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Crystallization is fundamental to materials science and is cen-
tral to a variety of applications, ranging from the fabrication
of silicon wafers for microelectronics to the determination of
protein structures. The basic picture is that a crystal nucleates
from a homogeneous fluid by a spontaneous fluctuation that
kicks the system over a single free-energy barrier. However, it
is becoming apparent that nucleation is often more complicated
than this simple picture and, instead, can proceed via multiple
transformations of metastable structures along the pathway to
the thermodynamic minimum. In this article, we observe, char-
acterize, and model crystallization pathways using DNA-coated
colloids. We use optical microscopy to investigate the crystalliza-
tion of a binary colloidal mixture with single-particle resolution.
We observe classical one-step pathways and nonclassical two-
step pathways that proceed via a solid–solid transformation of a
crystal intermediate. We also use enhanced sampling to compute
the free-energy landscapes corresponding to our experiments
and show that both one- and two-step pathways are driven
by thermodynamics alone. Specifically, the two-step solid–solid
transition is governed by a competition between two different
crystal phases with free energies that depend on the crystal size.
These results extend our understanding of available pathways
to crystallization, by showing that size-dependent thermody-
namic forces can produce pathways with multiple crystal phases
that interconvert without free-energy barriers and could provide
approaches to controlling the self-assembly of materials made
from colloids.
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The spontaneous nucleation and growth of crystals from
supersaturated fluids is common across a variety of mate-

rial platforms, including metallic alloys (1), oppositely charged
ions (2), proteins (3), and colloidal suspensions (4). Whereas
classical theories predict that nucleation is governed by a sin-
gle free-energy barrier (5, 6), recent studies report multistep
transitions, in which the system traverses multiple phases along
the pathway to the final crystal structure (7–12). Many of
these observations can be understood by combining classical
nucleation theory, which describes the nucleation barrier, with
Ostwald’s step rule (13, 14), which predicts that nucleation
will proceed via subsequent child phases having free energies
closest to their parents. For instance, two-step crystallization
pathways observed in single-component suspensions of colloids
(11, 12) and proteins (8, 15, 16) proceed via a metastable liq-
uid intermediate that nucleates first, owing to its low surface
energy (Fig. 1A). Recent studies of crystallization in attrac-
tive binary colloidal mixtures (17, 18) suggest the possibility
of an alternative multistep pathway: that two-step crystalliza-
tion could proceed via a crystal intermediate that nucleates
directly from a gas and then transforms into the final crys-
tal structure by a diffusionless transformation (Fig. 1A). Such
a diffusionless transformation does not follow classical predic-
tions; thus, identifying its underlying mechanisms would advance
our fundamental understanding of crystallization and enable
engineering more efficient crystallization processes. However,

our theoretical understanding of this class of pathways is lim-
ited, and such pathways have yet to be observed directly in
experiment.

In this article, we combine computer simulations and opti-
cal microscopy to investigate the physics underlying one- and
two-step crystallization pathways in a two-dimensional (2D)
binary mixture of DNA-coated colloids. We observe a rich
diversity of crystal phases with different symmetries and compo-
sitional orders upon changing the matrix of pairwise interactions
between the particle species. We also characterize both one-step
and two-step crystallization pathways, as well as a solid–solid
phase transition. Using biased sampling techniques, we show that
the two-step crystallization pathway results from a competition
between the free-energy landscapes of two crystal phases that
depend on crystal size. The free energy of each crystal phase
alone is a quadratic function of its characteristic radius, which
agrees with predictions of classical nucleation theory. But the
observed two-step transition is not described by classical nucle-
ation theory alone, since the crystal structure, as well as the
bulk and surface free energies, change along the crystallization
pathway. Moreover, the two-step crystallization pathway that we
find is also qualitatively different from previous observations in
two important aspects: First, the metastable crystal nucleates
directly from a dilute gas and is thus not influenced by gas–liquid
critical phenomena (12, 15, 16); and, second, the crystal-to-
crystal transition follows a diffusionless pathway rather than
diffusive nucleation from a metastable liquid (10, 12). Taken
together, these differences highlight that two-step crystallization

Significance

Crystallization—the spontaneous formation of an ordered
solid from a disordered fluid—has fascinated humankind for
centuries. Contrary to longstanding theories, which predict
that crystals form by a single nucleation event, recent exper-
iments have shown that crystallization can traverse multiple
intermediate states. In this paper, we observe a two-step
crystallization pathway, in which a metastable crystal forms
first and later transforms into another crystal with a different
crystallographic symmetry. This transformation is diffusion-
less: The particles undergo coherent, local rearrangements.
Using complementary computer simulations, we show that
the two-step crystallization pathway is driven by competing
thermodynamic forces and, thus, could be common to many
physical systems.

