
1

On the Readability of Abstract Set Visualizations

Markus Wallinger, Ben Jacobsen, Stephen Kobourov, and Martin Nöllenburg

Abstract—Set systems are used to model data that naturally arises in many contexts: social networks have communities, musicians

have genres, and patients have symptoms. Visualizations that accurately reflect the information in the underlying set system make it

possible to identify the set elements, the sets themselves, and the relationships between the sets. In static contexts, such as print

media or infographics, it is necessary to capture this information without the help of interactions. With this in mind, we consider three

different systems for medium-sized set data, LineSets, EulerView, and MetroSets, and report the results of a controlled human-subjects

experiment comparing their effectiveness. Specifically, we evaluate the performance, in terms of time and error, on tasks that cover the

spectrum of static set-based tasks. We also collect and analyze qualitative data about the three different visualization systems. Our

results include statistically significant differences, suggesting that MetroSets performs and scales better.

Index Terms—set visualization, usability study, quantitative evaluation.

F

1 INTRODUCTION

S ET systems naturally model data with categorical at-
tributes that occur frequently in data science and ana-

lytics in various application domains. Examples are actors
in social networks with different (overlapping) community
structures they are members of, patients in health care data
and the different types of symptoms they show, or artists
and bands that belong to various musical genres. More
generally, a set system (U , E) is comprised of a universe
U of elements (actors, patients, or artists) that are grouped
into different subsets S ⊆ U , which together form a subset
family E ⊆ 2U (communities, symptoms, or genres). Set
systems can also be modeled as hypergraphs, where U is the
vertex set and E is the set of hyperedges. Each hyperedge
S ∈ E is a subset S ⊆ U of vertices. Hypergraphs generalize
graphs, which have the additional restriction that (hyper-
)edges must consist of exactly two vertices.

The most popular visualization style for small set sys-
tems are Euler (and Venn) diagrams, showing sets as closed
shapes with possible overlaps indicating set relations such
as intersection or containment. However, Euler diagrams
do not necessarily show individual elements and do not
scale well. Therefore many different visualization styles
have been proposed in the literature, ranging from overlay
techniques for pre-embedded elements in the plane to more
scalable node-link and matrix-based techniques. A state-of-
the-art report by Alsallakh et al. [1] includes a taxonomy for
classifying the different visualization techniques as well as a
collection of 26 general tasks in three categories to be solved
using set visualizations. One of the observations from their
survey is a “clear lack of empirical user studies that assess
the effectiveness of different techniques in performing dif-
ferent tasks” [1].

There are a few previous empirical evaluations. Some
considered spatial set systems with embedded elements [2],
or focused on different visual parameters in a single type of

• M. Wallinger and M. Nöllenburg are with the Algorithms and Complexity
Group, TU Wien, Vienna, Austria

• B. Jacobsen and S. Kobourov are with the Dept. of Computer Science,
University of Arizona, Tucson, AZ

visualization style such as Euler diagrams [3] or LineSets [4].
Others studied specific tasks in combined visualizations of
set systems and underlying networks [5], [6] or compared
visualization techniques that do not show individual ele-
ments such as linear and mosaic diagrams [7].

The focus of our study is on evaluating the readability
of set visualizations for abstract, non-spatial data generated
by publicly available visualization systems, by measuring
performance of representative element-based and set-based
tasks. In particular, this means that both individual elements
in U and all the sets in E must be shown and labeled.
Further, we aimed at visualization techniques that can be
intuitively understood by non-experts and thus serve as
candidates for set visualizations to be used by data jour-
nalists, e.g., in static infographics for print media, or for
sharing images about interesting datasets in social media.
This focus of the study limits the size of datasets to less than
ten sets and fewer than a hundred elements. Datasets larger
than that require interaction and navigation (e.g., filtering,
zooming, panning).

With this in mind, our search narrowed down to three
set visualization systems: EulerView [8], a technique repre-
senting the popular class of Euler diagrams, LineSets [4], a
technique representing overlay-based set visualizations, and
MetroSets [9], a graph-based technique using the metro map
metaphor; see Figure 1.

For our evaluation, we performed an online experiment
with a total of 120 participants who solved six different
tasks on stimuli of two sizes generated by the three selected
systems. We used small (|U| = 30 and |E| = 6) and large
(|U| = 60 and |E| = 8) real-world set system data derived
from Spotify’s database of artists and genres.

Note that the terms “small” and “large” are used here
simply to distinguish between the two sizes, rather than
as descriptive of the actual sizes of the underlying data.
Nevertheless, such small datasets do occur in research pa-
pers, popular science, and social media, whereas truly large
datasets require visual analytic systems.

The results show statistically significant quantitive and
qualitative differences, suggesting that MetroSets scales

ar
X

iv
:2

1
0
1
.0

8
1
5
5
v
2

[c

s.
H

C
]

 3
 M

ay
 2

0
2
1

WALLINGER et al.: ON THE READABILITY OF ABSTRACT SET VISUALIZATIONS 3

designed for analyzing large-scale data and aggregate el-
ements into groups, while maintaining all set relations.
Since they do not support element-based tasks, we did not
consider them for our study.

