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Abstract: This paper introduces and studies the following beyond-planarity problem, which we call

h-CLIQUE2PATH PLANARITY. Let G be a simple topological graph whose vertices are partitioned

into subsets of size at most h, each inducing a clique. h-CLIQUE2PATH PLANARITY asks whether

it is possible to obtain a planar subgraph of G by removing edges from each clique so that the

subgraph induced by each subset is a path. We investigate the complexity of this problem in relation

to k-planarity. In particular, we prove that h-CLIQUE2PATH PLANARITY is NP-complete even when

h = 4 and G is a simple 3-plane graph, while it can be solved in linear time when G is a simple

1-plane graph, for any value of h. Our results contribute to the growing fields of hybrid planarity and

of graph drawing beyond planarity.
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1. Introduction

A typical problem concerning the visual analysis of real-world networks refers to the creation of

occlusions and hairball-like structures in dense subnetworks when node-link diagrams are generated by

standard layout algorithms, e.g., force-directed methods. On the other hand, different representations,

such as adjacency matrices, are well suited for dense graphs but make neighbor identification and

path-tracing more difficult [1,2]. Hybrid graph representations combine different visualization metaphors

in order to exploit their strengths and overcome their drawbacks.

The NodeTrix model [3] represents a first example of hybrid representation. It combines node-link

diagrams with adjacency-matrix representations of the denser subgraphs [3–6]. Inspired by NodeTrix,

other hybrid representation models were recently introduced [7–9]. The ChordLink model [7] embeds

chord diagrams, used for the visualization of dense subgraphs (clusters), into a node-link diagram.

In a (k, p) representation [8], each cluster contains at most k vertices and each vertex can occur at most p

times along the boundary of the cluster. In the intersection-link representations [9] model, vertices are

geometric objects and edges are either intersections between objects (intersection-edges) or crossing-free

Jordan arcs attaching at their boundary (link-edges). Different types of objects determine different

intersection-link representations.
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1.1. Our Results

A graph G is planar if it admits an embedding in the plane where no two edges cross;

this embedding is a planar embedding of G. A planar graph with an associated planar embedding is

said to be an embedded planar graph, or a plane graph.

In the version of h-CLIQUE2PATH PLANARITY that we study, the input graph G is a simple

topological graph. A topological graph is embedded in the plane so that each edge is a Jordan arc

connecting its end-vertices. A topological graph is simple if a Jordan arc does not pass through any

vertex, and does not intersect any arc more than once (either with a proper crossing or sharing a

common end-vertex); finally, no three arcs mutually cross at the same point.

Our main goal is to investigate the complexity of h-C2PP in relation to the well-studied class of

k-planar graphs, i.e., those that admit a drawing in which each edge has at most k crossings [9,10,13,14].

With a slight abuse of notation, we use the term embedding also for non-planar graphs, where we

interpret each crossings as a dummy vertex. In particular, a k-planar graph together with a k-planar

embedding is a k-plane graph.

A geometric graph is drawn in the plane so that each edge is a straight line segment. The version

of h-C2PP in which the input graph G is a geometric graph has been recently studied by

Kindermann et al. [15], who called it the partition spanning forest problem. They proved that 4-C2PP for

geometric graphs is NP-complete, which immediately implies the NP-completeness of 4-C2PP for

simple topological graphs.

We strengthen this result by proving that 4-C2PP is NP-complete even for simple topological

3-plane graphs. On the positive side, we prove that the h-C2PP problem for simple topological 1-plane

graphs can be solved in linear time for any value of h. We finally remark that the 2-SAT formulation

used in [15] to solve 3-C2PP for geometric graphs can be easily extended to solve 3-C2PP for any

simple topological graph.

1.2. Outline

In Section 2, we further investigate the relationship between h-C2PP and the partition spanning

forest problem, that is the problem studied by Kindermann et al. [15]. In Section 3, we prove the

NP-completeness of 4-C2PP for simple topological 3-plane graphs. In Section 4, we show that the

h-C2PP problem for simple topological 1-plane graphs is linear-time solvable for any value of h.

Finally, in Section 5, we provide challenging open problems.

2. Relationship between h-CLIQUE2PAH PLANARITY and the Partition Spanning Forest Problem

The input of the problem studied by Kindermann et al. [15] is a set of colored points in the plane,

and the goal is to decide whether there exist straight-line spanning trees, one for each same-colored

point subset, that do not cross each other. Since edges are straight-line, their drawings are determined

by the positions of the points, and hence each same-colored point subset can, in fact, be seen as a

straight-line drawing of a clique, from which edges have to be removed so that each clique becomes a

tree and the drawing becomes planar.

The authors proved NP-completeness for the case in which the spanning tree is a path, even when

there are at most four vertices with the same color. This result implies that 4-C2PP for geometric

graphs is NP-complete. On the other hand, they provided a linear-time algorithm when there exist at

most three vertices with the same color, which then extends to 3-C2PP for geometric graphs.

