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ABSTRACT

Protein sequence evolution is a complex process that varies across
the tree of life and among-sites within proteins. Comparing
evolutionary rate matrices for specific taxa (‘clade-specific
models’) can reveal this variation and provide information about
the basis for changes in the patterns of protein evolution over
time. However, clade-specific models can only provide this
information if the variation among taxa exceeds the variation
among proteins. We showed this to be the case by demonstrating
that clade-specific model fit could distinguish among proteins from
the four taxa that we examined (vertebrates, plants, oomycetes,
and yeasts). Model fit classified proteins correctly by clade of
origin >70% of the time. A relatively small number of dimensions
can explain differences among models. If model parameters are
averaged across all sites ~80% of the variance among models
reflects clade; for models that consider protein structure ~50% of
the variance reflected relative solvent accessibility and ~25%
reflected clade. Relaxed purifying selection in taxa with smaller
long-term effective population sizes appears to explain much of the
among clade variance. Relaxed selection on solvent-exposed sites
was correlated with the degree of change in amino acid side-chain
volume for substitutions; other differences among models were
more complex. Beyond the information they reveal about protein
evolution, our clade-specific models also represent tools for
phylogenomic inference. Availability: model files are available
from https://github.com/ebraun68/clade specific prot models.
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1 Introduction

In phylogenetics, tree topology and/or branch lengths are typically
the parameters of interest. However, amino acid rate matrices,
which have been studied since the dawn of computational biology
as a field [1], also provide information about the process of
evolution. Patterns of amino acid substitution vary across the tree
of life [2], [3] and among proteins [4]. It has long been appreciated
[5] that the accumulation of substitutions over evolutionary time
reflects two processes: 1) the rate at which novel mutations enter
populations; and 2) the impact of drift and selection on the fate of
those mutations. This paradigm suggests the patterns of protein
evolution will vary across the tree of life; after all, the rate and
spectrum of mutations and strength of selection (the latter
reflecting, in large part, variation in effective population size, Ne)
varies across the tree [6], [7]. The sensitivity of ratio of radical to
conservative amino acid substitutions to M [2], [8] suggests
variation in the strength of selection is likely to be especially
important for establishing the patterns of protein evolution.

Using the radical to conservative substitution rate ratio to
examine changes in the pattern of sequence evolution is
complicated by the challenge of defining radical (ie., non-
conservative) amino acid changes. Zuckerkandl and Pauling ([9],
p. 129) recognized that the “..inadequacy of a priori views on
[amino acid substitution] conservatism and nonconservatism is
patent” in the very earliest days of molecular evolution and that
problem remains unsolved. Many studies divide residues into two
categories (e.g., polar/non-polar or small/large) and treat between-
category substitutions as radical [8]. That idea can be extended by
using continuous values to describe the physicochemical
characteristics of the amino acids instead of binary classification
[4], but that still relies on the use of prespecified amino acid
characteristics. Assessing changes in the process of protein
sequence evolution without a priori assumptions would be
desirable.

The general time-reversible model for amino acids (GTRz0)
might provide a practical way to address this question. The GTR20
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instantaneous rate matrix (or @ matrix) can be decomposed into a
symmetric rate (R) matrix with 189 free parameters reflecting the
‘exchangeability’ of each pair of amino acids and a diagonal
matrix (IT) with 19 free amino acid equilibrium frequency
parameters [10]. Of course, the time-reversibility assumption that
limits the number of free parameters is inappropriate when protein
evolution has changed across the tree. After all, postulating that
the model changes over time (i.e., non-homogeneity) intrinsically
renders models non-time-reversible. However, we can avoid this
problem by estimating GTRz20 parameters for clades with a limited
taxonomic scope and then comparing the clade-specific parameter
estimates. If the deviations from time-reversibility for the
underlying model of protein evolution are sufficiently limited
within clades, then comparisons among clades should reveal the
ways that protein evolution has changed across the tree of life.

Using GTRz0 parameter estimates to understand shifts in the
process of sequence evolution presents several challenges.
Previous studies [3], [11] indicate that we will find differences
among clades. However, it is reasonable to expect substantial
variation among proteins [4] and among sites within proteins [12],
[13]. There are two ways this heterogeneity could confound our
ability to use GTR20 parameter estimates to understand patterns of
protein evolution across the tree of life. First, a high degree of
variation among individual proteins might obscure variation
among clades (Fig. 1). Second, simply optimizing GTR20 model
parameters on a large protein dataset will yield average
exchangeability estimates for all sites. Patterns revealed by
comparing these ‘averaged’ parameter estimates could be
confusing if there is substantial variation among-sites within
proteins. These factors make it important to find ways to examine
the impact of these sources of variation on any conclusions we
reach regarding differences among taxa.

