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SoHAM: A Sound-Based Human Activity Monitoring

Framework for Home Service Robots
Ha Manh Do , Member, IEEE, Karla Conn Welch, Member, IEEE, and Weihua Sheng , Senior Member, IEEE

Abstract— Monitoring daily activities is essential for home
service robots to take care of the older adults who live alone
in their homes. In this article, we proposed a sound-based
human activity monitoring (SoHAM) framework by recognizing
sound events in a home environment. First, the method of
context-aware sound event recognition (CoSER) is developed,
which uses contextual information to disambiguate sound events.
The locational context of sound events is estimated by fusing the
data from the distributed passive infrared (PIR) sensors deployed
in the home. A two-level dynamic Bayesian network (DBN) is
used to model the intratemporal and intertemporal constraints
between the context and the sound events. Second, dynamic
sliding time window-based human action recognition (DTW-HaR)
is developed to estimate active sound event segments with their
labels and durations, then infer actions and their durations.
Finally, a conditional random field (CRF) model is proposed to
predict human activities based on the recognized action, location,
and time. We conducted experiments in our robot-integrated
smart home (RiSH) testbed to evaluate the proposed framework.
The obtained results show the effectiveness and accuracy of
CoSER, action recognition, and human activity monitoring.

Note to Practitioners—This article is motivated by the goal to
develop companion robots that can assist older adults living alone.
Among many capabilities, monitoring human daily activities is
an essential one for such robots. Though computer vision or
wearable sensors-based methods have been developed by other
researchers, they are not practical due to the privacy concern and
intrusiveness. Sound-based daily activity recognition can address
these concerns and offer a viable solution. In this regard, our
proposed method adopts microphones on the robot and a small
set of motion sensors distributed in the home. The proposed
theoretical framework was tested in a small-scale mock-up
apartment with promising results. Before such companion robots
can be deployed to real homes for elderly care, there is a need to
improve the robustness of the algorithms. More thorough tests
in various realistic home environments should be conducted to
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fully evaluate the performance of the robots. In addition, privacy
concern related to audio capture should be further mitigated.

Index Terms— Activity monitoring, context-awareness, elderly
care, sound event.

I. INTRODUCTION

T
HE elderly population is steadily rising around the globe.

The population of 60-and-older people is projected to

increase from 900 million in 2015 to over 2 billion in 2050 [1].

This trend leads to both economical and sociological chal-

lenges in elderly care [2]. On the other hand, many older

adults prefer to stay in their homes rather than move to nursing

homes, although their daily living activities may become

more challenging [3]. In fact, more than a third of the older

adults in the USA live alone in their homes [4], which poses

serious risks to them in situations such as falling or medical

emergencies. Therefore, assistive technologies, such as smart

homes and home service robots, are currently being developed

for elderly care.

As a critical part of assisted living, human activity monitor-

ing has received great interest in recent years. Camera-based

human activity monitoring has been developed for many appli-

cations such as surveillance and healthcare [5], [6]. Although

the vision system on a robot provides abundant information,

it is not always possible to observe the resident due to occlu-

sion or poor lighting. In addition, the use of cameras raises

significant privacy concerns. Recently, wearable sensor-based

human activity monitoring has been studied, especially for

health care, military, and security applications [7]–[9]. How-

ever, wearable sensors are intrusive and inconvenient if the

users are required to wear them all the time. On the other

hand, we know that most human daily activities generate

sounds, such as eating, cooking, using the toilet, and having

a shower. Therefore, it is highly desirable to equip home

service robots with not only speech understanding but also

sound understanding capabilities. Home sound understanding,

which recognizes home sound events in the context of human

daily activities, helps the robot not only monitor older adults’

activities but also detect anomalies happening in the homes.

Such a human-aware capability frees the robot to do its daily

routine work while being able to care for the elderly more

proactively and effectively.

