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ABSTRACT 
Protein sequence evolution is a complex process that varies across 
the tree of life and among-sites within proteins. Comparing 
evolutionary rate matrices for specific taxa (‘clade-specific 
models’) can reveal this variation and provide information about 
the basis for changes in the patterns of protein evolution over 
time. However, clade-specific models can only provide this 
information if the variation among taxa exceeds the variation 
among proteins. We showed this to be the case by demonstrating 
that clade-specific model fit could distinguish among proteins from 
the four taxa that we examined (vertebrates, plants, oomycetes, 
and yeasts). Model fit classified proteins correctly by clade of 
origin >70% of the time. A relatively small number of dimensions 
can explain differences among models. If model parameters are 
averaged across all sites ~80% of the variance among models 
reflects clade; for models that consider protein structure ~50% of 
the variance reflected relative solvent accessibility and ~25% 
reflected clade. Relaxed purifying selection in taxa with smaller 
long-term effective population sizes appears to explain much of the 
among clade variance. Relaxed selection on solvent-exposed sites 
was correlated with the degree of change in amino acid side-chain 
volume for substitutions; other differences among models were 
more complex. Beyond the information they reveal about protein 
evolution, our clade-specific models also represent tools for 
phylogenomic inference. Availability: model files are available 
from https://github.com/ebraun68/clade_specific_prot_models. 
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1 Introduction 
In phylogenetics, tree topology and/or branch lengths are typically 
the parameters of interest. However, amino acid rate matrices, 
which have been studied since the dawn of computational biology 
as a field [1], also provide information about the process of 
evolution. Patterns of amino acid substitution vary across the tree 
of life [2], [3] and among proteins [4]. It has long been appreciated 
[5] that the accumulation of substitutions over evolutionary time 
reflects two processes: 1) the rate at which novel mutations enter 
populations; and 2) the impact of drift and selection on the fate of 
those mutations. This paradigm suggests the patterns of protein 
evolution will vary across the tree of life; after all, the rate and 
spectrum of mutations and strength of selection (the latter 
reflecting, in large part, variation in effective population size, Ne) 
varies across the tree [6], [7]. The sensitivity of ratio of radical to 
conservative amino acid substitutions to Ne  [2], [8] suggests 
variation in the strength of selection is likely to be especially 
important for establishing the patterns of protein evolution.  

Using the radical to conservative substitution rate ratio to 
examine changes in the pattern of sequence evolution is 
complicated by the challenge of defining radical (i.e., non-
conservative) amino acid changes. Zuckerkandl and Pauling ([9], 
p. 129) recognized that the “…inadequacy of a priori views on 
[amino acid substitution] conservatism and nonconservatism is 
patent” in the very earliest days of molecular evolution and that 
problem remains unsolved. Many studies divide residues into two 
categories (e.g., polar/non-polar or small/large) and treat between-
category substitutions as radical [8]. That idea can be extended by 
using continuous values to describe the physicochemical 
characteristics of the amino acids instead of binary classification 
[4], but that still relies on the use of prespecified amino acid 
characteristics. Assessing changes in the process of protein 
sequence evolution without a priori assumptions would be 
desirable. 

The general time-reversible model for amino acids (GTR20) 
might provide a practical way to address this question. The GTR20 
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instantaneous rate matrix (or Q matrix) can be decomposed into a 
symmetric rate (R) matrix with 189 free parameters reflecting the 
‘exchangeability’ of each pair of amino acids and a diagonal 
matrix (Π) with 19 free amino acid equilibrium frequency 
parameters [10]. Of course, the time-reversibility assumption that 
limits the number of free parameters is inappropriate when protein 
evolution has changed across the tree. After all, postulating that 
the model changes over time (i.e., non-homogeneity) intrinsically 
renders models non-time-reversible. However, we can avoid this 
problem by estimating GTR20 parameters for clades with a limited 
taxonomic scope and then comparing the clade-specific parameter 
estimates. If the deviations from time-reversibility for the 
underlying model of protein evolution are sufficiently limited 
within clades, then comparisons among clades should reveal the 
ways that protein evolution has changed across the tree of life.  

Using GTR20 parameter estimates to understand shifts in the 
process of sequence evolution presents several challenges. 
Previous studies [3], [11] indicate that we will find differences 
among clades. However, it is reasonable to expect substantial 
variation among proteins [4] and among sites within proteins [12], 
[13]. There are two ways this heterogeneity could confound our 
ability to use GTR20 parameter estimates to understand patterns of 
protein evolution across the tree of life. First, a high degree of 
variation among individual proteins might obscure variation 
among clades (Fig. 1). Second, simply optimizing GTR20 model 
parameters on a large protein dataset will yield average 
exchangeability estimates for all sites. Patterns revealed by 
comparing these ‘averaged’ parameter estimates could be 
confusing if there is substantial variation among-sites within 
proteins. These factors make it important to find ways to examine 
the impact of these sources of variation on any conclusions we 
reach regarding differences among taxa. 