2.2 Evaluations of Set Visualization Techniques

Several aspects of set visualizations have been empirically
studied in the literature before, but are limited to evalu-
ating parameters of a single visualization style, compar-
ing overlay-based techniques with pre-embedded elements
only, or excluding element-based tasks completely. All stud-
ies mentioned below build their experimental design on
static images generated with their respective target systems
and approaches (like ours). Alper et al. [4] performed a
readability evaluation of their overlay-based system Line-
Sets in comparison to Bubble Sets [19]. In their study 12
participants performed four element-based and set-based
tasks on spatial and social network data with 3–5 sets and
50–200 elements; accuracy and time were recorded. For de-
tailed tasks and preference ratings, LineSets outperformed
Bubble Sets; otherwise there were no significant differences.
Meulemans et al. [2] evaluated KelpFusion, LineSets, and
Bubble Sets with 13 participants. Their geographic datasets
had 4 or 5 sets and 12–49 elements; the four tasks were
similar to those by Alper et al. [4]. The results showed no
significant difference in performance or preference between
KelpFusion and LineSets, but both outperformed Bubble
Sets. Both studies considered only pre-embedded set sys-
tems.

Two studies evaluated techniques that show combined
set and network visualizations. Rodgers et al. [6] included
five different systems in their crowdsourced study: Bubble
Sets, LineSets, KelpFusion, EulerView, and their system,
SetNet. They used datasets with 11–64 elements, 3–7 sets,
and 42–162 edges in the network. All tasks involved both the
network structure and the set information. Their results in-
dicated that SetNet and EulerView significantly outperform
the other three systems on the combined set+network tasks.
Baimagambetov et al. [5] compared SetNet, Bubble Sets, and
WebCola1 on instances with 2–8 sets, 10–100 elements, and
40–170 network edges. Their study did not assess read-
ability, but rather quantitatively evaluated the frequency
of inaccuracies and properties that have previously been
empirically confirmed to be visually ineffective. Bubble Sets
turned out to be least inaccurate system and in terms of
ineffectiveness there was no clear winner.

Further evaluations considered techniques such as Eu-
ler diagrams, linear diagrams, and mosaic diagrams, all
of which do not represent individual elements and thus
used only set-based tasks [3], [7]. They showed that linear
diagrams outperformed Euler diagrams and were on par
with mosaic diagrams.

Thus, despite several previous specialized evaluations, a
broader study of abstract set visualization across different
classes of techniques as well as including both set- and
element-based tasks is missing. Hence the observation of
Alsallakh et al. [1] that there is a lack of empirical studies
assessing the effectiveness of set visualization techniques,

1. see https://ialab.it.monash.edu/webcola/

remains valid, especially regarding fundamental element-
based and set-based tasks on abstract set data using visual-
izations that show the individual set elements.

3 PRINCIPLES OF ABSTRACT SET VISUALIZATION

The design of set system visualizations is guided by the
types of tasks they should support, as well as by the type of
information that needs to be represented. Alsallakh et al. [1]
present a taxonomy of tasks classified into the following
three categories.

1) Element-based tasks are concerned with specific ele-
ments and their respective relationship to the sets. For
example: What music genre(s) does ’Van Halen’ belong
to?

2) Set-based tasks are concerned with the relationship be-
tween different sets without taking individual elements
into account. For example: Which music genres overlap
with ’Rock’?

3) Attribute-based tasks are concerned with attributes of
set elements and their relationship of distribution in
regards to set membership. For example: Do artists in
the ’Rock’ genre sell more records than artists in the
’Hip Hop’ genre?

We focus on element-based tasks and set-based tasks in
this study as they represent elementary tasks on abstract
set systems that can be performed on static (rather than
interactive) visualizations that appear in research papers,
newspaper articles and social media. According to [1] the
support of the different types of tasks is closely tied to the
type of information represented in the visualization.

• Representing set information only: the focus is on
the relationships between sets and individual elements
might not be explicitly represented.

• Representing individual elements: Individual ele-
ments are represented explicitly, making it possible to
also encode additional attribute information.

One important aspect of set visualization techniques is
their visual scalability, i.e., whether a visualization remains
comprehensible when the number of elements and/or the
number of sets increases. Naturally, scalability is closely
related to the size of the set system. However, scalability
also depends on the information that is represented. For
example, visualizations that only represent set information
are not adversely affected by increasing the number of
elements. Even when only set information is represented,
scalability depends not only on the visual metaphor, but
in some cases (e.g., Euler and Venn diagrams) also on the
structure and number of the intersection relationships of the
underlying set system.

Explicitly representing elements is associated with in-
creased visual complexity as individual elements need to be
depicted. Furthermore, it is non-trivial to assign primacy to
either the depiction of the sets or of the elements, as one can
influence the comprehension of the other negatively.

4 SYSTEMS

In our study we focus on systems that produce static visual-
izations that can be used to argue about the set system and
to perform elementary tasks, rather than interactive visual

WALLINGER et al.: ON THE READABILITY OF ABSTRACT SET VISUALIZATIONS 5

5.2 Datasets

We used a different real-world dataset for each task to
minimize the variance that might result from one dataset
being well-suited for a certain system. We created a hy-
pergraph (4549 hyperedges, 347686 vertices) of artists and
music genres of Spotify data and automatically extracted
subgraphs which where subsequently used to generate the
stimuli in all three systems. In the context of the Spotify
hypergraph, artists are set elements represented by vertices,
and genres are sets represented by hyperedges.

