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Introduction

Our goal in this paper is to describe the combinatorial analogue of a remarkable
object which quantifies the algebraic-topological stability of fibers of certain suffi-
ciently tame functions f : X→M. Here X a cell complex, M is an oriented manifold,
and the fiber of f over some U ⊂ M is f−1(U) ⊂ X. Assuming that M has a met-
ric [·, ·] compatible with its topology, we seek efficiently computable answers to the
following question:

if g : X → M is a function satisfying supx∈X [ f (x), g(x)] < δ (for some
small δ > 0), then how can one relate the homology of the fibers of f to the
homology of the corresponding fibers of g? In particular, which homology
classes in f−1(U) are guaranteed to persist in g−1(U) for each U ⊂M?

Readers who consider this an intrinsically compelling quest are encouraged to begin
their journey at Sec 1. The remainder of this introduction is aimed at those who
prefer to view such problems through the lens of persistent homology, which provides
a thoroughly satisfying answer to our question whenever the target manifold M is R
(i.e., the real line equipped with its standard metric).

Persistent Homology. To each continuous map f : X → R, one can associate an
R-indexed family of (graded) vector spaces via the assignment of sublevelset singular
homology with coefficients in some field k:

s 7→ V f (s) = H• ({x ∈ X | f (x) ≤ s} ; k) .

Inclusion of sublevelsets induces linear maps V f (s) → V f (t) whenever s ≤ t. Such a
collection of vector spaces and their maps (equivalently, a functor from the poset of
real numbers to the category of k-vector spaces), is called a persistence module.

Three miracles conspire to render the study of persistence modules tractable; we
describe them here for the most familiar and motivating example of modules V f which
arise from the sublevelset homology with k coefficients of a sufficiently tame function
f : X→ R (e.g., a piecewise linear map from a finite CW complex, or a Morse function
on a compact Riemannian manifold).

(1) Structure: there is a complete combinatorial invariant Bar( f ) of V f called its
barcode — here completeness means that two persistence modules are isomor-
phic if and only if their barcodes coincide.
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(2) Computability: if X is a finite cell complex filtered by locally constant f -
values on cells, then Bar( f ) is computable via standard linear algebra (namely,
boundary matrix diagonalization).

(3) Stability: there is a natural metric on the set of barcodes under which the
assignment f 7→ Bar( f ) constitutes a 1-Lipschitz map from the tame functions
in L∞(X) to barcode-space.

Each barcode is a list of subintervals [b, d) of R ∪ {±∞}, and the dimension of the
k-vector space H•( f−1(U); k) equals the number of intervals in Bar( f ) which contain
U ⊂ R. Stability helps solve our fiber problem as follows. If g : X → R satisfies
supX | f (x)− g(x)| < δ, then only those intervals [b, d) in Bar( f ) which satisfy U ⊂
[b + δ, d− δ) represent homology classes in f−1(U) that are guaranteed to survive in
g−1(U).

The structure theorem for tame persistence modules admits a nice representation-
theoretic description. The barcode of such a module is (equivalent to) the list of
indecomposable summands obtained by discretizing it into a quiver representation
whose underlying graph is a type A Dynkin diagram:

By a celebrated result of Gabriel [10], a connected quiver is of finite type (meaning that
its indecomposable finite-dimensional representations fall into finitely many isomor-
phism classes) if and only if the underlying graph is a Dynkin diagram of type A, D or
E. Moreover, the fact that barcodes can be easily computed via matrix diagonalization
follows directly from the observation that if our quiver has all its arrows pointing in
the same direction, then its k-vector space valued representations constitute finitely
generated modules over the polynomial ring k[t] (which happens to be an Euclidean
domain). Thus, our first two miracles appear, at least on the surface, to exist for purely
algebraic reasons.

In sharp contrast, reading the arguments which first established the stability the-
orem for tame persistence modules [6] is a viscerally geometric experience. The most
powerful approach to date [5] lifts the barcode-distance to an interleaving distance on
the space of all persistence modules, and verifies that the resulting metric space ad-
mits geodesics. Consequently, if two persistence modules have interleaving distance
δ, then for each t ∈ [0, δ] there is an intermediate module at distance t from one
and (δ− t) from the other. This interpolation lemma has frequently appeared in var-
ious guises at the heart of stability and related arguments — see [6, Sec 3.3], [5, Ch
3.4] or [3]. Thus, stability compels us to retreat to the geometric perspective where
persistence modules are R-indexed k-vector spaces, and does not fit naturally within
discrete frameworks arising from representations of quivers or modules over polyno-
mial rings.