One way to assess fine-scale variation in protein evolution (i.e.,
variation among individual proteins) would be to estimate GTRz2o
parameters for individual proteins and compare them. This is not
practical; GTR20 has too many parameters to obtain accurate
parameter estimates using individual protein alignments.
However, it is possible to estimate model parameters using a
relatively large training dataset and then classify the proteins in an
independent validation dataset. Hereafter, we will call the GTR20
matrices estimated as part of this study ‘models’ because they are
analogous to the empirical models that are often used in protein
phylogenetics, such as the PAM [14], JTT [15], WAG [16], and LG
[17]; we call those models (and similar models that are trained on
diverse datasets) ‘standard empirical models.” Using clade-specific
and standard empirical models to classify individual proteins will
allow us to establish the part of the parameter space shown in Fig.
1 that best describes the large-scale patterns of protein evolution.
If the variance among individual proteins exceeds the variation
among clades (lower portion of Fig. 1) clade-specific models should
be a poor classifier. In contrast, if variation among clades exceeds
the variation among proteins (upper portion of Fig 1), clade-
specific models as classifiers should be good classifiers (i.e., the
best-fitting model for validation set proteins will be the model
generated from that clade). Finally, the number of times that model
fit fails as a classifier will increase as the variation among proteins
increases. It should be possible to establish the specific parameters
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that vary among clades and determine whether they are consistent
with predictions regarding the expected differences among clades
in the strength of selection, assuming there is sufficient variation
among clades.
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Figure 1: Possible patterns of variation in patterns of protein
sequence evolution, both among proteins and among clades.
Conceptual illustration showing the relationships among protein
models where the underlying models are presented after some type
of dimension reduction. Crosses indicate models generated using
the training data (i.e., average parameter estimates); smaller
circles, squares, and triangles indicate individual proteins. The
number of dimensions necessary to summarize the GTRzo rate
matrices is unclear; we are showing two dimensions to illustrate
the idea underlying our analytical framework.

The other type of fine-scale variation, variation among sites
within proteins, is more difficult to examine. Patterns of protein
evolution are complex [18] and the best way to extract
information about the patterns of molecular evolution while still
acknowledging variation within proteins remains unclear.
However, selection to maintain protein structure, which has a
fundamental role in maintaining protein function, is likely to play
a major role in the overall structure of amino acid substitution
matrices [19]. The relative solvent accessibility (RSA) of individual
amino acids is one of the most important determinants of the
patterns of sequence evolution for globular proteins [20], [21].
This suggests it should be possible to subdivide proteins into
solvent exposed (high RSA) and buried (low RSA) sites before
estimating substitution matrix parameters for various clades. This
would add another dimension to the parameter space shown in
Fig. 1 (i.e., a dimension describing variation among sites within
proteins). It also makes it necessary to use a mixture model as a
classifier (i.e., a model with two ‘sub-models’ where the site
likelihoods are calculated as a weighted mixture of both sub-model
matrices). However, using these exposed/buried (‘XB’) mixture
models is a straightforward extension of the idea of using models
as a classifier to determine which part of parameter space best
describes the large-scale patterns of protein evolution.

Herein, we examine the extent to which models of protein
sequence evolution exhibit clade-specific features using six
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eukaryotic datasets selected to exhibit differences in the strength
of selection. These clades selected for this study included
vertebrates (expected to have small long-term A&), plants (expected
to have intermediate long-term A:), and microbial eukaryotes
(expected to have large long-term A:). We focused on eukaryote
datasets to limit the impact of horizontal gene transfer on
parameter estimates; the high rate of horizontal gene transfer in
prokaryotes [22] could distort estimates. We added a seventh
dataset with a broad sample of eukaryotes; multiple changes in the
underlying model of sequence evolution are likely to have
occurred for the taxa in that dataset (unless the lower part of Fig. 1
is the best description of protein evolution). This ‘all Euk’ dataset
was included to assess the impact of using a dataset that has
experienced changes in the rate matrix. We then used the new
models as classifiers to assess among-protein variation and
examine the way models differ, examining parameter differences
among clades, among sites that were grouped by RSA, and for the
combination of RSA and clade.

2 Methods

We generated 14 new models of protein evolution (seven based on
all sites and seven XB mixture models) by selecting proteins from
seven datasets (Table 1). One training dataset [23] included non-
coding data; for that dataset we extracted the coding exons, added
orthologous sequences from 117 avian genome assemblies (using
the Reddy et al [24] pipeline to extract data from genomes), re-
aligned the data using MAFFT v.7.130b [25], and translated the
data to yield amino acid alignments. All training datasets were
concatenated; we have made the data files for this project available
in Zenodo (http://doi.org/10.5281/zenodo.3964471).

Table 1. Training datasets selected for this study

Clade # Proteins/Sites  # Taxa Model  Citation
Birds (1) 250/109,969 48 JTT  [26], [27]
Birds (2) 250/161,112 317 HIVb (23]
Mammals 249/238,319 116 HIVb [28]
Plants (1) 310/80,315 46 JTT [29]
Oomycetes 277/83,312 17 LG [30]
Yeasts 200/81,802 343 LG [31]
All Euk (1) 248/58,469 149 LG [32]

We estimated model parameters using IQ-TREE [33] v. 1.6.10,
as implemented in CIPRES science gateway [34]. Before
conducting full model optimization, we identified the best-fitting
standard empirical model for each training dataset using the -m
TEST option with AIC. as the decision criterion. The best-fitting
standard empirical model varied among clades (Table 1), but the
rate heterogeneity parameters for all best-fit models included both
invariant sites and I'-distributed rates. Thus, we used GTR20+1+T
to estimate the new clade-specific models. We fixed the tree
topology and among-sites rate heterogeneity parameters (the I'-
distribution shape parameter and proportion of invariant sites)
based on the analysis using the standard empirical model before
optimizing the other model parameters (the exchangeabilities,
equilibrium amino acid frequencies, and branch lengths) by
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maximum likelihood. Based on the AIC. the GTR20+I+I' model had
a better fit to the training data than the best-fitting empirical
model (see supplementary file in github and Zenodo) in all but
one case (the ‘all Euk’ all sites model; see Results and Discussion
for details). The new clade-specific models are available from
github in a format usable by IQ-TREE and PAML [35].