One way to assess fine-scale variation in protein evolution (i.e., 
variation among individual proteins) would be to estimate GTR20 
parameters for individual proteins and compare them. This is not 
practical; GTR20 has too many parameters to obtain accurate 
parameter estimates using individual protein alignments. 
However, it is possible to estimate model parameters using a 
relatively large training dataset and then classify the proteins in an 
independent validation dataset. Hereafter, we will call the GTR20 
matrices estimated as part of this study ‘models’ because they are 
analogous to the empirical models that are often used in protein 
phylogenetics, such as the PAM [14], JTT [15], WAG [16], and LG 
[17]; we call those  models (and similar models that are trained on 
diverse datasets) ‘standard empirical models.’ Using clade-specific 
and standard empirical models to classify individual proteins will 
allow us to establish the part of the parameter space shown in Fig. 
1 that best describes the large-scale patterns of protein evolution. 
If the variance among individual proteins exceeds the variation 
among clades (lower portion of Fig. 1) clade-specific models should 
be a poor classifier. In contrast, if variation among clades exceeds 
the variation among proteins (upper portion of Fig 1), clade-
specific models as classifiers should be good classifiers (i.e., the 
best-fitting model for validation set proteins will be the model 
generated from that clade). Finally, the number of times that model 
fit fails as a classifier will increase as the variation among proteins 
increases. It should be possible to establish the specific parameters 

that vary among clades and determine whether they are consistent 
with predictions regarding the expected differences among clades 
in the strength of selection, assuming there is sufficient variation 
among clades. 

 

Figure 1: Possible patterns of variation in patterns of protein 
sequence evolution, both among proteins and among clades. 
Conceptual illustration showing the relationships among protein 
models where the underlying models are presented after some type 
of dimension reduction. Crosses indicate models generated using 
the training data (i.e., average parameter estimates); smaller 
circles, squares, and triangles indicate individual proteins. The 
number of dimensions necessary to summarize the GTR20 rate 
matrices is unclear; we are showing two dimensions to illustrate 
the idea underlying our analytical framework.  

The other type of fine-scale variation, variation among sites 
within proteins, is more difficult to examine. Patterns of protein 
evolution are complex [18] and the best way to extract 
information about the patterns of molecular evolution while still 
acknowledging variation within proteins remains unclear. 
However, selection to maintain protein structure, which has a 
fundamental role in maintaining protein function, is likely to play 
a major role in the overall structure of amino acid substitution 
matrices [19]. The relative solvent accessibility (RSA) of individual 
amino acids is one of the most important determinants of the 
patterns of sequence evolution for globular proteins [20], [21]. 
This suggests it should be possible to subdivide proteins into 
solvent exposed (high RSA) and buried (low RSA) sites before 
estimating substitution matrix parameters for various clades. This 
would add another dimension to the parameter space shown in 
Fig. 1 (i.e., a dimension describing variation among sites within 
proteins). It also makes it necessary to use a mixture model as a 
classifier (i.e., a model with two ‘sub-models’ where the site 
likelihoods are calculated as a weighted mixture of both sub-model 
matrices). However, using these exposed/buried (‘XB’) mixture 
models is a straightforward extension of the idea of using models 
as a classifier to determine which part of parameter space best 
describes the large-scale patterns of protein evolution. 

Herein, we examine the extent to which models of protein 
sequence evolution exhibit clade-specific features using six 
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eukaryotic datasets selected to exhibit differences in the strength 
of selection. These clades selected for this study included 
vertebrates (expected to have small long-term Ne), plants (expected 
to have intermediate long-term Ne), and microbial eukaryotes 
(expected to have large long-term Ne). We focused on eukaryote 
datasets to limit the impact of horizontal gene transfer on 
parameter estimates; the high rate of horizontal gene transfer in 
prokaryotes [22] could distort estimates. We added a seventh 
dataset with a broad sample of eukaryotes; multiple changes in the 
underlying model of sequence evolution are likely to have 
occurred for the taxa in that dataset (unless the lower part of Fig. 1 
is the best description of protein evolution). This ‘all Euk’ dataset 
was included to assess the impact of using a dataset that has 
experienced changes in the rate matrix. We then used the new 
models as classifiers to assess among-protein variation and 
examine the way models differ, examining parameter differences 
among clades, among sites that were grouped by RSA, and for the 
combination of RSA and clade. 

2 Methods 
We generated 14 new models of protein evolution (seven based on 
all sites and seven XB mixture models) by selecting proteins from 
seven datasets (Table 1). One training dataset [23] included non-
coding data; for that dataset we extracted the coding exons, added 
orthologous sequences from 117 avian genome assemblies (using 
the Reddy et al. [24] pipeline to extract data from genomes), re-
aligned the data using MAFFT v.7.130b [25], and translated the 
data to yield amino acid alignments. All training datasets were 
concatenated; we have made the data files for this project available 
in Zenodo (http://doi.org/10.5281/zenodo.3964471). 

Table 1. Training datasets selected for this study 

Clade # Proteins/Sites # Taxa Model Citation 
Birds (1) 250/109,969 48 JTT [26], [27] 
Birds (2) 250/161,112 317 HIVb [23] 
Mammals 249/238,319 116 HIVb [28] 
Plants (1) 310/80,315 46 JTT [29] 
Oomycetes 277/83,312 17 LG [30] 
Yeasts 200/81,802 343 LG [31] 
All Euk (1) 248/58,469 149 LG [32] 

 
We estimated model parameters using IQ-TREE [33] v. 1.6.10, 

as implemented in CIPRES science gateway [34]. Before 
conducting full model optimization, we identified the best-fitting 
standard empirical model for each training dataset using the -m 
TEST option with AICc as the decision criterion. The best-fitting 
standard empirical model varied among clades (Table 1), but the 
rate heterogeneity parameters for all best-fit models included both 
invariant sites and Γ-distributed rates. Thus, we used GTR20+I+Γ 
to estimate the new clade-specific models. We fixed the tree 
topology and among-sites rate heterogeneity parameters (the Γ-
distribution shape parameter and proportion of invariant sites) 
based on the analysis using the standard empirical model before 
optimizing the other model parameters (the exchangeabilities, 
equilibrium amino acid frequencies, and branch lengths) by 

maximum likelihood. Based on the AICc the GTR20+I+Γ model had 
a better fit to the training data than the best-fitting empirical 
model (see  supplementary file in github and Zenodo) in all but 
one case (the ‘all Euk’ all sites model; see Results and Discussion 
for details). The new clade-specific models are available from 
github in a format usable by IQ-TREE and PAML [35].  