Higher Persistence. We find it difficult, as card-carrying mathematicians, to wit-
ness these three miracles maps and not immediately try to recreate them for maps
with more exotic targets (than R). Certainly, we are far from alone — considerable
efforts have been recently expended on discovering barcode-like invariants of higher
persistence modules which arise naturally as sublevelset homologies of tame maps to
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Rn for larger n. The case n = 2 is already hard, and contains all the essential difficul-
ties encountered when confronting arbitrary n > 1. In our view, the primary source
of these troubles is the inherent tension between the algebraic nature of structure and
computability on one hand and the inextricable link of stability with geometry on the
other.

In any event, the story of higher persistence modules often begins with a grid of
two (or more) dimensions whose rows and columns are type-A quivers:

One requires every square in sight to commute, so this becomes a quiver with relations,
and as such it falls outside the purview of Gabriel’s theorem. Even so, it is not of
finite type — when all vertical edges point up and all horizontal edges point right,
one can view each representation as a module over the polynomial ring k[s, t] in two
commuting variables over a field. Since this ring is manifestly not a principal ideal do-
main, finitely generated k[s, t]-modules are not guaranteed to decompose into pieces
sourced from some finite set1. This lack of higher barcodes was already quantified
and lamented in the earliest work on higher persistence [4]; its authors also proffered
(as an incomplete but computable alternative) the discrete rank invariant, which has
been extensively studied thereafter [17, 15].

A plethora of other creative and intriciate invariants have been subsequently pro-
posed. The interleaving distance was extended to higher persistence modules in [16],
so it is possible to check the stability of these invariants even when the underlying
module does not arise from the fiberwise homology of a given function. Here are
four examples which we hope will convey the remarkable breadth of ideas that have
recently gone into the search for new invariants:

(1) The authors of [24] have obtained invariants for tame Qn-indexed persistence
modules by providing a set of algebraic axioms for noise systems, which in-
duce new interleaving-type distances between modules. The result of these
investigations is a feature-counting invariant, which is stable in a certain sense,
but NP-hard to compute in general.

(2) In [11], Hilbert series and prime ideals associated to k[t1, . . . , tn]-modules are
used to define a natural stratification ofZn-indexed persistence modules. This
makes it possible to identify, for instance, homology classes that live infinitely
along one or more of the coordinate t• axes. We are not aware of any stability
or efficient computability properties enjoyed by this stratification.

1But we note that the subquiver consisting of two adjacent commuting squares is of finite type; its
barcodes were painstakingly described using Auslander-Reiten theory in [13].
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(3) The methods of microlocal sheaf theory are used in [14] to study maps taking
values in Rn (or more generally, kn for a field k), with sublevelsets being de-
fined relative to a closed convex cone γ ⊂ Rn. For piecewise-linear maps, the
resulting invariants are collections of convex polytopes that intersect γ in pre-
scribed ways. Although these polytopes satisfy a derived-categorical stability
criterion, they are not easily computable to the best of our knowledge.

This Paper. Here we construct a new invariant for those persistence modules
which arise from the fiberwise homology of cellular maps f : X → M whose target
space M is an oriented finite-dimensional manifold with a fixed regular CW decom-
position. Our starting point and guiding principle is the theory of bisheaves, which
was recently introduced in [20] precisely to tackle the homological stability problem
for fibers of constructible maps to oriented manifolds.

Before releasing yet another fish into a teeming pond, we should explain why we
expect it to thrive.

(1) The target M need not be a vector space (like Rn) or an ordered lattice con-
tained therein (like Zn). This is not generality for its own sake: for instance,
circular coordinates [9] have already played an important role in the theory
and applications of persistent homology, and any space X endowed with two
circular coordinates constitutes a torus-valued map X → T. None of the ex-
isting invariants would, as far as we can tell, extend naturally to such maps.