We used the following approach to extract the sub-
graphs. We set a target number of elements and sets; 30
elements and 6 sets for the small datasets and 60 elements
and 8 sets for the large dataset. We also specified the number
of sets that elements should belong to. For subgraphs of the
small dataset we required the graph to have ten elements
that are members in exactly one set, ten elements that are
members in two sets, six elements that are members in three
sets and four elements that are members in four sets. For
the large dataset we doubled the number of elements in
each membership degree category, but did not add another
category.

To extract a single subgraph we manually declared a
seed set in the hypergraph and iteratively added more sets
that overlap with the current sets until the target number of
sets was reached, allowing for enough elements to be added
in each membership category. We proceeded by iteratively
picking random elements from the set of six or eight sets
that fulfilled the membership requirement until the target
number of vertices was reached. If no valid subgraph was
extracted after a fixed number of iterations, we concluded
that none existed and started the process again with another
seed node.

The previous step gave us a potential candidate that
had to fulfill further requirements. First, we excluded hy-
pergraphs with multiple disjoint components. Second, to
avoid trivial instances, we excluded hypergraphs with fewer
than three elements per set. Third, as the study targeted an
English-speaking audience, we also excluded hypergraphs
with vertices containing non-Latin characters in their labels.

After generating the first set of stimuli we decided to
additionally exclude elements with long labels (greater than
eight for the large dataset and greater than twelve for the
small dataset). The reasons behind this decision are that
all three systems struggle handling long labels, and long
individual labels distract from the overall visualization.

With our extraction approach we were able to create
pseudo-realistic datasets from real-world data with the ad-
vantage of having control over relevant properties. Note
that it would have been much easier to use a synthetic
dataset. We considered that possibility, but decided against
it for several reasons. Primarily, we believed that using real-
world data would make the study more enjoyable, thereby
increasing participation. We discuss potential problems with
this approach in Section 7.

5.3 Size

We determined the two dataset sizes (small and large)
based on observations we made in the three systems during
the pilot experiment. Our goal was to choose sizes which

reflected the capabilities of all three systems, while avoiding
situations where the extreme difficulty (or ease) of a task
might obscure the differences between systems.

Recall that the terms “small” and “large” are used here
simply to distinguish between the two sizes, rather than
as descriptive of the actual sizes of the underlying data.
The size of the small dataset (30 elements and 6 sets) can
be considered a typical size for set systems where naive
approaches, e.g. classic Euler diagrams, start to struggle. We
determined the size of the large dataset (60 elements and 8
sets) to be the largest such that the resulting visualizations
were consistently readable on an ordinary monitor without
user interaction.

5.4 Tasks

We used the taxonomy of Alsallakh et al. [1] to select
elementary tasks of set systems that participants would
perform. Specifically, we selected three element-based (T1–
T3) and three set-based (T4–T6) tasks that can be performed
on all three systems without the need for interaction. We
re-worded technical terms (e.g., element, set, hypergraph)
using a more natural language for better accessibility.
T1 Find/Select elements that belong to a specific set:

Check all of the ’Genre’ artists below; Three artists were
given as possible answers.

T2 Find sets containing a specific element: What genre(s)
does ’Artist’ belong to; All sets were given as possible
answers.

T3 Find/Select elements based on their set memberships:
Check all of the artists below that belong to both ’Genre
1’ and ’Genre 2’; Three artists were given as possible
answers.

T4 Analyze intersection relation: Please check below if
any artist(s) belong to both of the following pairs of
genres; Three pairs of genres were given as possible
answer.

T5 Identify set intersections belonging to a specific set:
Which genres overlap with ’Genre’; All sets except the
specified one were given as possible answers.

T6 Analyze and compare set- and intersection cardinali-
ties: How many artists are both ’Genre 1’ and ’Genre 2’;
Numbers from 0–10 were given as possible answers.

We assigned one small and one large dataset to each
task and used different approaches to select a balanced
set of possible answers. We excluded tasks which were
ambiguous or impossible to solve (e.g., nodes overlapping
lines in MetroSets, overlapping labels in EulerView, covered
up lines between two elements in LineSets).

As our question types were limited to those provided
by LimeSurvey, we elected to use multiple choice for every
task except for T6. Each option in a multiple choice question
can be thought of as a subtask and we counted tasks T1-
T5 as correct only when a participant answered all subtasks
correctly.

Task T2 required a participant to select all sets an element
is member of. For the sake of fairness we picked elements
with the exact same set membership degree. The same
reasoning was applied to task T5, where participants had to
select all sets intersecting with a given set, and we selected
sets that had the same cardinality of intersections.

6

Lastly, participants had to correctly count the number
of elements in the intersection of two sets in task T6. We
selected pairs of sets with a similar number of elements (6-
8) in their intersections.

5.5 Stimuli

We generated static images, or stimuli, for all combina-
tions of dataset and system. The images for MetroSets and
EulerView were rendered in their native implementation.
The ‘balanced’ pipeline preset was used for MetroSets. For
LineSets, our implementation provided output in the form
of a dot file. The final visualization was then rendered to
a PNG file using graphviz [41], with parameters chosen to
match those used in the original paper introducing LineSets
[4]. To minimize possible confounding factors, we used the
color scheme from MetroSets for our LineSets stimuli.