We selected six validation datasets (Table 2; available from 
Zenodo). In most cases, the datasets in Table 1 had enough 
alignments to divide them into training and validation sets. 
However, we used all genes in the plant and ‘all Euk’ training 
datasets (we refer to datasets with a broad sample of eukaryotes as 
‘all Euk’ datasets). In those two cases, we selected another dataset 
with comparable taxa (‘plant 2’ and ‘all Euk 2’) to use as the 
validation set. We eliminated overlaps between these two training 
and validation datasets by removing proteins from the validation 
dataset if they had a BLAST [36] E-value ≤ 10-40. We identified the 
best-fitting model for each validation set protein using IQ-TREE 
with the -mset option; we tested the seven clade-specific models 
and the 18 standard empirical models implemented in IQ-TREE. 
For comparison, we conducted the same analyses using the 
proteins in training datasets.  

Table 2. Validation datasets selected for this study 

Clade # Proteins # Taxa Citation 
Birds (1) 200 48 [26], [27] 
Mammals 200 116 [28] 
Plants (2) 200 107 [37] 
Oomycetes 150 15 [30] 
Yeasts 200 343 [31] 
All Euk (2) 149 104 [38] 

 
To reduce within-protein heterogeneity, we separated globular 

proteins into exposed and buried sites. First, we used TMHMM 
[39] to identify and remove transmembrane proteins. Then the 
globular proteins were subdivided based on site RSA using the 
https://github.com/aakanksha12/Structural_class_assignment_pipe
line pipeline. That pipeline generates a weighted consensus 
sequence that is then used as input for ACCpro [40] from the 
SCRATCH-1D suite [41]. ACCpro assigns each residue to one of 
the two categories: exposed or buried, with the latter defined as 
<25% RSA. After subdividing the data into exposed and buried 
residues the data for all proteins were concatenated, resulting in 14 
data matrices (one exposed dataset and one buried dataset for the 
seven datasets in Table 1). There many aspects of protein structure 
that can be considered in of models of sequence evolution, ranging 
from the straightforward use of RSA that we considered in the 
study, to secondary structure [17], [21], [42]–[44], residue-residue 
interactions [43], to details like amino acid torsion angles [45]. We 
focused on RSA because that aspect of protein structure has a 
substantial impact on the rate matrix (see Fig. 4 in Pandey and 
Braun [21]) and it made it straightforward to construct training 
datasets of sufficient size for this study.  

Rate matrices were estimated for all 14 exposed- and buried-site 
training datasets as described above. The exposed and buried rate 
matrices were then combined to create seven XB mixture models, 
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in which the site likelihoods are weighted averages over both 
alternative (exposed and buried) matrices. We identified the best-
fitting mixture model for individual proteins in the validation 
datasets using ‘fit_mixture_model.pl’ (available from github), 
which examines the fit of eight models: the seven XB models we 
generated and the Le et al. [10] EX2 model (which is also an 
exposed/buried mixture model). We tested four versions of each 
model that differed in their treatment of rate heterogeneity (no 
rate heterogeneity vs. Γ-distributed rates) and equilibrium amino 
acid frequencies (observed frequencies vs maximum likelihood 
estimates [+FO]). As above, we also assessed model fit for all 
proteins in training datasets. The XB models are available from 
github in a nexus file that can be used by IQ-TREE. 

We analyzed the GTR20 exchangeability (R) matrices for 
standard empirical models and the new models generated in two 
ways. First, we clustered Euclidean distances among matrices by 
neighbor-joining [46]. Second, we used principal component 
analysis (PCA) to explore differences among models. We 
normalized the matrix elements (i.e., the 190 exchangeability 
values for each pair of amino acids) to sum to one for both 
analyses. The Euclidean distances were calculated by treating the 
normalized R matrix as a vector with 190 values. We used three 
normalized vectors for the PCAs: 1) vectors with all 190 elements; 
2) vectors of 75 elements limited to amino acid exchanges possible 
given single nucleotide change (1-nt interchanges); and 3) vectors 
of 101 elements for the amino acid exchanges possible given two 
nucleotide changes (2-nt interchanges). We used JMPPro version 
12.2 (SAS Institute Inc.) with default settings for the PCA. 

We compared the 1-nt exchangeabilities for our clade-specific 
models to matrices that describe amino acid properties. First, we 
used a symmetric version of the Yampolsky and Stoltzfus [47] EX 
matrix, which describes the impact of mutations in laboratory 
mutagenesis studies (note: this EX matrix is unrelated to the Le et 
al. [10] EX2 model, as stated above that EX2 model is an XB-type 
model). Lower EX matrix values indicate that mutating wild-type 
amino acid i to amino acid j typically results in more severe 
phenotypic changes in the laboratory. The EXs matrix (EX matrix-
symmetric) was produced by averaging the EX matrix values for i 
to j mutations and j and i mutations and then normalizing the 
matrix to assign the most experimentally exchangeable amino acid 
pair (I and V) a value of one. Second, we compared clade-specific 
model exchangeabilities to matrices that capture differences in 
amino acid side-chain volume and polarity, which were obtained 
from Braun [4]. All of these comparisons used Spearman’s rank 
correlations with two-tailed tests for significance. 

3 Results and Discussion 

3.1 Vertebrate and non-vertebrate models form 
two clusters in model space 

Clustering of Euclidean distances among models along with 
midpoint rooting revealed two distinct clusters in the model space 
(Fig. 2a). The first cluster comprises the bird and mammal models 
and three standard empirical models trained using viral data. The 
second includes all of the other models estimated for this project 
along with all other standard empirical models. These results 

corroborate the hypothesis that patterns of sequence evolution 
vary across the tree of life and they further suggest that models 
trained using vertebrate data are especially distinctive. 