(2) Our invariant is discrete and efficiently computable when X and M are finite
complexes, requiring nothing more serious than the standard linear algebraic
operations which diagonalize boundary matrices of (co)chain complexes to
extract (co)homology groups. Moreover, the computability of our invariant is
significantly enhanced in the presence of distributed processing architectures.

(3) Considerations of stability are the raison d’être for bisheaves [20]. Thus not
only is our invariant stable, but it also provides principled lower bounds on
(Betti numbers of) the stable homology classes in every fiber f−1(U).

On the other hand, bisheaves are complicated objects; the amount of abstract ma-
chinery required to construct our invariant, even in the relative comfort of the cellular
setting, is considerably larger than we would have preferred. Thus, an important sec-
ondary goal of our our work here is pedagogical — we have eschewed various slick
techniques in favor of explicit combinatorial constructions, and indulged ourselves in
the occasional geometric interlude. We would like to make this beautiful new theory
of bisheaves more accessible to as wide an audience as possible, and we hope that the
expository choices made here towards that end will assist the novice without agitating
the expert.

The rest of this paper is organized as follows. In Sec blah we blablah...

1. Cellular Bisheaves

Let M be a regular CW complex2 and let A be an abelian category — typical
choices of A are the category Mod(R) of modules over a commutative unital ring R,

2This means that the closure of every cell in M is homeomorphic to a closed disk of the correct
dimension — see [21, Ch IX.6] for more.
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or more generally, the category Ch(R) of chain complexes of R-modules. By a sheaf
over M (taking values in A) we mean a functor

F : Fc(M)→ A

from the poset of cells in M ordered by the face relation to the abelian category A.
Thus, each cell σ of M is assigned an A-object called the stalk of F over σ, while each
face relation σ ≤ σ′ among cells is assigned a corresponding A-morphism F(σ ≤
σ′) : F(σ) → F(σ′) in A, called its restriction map. These assignments of objects and
morphisms are subject to the usual laws of associativity and identity. A morphism α :
F → G of sheaves over M is prescribed by a collection of A-morphisms {ασ : F(σ)→
G(σ)}, indexed by cells of M, which are required to commute with restriction maps.
Sheaf morphisms are composed stalk-wise. We call α an epi/mono/isomorphism if
each constituent ασ is an epi/mono/isomorphism in A.

One similarly has the dual notion of a cosheaf under M, which is a functor

F : Fc(M)op → A.

This assigns to each cell σ a module F(σ) called its costalk, and to each face relation
σ ≤ σ′ a contravariant A-morphism F(σ ≤ σ′) : F(σ′) → F(σ), called the extension
map. As before, a morphism α : F → G of cosheaves under M is a cell-indexed col-
lection of morphisms {ασ : F(σ)→ G(σ)} in A which must commute with extension
maps. For a detailed introduction to cellular (co)sheaves, see [7].

1.1. Definition. The following algebraic-topological object (compare [20, Def 5.1])
coherently intertwines sheaves with cosheaves.

Definition 1.1. A bisheaf around M (taking values in A) is a triple

F = (F, F, F),

defined as follows. Here F is an A-valued sheaf over M, while F is an A-valued
cosheaf under M, and

F = {Fσ : F(σ)→ F(σ)}
is a collection of A-morphisms indexed by the cells ofM so that the following diagram
commutes in A for each face relation σ ≤ σ′:

F(σ)

Fσ
��

F(σ≤σ′)
// F(σ′)

Fσ′
��

F(σ) F(σ′)
F(σ≤σ′)

oo

(The right-pointing map is the restriction map of the sheaf F, while the left-pointing
map is the corestriction map of the cosheaf F).

The reader who urgently craves interesting examples of bisheaves is requested to
delay gratification until Sec 2; for now, let us note that bisheaves around M naturally
form a category as follows. A morphism F → G is a pair α = (α, α) where α : F → G
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is a morphism of sheaves, α : G → F is a morphism of cosheaves, and the following
diagram commutes in A for every cell σ in M:

F(σ)

Fσ
��

ασ
// G(σ)

Gσ
��

F(σ) G(σ)
ασ

oo

We call α an isomorphism if both α and α are isomorphisms. Compositions of bisheaf
morphisms are defined in the obvious manner (one composes the sheaf maps and
cosheaf maps independently), so we obtain the desired category Bsh(M) of bisheaves
around M.