Although sound event recognition has received much atten-

tion over the years, it is still a very challenging problem. The

main reason is that event sounds are diverse, unstructured,

and nonstationary. Understanding human activity using sound
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events is even more difficult because of the diversity of

the sounds associated with the same events. For example,

even the same event of a person falling on the floor can

create different sounds, depending on where the fall occurs.

Moreover, there are many different types of event sounds in

home environments. Based on sound source features, they

can be vocal or nonvocal. Based on acoustic features, they

can be harmonic or nonharmonic. In addition, multiple sound

events can occur at the same time. One advantage that allows

humans to distinguish sound events is their knowledge of the

context, which helps them form predictions and adapt their

perception to the environment [10]. Context-aware sound event

recognition (CoSER) allows a robot to associate contextual

information with sound events, which enhances the perfor-

mance of sound event recognition.

This article aims to develop a human activity monitoring

framework for home service robots. This article has the

following contributions:

1) A new framework for sound-based human activity mon-

itoring (SoHAM) is proposed and developed which

allows home service robots to better understand human

daily activities.

2) A new method of CoSER is developed based on

Dynamic Bayesian Networks (DBNs). This method

improves recognition accuracy by considering contextual

information estimated from multiple distributed sensors

in a home environment.

3) A conditional random field (CRF)-based model is pro-

posed to recognize human activities using the recognized

action, location, and time. This method effectively over-

comes the difficulties associated with the nondetermin-

istic nature of complex daily activities.

4) We conducted experimental validation and evaluation

of the proposed SoHAM framework in a smart home

testbed using a custom-built home service robot.

The rest of this article is organized as follows. Section II

reviews the related works in SoHAM and sound event recog-

nition. Section III gives an overview of the human activity

monitoring platform for home service robots. Section IV

presents the method for CoSER using DBNs. Section V

develops the algorithm of the dynamic sliding time window for

human action recognition based on recognized sound events.

Section VI describes CRFs-based human activity monitoring.

Section VII gives the experimental results. Section VIII con-

cludes this article and discusses the future work.

II. RELATED WORKS

A. Sound-Based Human Activity Monitoring

In recent years, research on SoHAM has received much

attention. For example, an automated bathroom activity mon-

itoring system based on acoustics was developed in [11].

In that project, an infrared door sensor was set up to detect

the human entering or leaving the bathroom, and sound was

recorded by a microphone. Six bathroom sound events were

collected and classified by hidden Markov models (HMMs)

with Mel-frequency Cepstral Coefficients (MFCCs) features.

A support vector machine (SVM)-based system was intro-

duced in [12] to detect and recognize human activities in

meeting rooms using acoustic signals. In [13], the authors

proposed SoundSense, a scalable framework for modeling

and recognizing meaningful sound events that occur in users’

everyday lives using mobile phones. SoundSense uses a com-

bination of supervised and unsupervised learning techniques

to classify both general sounds (e.g., music, voice) and dis-

cover novel sound events specific to each individual user.

In [14], the authors proposed a novel recognition approach,

non-Markovian ensemble voting (NEV), which was able to

robustly recognize 22 different event sounds related to human

activities in a bathroom and a kitchen. An acoustic-based

activity recognition system inspired by the framework of

three mental structures in cognitive psychology was proposed

in [15], which consists of a sensory store, a working memory,

and permanent memory modules. Sound features that include

formant, intensity, pitch, and duration are extracted by the

sensory store module and analyzed in the working memory

module using the reasoning by similarity (RBS) and reasoning

by elimination (RBE) strategies. The framework was tested

on nine dining activities with an average accuracy of 83.2%.

In [16], a framework for online activity recognition from

event sounds and home sensors was proposed and evaluated

on two existing smart home datasets using different prob-

abilistic models including HMM, CRF, and Markov logic

network (MLN). More recently, several studies introduced

deep learning-based methods for activity recognition from

sound events. The authors in [17] proposed a deep neural

network (DNN)-based system for daily activity recognition

using environmental sounds and body acceleration signals.