Figure 2: Cluster analysis and PCAs of clade-specific models of 
sequence evolution. (a) ‘Tree of models’ generated by neighbor-
joining of Euclidean distances among exchangeability (R) matrices 
for the new clade-specific models (bold) and standard empirical 
models. Plots showing the first two PCs calculated using (b) all 
exchangeabilities and (c) 2-nt exchangeabilities. The proportion of 
the variance explained by each PC is listed alongside each axis. 

The strong separation between the vertebrate models and the 
other clade-specific models was also evident in a PCA of the 190 
exchangeability parameters of these models (Fig. 3b). PC1 and PC2 
were both significant, but PC1 explained most of the variation and 
it separated the models into vertebrate and non-vertebrate models. 
Perhaps surprisingly, the three vertebrate models (two of which 
were estimated using bird data) appeared to be about as distinct 
from each other as the non-vertebrate models. The PCA for the 1-
nt exchangeability values was quite similar, probably reflecting the 
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fact that the largest exchangeability values are those possible with 
a single substitution (the plot and the exchangeability values are 
available from github). In contrast, PCA of 2-nt exchangeabilities 
(Fig. 3c) revealed a different pattern; in that analysis PC1 also 
explained most of the variance but the plant model fell between 
the vertebrate models and the models for microbial eukaryotes 
(i.e., the yeast and oomycete). The vertebrate models were closer 
to each other than they were in the 1-nt PCA and the ‘all Euk’ 
model was located even further from vertebrates than the yeast 
and oomycete models. The latter finding probably reflects the fact 
that microbial eukaryotes dominate that dataset. 

3.2  The best-fitting model for most individual 
proteins is the appropriate clade-specific model 

The best-fitting model for individual proteins in each validation 
dataset was one of novel clade-specific models (Table 3); the only 
exception was the ‘all Euk’ validation dataset where the LG model 
[17] had the best fit more than 60% of the time (compared to 31.5% 
for the new ‘all Euk’ model). The best-fitting models for the 
vertebrate validation datasets were split among the three 
vertebrate models (Table 3). The results for individual proteins in 
the training data were virtually identical (available from github); 
the exception was the ‘all Euk’ training data where the new ‘all 
Euk’ model had the best fit for 93.5% of proteins. These results 
indicate that the average patterns of protein evolution for each 
clade provide substantial information regarding the patterns of 
substitution within those clades and further suggests that 
idiosyncratic differences among proteins play a limited role in 
model fit (i.e., our results are consistent with the top portion of the 
model space shown Fig. 1). 

Table 3. Percentage of times clade-specific models (bold) he best-
fitting model (rows) for individual proteins in each validation 
dataset (columns). ‘—’ indicates the models was not recovered in 
analyses of the specified validation dataset. 

Best model Birds Mammals Plants Oomycetes Yeast All Euk 
Bird (1) 25 2 1 — — — 
Bird (2) 24 21 — — — — 
Mammal 27.5 65 — — — — 
Plant 6.5 4 70.5 4.7 2.5 — 
Oomycete 0.5 — 2 84 1.5 2 
Yeast 1 — 3 2 88 4.7 
All Euk — — 0.5 2 2 31.5 
LG 1.5 0.5 5.5 5.3 4.5 60.4 
JTT 8 6 16.5 — — — 
WAG — — 0.5 1.3 — 1.3 
DCMut — — 0.5 — — — 
BLOSUM 0.5 0.5 — — — — 
PMB 1 — — — — — 
VT 1.5 — — — — — 
HIVb 2 — — — — — 
FLU 0.5 0.5 — — — — 
mt models 0.5 0.5 — 0.7 1.5 — 
 

3.3  Variation among structural environments is 
stronger than variation among clades 

Clustering the matrices from the exposed/buried model XB models 
with standard empirical models and the two matrices from the 
EX2 model [10] revealed three relatively distinct clusters (Fig. 3a). 
All exposed models formed a divergent cluster on one side of the 
midpoint root; the deepest split within the exposed models was 
between vertebrates and non-vertebrates (the EX2 exposed 
component nested within non-vertebrates). The results for the 
buried components were similar; the bird and mammal buried 
components formed a cluster that was distinct from the second 
group that included the buried components of all non-vertebrate 
models and the EX2 model. Both of those buried clusters were 
nested within groups of standard empirical models (none of the 
latter were structure aware). The vertebrate buried components 
formed a cluster sister to three viral models (HIVb/HIVw [48] and 
FLU [49]). Thus, matrices for the structural models exhibited two 
levels of separation: 1) the separation between the exposed and 
buried clusters; and 2) the separation between the taxonomic 
groups (vertebrates vs. all other taxa). 

PCA of all 190 exchangeability parameters (Fig. 3b) and of the 
1-nt exchangeabilities (available from github) for the structural 
subsets of these datasets revealed similar patterns. PC1 explained 
~50% of the variance and it separated the exposed and buried 
models. PC2 explained slightly more than 25% of the variance and 
it separated the models by clade in a manner consistent with the 
models based on all data. The exposed ‘bird 1’ model, based on 
alignments from Jarvis et al. [26], was especially distinctive. In 
contrast, PCA of 2-nt exchangeabilities was less informative; most 
models clustered near the center of a score plot of the first two PCs 
(which together explain 82.2% of the variance among models, see 
Fig. 3c). The exposed and buried sub-models of the ‘all Euk’ XB 
model were the most distinctive, with higher values of PC1 than 
any other sub-models from the same structural environment. The 
major similarity between the 2-nt PCA and the others is that the 
vertebrate exposed sub-models for vertebrates were more spread 
out than the buried sub-models for the same taxa, with the exposed 
‘bird 1’ model being especially distinctive. 