Author contributions: H.F., M.F.H., and W.B.R. designed research; H.F. performed
research; H.F., M.F.H., and W.B.R. analyzed data; and H.F., M.F.H., and W.B.R. wrote the
paper.y

The authors declare no competing interest.y

This article is a PNAS Direct Submission.y

This open access article is distributed under Creative Commons Attribution-NonCommercial-
NoDerivatives License 4.0 (CC BY-NC-ND).y
1 To whom correspondence may be addressed. Email: wrogers@brandeis.edu.y

This article contains supporting information online at https://www.pnas.org/lookup/suppl/
doi:10.1073/pnas.2008561117/-/DCSupplemental.y

First published October 29, 2020.

www.pnas.org/cgi/doi/10.1073/pnas.2008561117 PNAS | November 10, 2020 | vol. 117 | no. 45 | 27927–27933

D
ow

nl
oa

de
d 

by
 g

ue
st

 o
n 

D
ec

em
be

r 8
, 2

02
0 

http://orcid.org/0000-0001-5802-9330
http://orcid.org/0000-0002-9211-2434
http://orcid.org/0000-0001-8587-8215
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:wrogers@brandeis.edu
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2008561117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2008561117/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.2008561117
http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.2008561117&domain=pdf


Fig. 1. (A) A supersaturated fluid may crystallize via different types of one-
step or two-step pathways. (B) Schematic of a binary mixture of DNA-coated
colloids: Particle A is coated in sequence S (red, dark), and particle B is coated
in the mixture of sequence S and sequence S* (cyan, bright). The mixing
ratio α is the fraction of S on particle B. (C) The resulting pair interactions
are summarized in a symmetric matrix. Eij is the depth of pair-potential min-
imum between particles i and j. EAA is always zero; EAB and EBB depend on
the mixing ratio α and temperature T .

can proceed along new types of pathways that have yet to be
explored.

Results and Discussion
Experimental and Computational Approaches. Our experimental
system consists of a binary mixture of DNA-coated colloids
confined to two dimensions, whose interactions are tuned by
varying the amounts of two complementary sequences of single-
stranded DNA: S and S*. We grafted particle A with sequence
S and particle B with a mixture of sequence S and its com-
plement S* (Fig. 1B). We define the mixing ratio α as the
fraction of sequence S on particle B. Both S and S* consist of
a 58-nucleotide-long spacer and a seven-nucleotide “sticky end.”
We used click chemistry to graft the DNA to 619-nm-diameter
polystyrene particles (19) and confined the colloidal suspen-
sion to a 2D chamber by squeezing the suspension between two
plasma-cleaned glass coverslips. The volume fraction of the col-
loidal suspension was roughly 1.0%, and the stoichiometry of A
to B was roughly 1:1.

The resulting mixture has three pairwise interactions that are
tuned by varying the mixing ratio α and the temperature T .

The interactions due to DNA hybridization are described by an
effective pair potential with a short-range attraction (20). We
define the binding strength Eij as the depth of the potential well
between particle type i and type j (with i and j being either A or
B). Fig. 1C shows the binding strengths between different combi-
nations of binary species. EAA is zero because particle A cannot
bind to particle A, while EAB and EBB are functions of α and
T . At fixed T , EAB decreases and EBB increases as α goes from
0 to 0.5. As temperature is lowered, both interactions become
stronger. Therefore, crystallization can be induced in situ by
cooling the suspension.

We simulated crystallization using grand canonical Monte
Carlo (GCMC) simulations. We used an experimentally val-
idated pair potential (20), whose range is approximately 5%
of the particle diameter, to match our experimental system.
Initially, particles were randomly dispersed with area fraction
equal to 0.5%, which corresponds to the number density in the
ideal gas reservoir. The chemical potentials of A and B in the
reservoir were equal. We simulated assembly using displacive
moves, insertion/deletion moves, and particle-species flipping
moves (21). We attempted insertion/deletion moves and particle-
species flips with an average frequency of 1 per 1,000 displacive
moves. Complete details about the experiments and simulations
are given in SI Appendix.

