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SoOHAM: A Sound-Based Human Activity Monitoring
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Ha Manh Do

Abstract— Monitoring daily activities is essential for home
service robots to take care of the older adults who live alone
in their homes. In this article, we proposed a sound-based
human activity monitoring (SoHAM) framework by recognizing
sound events in a home environment. First, the method of
context-aware sound event recognition (CoSER) is developed,
which uses contextual information to disambiguate sound events.
The locational context of sound events is estimated by fusing the
data from the distributed passive infrared (PIR) sensors deployed
in the home. A two-level dynamic Bayesian network (DBN) is
used to model the intratemporal and intertemporal constraints
between the context and the sound events. Second, dynamic
sliding time window-based human action recognition (DTW-HaR)
is developed to estimate active sound event segments with their
labels and durations, then infer actions and their durations.
Finally, a conditional random field (CRF) model is proposed to
predict human activities based on the recognized action, location,
and time. We conducted experiments in our robot-integrated
smart home (RiSH) testbed to evaluate the proposed framework.
The obtained results show the effectiveness and accuracy of
CoSER, action recognition, and human activity monitoring.

Note to Practitioners—This article is motivated by the goal to
develop companion robots that can assist older adults living alone.
Among many capabilities, monitoring human daily activities is
an essential one for such robots. Though computer vision or
wearable sensors-based methods have been developed by other
researchers, they are not practical due to the privacy concern and
intrusiveness. Sound-based daily activity recognition can address
these concerns and offer a viable solution. In this regard, our
proposed method adopts microphones on the robot and a small
set of motion sensors distributed in the home. The proposed
theoretical framework was tested in a small-scale mock-up
apartment with promising results. Before such companion robots
can be deployed to real homes for elderly care, there is a need to
improve the robustness of the algorithms. More thorough tests
in various realistic home environments should be conducted to
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fully evaluate the performance of the robots. In addition, privacy
concern related to audio capture should be further mitigated.

Index Terms— Activity monitoring, context-awareness, elderly
care, sound event.

I. INTRODUCTION

HE elderly population is steadily rising around the globe.

The population of 60-and-older people is projected to
increase from 900 million in 2015 to over 2 billion in 2050 [1].
This trend leads to both economical and sociological chal-
lenges in elderly care [2]. On the other hand, many older
adults prefer to stay in their homes rather than move to nursing
homes, although their daily living activities may become
more challenging [3]. In fact, more than a third of the older
adults in the USA live alone in their homes [4], which poses
serious risks to them in situations such as falling or medical
emergencies. Therefore, assistive technologies, such as smart
homes and home service robots, are currently being developed
for elderly care.

As a critical part of assisted living, human activity monitor-
ing has received great interest in recent years. Camera-based
human activity monitoring has been developed for many appli-
cations such as surveillance and healthcare [5], [6]. Although
the vision system on a robot provides abundant information,
it is not always possible to observe the resident due to occlu-
sion or poor lighting. In addition, the use of cameras raises
significant privacy concerns. Recently, wearable sensor-based
human activity monitoring has been studied, especially for
health care, military, and security applications [7]-[9]. How-
ever, wearable sensors are intrusive and inconvenient if the
users are required to wear them all the time. On the other
hand, we know that most human daily activities generate
sounds, such as eating, cooking, using the toilet, and having
a shower. Therefore, it is highly desirable to equip home
service robots with not only speech understanding but also
sound understanding capabilities. Home sound understanding,
which recognizes home sound events in the context of human
daily activities, helps the robot not only monitor older adults’
activities but also detect anomalies happening in the homes.
Such a human-aware capability frees the robot to do its daily
routine work while being able to care for the elderly more
proactively and effectively.

Although sound event recognition has received much atten-
tion over the years, it is still a very challenging problem. The
main reason is that event sounds are diverse, unstructured,
and nonstationary. Understanding human activity using sound
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events is even more difficult because of the diversity of
the sounds associated with the same events. For example,
even the same event of a person falling on the floor can
create different sounds, depending on where the fall occurs.
Moreover, there are many different types of event sounds in
home environments. Based on sound source features, they
can be vocal or nonvocal. Based on acoustic features, they
can be harmonic or nonharmonic. In addition, multiple sound
events can occur at the same time. One advantage that allows
humans to distinguish sound events is their knowledge of the
context, which helps them form predictions and adapt their
perception to the environment [10]. Context-aware sound event
recognition (CoSER) allows a robot to associate contextual
information with sound events, which enhances the perfor-
mance of sound event recognition.

This article aims to develop a human activity monitoring
framework for home service robots. This article has the
following contributions:

1) A new framework for sound-based human activity mon-
itoring (SoHAM) is proposed and developed which
allows home service robots to better understand human
daily activities.

2) A new method of CoSER is developed based on
Dynamic Bayesian Networks (DBNs). This method
improves recognition accuracy by considering contextual
information estimated from multiple distributed sensors
in a home environment.

3) A conditional random field (CRF)-based model is pro-
posed to recognize human activities using the recognized
action, location, and time. This method effectively over-
comes the difficulties associated with the nondetermin-
istic nature of complex daily activities.

4) We conducted experimental validation and evaluation
of the proposed SOHAM framework in a smart home
testbed using a custom-built home service robot.

The rest of this article is organized as follows. Section II
reviews the related works in SOHAM and sound event recog-
nition. Section III gives an overview of the human activity
monitoring platform for home service robots. Section IV
presents the method for CoSER using DBNs. Section V
develops the algorithm of the dynamic sliding time window for
human action recognition based on recognized sound events.
Section VI describes CRFs-based human activity monitoring.
Section VII gives the experimental results. Section VIII con-
cludes this article and discusses the future work.

II. RELATED WORKS

A. Sound-Based Human Activity Monitoring

In recent years, research on SOHAM has received much
attention. For example, an automated bathroom activity mon-
itoring system based on acoustics was developed in [11].
In that project, an infrared door sensor was set up to detect
the human entering or leaving the bathroom, and sound was
recorded by a microphone. Six bathroom sound events were
collected and classified by hidden Markov models (HMMs)
with Mel-frequency Cepstral Coefficients (MFCCs) features.
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A support vector machine (SVM)-based system was intro-
duced in [12] to detect and recognize human activities in
meeting rooms using acoustic signals. In [13], the authors
proposed SoundSense, a scalable framework for modeling
and recognizing meaningful sound events that occur in users’
everyday lives using mobile phones. SoundSense uses a com-
bination of supervised and unsupervised learning techniques
to classify both general sounds (e.g., music, voice) and dis-
cover novel sound events specific to each individual user.
In [14], the authors proposed a novel recognition approach,
non-Markovian ensemble voting (NEV), which was able to
robustly recognize 22 different event sounds related to human
activities in a bathroom and a kitchen. An acoustic-based
activity recognition system inspired by the framework of
three mental structures in cognitive psychology was proposed
in [15], which consists of a sensory store, a working memory,
and permanent memory modules. Sound features that include
formant, intensity, pitch, and duration are extracted by the
sensory store module and analyzed in the working memory
module using the reasoning by similarity (RBS) and reasoning
by elimination (RBE) strategies. The framework was tested
on nine dining activities with an average accuracy of 83.2%.
In [16], a framework for online activity recognition from
event sounds and home sensors was proposed and evaluated
on two existing smart home datasets using different prob-
abilistic models including HMM, CREF, and Markov logic
network (MLN). More recently, several studies introduced
deep learning-based methods for activity recognition from
sound events. The authors in [17] proposed a deep neural
network (DNN)-based system for daily activity recognition
using environmental sounds and body acceleration signals.
A 5-layer DNN was trained by a dataset of ten activities
and achieved a frame accuracy rate of 85.5% and a sample
accuracy rate of 91.7%. Another convolution neural network
(CNN)-based sound recognition model to detect occupant
behavior and possible emergency events in single-person
households was developed in [18]. This model successfully
monitored 12 sequential events of acoustic sounds with an F1-
score of 83.9%. However, most deep learning-based methods
require the collection of a very large dataset of labeled sounds,
which is time-consuming and costly.

It is clear that sound event recognition plays an important
role in the above acoustic-based activity recognition systems.
These systems directly inferred each human activity from a
single sound event that is recognized. The sound itself may
not be sufficient to infer human daily activities, unless the
human context (location, time) is taken into consideration. For
example, the same water-running sound may be generated by
different activities, such as doing the morning routine in the
bathroom or cooking in the kitchen.

B. Sound Event Recognition

Various approaches have been developed for sound event
recognition (SER). Most stationary SER techniques are
derived from the research on speech and music recognition
using stationary features. Recent research on SER has explored
nonstationary features of event sounds. More recently, deep
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learning-based SER techniques have been receiving growing
interest.

Inspired by the success of speech and music recogni-
tion, several parametric techniques using supervised learning
have been adopted for sound event recognition, for example,
HMMs with MFCCs features [19], Gaussian mixture mod-
els (GMM) with linear frequency Cepstral coefficient (LFCC)
features [20], GMM with MFCC and other spectral fea-
tures [21], [22], and HMM with MPEG?7 features [23]. The
speech recognition techniques work well, in practice, but the
results on SER have not been satisfactory [24]. One reason
is that the event sounds are less structured, have no subword
dictionary in the same way as in speech and contain a wider
range of characteristic and nonstationary effects.