We modified all three systems to use the same font: PT
Narrow Sans. The EulerView module automatically removes
label overlaps by only showing a subset of non-overlapping
labels. As this approach is not suitable for our study, we
fixed the font size to the largest possible so that we could
remove overlaps by setting the label anchor to the left, right,
or top of the glyph (instead of only the bottom by default).

As all systems generate slightly different output, we
used image manipulation software to normalize the dif-
ference. We created a blank image with 2000px width and
1385px height. We then scaled the images generated by the
systems to fit into the canvas with space to fit a legend into
the bottom right corner of the image. In the case of LineSets,
we found that it was often impossible to fit the stimuli
alongside the legend without making labels unreadably
small. To resolve this, we automatically rotated the initial
layout provided to LineSets by 90 degrees whenever doing
so reduced its height. We did not encounter this issue with
the other systems, and therefore did not rotate any other
stimuli.

MetroSets is the only system that automatically creates
an image that has a legend. While sets in [8] are by default
annotated with a label, we decided to remove any potential
confounding factors and instead created a legend with two
columns of circular (50px diameter) texture samples and the
associated label. We created a similar legend for LineSets
using the same design as MetroSets legend. All legends use
22pt Roboto Mono as header and 18pt Roboto for set labels.

To reduce the time required to find elements in the visu-
alization for tasks T1-T3, we highlight the relevant elements
by adding a colored 2px rectangular border around them;
see Figure 3. The main reason for adding highlighting was
to exclude the time required to search for elements, as this
could be considered its own task and would add noise to
our overall time measurements.

We applied an additional sharpening effect to all Eu-
lerView stimuli, as the images tended to be blurry after
normalization.

We communicated with the authors of all three systems
to ensure that we generate visual stimuli that represent each
system fairly. We also discussed the slight modifications we
made (e.g., using the same fonts, using the same colors,
reducing label overlaps). All visual stimuli used in the study
can be found in the supplemental material.

5.6 Experimental Procedure

For each condition (EulerView, LineSets, MetroSets) we
conducted two experiments, one on the small and one on
the large dataset. The experimental section of the study had
three set-based tasks and three element-based tasks. This
resulted in 3conditions×(3+3)tasks = 18trials. Participants
were randomly assigned to work with either small or large
datasets.

Both experiments follow the five-phase template; (1)
information consent and screening, (2) demographic ques-
tions, (3) tutorial, (4) formal study and (5) post-task ques-
tionnaire.

In phase one participants were given the background
information and procedure of the study before they had
to give consent to the study policy. The policy stated that
only participants of age 18 and above with no known color
vision deficiency are allowed to participate. After giving
consent the participants were first shown an image with
excerpts of all three visualization styles. The excerpts show
the worst case label size and we ask a yes/no question if
the labels are readable in all three systems. Additionally, we
state that the window size should not be altered during the
study and automatically logged the window information.
We assume that participants did not change their screen size
during the experiment. This information was used to screen
and exclude participants who were potentially not able to
accurately identify set elements. Afterwards the participant
completed a subset of six plates of the Ishihara Test [42] to
screen for potential issues with color perception. Failing to
give the correct answer could be due to different potential
causes (e.g. viewing angle or uncalibrated monitor).

In phase two the participants provided (optional) demo-
graphic information, summarized in Figure 2. In phase three
the participants were introduced to the different tasks and
visual stimuli. We had a total of six tasks: three set-based
tasks and three element-based tasks. We randomly assigned
a set-based task and a element-based task to each system.
Participants were not able to proceed to the next task until a
correct answer was given. The tutorial portion of the study
does not contribute to the results.

Phase four contains the quantitative portion of the study.
Each participant was presented with 18 tasks split into 6
blocks of three tasks. Each block consisted of exactly one
question per system of different types of our potential set
of 6 tasks; for an example task see Figure 3. We randomized
the order in which the blocks were shown to the participant,
as well as the order of questions inside each block. Before
each block the participants were shown a white screen with
text letting them know that they can take a break.

In phase five the participants provided qualitative feed-
back with four Likert scale questions and one fillable text
field. Specifically, we asked the following questions:

• How clearly could you identify to which genre(s) an
artist belonged to?

• How clearly could you identify the overlap between
different genres?

• How often did you use pre-existing knowledge about
music to answer an question?

• How interested are you in using each style again?
• Please share any thoughts you have about the different

styles!

8

Conversely, on task 2, there was no significant difference
between the three systems on the large dataset. However, on
the small dataset, MetroSets was significantly more accurate
than LineSets (p = .002, mean difference ≈ 25%), which in
turn was significantly more accurate than EulerView (p <

.001, mean difference ≈ 36%).
On task 2, the participants performed better with the

larger dataset. Looking more carefully at the stimuli pro-
vides a plausible explanation. The smaller dataset here
contained four overlapping sets to be identified, while the
larger dataset contained only three. This is likely the cause
of the difference observed: a priori, increasing the size of
the visualization should have no impact on performance for
this task, since it only requires looking at the area around a
single, highlighted element.

On task 3, there was again no significant difference
between the three systems on the small dataset. However,
with the large dataset, participants accuracy with EulerView
was barely better than guessing (mean accuracy of ap-
proximately 15%). Otherwise, MetroSets performed slightly
better on the larger dataset than the smaller (p = .046, mean
difference ≈ 15%).