A 5-layer DNN was trained by a dataset of ten activities

and achieved a frame accuracy rate of 85.5% and a sample

accuracy rate of 91.7%. Another convolution neural network

(CNN)-based sound recognition model to detect occupant

behavior and possible emergency events in single-person

households was developed in [18]. This model successfully

monitored 12 sequential events of acoustic sounds with an F1-

score of 83.9%. However, most deep learning-based methods

require the collection of a very large dataset of labeled sounds,

which is time-consuming and costly.

It is clear that sound event recognition plays an important

role in the above acoustic-based activity recognition systems.

These systems directly inferred each human activity from a

single sound event that is recognized. The sound itself may

not be sufficient to infer human daily activities, unless the

human context (location, time) is taken into consideration. For

example, the same water-running sound may be generated by

different activities, such as doing the morning routine in the

bathroom or cooking in the kitchen.

B. Sound Event Recognition

Various approaches have been developed for sound event

recognition (SER). Most stationary SER techniques are

derived from the research on speech and music recognition

using stationary features. Recent research on SER has explored

nonstationary features of event sounds. More recently, deep
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learning-based SER techniques have been receiving growing

interest.

Inspired by the success of speech and music recogni-

tion, several parametric techniques using supervised learning

have been adopted for sound event recognition, for example,

HMMs with MFCCs features [19], Gaussian mixture mod-

els (GMM) with linear frequency Cepstral coefficient (LFCC)

features [20], GMM with MFCC and other spectral fea-

tures [21], [22], and HMM with MPEG7 features [23]. The

speech recognition techniques work well, in practice, but the

results on SER have not been satisfactory [24]. One reason

is that the event sounds are less structured, have no subword

dictionary in the same way as in speech and contain a wider

range of characteristic and nonstationary effects.

Recently, research on SER has focused on exploring non-

stationary features of event sounds to maximize information

content related to signal’s temporal and spectral character-

istics [25]. In [26], the authors used the discrete chirplet

transform (DChT) and the discrete curvelet transform (DCuT)

along with several other common features such as MFCC

and zero-crossing rate (ZCR). The matching pursuit (MP)-

based features for SER was proposed in [27]. Several other

nonstationary features have been proposed for SER, such as

MP-Gabor features [28], image features of the subband power

distribution [29], and stabilized auditory image (SAI) [30].

Nonparametric learning methods have also been developed,

such as the technique based on the sparse coding of SAIs [31].

Recently, principal component analysis (PCA) and linear dis-

criminate analysis (LDA) are applied to the scale-frequency

map to generate the features for sound event classification

based on the segment-level multiclass SVMs [28]. In [32],

the approach interprets the sound event as a 2-D spectrogram

image, with the two axes as the time and frequency dimen-

sions, and adopts spectrogram image processing-based meth-

ods for sound event recognition. In [33], a method based on the

multiview representation that combines auditory image-based

visual features and cepstral features was proposed for sound

event recognition using SVMs. This approach resulted in

improved performance over other state-of-the-art traditional

methods for Environmental Sound Classification - 50 (ESC-

50), Detection and Classification of Acoustic Scenes and

Events - 2016 (DCASE2016) Task 2, and DCASE2018 Task

2 datasets.

Recent years have seen new methods proposed to tackle sev-

eral challenges for sound event recognition: the adverse effects

such as noise, distortion, and multiple sources as well as the

poorly defined characteristics of acoustic events. Several works

have recently applied DNNs for polyphonic sound event recog-

nition such as multilabel DNNs [34], a novel spiking neural

network system that combines a robust spike coding of local

spectrogram features with an artificial neural network using

a cost function [35], and a sound event classification frame-

work that evaluates the DNNs with a different spectrogram

image-based front features such as Google-style SAI features

and time-frequency domain spectrogram image features (SIF)

features [36]. In [37], the authors presented an approach to

polyphonic sound event detection in real-life recordings based

on bidirectional long short term memory (BLSTM) recurrent

neural networks (RNNs). The authors in [38] combined exist-

ing pretrained CNN models in computer vision applications

and SVM for domestic multichannel audio classification. Their

method achieved an F1-score of around 89% on the dataset of

9 activities in the DCASE 2018 Task 5 challenge [39]. An end-

to-end approach for environmental sound classification based

on a 1-D CNN was proposed in [40]. The discussed deep

learning approaches require sound datasets to be fully labeled,

which incurs time-consuming annotation.