Crystallization Experiments. Our experiments yielded a variety of
crystals with different crystallographic symmetries, compositional
orders, and stoichiometries at different mixing ratios. Fig. 2 shows
representative fluorescence micrographs of 2D crystals formed
at mixing ratios between α= 0.0 and 0.5. At α= 0.0, all crys-
tals had square symmetry and checkerboard compositional order,
with alternating particle species along each row and column. At
α= 0.1, we observed a hexagonal lattice with a stripe composi-
tional order, in which the same types of particles are aligned in
rows. The stripe phase coexisted with the checkerboard phase
for α = 0.1 to 0.3, and the fraction of checkerboard crystals
decreased from roughly 70% to 30% to < 10% with increasing
α. At α = 0.4, the stripe pattern vanished, leaving small clus-
ters of A particles surrounded by B particles. Finally, at α = 0.5,
we observed a new hexagonal crystal with honeycomb composi-
tional order, characterized by a periodic pattern of A particles
surrounded by six B particles. Upon increasing α, the stoichiome-
try of A to B decreased monotonically from 1:1 to roughly 1:2, even
though the initial stoichiometry of all samples was 1:1 (Fig. 2).
For each lattice type, we measured the pair-correlation function
(SI Appendix, Fig. S3). The center-to-center distance between
nearest neighbors was roughly 640 nm for all three lattices,
which is consistent with our interaction potential (20).

If crystallization were governed by equilibrium thermody-
namics, as is often the case for DNA-coated colloids (22),

A B C D E F

Fig. 2. Experimental fluorescence micrographs of 2D crystal lattices self-assembled at different mixing ratios α. NA : NB is the measured stoichiometry
between A and B, which decreases going from left to right (A–F). Dashed lines show grain boundaries between stripe and checkerboard lattices. Squares
and hexagons are visual guides to the crystal symmetries. A particles are red (dark); B particles are cyan (bright).
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our observations suggest that entropy plays a key role in deter-
mining the final crystal structures. First, consider the case with
EBB = 0. At low temperatures, the binding free energies of the
checkerboard and stripe crystals should be the same because
they both have two A–B contacts per particle on average. Yet,
all crystals at α= 0 have a checkerboard structure, suggest-
ing that the checkerboard lattice has a lower free energy and,
thus, a higher entropy than the stripe phase. This hypothesis
is consistent with recent calculations of the vibrational-mode
spectrum of 2D checkerboard crystals (23), which show that the
checkerboard lattice has a large number of “floppy modes,” as
compared to the stripe lattice. Our experimental observations
that the checkerboard crystals are floppy, whereas the stripe
crystals are rigid (SI Appendix, Fig. S4), also agree with this
hypothesis. Moreover, the checkerboard lattice should also have
higher configurational entropy because it is less densely packed.
For example, we find that the checkerboard lattice has a packing
fraction of 0.76, whereas the stripe lattice has a packing fraction
of roughly 0.84 (see SI Appendix for details). Thus, a particle in
the checkerboard lattice has more free area than a particle in the
stripe lattice.

Next, consider the cases with nonzero-like attraction (EBB >
0). Following the mean-field estimate above, the total bind-
ing free energy should increase going from the honeycomb
(−2EAB−EBB per particle) to the stripe (−2EAB− 1

2
EBB per par-

ticle) to the checkerboard phase (−2EAB per particle). Again,
our experiments disagree with this prediction. At α = 0.1 to
0.3, the checkerboard and stripe phases coexist, suggesting that
they have similar free energies. Furthermore, the stripe phase
forms first upon increasing α, not the honeycomb phase. We
hypothesize that mixing entropy stabilizes the stripe phase rel-
ative to the honeycomb phase. In particular, there is a lower
mixing entropy cost to form the stripe lattice, since its 1:1
stoichiometry matches the global stoichiometry, whereas the
honeycomb lattice has a 2:1 stoichiometry. This mixing entropy
difference could stabilize the stripe lattice for weak binding free
energies, while above a threshold value of EBB, the binding
free energy will dominate, making the honeycomb lattice more
favorable.