Although not explicitly mentioned in [15], the drawings produced by the reduction used to prove

the NP-completeness of 4-C2PP for geometric graphs are 4-planar. We now provide some details

about this reduction.

The authors of [15] performed a polynomial-time reduction from PLANAR 3-SATISFIABILITY.

The variable gadget (shown in the yellow region of Figure 1) consists of a triangle X whose edges

are x, xl , and xr. Edge x is crossing-free and the truth value of X is encoded according to which edge
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formula, we connect the 3-clique corresponding to x in the clause gadget Gc to the 3-clique τ
x
j of the

variable gadget Gx of x by a chain of 3-cliques of odd length, as in Figure 3a.

By construction, the resulting simple topological graph G contains cliques of size at most 4,

namely one per clause, and hence is a valid instance of 4-C2PP. In addition, by collapsing each

variable and clause gadget into a vertex, and each chain connecting them into an edge, the resulting

graph G′ preserves the planarity of the PLANAR POSITIVE 1-IN-3-SAT instance. This implies that

the only crossings for each edge of G are with other edges in the gadget it belongs to and, possibly,

with the edges of the 3-cliques of a chain. Hence, G is 3-planar. Namely, each base edge is crossing-free;

each internal edge of a 4-clique has one crossing; each external edge of a 4-clique has two crossings,

and the same is true for the left and right edges of each 3-clique in a chain; finally, the left and right

edges of each 3-clique in either a variable or a clause gadget have three crossings.

In the following, we prove the equivalence between the original instance of PLANAR POSITIVE

1-IN-3-SAT and the constructed instance G of 4-C2PP. For this, we first give a lemma stating that

variable gadgets correctly represent the behavior of a variable; indeed, they can assume one out of two

possible states in any solution for 4-C2PP.

Lemma 1. Let Gx be the variable gadget for a variable x in G. Then, in any solution for 4-C2PP, either the left

edge of each 3-clique τ
x
j , with j = 1, . . . , nx, is removed, or the right edge of each 3-clique τ

x
j is removed.

Proof. We first consider the possible removals of edges in tx
1 , . . . , tx

2nx
and claim that, in any solution

for 4-C2PP, one of the two following conditions are satisfied: (i) for each 3-clique tx
i , if i is odd, then the

left edge is removed, while if i is even the right edge is removed; and (ii) for each 3-clique tx
i , if i is odd,

then the right edge is removed, while if i is even the left edge is removed. Note that this claim is

sufficient to prove the statement; in fact, if Condition (i) holds (as in Figure 3a), then the right edge of

each 3-clique τ
x
j must be removed, in order to resolve its crossings with the right edge of tx

2j−1 and

with the left edge of tx
2j, while if Condition (ii) holds, then the left edge of each 3-clique τ

x
j must be

removed, in order to resolve its crossings with the left edge of tx
2j−1 and with the right edge of tx

2j.

To prove the claim, we consider the possible removals of edges of tx
1 . Suppose first that the base

edge of tx
1 is removed. Thus, the crossings between the left (right) edge of tx

1 and the left (right) edge of

tx
2 are not resolved; this implies that they have to be resolved by removing both the left and the right

edge of tx
2 , which is not possible. If the right edge of tx

1 is removed, then the crossing between the right

edges of tx
1 and tx

2 is resolved, while the one between their left edges is not. Hence, the left edge of tx
2

must be removed. By iterating this argument we conclude that the right (left) edge of each tx
i with i

odd (even) is removed. Symmetrically, we can prove that, if the left edge of tx
1 is removed, then the left

(right) edge of each tx
i with i odd (even) is removed. This concludes the proof of the lemma.

Given Lemma 1, we can associate the truth value of a variable x with the fact that either the left or

the right edge of each 3-clique τ
x
j in the variable gadget Gx of G is removed. We use this association to

prove the following theorem.

Theorem 1. The 4-C2PP problem is NP-complete, even for 3-plane graphs.

Proof. Given an instance of PLANAR POSITIVE 1-IN-3-SAT, we construct an instance G of 4-C2PP in

linear time as described above. We prove their equivalence.

Suppose first that there exists a solution for 4-C2PP, i.e., a set of edges of G whose removal

resolves all crossings. By Lemma 1, for each variable x either the left or the right edge of each 3-clique

τ
x
j in the variable gadget Gx is removed. If the right edge is removed, we assign value True to

variable x, otherwise we assign False.

To prove that this assignment results in a solution for the given formula of PLANAR POSITIVE

1-IN-3-SAT, we first show that, for each clause c that contains variable x, the right (left) edge of the

3-clique tc(x) of the clause gadget Gc corresponding to x is removed if and only if the right (left) edge

of each 3-clique τ
x
j is removed. Namely, consider the chain that connects tc(x) with a 3-clique τ

x
j of Gx.

Note that, for any two consecutive 3-cliques along the chain, the left edge of one 3-clique and the right
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edge of the other 3-clique must be removed. Since the chain has odd length, the right (left) edge of

tc(x) is removed if and only if the right (left) edge of τ
x
j is removed, that is, the truth value of Gx is

transferred to the 3-clique tc(x) of Gc.