Recently, research on SER has focused on exploring non-
stationary features of event sounds to maximize information
content related to signal’s temporal and spectral character-
istics [25]. In [26], the authors used the discrete chirplet
transform (DChT) and the discrete curvelet transform (DCuT)
along with several other common features such as MFCC
and zero-crossing rate (ZCR). The matching pursuit (MP)-
based features for SER was proposed in [27]. Several other
nonstationary features have been proposed for SER, such as
MP-Gabor features [28], image features of the subband power
distribution [29], and stabilized auditory image (SAI) [30].
Nonparametric learning methods have also been developed,
such as the technique based on the sparse coding of SAIs [31].
Recently, principal component analysis (PCA) and linear dis-
criminate analysis (LDA) are applied to the scale-frequency
map to generate the features for sound event classification
based on the segment-level multiclass SVMs [28]. In [32],
the approach interprets the sound event as a 2-D spectrogram
image, with the two axes as the time and frequency dimen-
sions, and adopts spectrogram image processing-based meth-
ods for sound event recognition. In [33], a method based on the
multiview representation that combines auditory image-based
visual features and cepstral features was proposed for sound
event recognition using SVMs. This approach resulted in
improved performance over other state-of-the-art traditional
methods for Environmental Sound Classification - 50 (ESC-
50), Detection and Classification of Acoustic Scenes and
Events - 2016 (DCASE2016) Task 2, and DCASE2018 Task
2 datasets.

Recent years have seen new methods proposed to tackle sev-
eral challenges for sound event recognition: the adverse effects
such as noise, distortion, and multiple sources as well as the
poorly defined characteristics of acoustic events. Several works
have recently applied DNNs for polyphonic sound event recog-
nition such as multilabel DNNs [34], a novel spiking neural
network system that combines a robust spike coding of local
spectrogram features with an artificial neural network using
a cost function [35], and a sound event classification frame-
work that evaluates the DNNs with a different spectrogram
image-based front features such as Google-style SAI features
and time-frequency domain spectrogram image features (SIF)
features [36]. In [37], the authors presented an approach to
polyphonic sound event detection in real-life recordings based
on bidirectional long short term memory (BLSTM) recurrent

neural networks (RNNs). The authors in [38] combined exist-
ing pretrained CNN models in computer vision applications
and SVM for domestic multichannel audio classification. Their
method achieved an Fl1-score of around 89% on the dataset of
9 activities in the DCASE 2018 Task 5 challenge [39]. An end-
to-end approach for environmental sound classification based
on a 1-D CNN was proposed in [40]. The discussed deep
learning approaches require sound datasets to be fully labeled,
which incurs time-consuming annotation.

Although these DNNs have proved effective in several SER
tasks, they are ineffective for monitoring human activities in
home environments. There are two reasons: First, these DNNs
were trained on public datasets of general environmental
sounds, with very few home event sounds. Second, the sound
itself is not sufficient to infer human daily activities, unless
the human context is considered.

Context-awareness has been initially exploited in speech
recognition. Different methods have been studied to include
contextual information as prior knowledge to improve the
recognition of phonemes, words, and sentences [41]-[43].
CoSER s still at its early stage compared with context-aware
speech recognition. Niessen et al. [44] modeled the context
in audio recognition by investigating the role of the dynamic
network model to improve automatic audio identification and
simultaneously reduce the search space of low-level audio
features. The context-aware level describes more general
information about an audio device such as location [45],
time [46], weather [47], and even user-dependent states like
emotion [48]. Heittola et al. [49] proposed a context-dependent
sound event detection system. The context information is
recognized from the audio stream by applying GMMs. How-
ever, HMM-based event detection models the contexts by a
3-state left-to-right HMM. The recognition still faces
difficulties because of the great number of possible event
combinations and the transitions among them. Lu er al. [50]
proposed a context-based environmental audio event
recognition framework that applies a two-level HMM for the
acoustic scene recognition. Their work is the latest publication
of context-aware sound event recognition. In the experiment
part, we conducted a comparison of our proposed method
and their method.

The above works have mainly targeted the environmental
sound events in general and have not taken into account
the correlation between the sound events associated with
the human’s daily activities and the contextual information,
such as the human’s location in indoor environments. In this
article, we propose a novel context-based method for sound
event recognition using a DBN that can model intratemporal
and intertemporal constraints among the context and sound
events. Then human activity monitoring is realized based on
recognized sound events.

III. SYSTEM OVERVIEW

This section gives an overview of human activity monitoring
for home service robots. Our goal is to monitor human
activities over time in a home environment using the audio
data captured by the auditory system on the robot and the
human location data estimated by the home sensor network.
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Fig. 1. Home service robot monitors daily activities of the older adult through
sound events and locational context.
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Fig. 2. Overview of the human activity monitoring system on the home
service robot.

As illustrated in Fig. 1, a home service robot is integrated
into a smart home equipped with distributed sensors that can
provide information regarding human locations. This robot can
capture event sounds in the home environment through its
microphone array. The event sounds are recognized through
a local classifier on the robot. Based on the recognized sound
event and context information estimated from the home sensor
network, the robot can accurately recognize human activities.
The overview of the human activity monitoring system is
shown in Fig. 2. The home service robot, the human localiza-
tion module, and the modeling of human activity monitoring
are presented in Sections III-A-III-C as follows.

A. Home Service Robot

As shown in Fig. 3, the home service robot that was
developed in our Laboratory for Advanced Sensing,
Computation and Control (ASCC) was built on a Pioneer P3-
DX base with an approximately 1.5 m-long aluminum frame
holding up a touch screen monitor which is used for video
communication and graphic user interface [51]. The robot
is equipped with various sensors and devices. The auditory
system is built by extending the built-in microphone array of a
PS3eye camera [52]. It features four microphones and employs
technologies for echo cancellation, background noise suppres-
sion, and multidirectional sound source tracking. This allows
the auditory system to be used for speech recognition, sound
localization, and sound separation in noisy environments.
The microphone array operates with each channel processing
16-bit samples at a sampling rate of up to 48 kHz per channel
and a large dynamic range of signal-to-noise ratio up to 90 dB.
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The software for the robot was developed on Robot Oper-
ating System (ROS) [53] which was installed in the Ubuntu
operating system (OS) on the Intel Next Unit of Computing
(NUC) minicomputer. We utilized exiting packages from ROS
repositories to develop the device drivers that interface with
the robot base, the laser rangefinder (LRF), and the RGB-D
camera. Based on the drivers, we also implemented several
robot services including Simultaneous Localization and Map-
ping (SLAM) and navigation.

B. Human Localization

The human localization module estimates the rough human
location by using the passive infrared (PIR) sensor network
deployed in the home environment. As shown in Fig. 4(a),
the PIR sensor network consists of eight sensor nodes that are
placed on the ceiling at a height of 8 feet and the coverage
of each PIR sensor node is set to be a circle with a radius
of 3.6 feet using a cylindrical lens cover. Data from these
nodes are transmitted through the XBee protocol to the robot.
Each PIR node detects the human motion inside its sensing
region. Therefore, the human location is approximately esti-
mated to be within the sensing region once the sensor gives
a high output. To achieve that, a new PIR sensor observation
model is developed based on the existing model in [54]. Our
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new PIR sensor model is expressed as follows:
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where p is the probability of detection; ¢ is the probability of
false alarm; zEIR’i is the binary output {0,1} from PIR sensor
i at time k; s; is the human state which is the 2-D location;
C; and r; are the center and the radius of the sensing region
of PIR sensor i, respectively. We discovered that false alarms
may occur when the human is not in the sensing range, but
not too far away from the sensor, which is depicted by the
gray area € as shown in Fig. 4(c). Inside the gray area, those
probabilities estimated from our measurements are p = 0.9
and ¢ = 0.05. If the human is out of the dashed circle,
the false alarm rate ¢ becomes 0. However, in order to simplify
the human localization task, the human’s location Ly can be
estimated from PIR sensors using the naive Bayes classifier

Ly =argmax;_,  {P(L|IR)} 2)

.....

where P(L|IR) is the probability of the semantic area L where
the human is inside given the PIR data vector IR that is created
by the outputs of all PIR sensors.

C. Modeling Human Activity Monitoring

This section presents definitions, the modeling of the human
activity monitoring task and an overview of the SoHAM
framework for home service robots.

1) Definitions: Actions: An action is the operation a subject
does with or without an object. The set of actions in human
monitoring is denoted as S, = {aj,as,...,a,} where m is
the total number of actions. The criticalness of action a,
Cr(a) € (0, 1), reflects how important immediate attention is
while an action is detected. For example, an action of “falling
on the floor” requires immediate attention.

Activities: A human activity is usually composed of a
sequence of actions with temporal constraints [55]. The set
of activities in human monitoring is denoted as Sy, =
{Ay, Ay, ..., Ay} where M is the total number of activities.
The activities can be daily activities (eating, cooking, using
the toilet, sleeping, having a shower, watching television (TV),
etc.) and abnormal activities (coughing, crying for help, falling
on the floor). The criticalness of activity A, Cr(A) € (0, 1),
reflects how important immediate attention is while an activity
is detected.

Monitoring Task: The monitoring task is to find out an
estimate of the most likely action a or activity A based on
observed data Dy, = [dy, d>, ..., d,] collected by the micro-
phone sensors and the distributed PIR sensors. The estimate
is typically a posterior probability distribution p(a|D).,) or
p(A|Dy.,), from which a decision can be made.

