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a simple counting argument to show that no Eulerian triangulation is area-universal. Moreover,
she showed that every plane graph is area-universal in the class of drawings where one bend per
edge is allowed. For triangulations with special vertex orders, Kleist [14] presented a su�cient
criterion for their area-universality that only requires the investigation of one area assignment.
Interestingly, if the su�cient criterion applies to one plane triangulation, then all embeddings of
the underlying planar graph are also area-universal. Dobbins et al. [6] investigated the complexity
of deciding whether a given graph is area-universal and several related problems. They conjecture
that the problem is complete for the complexity class ∀∃R.

In this paper, we focus on plane bipartite graphs. Because the property of area-universality is
preserved under edge-deletions (see also Observation 1), we consider edge-maximal plane bipartite
graphs known as quadrangulations. Regarding the area-universality of quadrangulations little is
known. Evans et al. [9] showed that the m×n grid is area-universal for all m,n ≥ 2, even with the
additional requirement that the outer face of the drawing is a rectangle. Kleist [12] showed that
2-degenerate quadrangulations are area-universal and that in the class of drawings where one bend
per edge is allowed all quadrangulations have realizing drawings for all area assignments where
only half of the edges have a bend.

The study of drawings in various drawing modes with prescribed face areas is summarized under
the name cartograms. Cartograms date back to at least 1934 when Raisz [17] studied rectangular
population cartograms, where the US population was visualized by representing the states with
areas proportional to their population. This kind of visualization is particularly useful when
showing geo-referenced statistical data in order to provide insight into patterns, trends and outliers
in the world around us [22]. Cartograms have been intensely studied for duals of triangulations
and rectilinear drawings with bends. The number of sides of the polygons representing a face has
been improved in a series of papers from 40 sides [5], to 34 sides [11], to 12 sides [2]. Finally,
Alam et al. [1] showed how to construct drawings with 8-sided faces, which is known to be optimal.
Chang and Yen [4] studied contact representations of 2-connected outerplaner graphs and construct
contact representations with 4-gons of prescribed area. Note that in the cartogram literature the
problem is usually treated in the dual setting, i.e., weights are assigned to the vertices. We refer
to Nusrat and Kobourov [16] for a survey of the cartogram literature.

Area-universality has also been studied in the context of rectangular layouts, these are dissec-
tions of a rectangle into rectangles with prescribed contacts between the rectangles of the dissection.
Eppstein et al. [8] showed that a rectangular layout is area-universal if and only if it is one-sided.
The key ingredient in their proof is that the weak equivalence class of any rectangular layout is
area-universal. The weak equivalence class is obtained by prescribing the contacts between the seg-
ments. The area-universality of the weak equivalence class has been shown by di�erent techniques
[7, 10, 21]. This area-universality result is very special because, up to a�ne transformations, the
rectangular layout realizing a given area assignment is actually unique.

The class of drawings: We study area-universality of plane quadrangulations. To realize non-
negative face areas, we extend the set of planar straight-line drawings of a plane quadrangulation
by all drawings which can be obtained as the limit of a sequence of planar straight-line drawings
(e.g. speci�ed by the coordinates of the vertices). In particular, we allow degenerate drawings in
which vertices and edges sharing a face may (partially) coincide; if two edges partially coincide
their union forms a segment.

In various cases, considering this enriched set of drawings allows for simpler proofs [9, 13, 19].
For example, the counting argument by Kleist [13] greatly bene�ts from allowing face area 0 and
degenerate drawings. In the case of triangulations, degeneracies occur if and only if some face has
area 0 and the set of realizable area assignments is closed [13, Lemma 4], i.e., allowing or disal-
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lowing face area 0 and degenerate drawings does not in�uence whether or not all considered area
assignments are realizable. For examples of how to obtain non-degenerate realizing drawings from
degenerate drawings, we refer to 1-bend drawings of plane graphs [13, Theorem 3 & Theorem 6]
and table cartograms [9, Theorem 2].