Finally, consider any clause c, composed of variables x, y, and z. Let tc(x), tc(y), and tc(z) be

the three 3-cliques of the clause gadget Gc of c corresponding to x, y, and z, respectively; also, let v

be the central vertex of the 4-clique of Gc, and let vx, vy, and vz be the vertices of this 4-clique lying

inside tc(x), tc(y), and tc(z), respectively; see Figure 3. We assume without loss of generality that

vx, vy, and vz appear in this clockwise order around v. As discussed above, the left or the right edge of

tc(x) (of tc(y); of tc(z)) is removed depending on whether the left or the right edge of each τ
x
j (of each

τ
y
j ; of each τ

z
j ) is removed. We show that, for exactly one of tc(x), tc(y), and tc(z) the right edge is

removed, which then implies that exactly one of x, y, and z is True, and hence the instance of PLANAR

POSITIVE 1-IN-3-SAT is positive.

Suppose first that for each of tc(x), tc(y), and tc(z) the left edge is removed (and hence all the

three variables are set to False), as in Figure 3b. This implies that the crossings between the right edges

of the three 3-cliques and the three edges of triangle (vx, vy, vz) are not resolved. Hence, all the edges

of this triangle should be removed, which is not possible since the remaining edges of the 4-clique do

not form a path.

Suppose now that for at least two of tc(x), tc(y), and tc(z), say tc(x) and tc(y), the right edge is

removed (and hence x and y are set to True), as in Figure 3c. Since each edge of triangle (vx, vy, v) is

crossed by the left edge of one of tc(x) and tc(y), by construction, these crossings are not resolved.

Hence, all the edges of (vx, vy, v) should be removed, which is not possible since the remaining edges

of the 4-clique do not form a path of length 4.

Suppose finally that for exactly one of tc(x), tc(y), and tc(z), say tc(x), the right edge is removed

(and hence x is the only one to be set to True), as in Figure 3a. Then, by removing edges (v, vx), (vx, vy),

and (vy, vz), all the crossings are resolved and the remaining edges of the 4-clique form a path of

length 4, as desired.

The proof of the other direction is analogous. Namely, suppose that there exists a truth assignment

that assigns a True value to exactly one variable in each clause. Then, for each variable x that is set to

True (to False), we remove the right (left) edge of each 3-clique tx
i , with i = 2j − 1 and j = 1, . . . , nx,

we remove the left (right) edge of each 3-clique tx
i , with i = 2j and j = 1, . . . , nx, and we remove

the right (left) edge of each 3-clique τ
x
j , with j = 1, . . . , nx. Then, we remove the left or right edge

of each 3-clique in a chain so that for any two consecutive 3-cliques, one of them has been removed

the left edge and the other one the right edge. This ensures that, for each clause c, the right edge of

exactly one of the three 3-cliques that belong to the clause gadget Gc has been removed, say the one

corresponding to variable x, while for the other two 3-cliques the left edge has been removed. Hence,

we can resolve all crossings by removing edges (v, vx), (vx, vy), and (vy, vz), as discussed above (see

Figure 3a). The statement follows.

4. h-CLIQUE2PAH PLANARITY and 1-Planarity

In this section, we show that, when the given simple topological graph is 1-plane, h-C2PP can be

solved in linear time in the size of the input, for any h. We consider all possible simple topological

1-plane cliques and show that the problem can be solved using only local tests, each requiring constant

time. Note that we can restrict to the case h ≤ 6, since K6 is the largest 1-planar complete graph [11].

Simple topological 1-plane graphs containing cliques with at most four vertices that cross each

other can be constructed, but it is easy to enumerate all these graphs (up to symmetry) (see Figure 4).

Note that such graphs involve at most two cliques and that, if K4 has a crossing, combining it with any

other clique would violate 1-planarity (see Figure 4a,b). The next lemma accounts for cliques with five

or six vertices.
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Kindermann et al. [15] recently proved that problem 4-C2PP is NP-complete for geometric

4-plane graphs. It would be interesting to study this geometric version of the problem for 2-plane and

3-plane graphs.

Recall that the version of the h-C2PP problem when the input is an n-vertex abstract graph and

h ∈ O(n) is NP-complete, since it is equivalent to CLIQUE PLANARITY [9]. What if the input is an

abstract graph and h is bounded by a constant or sublinear function? We remark that for h = 3 this

version of the problem is equivalent to CLUSTERED PLANARITY, when restricted to instances in which

the graph induced by each cluster consists of three isolated vertices.

Finally, another intriguing research direction is to study the h-CLIQUE2PATH PLANARITY problem

in the scenario in which the input graph comes without a clustering of its vertex set, but dense

portions of the graph are found by an algorithm. While the problem of finding cliques in a graph is

NP-complete [17], one could identify dense subgraphs, for example k-cores, in polynomial time [18].
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