Quality of Monitoring (QoM): The quality of monitoring is
a measure of the confidence of decision regarding the current
human action or activity. In this work, we mainly evaluate
the quality of action monitoring QoM(a). This measure can

o>

Action (a

Sound Event

Audio signal
| Microphones | ) |PIRsensors |
Sensing

Generic model of sound-based activity monitoring.

Context

Activity (A)
)

\mcatlon

Fig. 5.

be defined as a function of the entropy of predicted actions
a=(a,a,...,a,) as follows:

QoM(a) = 1 — H(a|Dy,)/log, m

m

1+ | D p@i|Di) logy(p(ai| Din)) |/ logy m
i=1
3)

where m is the number of actions defined previously. This
function maps the QoM(a) to a value in [0, 1]. When each
action is predicted with the equal confidence P(a;|Di.,) =
1/m, which means the robot has no knowledge regarding the
actions a, H(a|D.;) = Hmax = log, m [56] and QoM(a) = 0.
When any action ¢; is recognized at the confidence P (a;|D;.,)
of 1.0, H(a|Dy,;) = 0 and QoM(a) = 1. Maintaining a
certain level of quality of monitoring QoM(a) requires that
the entropy of predicted actions a be less than a certain
threshold Hth, or in other words, the robot is confident about
the predicted actions or activities.

2) Generic Model of Sound-Based Activity Monitoring:
Inspired by the work [57], we develop a generic model of the
SoHAM as shown in Fig. 5. This model shows the relationship
between the components of the SOHAM. Sound events are
recognized by fusing audio signal and contextual information
estimated from the human location. Action is determined by
a sound event and an object. However, some actions have no
object involved, such as falls, cough, heavy-breathing. To sim-
plify the action recognition task, in this work, we label each
sound event by the name of corresponding action. Activities
can be recognized from sequences of actions that occur in a
certain location and at a certain time. Some activities can be
recognized by only one action, such as watching TV, falls,
and drinking. Therefore, the activity monitoring task is to
recognize both actions and activities in each location in a home
environment over the time.

3) Overview of the SoHAM Framework: We propose a
SoHAM framework as shown in Fig. 6. The framework
consists of three modules: CoSER, dynamic sliding time
window-based human action recognition (DTW-HaR), and
CRF-based human activity monitoring (CRF-HAM). The
CoSER utilizes human location data as the context information
to improve the performance of sound event recognition. The
DTW-HaR post-processes the sequence of recognized sound
event labels from the CoSER to filter out false negative and
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false positive, detect acoustic event segments with their labels,
durations, and confidences, then recognizes actions based on
such acoustic event segments. The CRF-HAM uses location,
time, and actions to recognize human activities. The monitor-
ing results are the tuple (A, T (A), a, QoM(a), Cr(a), T (a)),
where A is the current activity of the human; 7(A) is the
duration of the activity; a is the current action; QoM(a) is the
quality of monitoring with respect to action a; Cr(a) is the
criticalness of action a; T (a) is the duration of the action. Such
monitoring results enable the robot to make proper decisions
in taking care of the elderly living alone in their homes.

IV. CoSER UsSING DBNs

In this work, the context of sound events defined as the
semantic area O¢ where the action occurs, which is the human
location Ly that is estimated through the PIR sensors as
discussed in Section III-B. We propose the CoSER framework
as shown in Fig. 6. The framework features four main mod-
ules: 1) feature extraction, 2) vector quantization (VQ), and
3) DBN-based event recognition. The audio stream captured
by the auditory system on the robot is decomposed into frames.
These frames are extracted into feature vectors which are then
assigned the labels of codewords by the VQ. The sound event
observations OF are fused with their contextual information
O€ using the DBN framework for final labels at the frame
level.

A. Feature Extraction

Statistical features are calculated for each audio frame.
The length of the frame ranges from 5 to 150 ms and the
overlap between two adjacent frames is set to half of the frame
size. We use the 31-dimension feature vectors that consist
of 12 MFCCs [58], 12 delta-MFCCs, log energy, zero cross
rate, entropy, centroid, spread, skewness, and kurtosis [59].

B. Vector Quantization

VQ is to compress a dataset into a small set of repre-
sentatives, which reduces the space to store data but still
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maintains sufficient information. Given a k-dimension feature
vector x € R¥ in a vector space S, after VQ, x is classified to
a vector subspace S;

q(x) =S, “)

where ¢(.) is the quantization operator. The whole vector
space is S = 81 U S, U --- U Sy. Each partition §; forms
a nonoverlapping region and is characterized by its centroid
vector z;. Set Z = {z1,22,...,2um} is called a codebook and
z; is the jth codeword that is labeled as j. M is the size of the
codebook. The error between a vector and a codeword d(x, z)
is called the distortion error. A vector is always assigned to
the region with the smallest distortion. Therefore, the observed
feature vector can be assigned to the label of a codeword as
follows:

oFf = argminj:hzmM{d(x,zj)}. 5)

Linde-Buzo—Gray (LBG) algorithm [60] is applied to
design the codebook in VQ. The LBG algorithm is a
hierarchical clustering algorithm, which first starts with
a l-level codebook, then uses a splitting method to obtain
a 2-level codebook, and continues until an M-level codebook
is acquired.

C. Hierarchical Context and Sound Event Model

To represent the sound event-human location correlation,
the given map of a home environment is segmented into dif-
ferent areas with corresponding probabilities of sound events.
In the time domain, the transition of human locations follows
certain patterns. For example, the human always walks from
one area to another adjacent area and there is a probability
distribution according to the floor plan and personal pref-
erence. We assume the transition of locations is a discrete
and first-order Markov process. In this article, the locational
contexts that are to be recognized are the rooms in a house,
including the living room, dining room, kitchen, bathroom, and
bedroom. The locations of the human given by the PIR-based
human localization module are mapped into N; semantic
areas.

In an indoor environment, human locations and sound events
have both intratemporal causal relationships and intertemporal
constraints, which are modeled by the two-level DBN model
shown in Fig. 6. The individual nodes in this graphical
model represent hidden states and the shaded nodes represent
observations. The solid arcs correspond to causal dependencies
between the nodes in the same time slice, while the dashed
arcs correspond to the temporal dependencies between two
slices at time ¢ and 7 + 1.

The higher level of the model represents the hidden states
of sound context S¢. The lower level represents the hidden
states of sound events Sf. As discussed above, the human
locations estimated from the PIR network are clustered into
the context observation O€. The audio stream captured by
the robot is decomposed into frames which are extracted into
feature vectors and then assigned to the labels of codewords by
the LBG-based VQ. These labels are used as the observation
OF of event sounds. In our model, the dependencies between
the nodes in the DBN include both spatial and temporal
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components. The observation OF and OF are dependent
on the corresponding intratemporal hidden state S¢ and SE.
The context Stc+1 at time ¢ + 1 depends on the previous
context at time 7. The sound event Sf, at time r + 1
depends on the previous sound event at time 7, the context at

time ¢ + 1.

D. Implementation of the DBN

1) Mathematic Representations: In the two-level DBN
model, the superscript of states and observations represents
the levels including the locational context (top) and the sound
event (bottom), while the subscript represents the time index.
Each level has three basic elements as follows:

a) The state transition probability distribution: The state
transition probability distribution in each level reflects the
intratemporal dependence in Fig. 6.

The top level location transition probability represents the
topology of the layout of the home environment

al; = P(S5, = jISf =i). (6)
The bottom level sound event transition probability depends

on the context

af;,=P(Sf, =jISF =i, 85, =p). (7

b) The observation symbol probability distribution: Since
the observed variables only depend on the corresponding
states in the same level, the observation symbol probability

distribution can be expressed as follows:
bi; = P(O = jIs; =1i) @®)
bl = P(Of = jISf =1i). 9)
¢) The initial state distribution: Since the intratemporal
dependence exists from the beginning of the sequence, the ini-

tial state distribution also follows the relationship of the links
between levels in Fig. 6

xf = P(S{ =i)
nh = P(SE = jIsC =),

(10)
(1)

The above probability distributions are trained by using
Expectation Maximization (EM) as proposed in [61].

The Viterbi algorithm [62] is applied to estimate the
probability of state sequence given the observation sequence
recursively.

2) Short-Time Viterbi Algorithm for Online Smoothing:
The standard Viterbi algorithm retrieves the state sequence,
which maximizes the belief value [62]. The retrieved state
sequence has the maximum likelihood given the observation
sequence from time 1 to 7. The computational complexity
of the standard Viterbi algorithm makes it not suitable for
real-time implementation. The short-time Viterbi algorithm
can solve this problem and enhance the efficiency [63], which
has three steps: initialization, recursion, and path smoothing.

Initialization

61, j) = P(S{ =i)P(OFISf =i)
P(SE = jIS€ = i)P(OF|SE = j)
y1(i, j) = 10, 0].