We selected six validation datasets (Table 2; available from
Zenodo). In most cases, the datasets in Table 1 had enough
alignments to divide them into training and validation sets.
However, we used all genes in the plant and ‘all Euk’ training
datasets (we refer to datasets with a broad sample of eukaryotes as
‘all Euk’ datasets). In those two cases, we selected another dataset
with comparable taxa (‘plant 2’ and ‘all Euk 2°) to use as the
validation set. We eliminated overlaps between these two training
and validation datasets by removing proteins from the validation
dataset if they had a BLAST [36] F-value < 1040. We identified the
best-fitting model for each validation set protein using IQ-TREE
with the -mset option; we tested the seven clade-specific models
and the 18 standard empirical models implemented in IQ-TREE.
For comparison, we conducted the same analyses using the
proteins in training datasets.

Table 2. Validation datasets selected for this study

Clade # Proteins # Taxa Citation
Birds (1) 200 48 [26], [27]
Mammals 200 116 [28]
Plants (2) 200 107 [37]
Oomycetes 150 15 [30]
Yeasts 200 343 [31]
All Euk (2) 149 104 [38]

To reduce within-protein heterogeneity, we separated globular
proteins into exposed and buried sites. First, we used TMHMM
[39] to identify and remove transmembrane proteins. Then the
globular proteins were subdivided based on site RSA using the
https://github.com/aakanksha12/Structural class assignment pipe
line pipeline. That pipeline generates a weighted consensus
sequence that is then used as input for ACCpro [40] from the
SCRATCH-1D suite [41]. ACCpro assigns each residue to one of
the two categories: exposed or buried, with the latter defined as
<25% RSA. After subdividing the data into exposed and buried
residues the data for all proteins were concatenated, resulting in 14
data matrices (one exposed dataset and one buried dataset for the
seven datasets in Table 1). There many aspects of protein structure
that can be considered in of models of sequence evolution, ranging
from the straightforward use of RSA that we considered in the
study, to secondary structure [17], [21], [42]-[44], residue-residue
interactions [43], to details like amino acid torsion angles [45]. We
focused on RSA because that aspect of protein structure has a
substantial impact on the rate matrix (see Fig. 4 in Pandey and
Braun [21]) and it made it straightforward to construct training
datasets of sufficient size for this study.

Rate matrices were estimated for all 14 exposed- and buried-site
training datasets as described above. The exposed and buried rate
matrices were then combined to create seven XB mixture models,
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in which the site likelihoods are weighted averages over both
alternative (exposed and buried) matrices. We identified the best-
fitting mixture model for individual proteins in the validation
datasets using ‘fit_mixture_model.pl’ (available from github),
which examines the fit of eight models: the seven XB models we
generated and the Le ef al [10] EX2 model (which is also an
exposed/buried mixture model). We tested four versions of each
model that differed in their treatment of rate heterogeneity (no
rate heterogeneity vs. I-distributed rates) and equilibrium amino
acid frequencies (observed frequencies vs maximum likelihood
estimates [+FQ]). As above, we also assessed model fit for all
proteins in training datasets. The XB models are available from
github in a nexus file that can be used by IQ-TREE.

We analyzed the GTRzo exchangeability (R) matrices for
standard empirical models and the new models generated in two
ways. First, we clustered Euclidean distances among matrices by
neighbor-joining [46]. Second, we used principal component
analysis (PCA) to explore differences among models. We
normalized the matrix elements (i.e., the 190 exchangeability
values for each pair of amino acids) to sum to one for both
analyses. The Euclidean distances were calculated by treating the
normalized R matrix as a vector with 190 values. We used three
normalized vectors for the PCAs: 1) vectors with all 190 elements;
2) vectors of 75 elements limited to amino acid exchanges possible
given single nucleotide change (1-nt interchanges); and 3) vectors
of 101 elements for the amino acid exchanges possible given two
nucleotide changes (2-nt interchanges). We used JMPPro version
12.2 (SAS Institute Inc.) with default settings for the PCA.

We compared the 1-nt exchangeabilities for our clade-specific
models to matrices that describe amino acid properties. First, we
used a symmetric version of the Yampolsky and Stoltzfus [47] EX
matrix, which describes the impact of mutations in laboratory
mutagenesis studies (note: this EX matrix is unrelated to the Le et
al. [10] EX2 model, as stated above that EX2 model is an XB-type
model). Lower EX matrix values indicate that mutating wild-type
amino acid 7 to amino acid j typically results in more severe
phenotypic changes in the laboratory. The EXs matrix (EX matrix-
symmetric) was produced by averaging the EX matrix values for 7
to j mutations and j and 7 mutations and then normalizing the
matrix to assign the most experimentally exchangeable amino acid
pair (I and V) a value of one. Second, we compared clade-specific
model exchangeabilities to matrices that capture differences in
amino acid side-chain volume and polarity, which were obtained
from Braun [4]. All of these comparisons used Spearman’s rank
correlations with two-tailed tests for significance.