3.4  The best-fitting XB model for most individual 
proteins is the appropriate clade-specific model 

Classification of validation set proteins using clade-specific XB 
mixture models similar to those obtained using the all-sites models 
(Table 4). In the majority of cases, the best-fitting XB modelsfor 
the plant, oomycete, and yeast validation data were the 
appropriate clade-specific models (>75% in all cases). Likewise, the 
best-fitting models for proteins in the vertebrate validation sets 
were almost always models trained using vertebrate data (>80% in 
both cases). As we observed with the all-sites models, the novel ‘all 
Euk’ XB model was not the best-fitting model for the ‘all Euk’ 
validation set; it was the EX2 model [10] instead. The results for 
analyses of individual proteins in the training set (available from 
github) were similar. These results indicate that the clade-specific 
single matrix models and the clade-specific can both act as 
classifiers when used with proteins from specific clades. 
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Table 4. Percentage of times clade-specific XB models (rows) 
were the best-fitting model for individual proteins in each 
validation dataset (columns).  
 
Best-fit model Birds Mammals Plants Oomycetes Yeast All Euk 
Bird (1) 26.5 5 — — — — 
Bird (2) 24.5 18 — — — — 
Mammal 32 68.5 — — — — 
Plant 12 8 94.5 4.7 1.5 — 
Oomycete 1.5 — 1 76 5 6.7 
Yeast 2.5 — 1 4 79 2 
All Euk — — — 3.3 1 33.5 
EX2 1 0.5 3 12 13.5 57.7 

Figure 3: Cluster analysis and PCAs of clade-specific models of 
evolution that incorporate protein structure (see left). (a) ‘Tree 
of models’ generated by neighbor-joining of Euclidean distances 
among exchangeability matrices for new XB models (bold), the 
components of the EX2 model, and standard empirical models. The 
“bird (1) EXP” branch is presented with a break to indicate that it 
was a long branch; in this figure was shortened for readability. 
Plots showing calculated using (b) all exchangeabilities and (c) 2-nt 
exchangeabilities. The proportion of the variance explained by 
each PC is listed alongside each axis 

3.5  Exchangeabilities for different structural 
environments follow a ‘rule of opposites’ 

The highest exchangeabilities for exposed sites involved pairs of 
hydrophobic residues; when exchangeabilities for all six models 
were averaged the three highest values corresponded to I-V, F-Y, 
and I-M.  In contrast, the highest exchangeabilities for the buried 
environment involved polar pairs (in this case, the three highest 
values were R-K, D-E, and Q-H). This pattern may seem 
surprising; after all, it has long been appreciated that polar 
residues are common in solvent exposed environments whereas 
hydrophobic residues dominate the buried sites  [50]. We call the 
observation that the most exchangeable amino acids in each 
structural environment are the less common amino acids in that 
environment the ‘rule of opposites.’ 

The ‘rule of opposites’ allows us to differentiate between two 
alternative hypotheses to explain the relationship between 
exchangeabilities and amino acid frequencies. One might postulate 
that the amino acids that are rare in a specific structural 
environment would have very low exchangeabilities because those 
amino acid amino acids would be necessary for specific functions. 
Alternatively, one might postulate that exchanges between pairs of 
rare amino acids are common as long as the physicochemical 
nature of the amino acid is conserved. These results corroborate 
the second hypothesis and further suggest that at least some rare 
amino acids are especially exchangeable. 

The exposed and buried sub-models of the XB models could be 
separated into a vertebrate and a non-vertebrate cluster (along 
PC2 in Fig. 5, panels a and b). Specific elements that separate the 
models were evident among the largest exchangeability values. 
Although the largest element for the exposed sub-models was I-V 
in both the vertebrate and plant/microbial groups, the next three 
elements differed. For vertebrates the next two elements involved 
exchanges between cysteine and aromatic residues (C-W and C-Y) 
whereas the plant/microbial models involved much more 
physicochemically-similar pairs (F-Y and L-M). Despite these 
differences, both groups conform to the rule of opposites (cysteine 
and aromatic residues are uncommon in solvent exposed 
environments; data available from github). In contrast, the top two 
exchangeabilities for the buried model were identical for the 
vertebrate and plant/microbial buried sub-models, although there 
were certainly a number of additional differences.  

3.6  Differences in the strength of selection likely 
explain differences among clade-specific models 

It should be possible to gain insights into the basis for the 
differences among-clade specific models by comparing changes in 
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amino acid properties to differences in 1-nt exchangeabilities. 
Comparing all-sites model exchangeability differences for 
vertebrates vs. plants and microbes revealed a correlation with 
experimental amino acid exchangeabilities (i.e., values in the EXs 
matrix) and differences in side-chain volume. The EXs correlation 
was negative (Spearman’s correlation; rS = -0.29309, P = 0.01071) 
whereas the correlation with changes in amino acid side chain 
volume (hereafter, ∆ volume) was positive and even stronger (rS = 
0.39197, P = 0.00051). The directions of both correlations were 
consistent with the hypothesis that the major difference between 
vertebrate and non-vertebrate models is relaxed selection against 
slightly deleterious mutations in vertebrates (presumably due to 
their lower long-term Ne). In contrast, exchangeability differences 
were not correlated with ∆ polarity (rS = -0.0405, P = 0.73009). 
These results suggest changes in side-chain volume is the primary 
property subject to differential selection between vertebrates and 
plants/microbial eukaryotes. 