Remark 1.2. Bisheaves may be regarded as ordinary sheaves taking values in the
twisted arrow category [19, Ex IX.6.3] of A. Unfortunately, the twisted arrow category
does not inherit an abelian structure from A, so one can not expect Bsh(M) to be
an abelian category. Fortunately, Def 1.1 has some rather concrete specializations.
For instance, if A is the category of finite dimensional real vector spaces, then an
A-valued bisheaf around M is completely determined by the assignment one real
matrix to every cell of M plus two real matrices to every face relation. Of course,
these matrices must satisfy various commutativity conditions described above.

1.2. Isofication and Local Systems. (Maybe do this using comma categories?)

2. Bisheaves from Fibers

Let X and M be regular CW complexes, and let f : X → M be a combinatorial
cellular map. That is to say, f is specified here entirely in terms of a poset map
Fc(X)→ Fc(M) that sends cells to cells, rather than as a continuous function between
the underlying topological spaces; all we require is dim f (τ) ≤ dim τ for every cell
τ of X. Also let Mod(R) and Ch(R) denote the categories of R-modules and chain
complexes of R-modules over some fixed commutative unital ring R.

Our goal here is to explicitly construct a certain Mod(R)-valued bisheaf

F = (F, F, F)

around M arising from the homology of fibers of f , as in [20, Ex 5.3]. Both the
constituent sheaf F and the cosheaf F can be constructed without any further as-
sumptions, but constructing the intertwining maps F requires additional structure to
be imposed on the target CW complex M.

Example 2.1. Consider, as a running example throughout this section, the cellular
map whose domain is the union of a torus and a sphere along an equatorial circle S:
and whose codomain is the subcomplex consisting only of the sphere. Our map sends
the toral part of its domain radially down to the underlying circle S, and acts as the
identity on the remaining spherical part of the domain.

The following (standard) terminology will be used throughout: the open star of
a cell σ in the CW complex M is the subposet of Fc(M) consisting of all cells lying



CELLULAR BISHEAVES AND HIGHER PERSISTENCE 7

above σ with respect to the face partial order:

st σ = {σ′ ∈ Fc(M) | σ′ ≥ σ}.

The sheaf and cosheaf that we are about to define involve homology of the fibers of f
over such open stars; rather than writing f−1(st σ) for each such fiber, we will write

f//σ = {τ ∈ Fc(X) | f (τ) ≥ σ}.

While fibers are clearly subposets of Fc(X), in general the cells in a given f//σ do not
constitute a subcomplex of X. We work throughout with coefficients in a commu-
tative unital ring R, which will remain suppressed from the notation for chain and
homology modules.

2.1. The Borel-Moore Homology Sheaf. The first component required by the
bisheaf F associated to our cellular map f : X → M is a sheaf F over M. This sheaf
will have as its stalk over each cell σ the Borel-Moore homology of the corresponding
fiber f//σ, i.e.,

F•(σ) = H•(X,X− f//σ).

We describe an explicit cellular model of this sheaf here.

Definition 2.2. The complex C•(σ) of cellular Borel-Moore chains in f//σ is the
chain complex

· · · → Cd(σ)→ Cd−1(σ)→ · · · → C1(σ)→ C0(σ)

of R-modules defined as follows. The d-th chain module is generated freely by the set
of all d-cells in f//σ:

Cd(σ) = R
[
{τ ∈ f//σ | dim τ = d}

]
,

while the boundary operator Cd(σ)→ Cd−1(σ) is obtained by restricting the standard
cellular boundary map of X to (chains generated by) the cells in f//σ.

Example 2.3. When σ is a 1-cell lying in the equator S ⊂M from Ex 2.1, the only
nontrivial chain modules are C1(σ) and C2(σ), which have ranks 4 and 6 respectively.
Illustrated above are the cells which participate in the Borel-Moore chain complex of
σ (note that the dotted cells in the boundary are excluded.)
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If a face relation σ ≤ σ′ holds among cells of M, then there is an inclusion f//σ′ ↪→
f//σ of fibers because f (τ) ≥ σ′ automatically implies f (τ) ≥ σ. Thus, in this case we
have a based epimorphism of chain complexes C•(σ) � C•(σ′) induced by the following
simple action on each cell τ of f//σ:

τ 7→
{

τ if τ is in f//σ′

0 otherwise.