3 Results and Discussion

3.1 Vertebrate and non-vertebrate models form
two clusters in model space

Clustering of Euclidean distances among models along with
midpoint rooting revealed two distinct clusters in the model space
(Fig. 2a). The first cluster comprises the bird and mammal models
and three standard empirical models trained using viral data. The
second includes all of the other models estimated for this project
along with all other standard empirical models. These results
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corroborate the hypothesis that patterns of sequence evolution
vary across the tree of life and they further suggest that models
trained using vertebrate data are especially distinctive.
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Figure 2: Cluster analysis and PCAs of clade-specific models of
sequence evolution. (a) “Tree of models’ generated by neighbor-
joining of Euclidean distances among exchangeability (R) matrices
for the new clade-specific models (bold) and standard empirical
models. Plots showing the first two PCs calculated using (b) all
exchangeabilities and (c) 2-nt exchangeabilities. The proportion of
the variance explained by each PC is listed alongside each axis.

The strong separation between the vertebrate models and the
other clade-specific models was also evident in a PCA of the 190
exchangeability parameters of these models (Fig. 3b). PC1 and PC2
were both significant, but PC1 explained most of the variation and
it separated the models into vertebrate and non-vertebrate models.
Perhaps surprisingly, the three vertebrate models (two of which
were estimated using bird data) appeared to be about as distinct
from each other as the non-vertebrate models. The PCA for the 1-
nt exchangeability values was quite similar, probably reflecting the



Protein evolutionary model variation

fact that the largest exchangeability values are those possible with
a single substitution (the plot and the exchangeability values are
available from github). In contrast, PCA of 2-nt exchangeabilities
(Fig. 3c) revealed a different pattern; in that analysis PC1 also
explained most of the variance but the plant model fell between
the vertebrate models and the models for microbial eukaryotes
(i.e., the yeast and oomycete). The vertebrate models were closer
to each other than they were in the 1-nt PCA and the ‘all Euk’
model was located even further from vertebrates than the yeast
and oomycete models. The latter finding probably reflects the fact
that microbial eukaryotes dominate that dataset.

3.2 'The best-fitting model for most individual
proteins is the appropriate clade-specific model

The best-fitting model for individual proteins in each validation
dataset was one of novel clade-specific models (Table 3); the only
exception was the ‘all Euk’ validation dataset where the LG model
[17] had the best fit more than 60% of the time (compared to 31.5%
for the new ‘all Euk’ model). The best-fitting models for the
vertebrate validation datasets were split among the three
vertebrate models (Table 3). The results for individual proteins in
the training data were virtually identical (available from github);
the exception was the ‘all Euk’ training data where the new ‘all
Euk’ model had the best fit for 93.5% of proteins. These results
indicate that the average patterns of protein evolution for each
clade provide substantial information regarding the patterns of
substitution within those clades and further suggests that
idiosyncratic differences among proteins play a limited role in
model fit (i.e., our results are consistent with the top portion of the
model space shown Fig. 1).

Table 3. Percentage of times clade-specific models (bold) he best-
fitting model (rows) for individual proteins in each validation
dataset (columns). ‘—’ indicates the models was not recovered in
analyses of the specified validation dataset.

Best model Birds Mammals Plants Oomycetes Yeast All Euk

Bird (1) 25 2 1 — —

Bird (2) 24 21 - — - —
Mammal 27.5 65 — — — —
Plant 6.5 4 70.5 4.7 2.5 —
Oomycete 0.5 — 2 84 1.5 2
Yeast 1 — 3 2 88 4.7
All Euk — — 0.5 2 2 315
LG 1.5 0.5 5.5 5.3 4.5 60.4
JTT 8 6 16.5 — - —
WAG — — 0.5 1.3 — 1.3
DCMut — — 0.5 — — —
BLOSUM 0.5 0.5 — — — —
PMB 1 — — — — —
VT 1.5 — — — — —
HIVb 2 — — — — —
FLU 0.5 0.5 — — — —
mt models 0.5 0.5 - 0.7 1.5 —
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3.3 Variation among structural environments is
stronger than variation among clades

Clustering the matrices from the exposed/buried model XB models
with standard empirical models and the two matrices from the
EX2 model [10] revealed three relatively distinct clusters (Fig. 3a).
All exposed models formed a divergent cluster on one side of the
midpoint root; the deepest split within the exposed models was
between vertebrates and non-vertebrates (the EX2 exposed
component nested within non-vertebrates). The results for the
buried components were similar; the bird and mammal buried
components formed a cluster that was distinct from the second
group that included the buried components of all non-vertebrate
models and the EX2 model. Both of those buried clusters were
nested within groups of standard empirical models (none of the
latter were structure aware). The vertebrate buried components
formed a cluster sister to three viral models (HIVb/HIVw [48] and
FLU [49]). Thus, matrices for the structural models exhibited two
levels of separation: 1) the separation between the exposed and
buried clusters; and 2) the separation between the taxonomic
groups (vertebrates vs. all other taxa).

PCA of all 190 exchangeability parameters (Fig. 3b) and of the
1-nt exchangeabilities (available from github) for the structural
subsets of these datasets revealed similar patterns. PC1 explained
~50% of the variance and it separated the exposed and buried
models. PC2 explained slightly more than 25% of the variance and
it separated the models by clade in a manner consistent with the
models based on all data. The exposed ‘bird 1° model, based on
alignments from Jarvis et al. [26], was especially distinctive. In
contrast, PCA of 2-nt exchangeabilities was less informative; most
models clustered near the center of a score plot of the first two PCs
(which together explain 82.2% of the variance among models, see
Fig. 3c). The exposed and buried sub-models of the ‘all Euk’ XB
model were the most distinctive, with higher values of PC1 than
any other sub-models from the same structural environment. The
major similarity between the 2-nt PCA and the others is that the
vertebrate exposed sub-models for vertebrates were more spread
out than the buried sub-models for the same taxa, with the exposed
‘bird 1 model being especially distinctive.