A similar pattern was evident for the exposed sub-model of the 
clade specific XB models. Specifically, exchangeability differences 
for surface residues were correlated with EXs (rS = -0.34316, P = 
0.00258) and ∆ volume (rS = 0.45707, P = 4x10-5); there was no 
correlation with ∆ polarity (rS = -0.09805, P = 0.40265). Weaker 
(and non-significant) correlations were evident for the buried sites 
(rS = -0.20979, P = 0.07085 for EXs; rS = 0.30234, P = 0.00838 for ∆ 
volume; rS = -0.03851, P = 0.7429 for ∆ polarity). However, buried 
sub-models for vertebrate and plants/microbes did exhibit some 
specific differences: 1-nt interchanges with higher buried-site 
exchangeabilities in vertebrates included A-T, R-H, M-V, R-Q, and 
C-Y whereas exchangeabilities with comparable elevation in the 
plant/microbial XB buried sub-models were F-Y, S-T, A-S, and N-
H. Although there was no unifying physicochemical property for 
either set of pairs, we note that two of the pairs with elevated 
relative exchangeabilities in vertebrates (R-Q and C-Y) fall into 
different Dayhoff groups (i.e., the six groups shown in Fig. 84 of 
Dayhoff et al. [14]) and the pairs that are in the same Dayhoff 
group are relatively distinctive (e.g., R and H are both basic but 
they differ in shape, size, and even their charge at physiological 
pH). In contrast, two of the exchangeabilities elevated in the 
plant/microbial buried sub-models (F-Y and S-T) are 
physicochemically similar and only one (N-H) would change the 
Dayhoff group. Thus, these results are also consistent with the 
hypothesis that the lower long-term Ne of vertebrates has reduced 
the effectiveness of selection against slightly deleterious 
substitutions.  

The hypothesis that among-clade differences in the patterns of 
protein sequence evolution reflects the strength of purifying 
selection raises several issues. First, the observation that our new 
vertebrate models clustered with models trained using viral data 
(HIVb/HIVw [48] and FLU [49]) may seem puzzling if Ne is a 
major factor in establishing model differences; after all, viruses are 
microbes so one might assume their long-term Ne would be very 
large. Second, our failure to find a correlation between differences 
in exchangeabilities and ∆ polarity may seem surprising given the 
important role that polarity appears to play in models of protein 
evolution (cf. Braun [4]). However, neither of these issues actually 
provide evidence against our hypothesis. Drift actually appears to 
play an important role in viral evolution [51]. The combined 

effects of strong background selection and population bottlenecks 
expected during progression within hosts and transmission among 
hosts [52] are expected to reduce Ne for viruses. The absence of a 
correlation between ∆ polarity and differences in exchangeabilities 
is also expected given if there is very strong selection against 
changes in polarity. Exchangeabilities are only expected to exhibit 
a correlation with ‘∆ property’ when selection against changes in 
the property are weak enough for drift to dominate in low Ne 
clades and selection to dominate in high Ne clades. Stronger 
purifying selection would result in selection dominating regardless 
of Ne, eliminating the correlation. Thus, neither of those 
observations are problems for the hypothesis that differences in 
the strength of purifying selection due to differences in Ne lead to 
differences among the clade-specific models. 

3.7  Broadly sampled training data distorts model 
parameter estimates 

Most empirical models have used as much training datasets as 
possible to reduce the variance of model parameter estimates. 
However, some studies have reported that estimates of parameters 
describing the amino acid substitution process exhibit time 
dependence [53]–[55]. The results of Benner et al. [53], who 
estimated log-odds matrices using many pairs of aligned sequences 
selected to fall within certain ranges of divergence, are especially 
interesting. They highlighted eight specific amino acid pairs; the 
log-odds scores for the first set (which we will call ‘type A pairs’ 
hereafter) have higher values when they are estimated using 
divergent sequence pairs whereas the second set (hereafter, ‘type B 
pairs’) have lower log-odds scores they were estimated using 
divergent sequence pairs. Type A pairs (F-W, W-Y, C-M, and C-V) 
are similar amino acids (mean EXs = 0.5258) that are encoded by 
codons that differ by at least two nucleotides. Type B pairs (C-W, 
R-C, C-Y, and R-W) are dissimilar amino acids (mean EXs = 
0.3547) encoded by codons that differ by a single nucleotide. These 
observations led Benner et al. [53] to conclude that “the genetic 
code influences accepted point mutations strongly at early stages 
of divergence, while the chemical properties of the side chains 
dominate at more advanced stages” (where ‘advanced stages’ 
refers to long evolutionary timescales).  

We included the ‘all Euk’ training dataset to assess the impact 
of estimating model parameters using highly diverged sequences. 
Our exchangeability parameter estimates exhibited a pattern 
similar to the pattern observed by Benner et al.  [53] for log-odds 
scores; the mean exchangeability for type A pairs in the clade-
specific models ranged from 15.4% of the ‘all Euk’ value (for W-Y) 
to 17.6% (for C-V). We observed similar patterns for both XB sub-
models, with the mean exchangeabilities for type A pairs ranging 
from 13.2% of the ‘all Euk’ value (for buried site W-Y 
interchanges) to 22.1% (for exposed site W-Y interchanges). As 
expected, we observed the opposite pattern for type B pairs. When 
we normalized the ‘all Euk’ type B exchangeabilities to the 
maximum for that pair in any clade specific model we found 
values that ranged from an absolute minimum of 3.4% (for R-W 
interchanges in the exposed environment) to 24.8% (for R-C 
interchanges in the exposed environment). 

