis. Additionally, even technology-oriented studies
are focused on human applications. About 40% of the technology-
oriented studies aimed at developing and testing wearable systems for
improved personal comfort, such as smart clothing and sensing tech-
niques. This observation shows the necessity for a more systematic
collaborative research framework whereby the environmental comfort
is not handled exclusively by building physicists or engineers and ar-
chitects. The topic requires a significant and proactive interaction with
researchers in human factors, human-machine interaction, big data
analytics, and social science, as we see more studies are focusing on
psycho-physiological factors alongside IEQ and human-centric
approaches.

From the operation perspective, the economic analysis showed the
necessity for a better common understanding of the economic model
behind test room design and construction. This may be helpful to foster
local and global collaboration and connection to industry, taking
advantage of the unique resources that each location provides. For this
purpose, a higher transparency of existing business/economic models is
recommended. Private-public partnerships may also be established with
shared economic models allowing both researchers and industry part-
ners to use these facilities to conduct controlled experimental studies, e.
g., for technology development. Such models can also help sustain and
expand the test rooms’ role in underlining the importance of whole
comfort experiments. Toward this end, funding agencies/industry
partners should be informed and engaged in providing funding support
to maintain/sustain and expand existing testbeds dedicated to a better
understanding of human comfort in buildings.

In this context, standardization in the design and experimental
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validation procedures is still missing, with the consequent limitations in
error and uncertainty analysis, quality control and replicability poten-
tial. Therefore, the creation of a unified framework for keeping track of
the functionality of the test room facilities is expected to establish a
common ground for collaboration and cross-validation and would help
to identify cultural and geographical differences and biases.

This cannot be done without a joint effort in terms of open-source
research in and for society, where the resources of test room facilities
and collected data are freely available for fostering the impact of these
multi-domain and multi-disciplinary investigations. In this scenario,
future efforts by the authors and their institutions would support
research via a systematic data sharing process and a publicly available
and continuously updated test room portfolio. Finally, a first Round-
Robin test in test room facilities worldwide is expected to emerge as a
follow up to this review.
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