3.4 'The best-fitting XB model for most individual
proteins is the appropriate clade-specific model

Classification of validation set proteins using clade-specific XB
mixture models similar to those obtained using the all-sites models
(Table 4). In the majority of cases, the best-fitting XB modelsfor
the plant, oomycete, and yeast validation data were the
appropriate clade-specific models (>75% in all cases). Likewise, the
best-fitting models for proteins in the vertebrate validation sets
were almost always models trained using vertebrate data (>80% in
both cases). As we observed with the all-sites models, the novel ‘all
Euk’ XB model was not the best-fitting model for the ‘all Euk’
validation set; it was the EX2 model [10] instead. The results for
analyses of individual proteins in the training set (available from
github) were similar. These results indicate that the clade-specific
single matrix models and the clade-specific can both act as
classifiers when used with proteins from specific clades.
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Table 4. Percentage of times clade-specific XB models (rows)
were the best-fitting model for individual proteins in each
validation dataset (columns).

Best-fit model Birds MammalsPlantsOomycetes Yeast All Euk
Bird (1) 265 5 - — - -

Bird (2) 24.5 18 - - - -
Mammal 32 68.5 — — — —
Plant 12 8 94.5 4.7 1.5 —
Oomycete 1.5 - 1 76 5 6.7
Yeast 2.5 — 1 4 79 2
All Euk — — — 3.3 1 33.5
EX2 1 0.5 3 12 13.5 57.7
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Figure 3: Cluster analysis and PCAs of clade-specific models of
evolution that incorporate protein structure (see left). (a) “Tree
of models’ generated by neighbor-joining of Euclidean distances
among exchangeability matrices for new XB models (bold), the
components of the EX2 model, and standard empirical models. The
“bird (1) EXP” branch is presented with a break to indicate that it
was a long branch; in this figure was shortened for readability.
Plots showing calculated using (b) all exchangeabilities and (c) 2-nt
exchangeabilities. The proportion of the variance explained by
each PC is listed alongside each axis

3.5 Exchangeabilities for different structural
environments follow a ‘rule of opposites’

The highest exchangeabilities for exposed sites involved pairs of
hydrophobic residues; when exchangeabilities for all six models
were averaged the three highest values corresponded to I-V, F-Y,
and I-M. In contrast, the highest exchangeabilities for the buried
environment involved polar pairs (in this case, the three highest
values were R-K, D-E, and Q-H). This pattern may seem
surprising; after all, it has long been appreciated that polar
residues are common in solvent exposed environments whereas
hydrophobic residues dominate the buried sites [50]. We call the
observation that the most exchangeable amino acids in each
structural environment are the less common amino acids in that
environment the ‘rule of opposites.’

The ‘rule of opposites’ allows us to differentiate between two
alternative hypotheses to explain the relationship between
exchangeabilities and amino acid frequencies. One might postulate
that the amino acids that are rare in a specific structural
environment would have very low exchangeabilities because those
amino acid amino acids would be necessary for specific functions.
Alternatively, one might postulate that exchanges between pairs of
rare amino acids are common as long as the physicochemical
nature of the amino acid is conserved. These results corroborate
the second hypothesis and further suggest that at least some rare
amino acids are especially exchangeable.

The exposed and buried sub-models of the XB models could be
separated into a vertebrate and a non-vertebrate cluster (along
PC2 in Fig. 5, panels a and b). Specific elements that separate the
models were evident among the largest exchangeability values.
Although the largest element for the exposed sub-models was I-V
in both the vertebrate and plant/microbial groups, the next three
elements differed. For vertebrates the next two elements involved
exchanges between cysteine and aromatic residues (C-W and C-Y)
whereas the plant/microbial models involved much more
physicochemically-similar pairs (F-Y and L-M). Despite these
differences, both groups conform to the rule of opposites (cysteine
and aromatic residues are uncommon in solvent exposed
environments; data available from github). In contrast, the top two
exchangeabilities for the buried model were identical for the
vertebrate and plant/microbial buried sub-models, although there
were certainly a number of additional differences.

3.6 Differences in the strength of selection likely
explain differences among clade-specific models

It should be possible to gain insights into the basis for the
differences among-clade specific models by comparing changes in
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amino acid properties to differences in 1-nt exchangeabilities.
Comparing all-sites model exchangeability differences for
vertebrates vs. plants and microbes revealed a correlation with
experimental amino acid exchangeabilities (i.e., values in the EXs
matrix) and differences in side-chain volume. The EXj correlation
was negative (Spearman’s correlation; zs = -0.29309, P = 0.01071)
whereas the correlation with changes in amino acid side chain
volume (hereafter, A volume) was positive and even stronger (zs =
0.39197, P = 0.00051). The directions of both correlations were
consistent with the hypothesis that the major difference between
vertebrate and non-vertebrate models is relaxed selection against
slightly deleterious mutations in vertebrates (presumably due to
their lower long-term Ae). In contrast, exchangeability differences
were not correlated with A polarity (zs = -0.0405, P = 0.73009).
These results suggest changes in side-chain volume is the primary
property subject to differential selection between vertebrates and
plants/microbial eukaryotes.