(12)
13)

Algorithm 1 Short-Time Viterbi for Smoothing in DBN
Initial Viterbi sequence length 7', J;, and w; using (12)
and (13)
for each new observation O, = [Otc R OtE ] do
- Obtain 6, (i, j) and w,(i, j) using (14) and (15)
- Obtain current state estimate ¢,” from J;(i, j) using (16)
- Backward one step and calculate the path (previous state
estimate) using (17)
- Correct previous state output if g, ; changes
- Save current J; (i, j) for next loop.

end for

Recursion
o, j) = rgg{X[éffl(p, Qagbyias by
= max[9-1(p, @) P (S| =ilS, = p)by,;

P(SE=jISE, = q.5¢ =i)bE] (14)

v (i, j) = afgflf’}%lei(i,j) (15)
g = argmax &, (i, j). (16)
ij
Path Smoothing
a1 = wi(q))- (17

The short-time Viterbi algorithm is shown in Algorithm 1.

V. DYNAMIC SLIDING TIME WINDOW (DTW)-HUMAN
ACTION RECOGNITION

As discussed above, the CoSER receives the audio stream
of sound events and the locational context information to
recognize the event labels. The recognition results are obtained
for every sequence of T consecutive frames based on the
maximum likelihood given the sequence of audio frames.
In real-time monitoring, in order to reduce the computational
complexity of state search in the DBN inference, the sequence
size T is set to be fixed and small. Due to the diversity of audio
signals, environmental noise, and reverberation, the sound
event recognition results have false positive and false negative
labels. Therefore, the robot has to improve the confidence
of its decisions. To this end, we implemented the DTW-
HaR. The DTW-HaR divides the sequence of sound event
labels into acoustic event segments based on the assumption
that the time window of an acoustic event is greater than a
minimal time window 75, and the gap between active acoustic
events is greater than a minimal quiet time window T35, .
In other words, every recognized acoustic event that has a
duration less than 7% is considered as false positive and every
recognized gap with a length less than 7%, is considered as
false negative. Based on the dynamic sliding time window
approach, the DTW-HaR detects the duration of the current
action. Then the probabilities of sound event labels in this
duration are estimated and the activity label is assigned to
the sound event that has the maximum probability. Finally,

the criticalness of action and the quality of monitoring are
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Algorithm 2 Dynamic Time Sliding Window for Human
Action Recognition
+ Input: Sequence of sound event SE
+ Output: (a, QoM (a), Cr(a), T (a))
Initialize a, T (a), T,,;,, T,fm, Tstep
Initialize the sliding window W, and the observed sequence
of sound event labels SE
for each new sequence SE of Ty, labels from the CoSER
do
Update SE and W,:
SE =[SE Sg]
W, =W, Wg] where Wg is the time window of SE
{Remove false positives }
Detect sound event segments {D,} in the sliding window
Wa
for each segment d; in {D,} do
if length(d;) < T, then
W, (dt) =0
end if
end for
{Remove false negatives }
Detect background segments {D,} in the sliding window
W,
for each segment d; in {D,} do
if length(d;) < T.%,, then
Waldi) =1
end if
end for
a =argmax,_, ., {P@a|SE(W,))}
Compute Cr(a) = CrMatrix(a, Ts)
Compute QoM (a) using 18
if full event detected then
Update T'(a) = length(W,)
Store (a, QoM (a), Cr(a), T (a))
Reset a, W,, T(a), SE
end if
end for

computed. The quality of monitoring is computed as follows:

QoM(a)

| — H(a|Dy,)/ logy m

1+ [Z P(a;]01y,, Ofy,)

i=1
log, [ (P (ailOfy,. Of;. )]/ logym

(18)

where m is the number of activities of interest defined previ-
ously; T (a) is the duration of action.

The criticalness of activity is computed based on
the criticalness matrix of activities over the time
CrMatrix(a, t), which is predefined. For example,
Cr(fall) = 1, Cr(having breakfast in the morning) = 0.5,
and Cr(having shower in the evening) = 0. The online
monitoring results are updated over the time window step
Tiep based on Algorithm 2.
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Fig. 7. Conditional random filed-based activity monitoring; A; and X; are
the activity hidden state and the observation at the time step i, respectively.

VI. CRF-BASED ACTIVITY MONITORING (CRF-HAM)

In this section, we develop a method that fuses location,
time, sequences of actions to recognize human activities.

Recognizing human activities is challenging because human
activities are complex, diverse, interleaved, and ambigu-
ous [64]. The order of actions to perform an activity is different
for different people. In practice, it is common that a person
stops an activity to do another one then resumes the previous
one again. Similar actions can be interpreted as different
activities. Recognizing activities using sound events is even
harder. The same sound event may be generated by different
activities. For example, a water-running sound event can
belong to several activities, such as washing-hands, washing-
dishes, or filling-water. Thus, the models for sound-based
activity recognition must address these challenges. In practice,
many activities may have nondeterministic natures [57], where
some actions of an activity may be performed in any order and
not every action generates sound. In this work, we design a
CRF model [65] to implement human activity monitoring.

CRF [65] has recently gained popularity in activity recog-
nition [16], [66]. CRF is a discriminative model that uses an
undirected graphical model to represent conditional probability
P(Y|X) of a sequence of labels Y (hidden states) given a
sequence of observations X. CRF can model any dependencies
between different labels and flexibly capture arbitrary depen-
dences amongst observation variables. This model can capture
long-range dependences, therefore, has a potential to recog-
nize complex activities. Additionally, CRF does not consider
the order constraint of the hidden states, therefore, can be
used for human activity recognition, where many activities
may have nondeterministic features, i.e., some actions can
be conducted in any order with ambiguous and interleaved
activities. We implement a skip-chain CRF model for activity
recognition based on sound events, which is shown in Fig. 7.
This model represents the conditional likelihood P(A|X) of
the sequence of activity labels A, A = [A}, Aa, ..., A7],
given the sequence of observations X, X = [X, X»,..., X7],
where X; includes the human location L;, the time of the
day Td;, the recognized action ¢;, and its duration da;, thus,
X; = [x1,Xx2, ..., x¢] = [L;, Td;, a;,da;]. The activity labels
are predicted as follows:

A* = argmax ,{ P (A]|X)}. (19)

The probability P(A|X) is computed as follows:

T-1

T
1
P(AIX) = - [Tw A AL ) [] Wir (AL Az, X)) (20)
t=1

t=1
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Smart Home Testbed
PIR sensor node OptiTrack Camera

Floor Plan

GridEye sensor node

Fig. 8. Floor plan (left) and the smart home testbed (right).

where Zy is the normalization constant computed by aggregat-
ing the numerator as shown in 20; ¥, is the potential function
that considers the relationship between observations over a
period of time and activities; and ¥, is the transition feature
function that considers the relationship between past activities
and future activities; These functions are computed as follows:

T T-1
Zy=> [ %A, A, O] | Wir (Ar, Ar, X)
A t=1 t=1
@1
K,
V(A Ay, X) = exp[Zikfk(A,, A1 X, r)] (22)
k

Ky

Wir(Ar, Ar, X) = expy D uxgi(Ar, Ar, X,1,T)
k

(23)

where 6, = {ik},f;l and 6 = {,uk},f:f , are the parameters
of the proposed skip-chain CRF; f; and g; are the feature
function and transition function for each state pair and each
observation-state pair, which are defined as follows:

fk(Ats A, X, t) = 5(At; A~t)5(At71; Atfl)Qk(Xt) (24)
gk(Ata AT: Xta t9 T) = 5(Al‘a At)é(AT9 AT)q]i(Xl" XT) (25)

where d(y, i) is the indicator function and takes the value 1 if
y =i and 0 otherwise; A, is the single output configuration
value of A;; gx(X,) is the feature representation function of X,;
q;(X;, Xr) is the feature representation function that combine
the features of X, and X7. The parameters of the model are
trained based on maximum likelihood technique [67].

VII. EXPERIMENTS AND RESULTS

We conducted physical experiments to test and evaluate
the proposed framework. A smart home testbed was set up
in our lab which has an area of 16 ft x 22 ft as shown
in Fig. 8. It simulates a small apartment, which includes
a living room, a bedroom, a kitchen, a dining room, and
a bathroom. A sound simulation system was developed to
simulate the multiple sound events like those heard in a typical
house [68]. The sound simulation system includes multiple
audio nodes, an audio server, and an audio control application
as shown in Fig. 9. The audio nodes were developed using
Beagleboard minicomputers and speakers. The sound events in

Sound Simulation System
Audio Control App.

SAMSUNG

Audio Node

1

| |

| |

! Audio |

: Client :

e ———— _1

I " " Audio Node |

| I T T

! Audio 1 Audio

: Client Server
1

| 1

Fig. 9. Sound simulation system.

the bathroom, kitchen, dining room, living room, and bedroom
were recorded in real environments and collected from the
Google AudioSet [69] and freesound.org. These sound samples
form the ASCC sound library (ASCCsoundLib). Currently,
it has 43 sound events and each has 3 or 4 clips, including 6
dining room sounds, 5 living room sounds, 5 bathroom sounds,
16 kitchen sounds, 2 bedroom sounds, and 12 other sounds.
Sound events and their labels are as follows:

Dining Room: 2:preparing-dining-table, 3:using-fork-
spoon-plate, 4:eating (cereal, pizza, snack), 5:pouring-water-
in-glass, 6:drinking-water, 7:clean-dining-table.

Living Room: 5:pouring-water-in-glass, 6:drinking-water,
8:opening-door, 9:closing-door, 10:TV.