Although these DNNs have proved effective in several SER

tasks, they are ineffective for monitoring human activities in

home environments. There are two reasons: First, these DNNs

were trained on public datasets of general environmental

sounds, with very few home event sounds. Second, the sound

itself is not sufficient to infer human daily activities, unless

the human context is considered.

Context-awareness has been initially exploited in speech

recognition. Different methods have been studied to include

contextual information as prior knowledge to improve the

recognition of phonemes, words, and sentences [41]–[43].

CoSER is still at its early stage compared with context-aware

speech recognition. Niessen et al. [44] modeled the context

in audio recognition by investigating the role of the dynamic

network model to improve automatic audio identification and

simultaneously reduce the search space of low-level audio

features. The context-aware level describes more general

information about an audio device such as location [45],

time [46], weather [47], and even user-dependent states like

emotion [48]. Heittola et al. [49] proposed a context-dependent

sound event detection system. The context information is

recognized from the audio stream by applying GMMs. How-

ever, HMM-based event detection models the contexts by a

3-state left-to-right HMM. The recognition still faces

difficulties because of the great number of possible event

combinations and the transitions among them. Lu et al. [50]

proposed a context-based environmental audio event

recognition framework that applies a two-level HMM for the

acoustic scene recognition. Their work is the latest publication

of context-aware sound event recognition. In the experiment

part, we conducted a comparison of our proposed method

and their method.

The above works have mainly targeted the environmental

sound events in general and have not taken into account

the correlation between the sound events associated with

the human’s daily activities and the contextual information,

such as the human’s location in indoor environments. In this

article, we propose a novel context-based method for sound

event recognition using a DBN that can model intratemporal

and intertemporal constraints among the context and sound

events. Then human activity monitoring is realized based on

recognized sound events.

III. SYSTEM OVERVIEW

This section gives an overview of human activity monitoring

for home service robots. Our goal is to monitor human

activities over time in a home environment using the audio

data captured by the auditory system on the robot and the

human location data estimated by the home sensor network.
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Fig. 1. Home service robot monitors daily activities of the older adult through
sound events and locational context.

Fig. 2. Overview of the human activity monitoring system on the home
service robot.

As illustrated in Fig. 1, a home service robot is integrated

into a smart home equipped with distributed sensors that can

provide information regarding human locations. This robot can

capture event sounds in the home environment through its

microphone array. The event sounds are recognized through

a local classifier on the robot. Based on the recognized sound

event and context information estimated from the home sensor

network, the robot can accurately recognize human activities.

The overview of the human activity monitoring system is

shown in Fig. 2. The home service robot, the human localiza-

tion module, and the modeling of human activity monitoring

are presented in Sections III-A–III-C as follows.

A. Home Service Robot

As shown in Fig. 3, the home service robot that was

developed in our Laboratory for Advanced Sensing,

Computation and Control (ASCC) was built on a Pioneer P3-

DX base with an approximately 1.5 m-long aluminum frame

holding up a touch screen monitor which is used for video

communication and graphic user interface [51]. The robot

is equipped with various sensors and devices. The auditory

system is built by extending the built-in microphone array of a

PS3eye camera [52]. It features four microphones and employs

technologies for echo cancellation, background noise suppres-

sion, and multidirectional sound source tracking. This allows

the auditory system to be used for speech recognition, sound

localization, and sound separation in noisy environments.

The microphone array operates with each channel processing

16-bit samples at a sampling rate of up to 48 kHz per channel

and a large dynamic range of signal-to-noise ratio up to 90 dB.

Fig. 3. Home service robot platform.

Fig. 4. (a) Configuration of the PIR network in the bestbed. (b) PIR sensor
node. (c) Sensing region of a PIR node.