A similar pattern was evident for the exposed sub-model of the
clade specific XB models. Specifically, exchangeability differences
for surface residues were correlated with EXs (rs = -0.34316, P =
0.00258) and A volume (rs = 0.45707, P = 4x107); there was no
correlation with A polarity (zs = -0.09805, P = 0.40265). Weaker
(and non-significant) correlations were evident for the buried sites
(rs=-0.20979, P = 0.07085 for EXy; rs = 0.30234, P = 0.00838 for A
volume; rs = -0.03851, P = 0.7429 for A polarity). However, buried
sub-models for vertebrate and plants/microbes did exhibit some
specific differences: 1-nt interchanges with higher buried-site
exchangeabilities in vertebrates included A-T, R-H, M-V, R-Q, and
C-Y whereas exchangeabilities with comparable elevation in the
plant/microbial XB buried sub-models were F-Y, S-T, A-S, and N-
H. Although there was no unifying physicochemical property for
either set of pairs, we note that two of the pairs with elevated
relative exchangeabilities in vertebrates (R-Q and C-Y) fall into
different Dayhoff groups (i.e., the six groups shown in Fig. 84 of
Dayhoff et al [14]) and the pairs that are in the same Dayhoff
group are relatively distinctive (e.g., R and H are both basic but
they differ in shape, size, and even their charge at physiological
pH). In contrast, two of the exchangeabilities elevated in the
plant/microbial ~ buried sub-models (F-Y and S-T) are
physicochemically similar and only one (N-H) would change the
Dayhoff group. Thus, these results are also consistent with the
hypothesis that the lower long-term Ne of vertebrates has reduced
the effectiveness of selection against slightly deleterious
substitutions.

The hypothesis that among-clade differences in the patterns of
protein sequence evolution reflects the strength of purifying
selection raises several issues. First, the observation that our new
vertebrate models clustered with models trained using viral data
(HIVb/HIVw [48] and FLU [49]) may seem puzzling if Me is a
major factor in establishing model differences; after all, viruses are
microbes so one might assume their long-term M would be very
large. Second, our failure to find a correlation between differences
in exchangeabilities and A polarity may seem surprising given the
important role that polarity appears to play in models of protein
evolution (cf. Braun [4]). However, neither of these issues actually
provide evidence against our hypothesis. Drift actually appears to
play an important role in viral evolution [51]. The combined
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effects of strong background selection and population bottlenecks
expected during progression within hosts and transmission among
hosts [52] are expected to reduce Me for viruses. The absence of a
correlation between A polarity and differences in exchangeabilities
is also expected given if there is very strong selection against
changes in polarity. Exchangeabilities are only expected to exhibit
a correlation with ‘A property’ when selection against changes in
the property are weak enough for drift to dominate in low M
clades and selection to dominate in high MNe clades. Stronger
purifying selection would result in selection dominating regardless
of M, eliminating the correlation. Thus, neither of those
observations are problems for the hypothesis that differences in
the strength of purifying selection due to differences in M lead to
differences among the clade-specific models.

3.7 Broadly sampled training data distorts model
parameter estimates

Most empirical models have used as much training datasets as
possible to reduce the variance of model parameter estimates.
However, some studies have reported that estimates of parameters
describing the amino acid substitution process exhibit time
dependence [53]-[55]. The results of Benner et al [53], who
estimated log-odds matrices using many pairs of aligned sequences
selected to fall within certain ranges of divergence, are especially
interesting. They highlighted eight specific amino acid pairs; the
log-odds scores for the first set (which we will call ‘type A pairs’
hereafter) have higher values when they are estimated using
divergent sequence pairs whereas the second set (hereafter, ‘type B
pairs’) have lower log-odds scores they were estimated using
divergent sequence pairs. Type A pairs (F-W, W-Y, C-M, and C-V)
are similar amino acids (mean EXs = 0.5258) that are encoded by
codons that differ by at least two nucleotides. Type B pairs (C-W,
R-C, C-Y, and R-W) are dissimilar amino acids (mean EXs =
0.3547) encoded by codons that differ by a single nucleotide. These
observations led Benner et al [53] to conclude that “the genetic
code influences accepted point mutations strongly at early stages
of divergence, while the chemical properties of the side chains
dominate at more advanced stages” (where ‘advanced stages’
refers to long evolutionary timescales).

We included the ‘all Euk’ training dataset to assess the impact
of estimating model parameters using highly diverged sequences.
Our exchangeability parameter estimates exhibited a pattern
similar to the pattern observed by Benner et al. [53] for log-odds
scores; the mean exchangeability for type A pairs in the clade-
specific models ranged from 15.4% of the ‘all Euk’ value (for W-Y)
to 17.6% (for C-V). We observed similar patterns for both XB sub-
models, with the mean exchangeabilities for type A pairs ranging
from 13.2% of the ‘all Euk’ value (for buried site W-Y
interchanges) to 22.1% (for exposed site W-Y interchanges). As
expected, we observed the opposite pattern for type B pairs. When
we normalized the ‘all Euk’ type B exchangeabilities to the
maximum for that pair in any clade specific model we found
values that ranged from an absolute minimum of 3.4% (for R-W
interchanges in the exposed environment) to 24.8% (for R-C
interchanges in the exposed environment).