Alternative hypotheses to the thermodynamic ones rely on
kinetically controlled mechanisms. For one, the system may
be kinetically arrested—i.e., the free-energy minimum crystal
phase cannot form within an experimentally accessible timescale.
Alternatively, according to a recent study (24), hydrodynamic
correlations between colloidal particles can cause anisotropic
mobility along different pathways between crystal phases, thus
biasing formation of certain phases over others with similar free
energies. These mechanisms could influence the crystal types
that we observed in our experiments. For example, consider that
the honeycomb phase is thermodynamically favorable, but kinet-
ically less accessible than the stripe phase, due to hydrodynamic
interactions. Once the stripe crystal forms, a large free-energy
barrier could prevent interconversion into the honeycomb crystal
within experimental timescales.

Equilibrium States from Monte Carlo Simulations. To test the two
classes of hypotheses—thermodynamic versus kinetic control—
we simulated crystallization under different sets of binding affini-
ties using GCMC simulations. We performed each simulation for
at least 2 ×1010 displacive trial moves to ensure convergence to
an equilibrium distribution. To monitor the progress and mor-
phology of the crystals that self-assemble, we defined an order
parameter

Φ =
2

π
tan−1(

Ψ6

Ψ4
), [1]

where Ψm is a global bond-orientation order parameter (12),
which measures the m-fold global symmetry of a crystal. Ψ4 = 1

for fourfold symmetry, and Ψ6 = 1 for sixfold symmetry. Thus,
Φ distinguishes different lattice structures on the basis of their
symmetry: Crystals with Φ& 0.9 have hexagonal lattice struc-
ture, while crystals with Φ. 0.5 have square lattice structure.
We tracked Φ of the largest crystalline domain in the sim-
ulation box to monitor equilibration. A crystalline domain is
defined as a set of continuously connected particles with con-
sistent local order and bond orientation. We determined the
phase diagram within the EAB–EBB space from the simulation end
states (Fig. 3). Complete details of the analysis are provided in
SI Appendix.

Our Monte Carlo (MC) simulations produce a comparable
diversity of 2D crystal structures, as observed in experiments.
When both EAB and EBB are weak, we find an isotropic low-
density fluid phase. For weak EBB and strong EAB, particles form
a square lattice with checkerboard order. Increasing EBB above
1.2 kBT yields a variety of crystals with hexagonal symmetry, but
varying compositional order, characterized by the stoichiometry
of NA :NB (Fig. 3, color map). Going from the upper left to lower
right of the hexagonal region of the phase diagram, the compo-
sitional order changes from stripe to honeycomb to a demixed
composition, in which the crystal is largely composed of B par-
ticles, and the majority of A particles remain in the fluid phase.
This sequence of phases is accompanied by a change in the rela-
tive stoichiometry from one to zero. These results are consistent
with previous computational studies (25, 26).

The equilibrium states from our computer simulations match
our experimental observations. We estimated the experimental
values of EAB and EBB as functions of temperature and mixing
ratio α using a mean-field model (20). The dashed lines in Fig. 3
show contours of constant α. Because we performed experiments
at temperatures for which interactions are weak and dynamic,
we inferred that our experiments occurred near the fluid–crystal
phase boundary (red crosses in Fig. 3). As α increases, we see

Fig. 3. Simulated phase diagram as a function of “like” and “unlike” pair
interactions. Each point corresponds to one simulation: Circles show the
fluid phase; squares show the crystal phases with square symmetry; and tri-
angles show the crystal phases with hexagonal symmetry. Hexagonal phases
are classified by using stoichiometry NA : NB (color map). Stripe composition:
NA : NB = 1:1; and honeycomb composition: NA : NB ≈ 1:2. White lines show
boundaries between checkerboard, stripe, and honeycomb compositions.
Black dashed lines show model predictions of binding strengths as a func-
tion of temperature for different mixing ratios α. Red crosses correspond to
the approximate conditions used in experiments. Snapshots show simulated
crystal phases corresponding to red crosses.
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that the red crosses scan from the upper left to lower right,
yielding a sequence from checkerboard to stripe to honeycomb,
identical to the sequence observed in our experiments (Fig. 2).
Since hydrodynamics are not included in the simulations, the
match between simulation and experiment supports the hypoth-
esis that thermodynamics, and not hydrodynamics, determines
the crystals that form. However, some mysteries remain. Our
simulations do not show coexistence between checkerboard and
stripe phases: The system forms checkerboard crystals at low
α and stripe crystals at slightly higher values of α, but never
both phases simultaneously. Is the coexistence of phases that
we observe in experiment just a snapshot of an intermediate
along the crystallization pathway? We answer this question and
others by following the full pathways in both experiments and
simulations.