Outline of this paper: In Section 2, we investigate operations that preserve area-universality.
In Section 3, we use one of these operations, the edge contraction, to show area-universality of grids
and large classes of angle graphs. In particular, we consider angle graphs of triangulations that are
close to being area-universal. In Section 4, we study strong area-universality, i.e., area-universality
within a prescribed outer face. Strong area-universal graphs may serve as building blocks for
constructing area-universal quadrangulations. We show that not every plane bipartite graph is
strongly area-universal and present families of strongly area-universal graphs. Shape restrictions
are also the subject of Section 5 where we study convex drawings. We present both a large family
of quadrangulations that are not convex area-universal and examples of strongly convex area-
universal graphs. In Section 6, we use our tools to show area-universality of all quadrangulations
with at most 13 vertices. In some cases the argument relies on the known area-universality of the
class of double stacking graphs.

2 Area-Universality Preserving Operations

We begin with an easy observation which can also be found in [3] and [13].

Observation 1 A subgraph of an area-universal plane graph is area-universal.

Therefore, a proof for the area-universality of plane quadrangulations, i.e., maximal plane
bipartite graphs, would imply area-universality of all plane bipartite graphs. The following lemma
extends Observation 1 with a new operation. A set of edge contractions in a plane graph G is
face-maintaining if the contractions do not change the number of faces in G, i.e., for a face of
degree d at most d− 3 edges are contracted.

Lemma 1 Let G be a plane graph that can be transformed into an area-universal plane graph G′

by inserting vertices, inserting edges, and performing face-maintaining edge contractions. Then G

is area-universal.

Proof: Let A denote an area assignment of G. A face f in G corresponds to a (non-empty)
collection of faces Cf in G′. We de�ne A′ such that for each inner face f of G it holds that
A(f) =

∑
f ′∈Cf

A′(f ′). Since G′ is area-universal, there exists an A′-realizing drawing D′ of G′.

Simply deleting all vertices and edges of G′ which are not in G yields a (degenerate) drawing D

of G. By de�nition of A′, D is A-realizing. �

There exists a further operation that preserves area-universality and is based on decomposition.
For an illustration consider Figure 1. From a plane graph G with a simple cycle C, we obtain two
plane graphs Gi and Ge by decomposing along C: Gi is the subgraph of G consisting of C and its
interior, while Ge is the subgraph of G consisting of C and its exterior. Reversely, we obtain G

from Gi and Ge by identifying the outer face of Gi with the inner face of Ge whose boundary is C.
A plane graph G is strongly area-universal if for every area assignment A of G and every �xed

polygonal placement of the outer face of area ΣA, there exists a realizing straight-line drawing of G
within the prescribed outer face. Here we have used ΣA to denote the sum of all assigned areas,
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of AU . It remains to insert the vertices fv
1
, fv

2
, fv

3
and fv

◦
. By de�nition of AU , we must place fv

i

as to coincide with wi, i.e., such that the edge fv
i wi is contracted. To place fv

◦
in D◦, we need

some geometric considerations.
The area of f◦ in D◦ is 0, therfore at each vi the two boundary edges of f◦ are collinear. If the

slopes of the 3 supporting lines are pairwise di�erent, then the triangle formed by the three lines is
in f◦, whence the triangle has area 0 which means that the three lines intersect in a point p. This
point is the position of the three subdivision vertices in the drawing D◦ and can be used for fv

◦
. If

two of the lines have the same slope, then because they share one of the subdivision vertices they
coincide. If the third line has a di�erent slope, then the intersection point of the lines is a good
position for fv

◦
. If all three lines coincide there are many di�erent foldings of the boundary of f◦,

we leave it as an exercise to show that in each case there is a position for fv
◦
such that the edges

to v1, v2, v3 can be drawn `inside' f◦.

If there are two subdivision vertices on the boundary of f◦ we use the area assignment AU and
the corresponding A◦ as in the previous case. In the drawing D◦ we pretend that the third edge
of f◦. The considerations for the case of three subdivided edges show that there is a good position
for fv

◦
.