Bathroom: 11:brushing-teeth, 12:having-shower,
13:washing-hands, 14:flushing-toilet, 15: filling-sink.

Kitchen: 16:using-faucet, 17-using-blender, 18-sifting-flour,
19-chopping, 20-boiling (water, cooking), 2I-frying-pan,
22:teapot-whistle, 23:mixing-sauce, 24:controlling-
microwave, 25:microwave-running, 26:closing-microwave,
27:0pening-microwave, 28:making-coffee, 29:cooker-hood,
30:dish-washer-machine, 31:washing-dishes.

Bedroom: 32:heavy-breathing-sleeping, 33:snoring.

Other  Sounds: 1: background-sound, 34-laughing,
35:eructation, 36:heavy-breathing, 37:cough, 38:yawning,
39:footsteps, 40:speaking, 41:falling-sounds, 42:dropping,
43:vacuum, 44:other-sounds.

The audio control program on a smartphone can trigger the
playback of a sequence of sound events associated with human
activities or multiple simultaneous sound events using different
audio nodes placed at different locations. This approach allows
the robot to collect sound data with strong labels quicker
than manual annotation. We conducted experiments in our
smart home testbed to evaluate the CoSER, DTW-HaR, and
CRF-HAM as well as show the capabilities of the home
service robot in monitoring the elderly in the smart home
environment. We moved the robot around the home testbed to
collect audio data at different locations with different setups.
The robot was stationary when it recorded sound events. The
experimental audio data were collected with 5 graduate student
subjects doing various activities in the testbed multiple times.
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Fig. 10. Mean square distortion error of the codebooks.

The audio control program on the smartphone triggered the
playback of some event sounds which cannot be collected in
the home environment, such as flushing the toilet. Actions
happened from about 0.5 s (e.g., falling, closing-microwave,
etc.) to around 30 s (e.g., preparing-dining-table, and having
a shower). These audio data were recorded by the robot
at a sampling rate of 16 kHz. The total recording time is
approximately 200 min.

A. Context-Aware Sound Event Recognition

The above experimental audio data were used to train
the codebooks with different codebook sizes and window
sizes. The sliding steps were set to half of the window
sizes. As shown in Fig. 10, the mean square distortion errors
of codebooks decrease almost linearly with the numbers of
codewords in the codebooks but increase with the window
sizes. However, using a large number of codewords and the
small number of window size incurs more computation. Those
parameters also affect the accuracy of sound event recognition.
Therefore, they were also considered in the experiments to
evaluate the CoSER.

We also used the above recorded audio files and context
observations provided by the PIR network to train and evaluate
the DBN using threefold cross-validation. The sound event
data were partitioned into three equal-sized subsets. All frames
in the same event have the same label. Sequentially one subset
was tested using the DBN trained on the other 2 subsets.
The cross-validation accuracy is the average of the rate of
audio frames that are correctly classified in 3 testing subsets.
To evaluate the performance of the proposed sound event
recognition model, evaluation measures are computed from the
confusion matrices. These measures include the true positive
TP, true negative TN, false positive FP, false negative FN,
recall R, precision Pr, F'1 score Fj, accuracy acc, and overall
accuracy ACC—the average accuracy of the total number
N_tests of tested instances for every classes.

In order to evaluate the context-aware SER (CoSER),
context-independent SER was implemented by using the

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

Context-independent Sound Event Recognition
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Fig. 11. Context-independent sound event recognition.
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Fig. 13.  Average accuracy of CoSER with respect to the window sizes.

one-level DBN as shown in Fig. 11. In this model, OF is
dependent on the corresponding intratemporal hidden state
SE. The sound event state Sf, at time ¢ + 1 depends on
the previous sound event state at time 7. The testing data
were used to test both SERs with the same parameters of the
VQ and DBNs. In order to reduce the effect of the codebook’s
distortion error on the SER performance, the codebook size
was set to 2048. Therefore, the numbers of states S, OF, S€,
and OF are 44, 2048, 5, and 5, respectively.

We also evaluated the SERs on different DBN parameters
which include the sliding step and Viterbi sequence length.
First, the window size was set to 512 and the sequence length
was changed from 5 to 50. The average accuracy of the CoSER
with respect to the sequence sizes is shown in Fig. 12. The
accuracy increases slightly as the sequence length increases.
The longer sequence is, the more confidence the CoSER
has in long-time sound events such as cough sounds and
bushing-teeth sounds, but less confidence in short-time sound
events such as falling sounds. In order to test the SERs in
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window size of 1024 and the codebook size of 2048.

real-time, the Viterbi sequence length is set to 10, which
corresponds to 160, 320, or 640 ms, given the window step is
256, 512, or 1024, respectively. The overlap between the two
adjacent sequences is 1. The average accuracy of both SERs
at the frame level is shown in Fig. 13. The context-aware SER
produces much better results than the context-independent
SER. Its average accuracy is about 70% with a window size
of 512 and achieves more than 90% with a window size
of 2048. Although larger window sizes have less time-domain
resolution, they give better frequency resolution, which is more
efficient in classifying sound events that have a wide range of
frequencies. The recognition accuracy of sound events at the
frame level with a window size of 1024 is shown in Fig. 14.
While the context-independent SER has poor performance,
the CoSER produces the results at accuracy rates of more than
80% for over half of the sound events. Only five sound events
have an accuracy rate of between 50% and 50%. Besides,
the evaluation result of each class is shown in Table I.

In addition, the recognition accuracy of DBN-based CoSER
was compared with that of the HMM-based CoSER that was
proposed in [50]. The HMMs were implemented and trained
for each context by threefold cross-validation as the DBN
model. As shown in Fig. 14, the DBN-based method has a
better performance in more than two thirds of sound events
and has a higher average accuracy rate than the HMM-based
method.

B. DTW-Based Human Action Recognition (DTW-HaR)

The DTW-HaR was evaluated by the above testing data
with a window size of 1024, a cookbook size of 2048, and
a Viterbi sequence length of 10. We tested the DTW-HaR
with different values of Tnﬁm, Tnfm, step- We found the best
values via grid-search on T, , 7., = 5,6,7,8,9,10,11,12
and Ty, = 10,12, 14, 16, 18, 20, 22, 24. Various settings are
tried and the best one is (T, Tsins Tsep) = (9,9, 18). The
average accuracy of action recognition reaches approximately
95.62% at the frame level. Moreover, the robot can update the

Recognition accuracy of sound events at the frame level of the context-independent SER, HMM-based CoSER, and DBN-based CoSER with the
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Fig. 15. Monitoring results of the SOHAM.

QoM(a) and Cr(a) in realtime after every 18 frames, which
corresponds to 576 ms. As shown in Fig. 15, the DTW-HaR
produces smoother sound event segments. Each segment is

Authorized licensed use limited to: University of Louisville. Downloaded on August 16,2021 at 14:43:24 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

TABLE I
EVALUATION MEASURES OF COSER PERFORMANCE (TOTAL NUMBER OF TESTED AUDIO FRAMES: 378507)