Kosiol and Goldman [56] pointed out that apparent time-
dependence must represent a problem associated with parameter 
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estimation; after all, long-term substitution patterns ultimately 
reflect the accumulation of substitutions over many short periods 
of time. Thus, Benner et al. [53] log-odds score estimates should 
not exhibit time dependence if the accumulation of amino acid 
substitutions can be modeled as a time-homogeneous Markov 
process. Kosiol and Goldman [56] resolved this paradox by 
showing that a time-homogeneous Markov model for nucleotides 
can appear non-Markovian when the data are aggregated into the 
encoded amino acids. In fact, they even demonstrated apparent 
time-dependence of log-odds scores for the type A and B pairs 
qualitatively similar to the Benner et al. [53] patterns (although 
there were only two pairs, C-M and C-V, that were similar in 
quantitative terms). Exchangeabilities for the LG model, which 
was trained using a taxonomically diverse dataset [17], also 
exhibited the pattern of high values for type A pairs and (to a 
lesser degree) low values for type B pairs. Three of the type A 
pairs (F-W, W-Y, and C-M) in the LG model had values ~60% of 
the ‘all Euk’ comparable values and they were higher than the 
comparable values for any clade-specific model (see models on 
github). This suggests the LG model may be subject to a ‘time-
dependency’ effect similar to our ‘all Euk’ model, albeit one that is 
not as extreme. 

The fact that type B pairs involve physicochemically-dissimilar 
amino acids that require a single nucleotide substitution for 
interchanges creates an additional complexity. They are exactly 
the type of substitutions expected to accumulate at an elevated rate 
in taxa with a lower long-term Ne, so the observation that 
vertebrate models always had the highest type B exchangeabilities 
(see models files available from github) is not surprising. The 
surprise is the high values for the type A substitutions, which 
involve interchanges of similar amino acids that require multiple 
nucleotide substitutions. Since some type B exchanges represent 
intermediates for type A substitutions (e.g., the only two-step 
pathway for F-Y involves C as an intermediate) one might expect 
selection against these disfavored intermediates to reduce type A 
exchangeabilities. If type A exchangeabilities were only elevated 
in the ‘all Euk’ model one might dismiss them as purely artifactual. 
However, type A exchangeabilities are also elevated in the clade-
specific microbial (oomycete and yeast) models. This suggests they 
warrant further examination. 

Of course, type A exchangeabilities are even higher in the ‘all 
Euk’ model (e.g., W-Y was the highest 2-nt exchangeability, and it 
had the ninth highest value of the 190 exchangeabilities). The very 
high type exchangeabilities in the ‘all Euk’ rate matrix probably 
reflect artifacts (a combination of the aggregation effects described 
by Kosiol and Goldman [57] and violations of the time reversibility 
assumption at the timescale of all eukaryotes) superimposed on the 
features of more typical microbial models (after all, most taxa in 
the ‘all Euk’ training data are microbial). These issues could also 
explain the poor performance of ‘all Euk’ models in cross-
validation (Tables 3 and 4) and the observation that the all sites ‘all 
Euk’ training data was the only case where fit of GTR20+I+Γ model 
was not better (based on the AICc) than the fit best empirical 
model (see Methods). Regardless, it seems reasonable to speculate 
that biases in the ‘all Euk’ models could have an impact on other 
uses of those rate matrices, like phylogenetic estimation. 

3.8  Does GTR20 provide a useful framework to 
examine variation among clades? 

We examined differences in amino acid exchangeabilities among 
taxa by comparing GTR20 model parameters. Superficially, the 
GTR20 model might not appear to provide the most natural 
framework for testing the hypothesis that exchangeabilities vary 
among clades (Fig. 1). After all, GTR20 assumes time reversibility 
and changes in amino acid exchangeabilities among taxa violate 
that assumption. This suggests that a model that relaxes the time 
reversibility assumption might should be used. The general 
Markov model (GMM) represents just such a model. However, the 
amino acid GMM requires estimation of 380 free parameters per 
branch, unlike the nucleotide GMM which only requires 12 free 
parameters [58]. Moreover, the GMM cannot be used with among-
sites rate variation (except for a +invariant sites version [59]) and 
rate variation is ubiquitous in protein evolution [12]. Thus, we 
assumed there is less variation within each clade than there is 
among clades, estimated exchangeability parameters using the 
GTR20+I+Γ model, and compared those parameter estimates. The 
assumption that the variation among clades exceeds variation 
within clades seems justified given their performance in with the 
cross-validation data (Tables 3 and 4).  

One might take the arguments against the GMM even further by 
asking whether the GTR20 model is itself actually too parameter 
rich. The GTR20 model dimension could be reduced by restricting 
subsets of exchangeabilities to be equal, an approach used in 
analyses of nucleotide data [60]. However, it is impractical for 
protein models because the number of possible GTR submodels is 
a Bell [61] number. There are 203 possible GTR4-type models (202 
submodels and GTR4 itself) but there are >10250 GTR20 submodels, 
rendering thisapproach impractical for protein data (unless one 
makes a priori assumptions regarding the appropriate restrictions). 
Alternatively, one might use parameters based on specific amino 
acid properties, an approach suggested by Braun [4]. Although the 
Braun models can be used to examine differences among clades, 
they require a priori assumptions regarding the most important 
amino acid properties. A major goal in this study was to avoid a 
priori assumptions regarding the amino acid properties that 
contribute to the differences among models.  