All told, with respect to element based tasks (T1-T3),
both LineSets and MetroSets maintained average accuracy
of approximately 92%. EulerView performed considerably
worse, with an average accuracy of roughly 65%.

On task 4, there was no significant difference between
LineSets and MetroSets, regardless of the size of the dataset.
However, EulerView performed significantly worse than
either on both the large dataset (p < .001, mean difference
≈ 39%) and the small one (p < .001, mean difference
≈ 61%). Its performance on the small dataset was signifi-
cantly worse than on the large (p = .006, mean difference
≈ 22%).

On task 5, there was no significant difference between
the three systems on the small dataset. However, on the
large dataset, both EulerView and LineSets performed very
poorly, with average accuracy of roughly 14%. MetroSets
performed significantly better on the large dataset (p < .001,
mean difference ≈ 56%). MetroSets’ performance on the
larger dataset was significantly worse than its performance
on the smaller dataset, however (p = .003, mean difference
≈ 24%).

On task 6, MetroSets performed significantly better than
EulerView on the small dataset (p < .001, mean difference ≈
36%). However, both EulerView and MetroSets performed
significantly better than LineSets on the large dataset (p <

.001, mean difference ≈ 53%).
Considering all set-based tasks (T4-T6), MetroSets main-

tained an average accuracy of approximately 85%. Mean-
while, LineSets had an average accuracy of roughly 64%,
while EulerView’s accuracy was only 50%.

The supplementary materials contains the mean and
standard deviation for the accuracy of participants on each
task, system, and dataset size.

6.4 Time

While we recorded the time taken by participants on each
task, this data is difficult to analyze rigorously. As the
study was online, we cannot confirm that our participants

remained focused and attentive throughout the study. This
fact, in combination with the general challenges associated
with analyzing response time data (such as high skew and
the tendency for high variance even when a single subject
performs the same task multiple times) [45], led us to decide
against detailed time analysis. Instead, we visualize the
distribution of response times for each question, size, and
system in Figure 5. In addition, descriptive statistics are
given in the supplementary materials.

Comparing this data to our accuracy results in Figure 4
suggests that the variance in response time was greatest
when participants struggled to find the right answer: see,
e.g., the performance of EulerView on the small dataset for
tasks T2 and T4. In general, however, there is no obvious
pattern to the time taken as a function of the system. Each
of the three techniques was the fastest for at least one task.

6.5 Qualitative Feedback

After completing the study, participants were invited to
provide qualitative feedback on the systems and the study.
This feedback took the form of four Likert-scale questions
and a free-form text field. The distribution of answers for
the Likert scale questions is presented in Figure 6.

We analyzed the results of the Likert scale questions
using the Kruskal-Wallis test [46]. This test showed that
there was no significant difference in the frequency with
which participants used pre-existing knowledge to answer
questions for each system (p = 0.97). We do find significant
differences for the other questions asking about interest in
the different visualization styles, ability to perform element-
based tasks, and ability to perform set-based tasks (p < 0.01
in all three cases).

For each of the three questions with significant differ-
ences, we performed pairwise Mann-Whitney U tests [47]
between the systems, using Bonferroni correction [48]. This
post-hoc analysis again revealed significant results (p < 0.01
for all comparisons). We use the AUC measure for effect size
[49], which has the intuitive interpretation as the probability
that a randomly chosen rating for one system will be larger
than a randomly chosen rating for the second. We summa-
rize the results below:

• For element-based tasks, the participants found it easier
to identify the genres to which an artist belonged with
MetroSets than with LineSets (AUC = 0.84) and with
LineSets over EulerView (AUC = 0.82). The difference
between MetroSets and EulerView was even greater
(AUC = 0.97).

• For set-based tasks, particpants found it easier to iden-
tify the overlap between genres in MetroSets than with
LineSets (AUC = 0.8) and with LineSets over EulerView
(AUC = 0.75). They also found MetroSets easier than
EulerView (AUC = 0.92).

• The participants reported greater interest in using Met-
roSets than LineSets (AUC = 0.8), and greater interest in
using LineSets than EulerView (AUC = 0.7). They also
preferred MetroSets to EulerView (AUC = 0.9).

For the free-form response, we collected a total of 35
(∼ 60%) responses for the small dataset and 41 (∼ 71%)
responses for the large dataset. The general opinion is that
regions in EulerView are hard to distinguish, especially if

WALLINGER et al.: ON THE READABILITY OF ABSTRACT SET VISUALIZATIONS 11

pares combinations of designs and implementations, and
that the differences observed could be due to either. For
example, in generating the LineSets stimuli, we contacted
the original authors and followed their recommendation
to use a standard force-based graph layout algorithm to
determine the positions of elements. It is entirely possible
that an implementation of LineSets using a different layout
method would perform better. More generally, each of the
designs we considered might admit better implementations
than are currently available.

7.2 Implications

A recurring theme in the qualitative feedback was that
participants had difficulty distinguishing colors in all three
systems. The problem was most acute with EulerView,
where regions often became muddled when many sets
overlapped simultaneously. This difficulty may partly ac-
count for EulerView’s comparatively poor performance in
our experiment. However, given the strengths of EulerView
relative to other Euler-based visualization systems, it may
be worthwhile to revisit the technique, for example by using
the smoother boundary contours proposed by Simonetto et
al. [16].