Crystallization Pathways. We used bright-field microscopy, MC
simulations, and umbrella sampling to study the crystallization
pathways. We characterized the transitions of individual crystals
by quantifying two progress coordinates: the total number of par-
ticles in the crystal Nc and the orientation order parameter Φ
(Eq. 1).

Interestingly, we observed both one-step and two-step crys-
tallization pathways in experiments at different mixing ratios
α. Fig. 4 A–C shows micrographs and the corresponding order
parameter Φ for single crystals as a function of time for three val-
ues of α: 0, 0.3, and 0.5. At α = 0, a square lattice forms first and
then grows, retaining its square symmetry throughout (Fig. 4A).
In contrast, at α = 0.3, a square crystal nucleates first, but then
switches back and forth between a square lattice and a hexagonal

lattice as it grows (Fig. 4B). Indeed, we observed coexistence of
both hexagonal and square domains in the same crystal. Eventu-
ally, the crystal becomes completely and stably hexagonal at the
largest sizes. At α = 0.5, the pathway returns to one-step behav-
ior: A hexagonal crystal forms first and remains hexagonal during
growth (Fig. 4C). Comparing these three experiments, α= 0 and
α= 0.5 form in a single step, whereas crystals at α= 0.3 form via
a two-step pathway, in which a square lattice nucleates and then
transforms to a hexagonal lattice during growth.

These observations demonstrate that colloidal crystallization,
even in simple binary mixtures, is more complex than classi-
cal pictures would suggest. While the one-step transitions that
we observe could be consistent with classical nucleation the-
ory, the two-step crystallization pathways are not. There, the
crystal structure changes as the crystal grows, switching from
square to hexagonal, which is inconsistent with the capillary
approximation made in classical nucleation theory (27). This
transformation could be driven by different processes. One pos-
sibility is a competition between two crystal phases with similar
free energies, but different dependencies on the crystal size:
The square lattice is favorable at small sizes, and the hexag-
onal lattice is favorable at large sizes. Another possibility is
that the two-step transition is driven by kinetics. Recent studies
suggest that hydrodynamic coupling (24), heterogeneity in the
binding free energies (28), or even the details of single-molecule
kinetics (29) could influence the available kinetic pathways for
crystallization.

To investigate the mechanisms underlying crystallization, we
computed the free-energy landscapes (21, 30) as a function of
Nc and Φ for the three crystals that we observed: checkerboard,

Fig. 4. Experimental and simulated crystallization pathways for different crystal phases. (A–C) Experimental trajectories of the order parameter Φ as a
function of time, for mixing ratios α= 0 (A), α= 0.3 (B), and α= 0.5 (C). Snapshots show data of the same crystal at different time points. Blue regions
correspond to square symmetry, while orange regions correspond to hexagonal symmetry. (D–F) Free-energy landscapes with respect to the crystal size Nc

and order parameter Φ. The white shaded region in each plot encloses 68% of the pathways from 200 independent, unbiased MC simulations. Images show
snapshots from unbiased simulations at different crystal sizes Nc. The contours show the free energy in kBT . Results correspond to different interaction
matrices: EAA = EBB = 0, EAB = 7.0 kBT (D), EAA = 0, EBB = 1.6 kBT , EAB = 7.0 kBT (E), and EAA = 0, EBB = 3.5 kBT , EAB = 6.3 kBT (F).
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stripe, and honeycomb. Although Φ only monitors the crys-
tal symmetry and does not explicitly depend on compositional
order, we confirmed that biasing on the symmetry alone drives
the system to the intended crystal structures (SI Appendix, Fig.
S7). To determine how closely the system dynamics follows the
underlying free-energy landscape, we also performed unbiased
simulations starting from the saddle points separating local min-
ima in the free-energy landscape and followed their trajectories
within the Nc–Φ phase space (see SI Appendix for details).