The sheaf of Borel-Moore chains associated to f : X→M is the functor C• : Fc(M)→
Ch(R) whose stalk over each cell σ is the chain complex C•(σ) from Def 2.2 and whose
restriction map over each face relation σ ≤ σ′ is the based epimorphism C•(σ) �
C•(σ′) defined above.

Definition 2.4. The Borel-Moore homology sheaf F• : Fc(M)→Mod(R) associ-
ated to the cellular map f : X→M is the homology of C•. In other words, it is given
by the composite

Fc(M)
C•−→ Ch(R) H•−→Mod(R)

of C• with the usual homology functor defined on chain complexes of R-modules.

Thus, for each dimension d ≥ 0, the stalk Fd(σ) over a cell σ of M is the d-
th homology of the chain complex from Def 2.2, while the restriction map F(σ ≤ σ′)
associated to a face relation σ ≤ σ′ is induced on homology by the based epimorphism
of chains. Here are the Betti numbers (i.e., ranks of homology modules) of F-stalks
over simplices in the codomain of the cellular map from Ex 2.1:

σ 7→
{
(0, 0, 2, 0, 0, . . .) σ ∈ S
(0, 0, 1, 0, 0, . . .) σ /∈ S.

We conclude our description of the Borel-Moore sheaf by proving that it is appropri-
ately named.

Proposition 2.5. For each dimension d ≥ 0 and simplex σ ∈M, there exists an isomor-
phism in Mod(R)

Fd(σ) ' Hd(X,X− f//σ)

between the d-th stalk over σ of the cellular Borel-Moore homology sheaf and the d-th relative
homology module of the pair (X,X− f//σ).

Proof. By excision, the relative homology of the pair (X,X− f//σ) is the same as
that of ( f//σ, ∂ f//σ), where the overline indicates closure inXwhile ∂ denotes the cellu-
lar boundary (e.g., the subcomplex spanned by dotted cells in the illustration above).
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It is easily checked that the chain complex C•(σ) is obtained precisely by quotienting
the cellular chain complex associated to f//σ by the subcomplex corresponding to its
boundary ∂ f//σ. �

2.2. The Singular Homology Cosheaf. The second ingredient required to build
the bisheaf F associated to f : X→M is a cosheaf F under M. To each simplex σ this
cosheaf will simply assign the singular homology of its fiber:

F•(σ) = H•( f//σ),

so conceptually this may be a far more familiar object than the sheaf F from the
preceding subsection. However, since fibers f//σ may not be CW complexes in their
own right, building an explicit cellular chain-level model for F is a slightly more
intricate process.

Definition 2.6. The barycentric subdivision ∆P of a poset (P,<) is that abstract
simplicial complex whose d-simplices are all finite ascending sequences of (d + 1)
distinct P-elements of the form

γ = (p0 < p1 < · · · < pd−1 < pd),

with the face relation arising from the inclusion of subsequences. (Note that ∆P is
also called the order complex of P, particularly in topological combinatorics [1, Sec 3]).

We will call simplices of ∆P the exit paths of P in accordance with [25, 8, 22]. If
P = Fc(X), then ∆P is the honest barycentric subdivision of the CW complex X, so
there is a homeomorphism between ∆Fc(X) and X — for details, see the proof of [18,
Thm III.1.7]. It will also be useful to observe that the barycentric subdivision ∆( f//σ)
of a fiber f//σ ⊂ Fc(X) consists of precisely those exit paths (τ0 < · · · < τk) in ∆Fc(X)
whose first cell satisfies f (τ0) ≥ σ.

Definition 2.7. The complex C•(σ) of cellular singular chains in the fiber f//σ is
the R-module chain complex

· · · → Cd(σ)→ Cd−1(σ)→ · · · → C1(σ)→ C0(σ),

where each Cd(σ) is freely generated by the d-simplices of ∆( f//σ):

Cd(σ) = R [{(τ0 < · · · < τd) ∈ ∆Fc(X) | f (τ0) ≥ σ}] ,

and the boundary operator is obtained by restricting the usual simplicial boundary
map of ∆Fc(X).