MetroSets and LineSets used the same color scheme in
our experiment, and in both cases participants complained
that some colors (particularly red and pink) were too diffi-
cult to distinguish. Usability of both systems would be im-
proved by better use of colors. Borrowing from EulerView,
it might be beneficial to explore using a smaller categorical
color scheme supplemented by textures, such as dots or
dashes along different lines.

For the most part, LineSets performed well in our study.
However, it did occasionally produce ambiguous results,
resulting in very low accuracy on some tasks. These prob-
lems are likely fixable. For example, representing elements
with a glyph and then labeling, rather than representing
elements directly with a label will likely help. From an
algorithmic perspective, it may also be useful to compute
curves collectively, rather than independently. In this way, it
would be easy to detect overlapping lines and to split them
apart.

8 CONCLUSIONS

We evaluated three different systems for set visualization
via a human-subjects experiment comparing their effec-
tiveness both quantitatively and qualitatively. Our results
include statistically significant differences, suggesting that
MetroSets scales better and performs more consistently than
EulerView or LineSets, and is also better-liked. We addi-
tionally considered implications for the design of all three
systems.

ACKNOWLEDGMENTS

The authors would like to thank all of the participants
in our experiment, and especially the experts of our pilot
study (Daniel Archambault, Helen Purchase, Silvia Miksch).
This work is supported by NSF grants CCF-1740858, CCF-
1712119, and DMS-1839274 and by the Vienna Science and
Technology Fund (WWTF) through project ICT19-035.

REFERENCES

[1] B. Alsallakh, L. Micallef, W. Aigner, H. Hauser, S. Miksch, and
P. J. Rodgers, “The state-of-the-art of set visualization,” Computer
Graphics Forum, vol. 35, no. 1, pp. 234–260, 2016.

[2] W. Meulemans, N. Henry Riche, B. Speckmann, B. Alper, and
T. Dwyer, “Kelpfusion: A hybrid set visualization technique,”
IEEE Trans. Vis. Comput. Graph., vol. 19, no. 11, pp. 1846–1858,
2013.

[3] P. Chapman, G. Stapleton, P. Rodgers, L. Micallef, and A. Blake,
“Visualizing sets: An empirical comparison of diagram types,”
in Diagrammatic Representation and Inference (DIAGRAMS’14), ser.
LNCS, vol. 8578. Springer, 2014, pp. 146–160.

[4] B. Alper, N. Henry Riche, G. Ramos, and M. Czerwinski, “Design
study of LineSets, a novel set visualization technique,” IEEE Trans.
Vis. Comput. Graph., vol. 17, no. 12, pp. 2259–2267, 2011.

[5] A. Baimagambetov, G. Stapleton, A. Blake, and J. Howse, “Eval-
uating visualizations of sets and networks that use Euler dia-
grams and graphs,” in Diagrammatic Representation and Inference
(Diagrams’20), ser. LNCS, vol. 12169. Springer, 2020, pp. 323–331.

[6] P. J. Rodgers, G. Stapleton, B. Alsallakh, L. Micallef, R. Baker, and
S. J. Thompson, “A task-based evaluation of combined set and
network visualization,” Information Sciences, vol. 367-368, pp. 58–
79, 2016.

[7] S. Luz and M. Masoodian, “A comparison of linear and mosaic
diagrams for set visualization,” Information Visualization, vol. 18,
no. 3, 2019.

[8] P. Simonetto, D. Auber, and D. Archambault, “Fully automatic vi-
sualisation of overlapping sets,” Computer Graphics Forum, vol. 28,
no. 3, pp. 967–974, 2009.

[9] B. Jacobsen, M. Wallinger, S. Kobourov, and M. Nöllenburg, “Met-
rosets: Visualizing sets as metro maps,” IEEE Trans. Vis. Comput.
Graph., vol. 27, no. 2, pp. 1257–1267, 2021.

[10] N. Henry Riche and T. Dwyer, “Untangling Euler diagrams,” IEEE
Trans. Vis. Comput. Graph., vol. 16, no. 6, pp. 1090–1099, 2010.

[11] J. Larsson, eulerr: Area-Proportional Euler and Venn Diagrams
with Ellipses, 2020, R package version 6.1.0. [Online]. Available:
https://cran.r-project.org/package=eulerr

[12] L. Wilkinson, “Exact and approximate area-proportional circular
Venn and Euler diagrams,” IEEE Trans. Vis. Comput. Graph., vol. 18,
no. 2, pp. 321–331, 2012.

[13] P. Rodgers, J. Flower, G. Stapleton, and J. Howse, “Drawing area-
proportional Venn-3 diagrams with convex polygons,” in Diagram-
matic Representation and Inference (DIAGRAMS’10), ser. LNCS, vol.
6170. Springer, 2010, pp. 54–68.

[14] G. Stapleton, J. Flower, P. J. Rodgers, and J. Howse, “Automatically
drawing Euler diagrams with circles,” J. Visual Languages and
Computing, vol. 23, no. 3, pp. 163–193, 2012.

[15] L. Micallef and P. Rodgers, “eulerforce: Force-directed layout for
Euler diagrams,” J. Visual Languages and Computing, vol. 25, no. 6,
pp. 924–934, 2014.

[16] P. Simonetto, D. W. Archambault, and C. Scheidegger, “A simple
approach for boundary improvement of Euler diagrams,” IEEE
Trans. Vis. Comput. Graph., vol. 22, no. 1, pp. 678–687, 2016.