Sound Event/Action Action Index TP FN FP R Pr F1 acc
01-background-sound/01-Idle 01-ID 190225 | 8007 | 7395 | 0.960 | 0.963 | 0.961 | 0.925
02-preparing-dining-table 02-PDT 403 238 111 | 0.629 | 0.784 | 0.698 | 0.536
03-using-fork-spoon-plate 03-UFSP 1138 287 585 | 0.799 | 0.660 | 0.723 | 0.566
04-eating (cereal, pizza, snack) | 04-ES 13121 786 | 2403 0943 | 0.845 | 0.892 | 0.804
05-pouring-water-in-glass 05-PWG 2691 645 586 | 0.807 | 0.821 | 0.814 | 0.686
06-drinking-water 06-DW 898 168 315 | 0.842 | 0.740 | 0.788 | 0.650
07-clean-dining-table 07-CDT 669 254 77 | 0.725 | 0.897 | 0.802 | 0.669
08-opening-door 08-OD 182 123 26 | 0597 | 0.875 | 0.710 | 0.550
09-closing-door 09-CD 143 68 10 | 0.678 | 0935 | 0.786 | 0.647
10-television 10-TV 1924 528 263 | 0.785 | 0.880 | 0.829 | 0.709
11-brushing-teeth 11-BT 3929 | 1177 | 1227 | 0.769 | 0.762 | 0.766 | 0.620
12-having-shower 12-HS 5779 | 1054 | 1835 | 0.846 | 0.759 | 0.800 | 0.667
13-washing-hands 13-WH 2472 869 705 | 0.740 | 0.778 | 0.759 | 0.611
14-flushing-toilet 14-FT 4705 969 | 1218 | 0.829 | 0.794 | 0.811 | 0.683
15-filling-sink 15-FS 2787 344 237 | 0.890 | 0.922 | 0.906 | 0.827
16-using-faucet 16-UF 3498 127 318 | 0.965 | 0917 | 0.940 | 0.887
17-using-blender 17-UB 1619 566 264 | 0.741 | 0.860 | 0.796 | 0.661
18-sifting-flour 18-SF 3747 206 | 1759 | 0.948 | 0.681 | 0.792 | 0.656
19-chopping 19-CH 1662 375 843 | 0.816 | 0.663 | 0.732 | 0.577
20-boiling (water, cooking) 20-BL 743 222 110 | 0.770 | 0.871 | 0.817 | 0.691
21-frying-pan 21-FP 2082 588 212 | 0.780 | 0.908 | 0.839 | 0.722
22-teapot-whistle 22-BL 3580 100 10 | 0973 | 0.997 | 0.985 | 0.970
23-mixing-sauce 23-MS 1450 570 294 | 0.718 | 0.831 | 0.770 | 0.627
24-controlling-microwave 24-CTM 393 38 106 | 0912 | 0.788 | 0.845 | 0.732
25-microwave-running 25-MR 2185 246 114 | 0.899 | 0950 | 0.924 | 0.859
26-closing-microwave 26-CM 138 43 53 | 0.762 | 0.723 | 0.742 | 0.590
27-opening-microwave 27-OM 230 20 0 | 0920 | 1.000 | 0.958 | 0.920
28-making-coffee 28-MC 8620 410 546 | 0.955 | 0.940 | 0.947 | 0.900
29-cooker-hood 29-CH 4000 350 0 | 0920 | 1.000 | 0.958 | 0.920
30-dish-washer-machine 30-DWM 3930 10 9 | 0997 | 0.998 | 0.998 | 0.995
31-washing-dishes 31-WD 4780 10 25 1 0998 | 0.995 | 0.996 | 0.993
32-heavy-breathing-sleeping 32-HBS 1845 20 35 1 0989 | 0981 | 0.985 | 0.971
33-snoring 33-SN 477 72 84 | 0.869 | 0.850 | 0.859 | 0.754
34-laughing 34-LA 7332 | 2003 715 | 0.785 | 0911 | 0.844 | 0.730
35-eructation 35-EW 11400 950 6 | 0923 | 0.999 | 0.960 | 0.923
36-heavy-breathing 36-HB 3431 454 263 | 0.883 | 0.929 | 0.905 | 0.827
37-cough 37-CO 6790 | 1560 728 | 0.813 | 0.903 | 0.856 | 0.748
38-yawning 38-YA 6100 50 224 1 0992 | 0965 | 0978 | 0.957
39-footsteps 39-FS 4525 1105 1218 | 0.804 | 0.788 | 0.796 | 0.661
40-speaking 40-SP 10876 859 | 2086 | 0.927 | 0.839 | 0.881 | 0.787
41-falling-sounds 41-FS 1433 189 447 | 0.883 | 0.762 | 0.818 | 0.693
42-dropping 42-DR 800 125 23 |1 0.865 | 0972 | 0915 | 0.844
43-vacuum 43-VC 15085 460 537 | 0970 | 0.966 | 0.968 | 0.938
44-other-sounds 44-0S 5958 | 1487 710 | 0.800 | 0.894 | 0.844 | 0.731
Overall accuracy ACC": 0.9241

labeled with the action index which corresponds to the dom- Hygiene in the morning Preparing breakfast
inant sound event in that segment. All action indexes are (Td;: 11-20 (Using a microwave)
shown in the second column of Table I. The DTW-HaR can [Morning: 5:00-10:00]) (Td;: 11-20
. . . . . [Morning: 5:00-10:00])

produce the sequences of actions with their duration, quality
of monitoring QoM(a), and criticalness of action Cr(a) as
shown in Fig. 15.
C. CRF-Based Activity Monitoring

This section evaluates the performance of the CRF-HAM
using the above sound dataset. We simulated the activities in
the simulated smart home testbed, which are composed of

sequences of actions that generate sound events. The activities
are 12 popular daily activities: 0-Idle, [-Leaving-home,

= Start of the sequence

o End of the sequence

2-Entering-home, 3-Hygiene-morning (personal hygiene in
the morning), 4-Preparing-breakfast, 5-Having-breakfast,
06-Preparing-meal, 7-Having-lunch, 8-Having-dinner,
9-Watching-TV, 10-Cleaning, 11-Hygiene-evening (personal
hygiene in the evening), 12-Others, where 0-Idle is no action

Fig. 16. Examples of semantic activity graphs.

and 12-Others is the activity that consists of single action
only. We defined each of the 10 other activities by using a
semantic activity graph that represents the likely transitions
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Confusion matrix 100
0-Idle 0 0 6 0 06 06 06 0 6 6 0 0]
1-Leaving-home | O 2114 0 0 0 0 0 0 0 0 0 14/ 90
2-Entering-home [ 0 0 [C& 000 0 O0 0 0 15] 80
3-Hygiene-morning}- 0 0 0 0 000 O0 9 0 17| 7
» 4-Preparing-breakfast| 0 0 0 0 050 0 0 0 0 22
]
:g 5-Having-breakfastf 7 0 0 0 0 ﬁ 0 0 0 6 0 0 18] 60
b 06-Preparing-meal 0 0 0 0 0 0 0 0 0 7 0 15 50
<
X ing- O O O O O O OFERO O 11 0 14|
; 7-Having-lunch . 140
- 8-Having-dinner[ © 0 0 0 0 0 0 0 0 14 0 21
9-Watching-Tv|0 0 0 0 0 0 0 0 0 0 o 22] |30
10-Cleaning | 0 0 0 052 4 3 435 0 10} 120
11-Hygiene-evening | 0O 0 0 0O OOO O O 0 10 19 110
12-Others}0 4 7 0 0 0 0 0 O O 5 O
A X Lo
WO SRS ERQ OO
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VLR R&Q & Q:Z*
Recognized Activities
Fig. 17.  Confusion matrix of the activity recognition (overall accuracy
ACC = 0.75).

between actions. For example, the semantic activity graphs
of 3-Hygiene-morning and 4-Preparing-breakfast (Using a
microwave) is are shown in Fig. 16, where a shaded node
represents a core action that is essential for identifying an
activity; a dash node represents an unexpected action; and
the other nodes represent those actions that are not essential.
An example of the unexpected action in the activity of
hygiene in the morning is whatever generates a human sound
event (HuS) such as cough, footsteps, speaking, breathing,
snoring, or laughing. We randomly generated 100 sample
sequences for each activity based on its graph. The time of
the day 7'd; is divided into the discretized values of every
30 min. The value are binned into the following ranges:
0-10 (Night: 0:00-5:00), /1-20 (Morning: 5:00-10:00), 27-26
(Midday: 10:00-13:00), 27-34 (Afternoon: 13:00-17:00),
35-44 (Evening: 17:00-22:00), 45-48 (Night: 22:00-24:00).
The CRF model was trained and evaluated by these datasets
using threefold cross-validation. The confusion matrix of
activity recognition is shown in Fig. 17. The true positives of
activity recognition are around 70%. However, most of the
false negatives are in /2-Others. In such cases, the recognized
actions are mainly considered as the activities.

VIII. CONCLUSION AND FUTURE WORK

In this research, we proposed and developed a framework of
SoHAM for home service robots. The framework consists of
the CoSER module, the dynamic time window-based human
action recognition (DTW-HaR) module, and the CRF-based
activity monitoring module. In the CoSER, the locational
context of sound events associated with human daily activities
is recognized based on the PIR network. The audio stream
of sound events in the home environment is captured by the
robot and extracted into feature vectors. Based on the context
and sound event observations, the robot can recognize the
sound events in real-time through a two-level DBN model
using the short-time Viterbi algorithm. We tested and evaluated

the framework with different parameters of the VQ and the
DBN. We also proposed an algorithm called DTW-HaR to
observe the sequence of sound event labels from the CoSER to
estimate the current action, the duration of activity, the quality
of monitoring, and the criticalness of action. A CRF model
was implemented to recognize human activities based on
the sequences of recognized actions. Experimental evaluation
verified that our proposed framework can improve sound-based
activity monitoring significantly.

In the future, we will address some limitations in the current
work. First, we will keep collecting new sound data and
build a larger home sound dataset with more data variations,
including sound events with very short durations. This dataset
will be made available to the research community. Second,
machine learning methods for identifying the criticalness of
each activity will be investigated, which can reduce human
involvement to the minimum. Third, the proposed CRF-HAM
will be enhanced to handle multiple unexpected transitions.
Fourth, the proposed SOHAM framework can also be applied
to distributed microphones in a smart home setting. We will
compare the performance of these two microphone setups.
Fifth, we will investigate how to leverage robot mobility to
improve activity recognition accuracy. Finally, we will develop
applications that can deliver elderly care services in response
to recognized human activities.

REFERENCES
[11 WHO. World Health Organization: 10 Facts on Ageing and
the Life Course. Accessed: May 1, 2021. [Online]. Available:

http://www.who.int/features/factfiles/ageing/en/

[2] C. Debes, A. Merentitis, S. Sukhanov, M. Niessen, N. Frangiadakis,
and A. Bauer, “Monitoring activities of daily living in smart homes:
Understanding human behavior,” IEEE Signal Process. Mag., vol. 33,
no. 2, pp. 81-94, Mar. 2016.

[3] H. M. Do, W. Sheng, E. E. Harrington, and A. J. Bishop, “Clin-
ical screening interview using a social robot for geriatric care,”
IEEE Trans. Autom. Sci. Eng., early access, Jun. 12, 2020, doi:
10.1109/TASE.2020.2999203.

[4] J. Vespa, J. M. Lewis, and R. M. Kreider, “America’s families and liv-
ing arrangements: 2012 population characteristics,” Current Population
Rep., vol. 20, pp. 1-34, Aug. 2013.