Example 2.8. Returning once more to Ex 2.1, let us describe the (subdivided) cells
in f//σ which contribute to C•(σ) whenever σ is a 1-cell lying in the equatorial circle
S. The modules C0(σ) and C1(σ) both have rank 10, while all the other chain modules
are trivial. The figure below illustrates the ten vertices and ten edges which generate
the nontrivial modules. These assume the shape of a circle which has two tendrils
emanating from the basepoint:

If σ ≤ σ′ holds in M, then the barycentric subdivision ∆( f//σ′) of the fiber over
σ′ is a simplicial subcomplex of ∆( f//σ) — to see this, note that if some exit path
γ = (τ0 < · · · < τk) in Fc(X) satisfies f (τ0) ≥ σ′, then we automatically also obtain
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f (τ0) ≥ σ. Thus, there is a based monomorphism C•(σ
′) ↪→ C•(σ) of the corresponding

singular chain complexes.
The cosheaf of singular chains for our cellular map f : X → M is the functor C• :

Fc(M)op → Ch(R) that assigns to each cell σ the costalk C•(σ) from Def 2.7, and to
each face relation σ ≤ σ′ the based monomorphism C•(σ

′) ↪→ C•(σ) defined above.

Definition 2.9. The singular homology cosheaf F• : Fc(M) → Mod(R) asso-
ciated to the cellular map f : X → M is the homology of C•. Namely, it is the
composite

Fc(M)op C•−→ Ch(R) H•−→Mod(R)

of C• with the usual homology functor for chain complexes of R-modules.

As promised, the Betti numbers of F-costalks under the cells of the codomain
from Ex 2.1 are precisely what one would expect from the singular homology of the
corresponding fibers:

σ 7→
{
(1, 1, 0, 0, 0, . . .) σ ∈ S
(1, 0, 0, 0, 0, . . .) σ /∈ S.

A geometric reason for this equivalence is already apparent from the illustration in
Ex 2.8 — the fiber over σ, which looks like of a cylinder-with-two-fins, deformation
retracts horizontally onto our circle-with-two-tendrils. This observation forms the
core of the following argument.

Proposition 2.10. For each dimension d ≥ 0 and simplex σ ∈M, there is an R-module
isomorphism

Fd(σ) ' Hd( f//σ)

between the d-th costalk of the singular homology cosheaf under σ and the d-th singular
homology module of the fiber f//σ.

Proof. Let Vσ denote the poset of simplices in the barycentric subdivision ∆Fc(X)
which intersects the fiber f//σ:

Vσ = {(τ0 < · · · < τk) ∈ ∆Fc(X) | f (τk) ≥ σ}.
Since the geometric realization of Vσ is homeomorphic to f//σ, it suffices to show
that Vσ is homotopy-equivalent to the simplicial complex ∆( f//σ) whose homology is
computed by the chain complex C•(σ) from Def 2.7. To this end, associate to each
exit path

γ = (τ0 < · · · < τk) in Vσ
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the smallest index i(γ) in {0, . . . , k} for which f (τi) ≥ σ holds. Let rσ(γ) be the exit
path obtained by removing all the cells in γ which precede τi(γ):

rσ(γ) =
(

τi(γ) < · · · < τk

)
.

Now, rσ(γ) lies in ∆( f//σ) because its first cell satisfies f (τi(γ)) ≥ σ. It is easily
confirmed that rσ : Vσ → ∆( f//σ) defines an order-preserving map. To finish the
argument, we will establish that rσ has contractible fibers and appeal to the fact that
poset maps with contractible fibers induce homotopy equivalence of order complexes
[1, Thm 2]. One can verify that the fiber of rσ over each exit path η = (ρ0 < · · · < ρ`)
in ∆( f//σ) is precisely the open star of η in Vσ, and the desired result follows from the
fact that open stars are contractible. �

2.3. The Intertwining Maps. In order to build the final piece of the bisheaf F, we
require the target CW complex M to have Poincaré duality. Such complexes are best
described in terms of their orientation cosheaves (see [7, Def 7.1] or [23, Sec 3]), which
we now define.

Definition 2.11. The orientation cosheaf O• on M takes values in the category
of R-modules, and is defined as follows.