Our calculations show that the checkerboard, stripe, and
honeycomb crystals are governed by qualitatively different free-
energy landscapes. All three landscapes have a free-energy
barrier between minima at small and large sizes, as expected,
but the favored minima at small and large sizes can have dif-
ferent symmetries (Fig. 4 D–F). The checkerboard crystal has
free-energy minima with Φ< 0.5, corresponding to square sym-
metry (Fig. 4D). The honeycomb crystal also exhibits minima
at small and large sizes with the same symmetry, but these
are located near Φ≈ 1, corresponding to hexagonal symmetry
(Fig. 4F). In contrast, the stripe-crystal free-energy landscape
has minima with symmetries that depend on size: Φ< 0.5 for
the minimum at small sizes and Φ≈ 1 for the minimum at large
sizes (Fig. 4E).

Comparing unbiased trajectories with our free-energy cal-
culations shows that the system follows free-energy gradients.
Fig. 4 D–F shows the distribution of pathways explored by our
unbiased MC simulations. The corresponding snapshots show
the crystal symmetry and compositional order at different sizes,
reproducing the experimentally observed sequence of phases.

Taken together, the free-energy calculations and unbiased
simulations show that the crystallization pathways are governed
by the underlying thermodynamic landscape. At their respective
parameter sets, the checkerboard and honeycomb crystals are
thermodynamically favorable for all crystal sizes and, thus, form
by one-step crystallization. However, for the stripe crystal, the
checkerboard phase is favorable at small sizes, and the stripe
phase is favorable at large sizes, leading to the two-step crys-
tallization pathway. We conclude that the coexistence between
checkerboard and stripe phases that we observe in experiment
at α = 0.1 to 0.2 reflects an incomplete transition, probably
because the transition size is large, and most crystals are unable
to grow to such large sizes within the experimental time scale.
Above all, we observed the same one- and two-step mecha-
nisms for the same crystals in experiments and simulations.
Therefore, we conclude that other factors, such as hydrodynam-
ics or single-molecule binding kinetics, which are absent from
our simulations, do not significantly contribute to controlling
the pathways. Finally, preliminary molecular-dynamics simula-
tions also show a checkerboard-to-stripe transition, demonstrat-
ing that the two-step transition is not an artifact of our MC
approach and hinting at an interesting diffusionless mechanism
driven by coherent sliding of parallel rows of atoms (31, 32) (see
SI Appendix for details).

Interpretation of One-Step and Two-Step Pathways. To under-
stand the roles of entropy and binding free energy in our
free-energy landscapes, we analyze our computational results
within the framework of classical nucleation theory. We write the
free-energy difference between the crystal and fluid phases as

∆G = ∆gNc +σN surface = g̃Nc + σ̃
√
Nc , [2]

where ∆g and σ are, respectively, the per-particle bulk free-
energy difference and surface free energy. In general, both ∆g
and σ depend on the binding free energies, as well as the entropy
of the crystal itself. Nsurface ∼

√
Nc is the number of particles at

the crystal surface. Assuming the crystals are circular, g̃ and σ̃
are the effective bulk free-energy density and surface free-energy

density, which account for differences in the bulk and surface
densities of the crystal structures. We determined g̃ and σ̃ of the
competing square and hexagonal lattices within the three free-
energy landscapes in Fig. 4 by integrating the Boltzmann weights
over Φ at each crystal size and fitting the result to Eq. 2 (Fig. 5
and SI Appendix, Table S1). We took Φ< 0.5 and Φ> 0.9 to be
the square and hexagonal lattices, respectively. Complete details
are in SI Appendix.

The balance of surface and bulk free energies makes differ-
ent lattice symmetries thermodynamically favored for different
binding free energies and crystal sizes. For the conditions at
which the checkerboard crystal forms (Fig. 5A), g̃ is roughly the
same for the checkerboard and stripe lattices, but σ̃ is lower for
the checkerboard lattice, thus causing the checkerboard lattice
to be favorable. We highlight that the low surface free energy
of the checkerboard phase is consistent with our experimental
observation that checkerboard crystals have very irregular sur-
faces (Fig. 4A and SI Appendix, Fig. S1A). For the conditions
at which the honeycomb phase forms (Fig. 5C), g̃ is positive for
the checkerboard lattice and negative for the honeycomb lattice,
causing the honeycomb lattice to be favored. Again, the forma-
tion of the stripe phase is the exception to the rule (Fig. 5B):
g̃ is lower for the stripe lattice, but σ̃ is lower for the checker-
board lattice. Consequently, the checkerboard crystal dominates
at small sizes, and the stripe crystal dominates at large sizes, as
observed.