Since the set of subdivided edges is far apart, every subdivided edge belongs to a star. We
handle each star separately as described above; in particular, the star consists of one, two or
three edges since T is a triangulation. By the independence, for every two stars, the edges of T
surrounding the regions of the stars are disjoint; these edges form a so-called boundary cycle of a
star. For an example consider Figure 7(b).

Note that in all cases, when de�ning AU from A, only the areas inside and adjacent to the
boundary cycle are a�ected. Since these sets of faces in U are disjoint, the subdivision vertices can
be handled independently. This �nishes the proof. �

The results of Proposition 6 and Theorems 7, 8 and 10 imply the area-universality of several
classes of angle graphs.

Corollary 11 The angle graph of a plane triangulation T is area-universal if
• T is a stacked triangulation,
• T is 4-connected and has at most ten vertices, or
• any (possibly a di�erent) embedding of T is a double stacking graph H`,k.

Proof: Stacked triangulations are area-universal, hence Proposition 6 implies the area-universality
of its angle graphs. Theorem 8 can be used to show that triangulations with at most nine vertices
and all embeddings of `k-double stacking graphs have subdivision number at most 1 [15]. Con-
sequently, Theorem 7 implies that their angle graphs are area-universal. Moreover, 4-connected
plane triangulations on ten vertices can be obtained from area-universal triangulations by at most
two disjoint diamond additions. Thus, their area-universality follows from Theorem 10(i). �

4 Strongly Area-Universal Quadrangulations

In this section, we study strongly area-universal quadrangulations. Recall that a quadrangulation
is strongly area-universal if it is area-universal within every �xed outer face of the correct total
area. A nice property of this class is that we can stack any strongly area-universal into a face of an
(strongly) area-universal quadrangulation to obtain an (strongly) area-universal quadrangulation.
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Q9 is obtained from the cube by �rst adding a subdivided diagonal to a face and then stacking
a cube graph in one of the two new faces. Since the cube graph is the double wheel S3, both
quadrangulations are area-universal by Corollary 15.

We reduce all remaining quadrangulations to area-universal triangulations. The quadrangula-
tion Q3 on eleven vertices is a subgraph of a stacked triangulation T , for which every embedding
of T is area-universal. In Figure 20, the vertices and edges of the stacked triangulation are high-
lighted in red.

The three remaining quadrangulations are subgraphs of an area-universal graph family which
was shown to be area-universal by Kleist [14].

Theorem (Kleist [14], Theorem 3) Any (embedding of a) double stacking graph H`,k is area-
universal if and only if ` · k is even.

More precisely, Q6, Q7, Q8 are subgraphs of an area-universal double stacking graph with some
additional vertices of degree 3 stacked into triangular faces. Thus, their area-universality follows
from Observation 1 and [14, Theorem 3]. In Figure 20 the vertices which remain after iterative
removal of degree-3 vertices are highlighted in red. The quadrangulation Q6 on twelve vertices
reduces to the double stacking graph H2,2; the quadrangulations Q7 and Q8 on 13 vertices reduce
to the double stacking graph H2,1. The vertices in the interior of red dotted curves in Figure 20
are added by diamond additions on the respective edge. �

7 Conclusions and Future Work

In this paper we develop several useful tools for the study of area-universality of plane quadran-
gulations. With the help of these tools we prove the area-universality of several non-trivial graph
classes, including grid graphs, tent graphs, some types of angle graphs of plane triangulations,
pseudo-double wheels and their generalization. We also prove that all quadrangulations with at
most 13 vertices are area-universal. Interestingly, pseudo-double wheels are also strongly area-
universal and convex area-universal, i.e., the outer face of the realizing drawings can be prescribed
or asked to have convex faces. However, these properties do not hold for all quadrangulations:
We present examples of quadrangulations and area assignments that admit no realizing draw-
ings with convex faces or a prescribed outer face, respectively. The natural question, whether all
quadrangulations are area-universal remains an interesting open problem.
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