(1) The stalk O•(σ) over a cell σ in M is the cohomology of a cochain complex:

L0(σ)→ L1(σ)→ · · · → Lk(σ)→ · · · ,

where Lk(σ) is the free R-module spanned by all the k-dimensional cells in
the open star st σ ⊂ Fc(M). The coboundary maps in the complex above are
obtained by restricting the usual cellular coboundary operator on M.

(2) The extension map O•(σ ≤ σ′) associated to a face relation σ ≤ σ′ in Fc(M)
is simply the map on cohomology induced by the based monomorphism

L•(σ′) ↪→ L•(σ)

arising from the fact that st σ′ is a subposet of st σ.

By construction, O•(σ) is always (isomorphic to) the compactly-supported coho-
mology of σ’s open star st σ — indeed, one perspective on O is that it is the Borel-
Moore homology sheaf from Sec 2.1 for the identity cellular mapM→M, except that
the boundary morphisms of the underlying chain complexes have been systematically
replaced by their adjoints.

Definition 2.12. We call the m-dimensional regular CW complex M a Poincaré
complex if two conditions hold:

(1) its top compactly supported cohomology satisfies Hm
c (M; R) = R, and

(2) the inclusion of the open star st σ ⊂M of any cell σ in M induces an isomor-
phism between Om(σ) and Hm

c (M; R).

Henceforth, we will assume thatM is a Poincaré complex of dimension m, noting
that the class of such complexes includes all m-dimensional topological manifolds
without boundary (and more generally, all m-dimensional boundaryless R-homology
manifolds). Armed with Poincaré duality, we will complete our construction of the
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bisheaf F associated to f : X →M by describing the desired intertwining maps over
a fixed cell σ ∈M. These will take the form

Fσ : Fm+•(σ)→ F•(σ)

between (an m-shifted version of) the Borel-Moore homology sheaf from Sec 2.1 and
the singular homology cosheaf from Sec 2.2.

Remark 2.13. The following construction is described in [20, Ex 5.3]. Let o be a
generator of the top cohomology Hm

c (M; R), and let o|σ be its image in Om(σ) under
an isomorphism guaranteed by Def 2.12. Then the pullback f ∗(o|σ) is an element in
the m-th compactly-supported cohomology of the fiber f//σ. The cap product with
f ∗(o|σ) therefore constitutes a map

Fm+•(σ)
_ f ∗(o|σ)

// F•(σ).

from the Borel-Moore homology to the singular homology of the fiber f//σ. When f
is the identity on M, this map reduces to the standard Poincaré duality isomorphism
on st m. What follows below is a combinatorial avatar of this basic construction. An
advantage of working in the cellular setting is that one obtains an explicit chain-level
formula for this cap product map that can be used to perform machine compuations.

Since M is assumed to be an m-dimensional Poincaré complex, each cell σ in M
is the face of some m-dimensional cell, so we can always select a maximal exit path
through σ in Fc(M), i.e., a strictly ascending sequence of cells

η = (σ0 < σ1 < · · · < σm) (1)

with dim σi = i, so that the cell in position dim σ is σ itself. Let us assume that such
an η has been chosen for each cell σ of M. This selection can be completely arbitrary,
and in particular we do not require any compatibility between η and the maximal
path chosen for any other cell σ′ in M (even if σ ≤ σ′).

Let τ be a generating cell of the chain module Cm+d(σ) from Def 2.2 — this means
dim τ = m + d and f (τ) ≥ σ. Define the collection of maximal exit paths through τ over
η as the following subset of ∆Fc(X):

Pη(τ) = {(τ0 < τ1 < · · · < τm+d = τ) | dim τi = i and f (τj) = σj}. (2)

(Here i runs from 0 to m + d while j runs from 0 to m). In other words, Pη(τ) is the
collection of all maximal exit paths in Fc(X) whose

(1) last cell is τ, and
(2) first m cells are mapped by f to the cells of η.