[5] M. Hu, Y. Wang, Z. Zhang, D. Zhang, and J. J. Little, “Incremental
learning for video-based gait recognition with LBP flow,” IEEE Trans.
Cybern., vol. 43, no. 1, pp. 77-89, Feb. 2013.

[6] M.-J. Tsai et al., “Context-aware activity prediction using human behav-
ior pattern in real smart home environments,” in Proc. IEEE Int. Conf.
Automat. Sci. Eng. (CASE), Aug. 2016, pp. 168-173.

[71 C. Zhu, W. Sheng, and M. Liu, “Wearable sensor-based behavioral
anomaly detection in smart assisted living systems,” IEEE Trans. Autom.
Sci. Eng., vol. 12, no. 4, pp. 1225-1234, Oct. 2015.

[8] S. C. Mukhopadhyay, “Wearable sensors for human activity monitoring:
A review,” IEEE Sensors J., vol. 15, no. 3, pp. 1321-1330, Mar. 2015.

[91 H. M. Do, M. Pham, W. Sheng, D. Yang, and M. Liu, “RiSH: A robot-
integrated smart home for elderly care,” Robot. Auto. Syst., vol. 101,
pp. 74-92, Mar. 2018.

[10] M. Bar, “The proactive brain: Using analogies and associations to
generate predictions,” Trends Cognit. Sci., vol. 11, no. 7, pp. 280-289,
Jul. 2007.

[11] J. Chen, A. Kam, J. Zhang, N. Liu, and L. Shue, “Bathroom activity
monitoring based on sound,” in Proc. Int. Conf. Pervasive Comput.
Berlin, Germany: Springer, May 2005, pp. 65-76.

[12] A. Temko and C. Nadeu, “Acoustic event detection in meeting-room

environments,” Pattern Recognit. Lett., vol. 30, no. 14, pp. 1281-1288,

Oct. 2009.

H. Lu, W. Pan, N. D. Lane, T. Choudhury, and A. T. Campbell,

“SoundSense: Scalable sound sensing for people-centric applications on

mobile phones,” in Proc. 7th Int. Conf. Mobile Syst., Appl., Services

(Mobisys), Jun. 2009, pp. 165-178.

[13]

Authorized licensed use limited to: University of Louisville. Downloaded on August 16,2021 at 14:43:24 UTC from IEEE Xplore. Restrictions apply.


http://dx.doi.org/10.1109/TASE.2020.2999203

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]

(32]

(33]

[34]

[35]

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

J. A. Stork, L. Spinello, J. Silva, and K. O. Arras, “Audio-based human
activity recognition using non-Markovian ensemble voting,” in Proc.
21st IEEE Int. Symp. Robot Hum. Interact. Commun. (IEEE RO-MAN),
Sep. 2012, pp. 509-514.

J. M. Sim, Y. Lee, and O. Kwon, “Acoustic sensor based recognition of
human activity in everyday life for smart home services,” Int. J. Distrib.
Sensor Netw., vol. 11, no. 9, Sep. 2015, Art. no. 679123.

P. Chahuara, A. Fleury, F. Portet, and M. Vacher, “On-line human activity
recognition from audio and home automation sensors: Comparison
of sequential and non-sequential models in realistic smart Homesl,”
J. Ambient Intell. Smart Environ., vol. 8, no. 4, pp. 399-422, Jul. 2016.
T. Hayashi, M. Nishida, N. Kitaoka, and K. Takeda, “Daily activity
recognition based on DNN using environmental sound and accelera-
tion signals,” in Proc. 23rd Eur. Signal Process. Conf. (EUSIPCO),
Aug. 2015, pp. 2306-2310.

J. Kim, K. Min, M. Jung, and S. Chi, “Occupant behavior monitor-
ing and emergency event detection in single-person households using
deep learning-based sound recognition,” Building Environ., vol. 181,
Aug. 2020, Art. no. 107092.

V. Ramasubramanian, R. Karthik, S. Thiyagarajan, and S. Cherla,
“Continuous audio analytics by HMM and viterbi decoding,” in Proc.
IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), May 2011,
pp- 2396-2399.

A. Fleury, N. Noury, M. Vacher, H. Glasson, and J.-F. Seri, “Sound and
speech detection and classification in a health smart home,” in Proc. 30th
Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., Aug. 2008, pp. 4644-4647.
G. Valenzise, L. Gerosa, M. Tagliasacchi, F. Antonacci, and A. Sarti,
“Scream and gunshot detection and localization for audio-surveillance
systems,” in Proc. IEEE Conf. Adv. Video Signal Based Surveill.,
Sep. 2007, pp. 21-26.

Y. Sasaki, N. Hatao, K. Yoshii, and S. Kagami, “Nested iGMM recog-
nition and multiple hypothesis tracking of moving sound sources for
mobile robot audition,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst.,
Nov. 2013, pp. 3930-3936.

J.-F. Wang, J.-C. Wang, T.-H. Huang, and C.-S. Hsu, “Home environ-
mental sound recognition based on MPEG-7 features,” in Proc. 46th
Midwest Symp. Circuits Syst., vol. 2, Dec. 2003, pp. 682—685.

A. Mesaros, T. Heittola, and T. Virtanen, “TUT database for acoustic
scene classification and sound event detection,” in Proc. 24th Eur. Signal
Process. Conf. (EUSIPCO), Aug. 2016, pp. 1-5.

S. Chachada and C.-C.-J. Kuo, “Environmental sound recognition:
A survey,” APSIPA Trans. Signal Inf. Process., vol. 3, no. 14, p. el4,
Dec. 2014.

B.-J. Han and E. Hwang, “Environmental sound classification based
on feature collaboration,” in Proc. IEEE Int. Conf. Multimedia Expo,
Jun. 2009, pp. 542-545.

S. Chu, S. Narayanan, and C.-C.-J. Kuo, “Environmental sound recog-
nition with time—frequency audio features,” IEEE Trans. Audio, Speech,
Language Process, vol. 17, no. 6, pp. 1142-1158, Aug. 2009.

J.-C. Wang, C.-H. Lin, B.-W. Chen, and M.-K. Tsai, “Gabor-based
nonuniform scale-frequency map for environmental sound classification
in home automation,” IEEE Trans. Autom. Sci. Eng., vol. 11, no. 2,
pp. 607-613, Apr. 2014.

J. Dennis, H. D. Tran, and E. S. Chng, “Image feature representation
of the subband power distribution for robust sound event classifica-
tion,” IEEE Trans. Audio, Speech, Language Process, vol. 21, no. 2,
pp- 367-377, Feb. 2013.

T. C. Walters, “Auditory-based processing of communication sounds,”
Ph.D. dissertation, Dept. Physiol., Develop. Neurosci., Univ. Cambridge,
Cambridge, U.K., 2011.

R. F. Lyon, M. Rehn, S. Bengio, T. C. Walters, and G. Chechik, “Sound
retrieval and ranking using sparse auditory representations,” Neural
Comput., vol. 22, no. 9, pp. 2390-2416, Sep. 2010.

J. W. Dennis, “Sound event recognition in unstructured environments
using spectrogram image processing,” Ph.D. dissertation, School Com-
put. Eng., Nanyang Technol. Univ., Singapore, 2014.

S. Chandrakala, M. Venkatraman, N. Shreyas, and S. L. Jayalakshmi,
“Multi-view representation for sound event recognition,” Signal, Image
Video Process., vol. 139, pp. 1-9, Jan. 2021.

E. Cakir, T. Heittola, H. Huttunen, and T. Virtanen, “Polyphonic sound
event detection using multi label deep neural networks,” in Proc. Int.
Joint Conf. Neural Netw. (IJCNN), Jul. 2015, pp. 1-7.

J. Dennis, T. H. Dat, and H. Li, “Combining robust spike coding
with spiking neural networks for sound event classification,” in Proc.
IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), Apr. 2015,
pp.- 176-180.

[36]

(371

(38]

(391

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

I. McLoughlin, H. Zhang, Z. Xie, Y. Song, and W. Xiao, “Robust sound
event classification using deep neural networks,” IEEE/ACM Trans.
Audio, Speech, Lang. Process., vol. 23, no. 3, pp. 540-552, Mar. 2015.
G. Parascandolo, H. Huttunen, and T. Virtanen, ‘“Recurrent neural
networks for polyphonic sound event detection in real life recordings,”
in Proc. IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP),
Mar. 2016, pp. 6440-6444.

A. Copiaco, C. Ritz, S. Fasciani, and N. Abdulaziz, “Scalogram neural
network activations with machine learning for domestic multi-channel
audio classification,” in Proc. IEEE Int. Symp. Signal Process. Inf.
Technol. (ISSPIT), Dec. 2019, pp. 1-6.

G. Dekkers, L. Vuegen, T. van Waterschoot, B. Vanrumste, and
P. Karsmakers, “DCASE 2018 challenge—task 5: Monitoring of domestic
activities based on multi-channel acoustics,” 2018, arXiv:1807.11246.
[Online]. Available: https://arxiv.org/abs/1807.11246

S. Abdoli, P. Cardinal, and A. L. Koerich, “End-to-end environmental
sound classification using a 1D convolutional neural network,” Expert
Syst. Appl., vol. 136, pp. 252-263, Dec. 2019.