[17] P. Rodgers, L. Zhang, and A. Fish, “General Euler diagram
generation,” in Diagrammatic Representation and Inference (DIA-
GRAMS’08), ser. LNCS, vol. 5223, 2008, pp. 13–27.

[18] G. Stapleton, P. Rodgers, J. Howse, and L. Zhang, “Inductively
generating Euler diagrams,” IEEE Trans. Vis. Comput. Graph.,
vol. 17, no. 1, pp. 88–100, 2011.

[19] C. Collins, G. Penn, and S. Carpendale, “Bubble sets: Revealing
set relations with isocontours over existing visualizations,” IEEE
Trans. Vis. Comput. Graph., vol. 15, no. 6, pp. 1009–1016, 2009.

[20] K. Dinkla, M. van Kreveld, B. Speckmann, and M. A. Westenberg,
“Kelp diagrams: Point set membership visualization,” Computer
Graphics Forum, vol. 31, no. 3, pp. 875–884, 2012.

[21] J. T. Stasko, C. Görg, and Z. Liu, “Jigsaw: supporting investigative
analysis through interactive visualization,” Information Visualiza-
tion, vol. 7, pp. 118–132, 2008.

[22] M. Dörk, N. Henry Riche, G. A. Ramos, and S. T. Dumais, “Pivot-
paths: Strolling through faceted information spaces,” IEEE Trans.
Vis. Comput. Graph., vol. 18, no. 12, pp. 2709–2718, 2012.

[23] F. Bertault and P. Eades, “Drawing hypergraphs in the subset stan-
dard,” in Graph Drawing (GD’00), ser. LNCS, vol. 1984. Springer,
2000, pp. 164–169.

[24] B. Alsallakh, W. Aigner, S. Miksch, and H. Hauser, “Radial sets:
Interactive visual analysis of large overlapping sets,” IEEE Trans.
Vis. Comput. Graph., vol. 19, no. 12, pp. 2496–2505, 2013.

WALLINGER et al.: ON THE READABILITY OF ABSTRACT SET VISUALIZATIONS 13

APPENDIX A

SET VISUALIZATION SYSTEMS

A.1 EulerView

EulerView by Simonetto et al. [8] generates Euler-like di-
agrams of set systems. Euler diagrams consists of simple
closed shapes in the two-dimensional plane that depict sets.
Each curve of the boundary of the shape divides the plane
into two regions. Elements inside the enclosed region are
the members of the respective set, whereas elements outside
the curve are not. The EulerView algorithm extends Euler
diagrams by allowing holes in regions or split regions, thus
avoiding undrawable instances.

The implementation of EulerView is realized as a module
in the Tulip [50] data visualization framework. Set elements
are represented by white square glyphs with a black bor-
der and an attached label by default. Even though most
attributes, such as glyph size, glyph shape, or label position,
could be manipulated, we opted to keep the diagrams sim-
ilar in style to the examples given in the original paper [8],
as any manipulation changed the rendering of textures
drastically. The module does not incorporate the later im-
provements of smoother boundary contours proposed by
Simonetto et al. [16]. We were not able to use the EulerView
module with a recent version of Tulip, even after contacting
the original author. Eventually, we were able to use Tulip
version 3.5 to create the output.

A major advantage of EulerView (and Euler-based sys-
tems generally) is that all elements with identical set mem-
bership are grouped together in the final visualization. It ad-
ditionally solves several major issues plaguing Euler-based
visualizations, such as the absence of element labels and the
possibility of implying non-existent set overlaps. Despite
these strengths, there are also certain weaknesses inherent
in this type of visualizations. In particular, the textures
used to differentiate different regions often become hard to
distinguish when more than two or three sets overlap. This
problem is exacerbated by the fact that the boundaries of
different regions often overlap, making it difficult to identify
them through their outlines.

A.2 LineSets

LineSets by Alper et al. [4] is an overlay-based system for
set visualization. It represents elements as points in the
2D plane and sets as continuous curves. If a set contains
an element, then the corresponding curve passes through
the corresponding point. Like other overlay-based systems,
LineSets expects positions for each element as part of the
input, and so the main algorithmic work consists of choos-
ing the order in which each curve visits all elements that
correspond to that set. Once such an order is determined, the
curve is overlaid on top of the elements. Within these broad
constraints, there are different ways to implement LineSets.
We use the implementation provided in GMap [51], which
is available on github.

To apply LineSets to abstract data with no intrinsic
spatial dimension, we follow the original designers of the
system and create an initial embedding for the data using
a force-based algorithm. Specifically, we treat the input as a
graph, where two nodes are connected by an edge if they

share at least one set, and generate a layout for it using
the force-directed algorithm by Fruchterman-Reingold algo-
rithm [40], as implemented in NetworkX [52]. The positions
generated for each node are then included in the input to
LineSets.

It should be noted that, while this approach follows that
taken by the authors of LineSets, it is not a fundamental
component of the design. Alternative methods for deter-
mining layout, such as multi-dimensional scaling, would
be equally viable, and the performance of LineSets in our
study may to some extent reflect our particular choice of
layout algorithm.