To each exit path γ = (τ0 < · · · < τm+d) in this set Pη(τ), we assign a weight wγ ∈ R,
given by the product

wγ = −
m+d

∏
i=1

[τi : τi−1], (3)

where each factor [τi : τi−1] is the R-valued degree of the attaching map from the
boundary of the cell τi to its face τi−1 in X. Since X is assumed to be a regular CW
complex, each degree is either 1R or −1R, so our weights always take values in ±1R.
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Definition 2.14. The d-th intertwining map Cσ : Cm+d(σ)→ Cd(σ) is defined (as
a linear map of R-modules) by the following action on a basis cell τ of its domain:

Cσ(τ) = ∑
γ

wγ · γ≥m.

The sum is taken over the set of all exit paths γ ∈ Pη(τ) as defined in (2). For each
such path, wγ ∈ {±1R} is the weight as described in (3), while γ≥m is the subpath
obtained by removing the first (m− 1) cells.

Let us confirm that Cσ(τ) is indeed a chain in C•(σ). Letting i ∈ {0, . . . , m} denote
the dimension of σ, it follows from (2) and (1) that each exit path γ ∈ Pη(τ) has as its
i-th cell some τi ∈ X whose f -image is σ. Therefore, f (τm) ≥ f (τi) = σ holds, so the
first cell τm of γ≥m lies in f//σ, whence γ≥m is a basis element of C•(σ) as desired.

Proposition 2.15. The following properties hold for the maps Cσ from Def 2.14.

(1) Cσ prescribes a chain map Cm+•(σ)→ C•(σ), and hence induces well-defined maps
on homology.

(2) These induced maps Fσ : Fm+•(σ) → F•(σ) on homology are independent of the
choice of maximal path η made in (1).

(3) This collection {Fσ} of maps on homology indexed by cells σ of M satisfies the defin-
ing property of a bisheaf. Namely, the diagram

Fm+•(σ)

Fσ
��

Fm+•(σ≤σ′)
// Fm+•(σ′)

Fσ′
��

F•(σ) F•(σ′)F•(σ≤σ′)
oo

commutes for every face relation σ ≤ σ′ in M

Proof. All three assertions follow quickly once we establish the fact that Cσ factors
into two very well-known chain maps

Cm+•(σ)→ Dm+•(σ)→ C•(σ),

where the intermediate Dm+•(σ) is generated freely by exit paths lying in the poset
Vσ which appeared in the proof of Prop 2.10. More precisely, the generators of the
chain module Dk(σ) are all exit paths (τ0 < · · · < τk) in Fc(X) whose last cell τk lies
in f//σ (i.e., satisfies f (τk) ≥ σ). Our first map Cm+•(σ) → Dm+•(σ) is simply the
canonical chain equivalence between the chains of f//σ and those of Vσ; it acts on each
(m + d)-dimensional cell τ via:

τ 7→∑
γ

wγ · γ.

The sum here is over all maximal exit paths in Vσ of length (m + d) whose last cell
is τ, with the weights wγ being given by the formula in (3). And the second chain
map Dm+•(σ) → C•(σ) is obtained via the simplicial cap product with a certain m-
dimensional simplicial cochain f ∗(η) in Vσ, where η = (σ0 < · · · < σm) is the chosen
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maximal path from (1). This cochain is defined by the following action on each exit
path δ = (τ0 < · · · < τm) in Vσ:

〈 f ∗(η), δ〉 =
{

1R, f (τi) = σi for all i ∈ {0, · · · , m},
0R, otherwise.

By the cap product formula for simplicial complexes [12, Sec 3.3], we obtain our
second chain map Dm+•(σ)→ C•(σ); it acts on each exit path γ = (τ0 < · · · < τm+d)
in Vσ via

γ 7→ 〈 f ∗(η), γ≤m〉 · γ≥m.

Here γ≤m is the subpath (τ0 < · · · < τm) and γ≥m is defined similarly. A brief glance
at Def 2.14 will confirm that Cσ factors into the two chain maps described above,
which immediately proves (1). To see (2), we use the fact that M is a Poincaré com-
plex: any two choices of η are cohomologous (being top-dimensional simplices) as
generators of the top cohomology in the barycentric subdivision of f//σ. Thus, the
η-invariance of Fσ follows from well-definedness of the cap product on (co)homology.
And finally, to establish (3) for a face relation σ ≤ σ′, we can always choose a max-
imal exit path η that goes through both σ and σ′, thus making the desired diagram
commute directly on the chain level. �
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