K.-F. Lee, “Context-dependent phonetic hidden Markov models for
speaker-independent continuous speech recognition,” [EEE Trans.
Acoust., Speech Signal Process., vol. 38, no. 4, pp. 599-609, Apr. 1990.
G. E. Dahl, D. Yu, L. Deng, and A. Acero, “Context-dependent pre-
trained deep neural networks for large-vocabulary speech recognition,”
IEEE Trans. Audio, Speech, Language Process, vol. 20, no. 1, pp. 30-42,
Jan. 2012.

C. D. Manning and H. Schiitze, Foundations of Statistical Natural
Language Processing, vol. 999. Cambridge, MA, USA: MIT Press,
1999.

M. E. Niessen, L. Van Maanen, and T. C. Andringa, “Disambiguat-
ing sound through context,” Int. J. Semantic Comput., vol. 2, no. 3,
pp. 327-341, Sep. 2008.

L. Ma, D. Smith, and B. Milner, “Environmental noise classification for
context-aware applications,” in Proc. Int. Conf. Database Expert Syst.
Appl., Sep. 2003, pp. 360-370.

J.-H. Su, H.-H. Yeh, P. S. Yu, and V. S. Tseng, “Music recommendation
using content and context information mining,” IEEE Intell. Syst.,
vol. 25, no. 1, pp. 16-26, Jan. 2010.

H.-S. Park, J.-O. Yoo, and S.-B. Cho, “A context-aware music recom-
mendation system using fuzzy Bayesian networks with utility theory,”
in Fuzzy Syst. Knowl. Discovery. Berlin, Germany: Springer, 2006,
pp. 970-979.

S. Rho, B.-J. Han, and E. Hwang, “SVR-based music mood classification
and context-based music recommendation,” in Proc. 17th ACM Int. Conf.
Multimedia (MM), Oct. 2009, pp. 713-716.

T. Heittola, A. Mesaros, A. Eronen, and T. Virtanen, “Context-dependent
sound event detection,” EURASIP J. Audio, Speech, Music Process.,
vol. 2013, no. 1, pp. 1-13, Dec. 2013.

T. Lu, G. Wang, and F. Su, “Context-based environmental audio event
recognition for scene understanding,” Multimedia Syst., vol. 21, no. 5,
pp. 507-524, Oct. 2015.

H. M. Do, W. Sheng, and M. Liu, “An open platform of auditory
perception for home service robots,” in Proc. IEEE/RSJ Int. Conf. Intell.
Robots Syst. (IROS), Sep. 2015, pp. 6161-6166.
PS3 Eye Camera. Accessed: May 1, 2021.
https://www.sony.co.in/product/

M. Quigley et al., “ROS: An open-source robot operating system,” in
Proc. ICRA Workshop Open Source Softw., vol. 3, no. 3.2, May 2009,
p. 5.

S. Oh, L. Schenato, P. Chen, and S. Sastry, “Tracking and coordination
of multiple agents using sensor networks: System design, algorithms and
experiments,” Proc. IEEE, vol. 95, no. 1, pp. 234-254, Jan. 2007.

K. Kuutti, “Activity theory as a potential framework for human-computer
interaction research,” in Context and Consciousness: Activity Theory
and Human-Computer Interaction, vol. 17. Cambridge, MA, USA: MIT
Press, 1996.

T. M. Cover and J. A. Thomas, Grey Information: Theory and Practical
Applications. Hoboken, NJ, USA: Wiley, 2006.

E. Kim and S. Helal, “Modeling human activity semantics for improved
recognition performance,” in Proc. Int. Conf. Ubiquitous Intell. Comput.
Berlin, Germany: Springer, 2011, pp. 514-528.

M. Sahidullah and G. Saha, “Design, analysis and experimental evalu-
ation of block based transformation in MFCC computation for speaker
recognition,” Speech Commun., vol. 54, no. 4, pp. 543-565, May 2012.
K.-M. Kim, S.-Y. Kim, J.-K. Jeon, and K.-S. Park, “Quick audio retrieval
using multiple feature vectors,” IEEE Trans. Consum. Electron., vol. 52,
no. 1, pp. 200-205, Feb. 2006.

[Online]. Available:

Authorized licensed use limited to: University of Louisville. Downloaded on August 16,2021 at 14:43:24 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

DO et al.: SoOHAM: SOUND-BASED HUMAN ACTIVITY MONITORING FRAMEWORK 15

[60] Y. Linde, A. Buzo, and R. Gray, “An algorithm for vector quan-
tizer design,” IEEE Trans. Commun., vol. COM-28, no. 1, pp. 84-95,
Jan. 1980.

[61] K. P. Murphy, “Dynamic Bayesian networks: Representation, inference
and learning,” M.S. thesis, Univ. California, Berkeley, CA, USA, 2002.

[62] A. Viterbi, “Error bounds for convolutional codes and an asymptotically
optimum decoding algorithm,” IEEE Trans. Inf. Theory, vol. 13, no. 2,
pp. 260-269, Apr. 1967.

[63] J. Bloit and X. Rodet, “Short-time Viterbi for online HMM decoding:
Evaluation on a real-time phone recognition task,” in Proc. IEEE Int.
Conf. Acoustics, Speech Signal Process., Mar. 2008, pp. 2121-2124.

[64] E. Kim, S. Helal, and D. Cook, “Human activity recognition and
pattern discovery,” IEEE Pervas. Comput., vol. 9, no. 1, pp. 48-53,
Jan./Mar. 2010.

[65] J. Lafferty, A. McCallum, and F. C. Pereira, “Conditional random fields:
Probabilistic models for segmenting and labeling sequence data,” in
Proc. 18th Int. Conf. Mach. Learn. (ICML), 2001, pp. 282-289.

[66] M. Agarwal and P. Flach, “Activity recognition using conditional random
field,” in Proc. 2nd Int. Workshop Sensor-Based Activity Recognit.
Interact., Jun. 2015, pp. 1-8.

[67] H. Wallach, “Efficient training of conditional random fields,” Ph.D. dis-
sertation, School Cogn. Sci., Univ. Edinburgh, Edinburgh, U.K., 2002.

[68] H. M. Do, W. Sheng, and M. Liu, “Human-assisted sound event
recognition for home service robots,” Robot. Biomimetics, vol. 3, no. 1,
pp- 1-12, Dec. 2016.

[69] Google. A Large-Scale Dataset of Manually Annotated Audio
Events. Accessed: May 1, 2021. [Online]. Available: https://research.
google.com/audioset/index.html

Ha Manh Do (Member, IEEE) received the B.Sc.
degree in electronics and telecommunications from
the Hanoi University of Science and Technology,
Hanoi, Vietnam, in May 1999, and the M.S. and
Ph.D. degrees in electrical engineering from Okla-
homa State University (OSU), Stillwater, OK, USA,
in May 2015 and December 2018, respectively.

He worked as a Postdoctoral Researcher with OSU
in Spring 2019, at Colorado State University-Pueblo,
Pueblo, CO, USA, from June 2019 to July 2020, and
at the Louisville Automation and Robotics Research
Institute (LARRI), University of Louisville, Louisville, KY, USA, from
August 2020 to April 2021. He is currently a Senior Machine Learning
Engineer with Plume Design, Inc., Palo Alto, CA, USA. His primary research
interests include smart homes, home service robots, auditory perception,
computer vision, spoken language understanding, human-robot interaction,
applied artificial intelligence, and machine learning.

Karla Conn Welch (Member, IEEE) received the
B.S. degree in electrical and computer engineering
from the University of Kentucky, Lexington, KY,
USA, in 2003, and the Ph.D. degree in electrical
engineering and computer science from Vanderbilt
University, Nashville, TN, USA, in 2009.

She is currently an Associate Professor of
electrical and computer engineering with the
Louisville Automation and Robotics Research Insti-
tute (LARRI), University of Louisville, Louisville,
KY, USA, and the Director of the Machine Learning
and Interaction Laboratory. Her research interests include human—machine
interaction, affective computing, adaptive-response systems, and robotics.

Weihua Sheng (Senior Member, IEEE) received
B.S. and M.S. degrees in electrical engineering from
Zhejiang University, Hangzhou, China, in 1994 and
1997, respectively, and the Ph.D. degree in electri-
cal and computer engineering from Michigan State
University, East Lansing, MI, USA, in May 2002.

He is currently an Associate Professor with
the School of Electrical and Computer Engineer-
ing, Oklahoma State University (OSU), Stillwater,
OK, USA. He is the Director of the Laboratory
for Advanced Sensing, Computation and Control
(ASCC Lab, http://ascc.okstate.edu) at OSU. He is the author of more than
200 peer-reviewed articles in major journals and international conferences.
Eight of them have won Best Paper or Best Student Paper Awards in
major international conferences. His current research interests include social
robotics, wearable computing, human robot interaction, and intelligent trans-
portation systems. His research has been supported by US National Science
Foundation (NSF), Department of Defense (DoD), Oklahoma Transportation
Center (OTC)/Department of Transportation (DoT), etc.

Dr. Sheng served as an Associate Editor for IEEE TRANSACTIONS ON
AUTOMATION SCIENCE AND ENGINEERING from 2013 to 2019. He is
currently an Associate Editor for IEEE Robotics and Automation Magazine.

Authorized licensed use limited to: University of Louisville. Downloaded on August 16,2021 at 14:43:24 UTC from IEEE Xplore. Restrictions apply.