While LineSets visualizations are generally easy to inter-
pret, two types of ambiguities can arise in some situations.
First, because labels are opaque and placed directly on top
of the curves representing sets, it is sometimes difficult to
determine whether a line actually goes through an element,
or simply passes nearby. Second, lines travelling along the
same sub-curve can overlap one another, making it hard to
tell at a glance exactly how many lines connect a given pair
of elements.

A.3 MetroSets

The core concept behind MetroSets [9] is to apply the
metro map metaphor to set visualization: set elements are
metro stations and different sets are different metro lines.
Whenever a line passes through a station the associated
element is considered a member of the set depicted by the
line. If an element is in multiple sets it will be depicted
as an interchange station. MetroSets creates a schematic
drawing that adheres to typical metro map design rules [53],
[54], [55]: colored octolinear (horizontal, vertical, or 45◦-
diagonals) lines, labeled stations, uniform distance between
stations, straight lines.

MetroSets uses a 4-step pipeline approach with two or
more algorithms for each step that can be specified when
creating a visualization. In our study, we use the default
pipeline. Elements are depicted by circles whose diameter
is proportional to their set membership degree and lines
are drawn as sequences of octolinear poly-lines between
stations. Each line is given a distinct color (if less than 21
sets are present) from the Tableau 20 color palette. Finally,
each set element has a label assigned that is placed next to
the corresponding station in 45◦ steps and adheres to the
design criteria for metro map labeling [56]. The resulting
drawing is rendered using the D3 javascript library4 and a
legend is added at the bottom right corner.

While the visual style of MetroSets is similar to Line-
Sets, there are several important differences. In particular,
MetroSets avoids issues with lines overlapping each other
by adding regular white space between parallel lines. In
addition, by placing labels near the elements, rather then on
top of them, MetroSets reduces potential ambiguity when
determining whether a line passes through a given element.

APPENDIX B

ADDITIONAL STATISTICAL RESULTS

This section contains further descriptive statistics and vi-
sualizations of the time and accuracy data we gathered

4. see https://d3js.org/

14

through our experiments. Table 1 presents the mean and
standard deviation of accuracy for each task, size and
system, while Table 2 does the same for time. Note that
the mean and standard deviation are not robust against
outliers, which are present in large number here because of
the inherently skewed nature of response time data: Figure
5 visualizes the full distribution of response times for each
task, size and system.

TABLE 1
Accuracy of Participants

Task E30 L30 M30 E60 L60 M60
T1 mean

std
0.97
0.18

0.97
0.18

1.00
0.00

0.74
0.44

0.98
0.13

0.95
0.22

T2 mean
std

0.33
0.47

0.69
0.47

0.95
0.22

0.88
0.33

0.93
0.26

0.83
0.38

T3 mean
std

0.86
0.35

0.97
0.18

0.83
0.38

0.16
0.37

0.95
0.22

0.98
0.13

T4 mean
std

0.33
0.47

0.97
0.18

0.93
0.26

0.55
0.50

0.95
0.22

0.91
0.28

T5 mean
std

0.78
0.42

0.95
0.22

0.95
0.22

0.16
0.37

0.14
0.35

0.71
0.46

T6 mean
std

0.48
0.50

0.62
0.49

0.84
0.37

0.72
0.45

0.21
0.41

0.76
0.43

This table summarizes statistics describing the accuracy of participants. Each
row represents a single task, while each column represents a particular system
and size.

TABLE 2
Timing of Participants

Task E30 L30 M30 E60 L60 M60
T1Time mean

std
19.96
9.08

19.91
10.34

21.38
9.44

34.67
21.30

29.59
37.25

24.77
11.72

T2Time mean
std

47.01
51.85

28.76
9.65

27.72
9.04

34.07
16.16

24.67
10.74

24.43
10.05

T3Time mean
std

29.10
12.56

27.94
17.00

37.42
20.54

42.36
24.52

32.57
15.73

33.78
16.72

T4Time mean
std

51.80
24.90

37.45
11.04

41.41
19.96

61.10
28.72

53.66
19.42

60.07
22.58

T5Time mean
std

35.96
13.52

43.84
16.14

36.29
11.69

55.35
26.80

54.49
25.97

50.70
33.13

T6Time mean
std

32.11
13.10

39.04
17.64

31.39
9.71

52.42
33.86

53.44
29.71

43.01
21.93

This table summarizes statistics describing the time taken on each task. Each
row represents a single task, while each column represents a particular system
and size.

	1 Introduction
	2 Related Work
	2.1 Set Visualization Techniques
	2.2 Evaluations of Set Visualization Techniques

	3 Principles of Abstract Set Visualization
	4 Systems
	5 Controlled Study
	5.1 Participants and Setting
	5.2 Datasets
	5.3 Size
	5.4 Tasks
	5.5 Stimuli
	5.6 Experimental Procedure
	5.7 Pilot Study
	5.8 Hypotheses
	5.9 Summary of Supplementary Material

	6 Results and Analysis
	6.1 Data
	6.2 Methods
	6.3 Accuracy
	6.4 Time
	6.5 Qualitative Feedback
	6.6 Findings

	7 Discussion
	7.1 Limitations
	7.2 Implications

	8 Conclusions
	References
	Biographies
	Markus Wallinger
	Ben Jacobsen
	Stephen Kobourov
	Martin Nöllenburg

	Appendix A: Set Visualization Systems
	A.1 EulerView
	A.2 LineSets
	A.3 MetroSets

	Appendix B: Additional statistical results