Simple bond-counting estimates of the surface free-energy
densities highlight the importance of entropy in determining the
crystallization pathways. We estimated σ̃ by adding up the bind-
ing free energies per unit length of all bonds that are broken
when a perfect crystal is split along a given crystallographic axis
(see SI Appendix for details). For each lattice type, we considered
only the crystallographic axis with the lowest surface free-energy
density. Interestingly, while our estimates were all comparable
to the values that we find from fitting the free-energy land-
scapes, the bond-counting estimates were systematically larger
(SI Appendix, Table S2). We hypothesize that this systematic
deviation is again due to entropy, which would act to lower σ̃.
We also notice that our estimates of σ̃check are greater than our
estimates of σ̃stripe in the cases shown in Fig. 5 A and B. This
observation is contrary to the results that we obtained by fitting
the free-energy landscapes, presumably due to the fact that the
entropic contribution to the surface free energy of the checker-
board lattice is larger than the contribution to the stripe lattice.
Therefore, while bond-counting estimates are useful for approxi-
mating the magnitude of surface free energies in binary colloidal

A B C

Fig. 5. Gibbs free energy G versus crystal size Nc for the free-energy land-
scapes in Fig. 4. Blue circles and lines correspond to checkerboard crystals;
orange circles and lines correspond to stripe (A and B) or honeycomb (C)
crystals. Free energies are calculated by integrating the Boltzmann weights
in Fig. 4 D–F over Φ at fixed NC . Lines are quadratic fits of Eq. 2. σ̃ is
the effective surface free-energy density and g̃ is the effective bulk free-
energy density. Subscripts indicate the corresponding lattice structure. The
binding free energies are EAA = EBB = 0, EAB = 7.0 kBT (A), EAA = 0, EBB =

1.6 kBT , EAB = 7.0 kBT (B), and EAA = 0, EBB = 3.5 kBT , EAB = 6.3 kBT (C).
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crystals, care is required to draw conclusions from their precise
values.

In conclusion, our detailed free-energy calculations identify
a generic mechanism by which free energy controlled crystal-
lization can exhibit two-step pathways, even when both phases
have crystalline order: One phase has a lower effective bulk free
energy, but higher effective surface free energy, than a compet-
ing phase. If both effective bulk and surface free energies are
lower for the same phase, free-energy control will lead to one-
step transitions. We point out that while this generic two-step
mechanism is consistent with Ostwald’s original statement of his
step rule—that the child phase with a free energy closest to the
parent phase will nucleate first (13)—it need not be consistent
with a later formulation of the step rule due to Stranski and
Totomanow (33), which is commonly used today. Their formula-
tion of the step rule states that the phase that nucleates first is the
one with the lowest free-energy barrier to formation. Although
the specific case that we show in Fig. 5B satisfies this formu-
lation as well, we hypothesize that there are combinations of
binding free energies, and thus bulk and surface free-energy den-
sities, that satisfy our inequality relationship, but that give rise
to a two-step transition, in which the phase that forms first has
a higher free-energy barrier than the subsequent phase. There-
fore, the transition would happen below the nucleation barrier of
the metastable crystal phase. We note that this type of pathway
would be difficult to infer from bulk measurements. But one of
the powerful features of our approach is that, because we are
able to follow individual assemblies, we could observe such a
transition, as demonstrated in SI Appendix, Fig. S8.

Conclusions
We show that the crystallization pathways of a 2D binary mix-
ture are determined by their underlying free-energy landscapes.
We observe a variety of crystal phases, as well as both one-step
and two-step crystallization pathways. In the one-step pathways,
a single crystal lattice has the lowest free energy, regardless of
its size. In the two-step pathway, one crystal lattice, which has a
lower free energy at small sizes—but not necessarily a lower free-
energy barrier to crystallization—forms first and then transforms
to another lattice with a lower free energy at large sizes. This
two-step mechanism cannot be completely explained by classical
nucleation theory alone, since the bulk and surface free-energy
densities are different before and after the transition, and, thus,
depend on the crystal size. We stress that while our experimental
observations come from a highly specific experimental system—
micrometer-scale particles interacting by hybridization of scores
of complementary DNA molecules—our coarse-grained simula-
tions are quite general. Our simulations consist of a collection of
small particles interacting via a short-range interaction potential.
Importantly, these coarse-grained simulations capture almost
all of phase behaviors and dynamic transitions that we find in
our experiments. Thus, the same physical principles could gov-
ern crystallization pathways in other systems with short-range
specific interactions, such as proteins.