Kosiol and Goldman [56] pointed out that apparent time-
dependence must represent a problem associated with parameter



ACM-BCB’20, September, 2020, Virtual Meeting

estimation; after all, long-term substitution patterns ultimately
reflect the accumulation of substitutions over many short periods
of time. Thus, Benner ef al [53] log-odds score estimates should
not exhibit time dependence if the accumulation of amino acid
substitutions can be modeled as a time-homogeneous Markov
process. Kosiol and Goldman [56] resolved this paradox by
showing that a time-homogeneous Markov model for nucleotides
can appear non-Markovian when the data are aggregated into the
encoded amino acids. In fact, they even demonstrated apparent
time-dependence of log-odds scores for the type A and B pairs
qualitatively similar to the Benner et al [53] patterns (although
there were only two pairs, C-M and C-V, that were similar in
quantitative terms). Exchangeabilities for the LG model, which
was trained using a taxonomically diverse dataset [17], also
exhibited the pattern of high values for type A pairs and (to a
lesser degree) low values for type B pairs. Three of the type A
pairs (F-W, W-Y, and C-M) in the LG model had values ~60% of
the ‘all Euk’ comparable values and they were higher than the
comparable values for any clade-specific model (see models on
github). This suggests the LG model may be subject to a ‘time-
dependency’ effect similar to our ‘all Euk’ model, albeit one that is
not as extreme.

The fact that type B pairs involve physicochemically-dissimilar
amino acids that require a single nucleotide substitution for
interchanges creates an additional complexity. They are exactly
the type of substitutions expected to accumulate at an elevated rate
in taxa with a lower long-term A, so the observation that
vertebrate models always had the highest type B exchangeabilities
(see models files available from github) is not surprising. The
surprise is the high values for the type A substitutions, which
involve interchanges of similar amino acids that require multiple
nucleotide substitutions. Since some type B exchanges represent
intermediates for type A substitutions (e.g., the only two-step
pathway for F-Y involves C as an intermediate) one might expect
selection against these disfavored intermediates to reduce type A
exchangeabilities. If type A exchangeabilities were only elevated
in the ‘all Euk’ model one might dismiss them as purely artifactual.
However, type A exchangeabilities are also elevated in the clade-
specific microbial (oomycete and yeast) models. This suggests they
warrant further examination.

Of course, type A exchangeabilities are even higher in the ‘all
Euk’ model (e.g., W-Y was the highest 2-nt exchangeability, and it
had the ninth highest value of the 190 exchangeabilities). The very
high type exchangeabilities in the ‘all Euk’ rate matrix probably
reflect artifacts (a combination of the aggregation effects described
by Kosiol and Goldman [57] and violations of the time reversibility
assumption at the timescale of all eukaryotes) superimposed on the
features of more typical microbial models (after all, most taxa in
the ‘all Euk’ training data are microbial). These issues could also
explain the poor performance of ‘all Euk’ models in cross-
validation (Tables 3 and 4) and the observation that the all sites ‘all
Euk’ training data was the only case where fit of GTR20+I+I’ model
was not better (based on the AIC.) than the fit best empirical
model (see Methods). Regardless, it seems reasonable to speculate
that biases in the ‘all Euk’ models could have an impact on other
uses of those rate matrices, like phylogenetic estimation.

A. Pandey and E. L. Braun

3.8 Does GTRz provide a useful framework to
examine variation among clades?

We examined differences in amino acid exchangeabilities among
taxa by comparing GTR20 model parameters. Superficially, the
GTR20 model might not appear to provide the most natural
framework for testing the hypothesis that exchangeabilities vary
among clades (Fig. 1). After all, GTR20 assumes time reversibility
and changes in amino acid exchangeabilities among taxa violate
that assumption. This suggests that a model that relaxes the time
reversibility assumption might should be used. The general
Markov model (GMM) represents just such a model. However, the
amino acid GMM requires estimation of 380 free parameters per
branch, unlike the nucleotide GMM which only requires 12 free
parameters [58]. Moreover, the GMM cannot be used with among-
sites rate variation (except for a +invariant sites version [59]) and
rate variation is ubiquitous in protein evolution [12]. Thus, we
assumed there is less variation within each clade than there is
among clades, estimated exchangeability parameters using the
GTR20+I+T" model, and compared those parameter estimates. The
assumption that the variation among clades exceeds variation
within clades seems justified given their performance in with the
cross-validation data (Tables 3 and 4).

One might take the arguments against the GMM even further by
asking whether the GTR20 model is itself actually too parameter
rich. The GTR20 model dimension could be reduced by restricting
subsets of exchangeabilities to be equal, an approach used in
analyses of nucleotide data [60]. However, it is impractical for
protein models because the number of possible GTR submodels is
a Bell [61] number. There are 203 possible GTR4-type models (202
submodels and GTRy itself) but there are >102°0 GTR20 submodels,
rendering thisapproach impractical for protein data (unless one
makes a priori assumptions regarding the appropriate restrictions).
Alternatively, one might use parameters based on specific amino
acid properties, an approach suggested by Braun [4]. Although the
Braun models can be used to examine differences among clades,
they require a priori assumptions regarding the most important
amino acid properties. A major goal in this study was to avoid a
priori assumptions regarding the amino acid properties that
contribute to the differences among models.