Zou and Zhang [3] proposed a codon model that provides an 
alternative framework; specifically, they extended the Yang et al. 
[62] codon model by replacing the single ω parameter (the ratio of 
non-synonymous to synonymous substitutions) with a vector of 75 
ω parameters  (one for each 1-nt exchange). This model has fewer 
free parameters than the GTR20+I+Γ model; a Zou-Zhang-type 
model with a transition-transversion parameter and equilibrium 
codon frequencies calculated using the product of the nucleotide 
frequencies for first, second, and third codon positions has 85 free 
parameters (GTR20+I+Γ has 210 parameters). However, the lower 
dimension of the Zou-Zhang model reflects the assumption that 
ω=0 is 2-nt and 3-nt interchanges. Making that assumption would 
have made it impossible to detect the relatively high type A 
exchangeabilities in some models. Allowing instantaneous doublet 
and triplet changes improves the fit of codon models in other 
contexts [57], so failing to include free ω parameters for 2-nt and 
3-nt interchanges might be problematic. However, extending the 
Zou-Zhang model to include those interchanges increases the 
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number of free parameters by requiring the addition of 115 ω 
parameters and two parameters for the doublet and triplet 
substitution rates. Since the dimension of the modified Zou-Zhang 
model is similar to that for the GTR20+I+Γ model it should be clear 
that codon models do not have a clear advantage with respect to 
the number of free parameters.  

Any method to estimate amino acid exchangeabilities (including 
our approach and the Zou-Zhang approach) will depend on the 
quality of the multiple sequence alignments used to estimate 
parameters. We do not believe this is a source of error for several 
reasons. Most of our training and validation datasets (Tables 1 and 
2) were used without modification and the source publications 
used different alignment pipelines. We did use our own pipeline 
for the bird (2) dataset (see Methods), but the larger point is that 
the alignment strategies differed among datasets. We would not 
expect our models to be good classifiers (as shown in Tables 3 and 
4) or to have interpretable exchangeability parameters our results 
were strongly dependent on alignments. Additional evidence that 
our conclusions are robust to the alignment pipeline can be found 
in a set of clade-specific rate matrices described in a preprint [63] 
posted after this study was completed. Those Minh et al. [63] 
models are comparable to our all sites models (Fig. 2 and Table 3) 
and they clustered with the appropriate all sites models from this 
study (i.e., cluster analysis yielded a ‘tree-of-models’ similar to Fig. 
2a and models based on data from the same clades formed clusters 
within the two major clusters; see information on github). Also, as 
we noted in section 3.7, the behavior of type A interchanges was 
evident in previous studies  [53], [64] that used different alignment 
methods. Finally, we note that Zou and Zhang [3] also found that 
among-clade differences in amino acid exchangeabilities and they 
used yet another different pipeline. Although it is difficult to rule 
out the possibility of modest biases that reflect the details of the 
sequence alignment methods (or other aspects of the analytical 
pipeline), it is unlikely the large-scale patterns revealed by this 
study are trivial effects of alignment errors. 

4 Conclusions 
Efforts to estimate models of protein sequence evolution began in 
the very earliest days of computational biology; the first version of 
the PAM matrix was estimated over 50 years ago using a mere 814 
substitutions from 11 protein families [1]. However, analyses of 
empirical models have provided little information about the 
processes governing protein evolution beyond the relatively 
straightforward conclusion that most amino acid exchanges 
involve physicochemically-similar amino acids. However, that was 
a conclusion that Dayhoff and Eck [65] reached (in very general 
terms) by examining the first version of the PAM matrix. On the 
other hand, efforts to develop models of protein evolution from 
first principles [19], [66], [67] remain impractical for phylogenetic 
analyses, especially in the phylogenomic era when hundreds or 
thousands of protein alignments are analyzed (e.g., the studies in 
Tables 1 and 2). The continued development of empirical models 
(e.g., the WAG [16] and LG [17] models) has provided models that 
can be used in that framework. It has not escaped our attention 
that our clade-specific models can also be used to improve 
phylogenomic analyses. The HIVb/HIVw [48] and FLU [49] 

models were generated to improve analyses of proteins from those 
viruses; our clade-specific models should improve phylogenetic 
estimation for specific taxa. Moreover, our clade-specific XB 
models should further improve model fit (and tree estimation) by 
accommodating variation among taxa and variation among-sites 
within proteins due to protein structure. All of our models are 
available from github and can be implemented in programs, such 
as IQ-TREE [33], that are used in many phylogenomic studies. 

Although our models may be valuable for phylogenomic 
inference, the primary goal of this effort was to learn about the 
various ways that protein evolution has changed over time. Many 
efforts to understand the ways that evolutionary models change 
over time have assumed a single model for all sites within proteins. 
For practical reasons, they have also reduced the model dimension 
by using on a single parameter, like the radical to conservative 
substitution rate ration, with radical vs. conservative substitutions 
defined in a binary manner [2], [8]. Although this basic approach 
has been extended to a limited number of parameters by 
considering the physicochemical properties of amino acids [4], it is 
difficult to ‘cast a wide net’ in order to learn the ways that the 
process of amino acid has changed over time. Herein, we have 
estimated parameters that describe protein evolution in various 
clades using a simple framework (the GTR20 model, combined 
with among-sites rate heterogeneity) that does not presuppose an 
important role for any specific amino acid property. In doing so we 
found that there is substantial variation among clades in their 
model and that this variation among clades is evident both for 
amino acids located on the surface of proteins and for residues 
buried in the interior of proteins. We also found evidence that 
vertebrates are more tolerant of substitutions that change amino 
side-chain volume than plant/microbial models; however, this was 
only evident in only for models that describe the evolution of 
solvent exposed residues. We also showed that training empirical 
models using sequences sampled from taxa that were sampled too 
broadly (i.e., the ‘all Euk’ training data) can lead to distorted 
parameter estimates. Finally, we found that most proteins from a 
specific taxon were clustered in model space and that a relatively 
simple hypothesis – patterns of substitution reflect the strength of 
purifying selection, which differs among taxa due to differences 
among taxa in their long-term Ne – can explain many of the 
observed differences among taxa. 
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