We highlight that the crystallization pathways and the result-
ing crystal phases are governed by a balance between entropy
and the binding free energy. For example, mean-field estimates
of the stabilities of various crystal phases based solely on binding
free energies disagree with our experimental observations, sug-
gesting that entropy strongly influences crystal structures. This
observation is significant since configurational entropy, vibra-
tional entropy, and mixing entropy of the lattice are neglected
in models commonly used to predict or rationalize the structures
of DNA-coated colloidal crystals, such as the complementary-
contact model (22). Future experiments will explore other stoi-
chiometries to further investigate the role of entropy in dictating
the pathways and relative stability of the various crystal phases.
Furthermore, we have shown that both the bulk and surface

free-energy densities sculpt the underlying free-energy land-
scape. Thus, bulk and surface entropy differences between var-
ious crystal types are important in determining crystallization
pathways. Together, these observations suggest that entropy is
a key driving force in soft-matter systems (34).

Our findings offer insights into strategies for engineering crys-
tallization pathways. Rather than forming a desired crystal in
a single step, traversing a series of intermediates may facil-
itate the assembly of the final structure. Many efforts have
sought multistep crystallization pathways as a route to form-
ing unique crystals or reconfigurable structures (16, 35–38). Our
results identify additional considerations for designing such tran-
sitions. First, to avoid kinetic traps, the intermediate states must
be kinetically accessible, as in our diffusionless transformation
between checkerboard and stripe crystals. Fortunately, there
are many other reported diffusionless transformations (39, 40).
For example, some iron-based alloys can transform from face-
centered-cubic to body-centered-cubic structures upon cooling
(40). Second, the states along the pathway need to have compa-
rable free energies, as well as bulk and surface free energies that
can be prescribed. Constructing systems with fully prescribed
free energies is a grand challenge in self-assembly and is usually
empirical at present. There is no generic approach to determine
the interparticle interactions required to produce a given struc-
ture. This challenge provides a unique opportunity to integrate
tools, like machine learning, to help solve the inverse design
problem (41, 42) and construct new pathways to crystallization.

Materials and Methods
Particle Preparation. We synthesized DNA-grafted colloidal particles fol-
lowing a modified version of the method described in ref. 19. The
method comprised three steps: 1) We attached azide groups to the ends
of polystyrene-poly(ethylene oxide) diblock copolymers; 2) we physically
grafted azide-modified diblock copolymers to the surface of polystyrene
colloids; and 3) we conjugated dibenzocyclooctyne-modified DNA to the
ends of the grafted block copolymers by strain-promoted click chemistry.
The DNA sequences that we used were: S 5

′
-(T)51-GA GTT GCG GTA GAC-

3
′

and S* 5
′
-(T)51-AA TGC CTG TCT ACC-3

′
. The full synthesis protocol is

described in SI Appendix.

Crystallization Experiments. We squeezed particles between two plasma-
cleaned glass coverslips to create a 2D suspension and observed crystalliza-
tion using an optical microscope. We controlled the sample temperature
in situ using a thermoelectric cooler driven by a proportional–integral–
derivative controller. To crystallize the sample, we quenched an initial gas
phase to a temperature slightly above the melting temperature, defined as
the temperature at which 50% of the particles are unbound, and held the
sample at that temperature for roughly 1 h. We acquired bright-field digital
videos of crystallization using a Nikon Eclipse Ti2 and CoolSNAP HQ2 charge-
coupled device camera. After crystallization, we used a Leica SP8 to acquire
confocal fluorescence images of the crystalline domains (see SI Appendix for
details).

GCMC Simulations. We used an in-house code written in C++ to perform
GCMC simulations. We used periodic boundary conditions with a box size
of 53.3 × 53.3 particle diameters. The pair potential that we employed was
obtained from experimental measurements (20). The width of the potential
was rescaled to roughly 5% of the particle diameter to match our exper-
imental system. We initialized the system with an area fraction of 0.5%,
which corresponded to the density of the particle reservoir. We made dis-
placive moves, insertion/deletion moves, and particle species flipping moves,
and determined whether or not to accept these moves using the Metropolis
criterion. To facilitate equilibration, we made particle species flipping trials,
in which the species of a random particle was flipped.

Data Availability. Data are available upon request from the corresponding
author.
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