Zou and Zhang [3] proposed a codon model that provides an
alternative framework; specifically, they extended the Yang et al.
[62] codon model by replacing the single » parameter (the ratio of
non-synonymous to synonymous substitutions) with a vector of 75
« parameters (one for each 1-nt exchange). This model has fewer
free parameters than the GTRzo+I+I' model; a Zou-Zhang-type
model with a transition-transversion parameter and equilibrium
codon frequencies calculated using the product of the nucleotide
frequencies for first, second, and third codon positions has 85 free
parameters (GTRzo+I+T has 210 parameters). However, the lower
dimension of the Zou-Zhang model reflects the assumption that
®=0 is 2-nt and 3-nt interchanges. Making that assumption would
have made it impossible to detect the relatively high type A
exchangeabilities in some models. Allowing instantaneous doublet
and triplet changes improves the fit of codon models in other
contexts [57], so failing to include free w parameters for 2-nt and
3-nt interchanges might be problematic. However, extending the
Zou-Zhang model to include those interchanges increases the
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number of free parameters by requiring the addition of 115 w
parameters and two parameters for the doublet and triplet
substitution rates. Since the dimension of the modified Zou-Zhang
model is similar to that for the GTR20+I+I" model it should be clear
that codon models do not have a clear advantage with respect to
the number of free parameters.

Any method to estimate amino acid exchangeabilities (including
our approach and the Zou-Zhang approach) will depend on the
quality of the multiple sequence alignments used to estimate
parameters. We do not believe this is a source of error for several
reasons. Most of our training and validation datasets (Tables 1 and
2) were used without modification and the source publications
used different alignment pipelines. We did use our own pipeline
for the bird (2) dataset (see Methods), but the larger point is that
the alignment strategies differed among datasets. We would not
expect our models to be good classifiers (as shown in Tables 3 and
4) or to have interpretable exchangeability parameters our results
were strongly dependent on alignments. Additional evidence that
our conclusions are robust to the alignment pipeline can be found
in a set of clade-specific rate matrices described in a preprint [63]
posted after this study was completed. Those Minh et al. [63]
models are comparable to our all sites models (Fig. 2 and Table 3)
and they clustered with the appropriate all sites models from this
study (i.e., cluster analysis yielded a ‘tree-of-models’ similar to Fig.
2a and models based on data from the same clades formed clusters
within the two major clusters; see information on github). Also, as
we noted in section 3.7, the behavior of type A interchanges was
evident in previous studies [53], [64] that used different alignment
methods. Finally, we note that Zou and Zhang [3] also found that
among-clade differences in amino acid exchangeabilities and they
used yet another different pipeline. Although it is difficult to rule
out the possibility of modest biases that reflect the details of the
sequence alignment methods (or other aspects of the analytical
pipeline), it is unlikely the large-scale patterns revealed by this
study are trivial effects of alignment errors.

4 Conclusions

Efforts to estimate models of protein sequence evolution began in
the very earliest days of computational biology; the first version of
the PAM matrix was estimated over 50 years ago using a mere 814
substitutions from 11 protein families [1]. However, analyses of
empirical models have provided little information about the
processes governing protein evolution beyond the relatively
straightforward conclusion that most amino acid exchanges
involve physicochemically-similar amino acids. However, that was
a conclusion that Dayhoff and Eck [65] reached (in very general
terms) by examining the first version of the PAM matrix. On the
other hand, efforts to develop models of protein evolution from
first principles [19], [66], [67] remain impractical for phylogenetic
analyses, especially in the phylogenomic era when hundreds or
thousands of protein alignments are analyzed (e.g., the studies in
Tables 1 and 2). The continued development of empirical models
(e.g., the WAG [16] and LG [17] models) has provided models that
can be used in that framework. It has not escaped our attention
that our clade-specific models can also be used to improve
phylogenomic analyses. The HIVb/HIVw [48] and FLU [49]
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models were generated to improve analyses of proteins from those
viruses; our clade-specific models should improve phylogenetic
estimation for specific taxa. Moreover, our clade-specific XB
models should further improve model fit (and tree estimation) by
accommodating variation among taxa and variation among-sites
within proteins due to protein structure. All of our models are
available from github and can be implemented in programs, such
as IQ-TREE [33], that are used in many phylogenomic studies.

Although our models may be valuable for phylogenomic
inference, the primary goal of this effort was to learn about the
various ways that protein evolution has changed over time. Many
efforts to understand the ways that evolutionary models change
over time have assumed a single model for all sites within proteins.
For practical reasons, they have also reduced the model dimension
by using on a single parameter, like the radical to conservative
substitution rate ration, with radical vs. conservative substitutions
defined in a binary manner [2], [8]. Although this basic approach
has been extended to a limited number of parameters by
considering the physicochemical properties of amino acids [4], it is
difficult to ‘cast a wide net’ in order to learn the ways that the
process of amino acid has changed over time. Herein, we have
estimated parameters that describe protein evolution in various
clades using a simple framework (the GTR20 model, combined
with among-sites rate heterogeneity) that does not presuppose an
important role for any specific amino acid property. In doing so we
found that there is substantial variation among clades in their
model and that this variation among clades is evident both for
amino acids located on the surface of proteins and for residues
buried in the interior of proteins. We also found evidence that
vertebrates are more tolerant of substitutions that change amino
side-chain volume than plant/microbial models; however, this was
only evident in only for models that describe the evolution of
solvent exposed residues. We also showed that training empirical
models using sequences sampled from taxa that were sampled too
broadly (i.e., the ‘all Euk’ training data) can lead to distorted
parameter estimates. Finally, we found that most proteins from a
specific taxon were clustered in model space and that a relatively
simple hypothesis — patterns of substitution reflect the strength of
purifying selection, which differs among taxa due to differences
among taxa in their long-term M — can explain many of the
observed differences among taxa.
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