The software for the robot was developed on Robot Oper-

ating System (ROS) [53] which was installed in the Ubuntu

operating system (OS) on the Intel Next Unit of Computing

(NUC) minicomputer. We utilized exiting packages from ROS

repositories to develop the device drivers that interface with

the robot base, the laser rangefinder (LRF), and the RGB-D

camera. Based on the drivers, we also implemented several

robot services including Simultaneous Localization and Map-

ping (SLAM) and navigation.

B. Human Localization

The human localization module estimates the rough human

location by using the passive infrared (PIR) sensor network

deployed in the home environment. As shown in Fig. 4(a),

the PIR sensor network consists of eight sensor nodes that are

placed on the ceiling at a height of 8 feet and the coverage

of each PIR sensor node is set to be a circle with a radius

of 3.6 feet using a cylindrical lens cover. Data from these

nodes are transmitted through the XBee protocol to the robot.

Each PIR node detects the human motion inside its sensing

region. Therefore, the human location is approximately esti-

mated to be within the sensing region once the sensor gives

a high output. To achieve that, a new PIR sensor observation

model is developed based on the existing model in [54]. Our
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new PIR sensor model is expressed as follows:

P
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PIR,i
k |sk

�

=

⎧

⎪

⎨

⎪

⎩

pzk
PIR,i

(1 − p)1−z
PIR,i
k , if |sk − Ci | ≤ ri

q zk
PIR,i

(1 − q)1−z
PIR,i
k , if ri ≤ |sk − Ci | ≤ ri + �

1 − z
PIR,i
k , if |sk − Ci | ≥ ri + �

(1)

where p is the probability of detection; q is the probability of

false alarm; z
PIR,i
k is the binary output {0,1} from PIR sensor

i at time k; sk is the human state which is the 2-D location;

Ci and ri are the center and the radius of the sensing region

of PIR sensor i , respectively. We discovered that false alarms

may occur when the human is not in the sensing range, but

not too far away from the sensor, which is depicted by the

gray area � as shown in Fig. 4(c). Inside the gray area, those

probabilities estimated from our measurements are p = 0.9

and q = 0.05. If the human is out of the dashed circle,

the false alarm rate q becomes 0. However, in order to simplify

the human localization task, the human’s location L H can be

estimated from PIR sensors using the naive Bayes classifier

L H = arg maxL=L1,...,Lk
{P(L|IR)} (2)

where P(L|IR) is the probability of the semantic area L where

the human is inside given the PIR data vector IR that is created

by the outputs of all PIR sensors.

C. Modeling Human Activity Monitoring

This section presents definitions, the modeling of the human

activity monitoring task and an overview of the SoHAM

framework for home service robots.

1) Definitions: Actions: An action is the operation a subject

does with or without an object. The set of actions in human

monitoring is denoted as Sa = {a1, a2, . . . , am} where m is

the total number of actions. The criticalness of action a,

Cr(a) ∈ (0, 1), reflects how important immediate attention is

while an action is detected. For example, an action of “falling

on the floor” requires immediate attention.

Activities: A human activity is usually composed of a

sequence of actions with temporal constraints [55]. The set

of activities in human monitoring is denoted as SA =

{A1, A2, . . . , AM } where M is the total number of activities.

The activities can be daily activities (eating, cooking, using

the toilet, sleeping, having a shower, watching television (TV),

etc.) and abnormal activities (coughing, crying for help, falling

on the floor). The criticalness of activity A, Cr(A) ∈ (0, 1),

reflects how important immediate attention is while an activity

is detected.

Monitoring Task: The monitoring task is to find out an

estimate of the most likely action a or activity A based on

observed data D1:n = [d1, d2, . . . , dn] collected by the micro-

phone sensors and the distributed PIR sensors. The estimate

is typically a posterior probability distribution p(a|D1:n) or

p(A|D1:n), from which a decision can be made.

Quality of Monitoring (QoM): The quality of monitoring is

a measure of the confidence of decision regarding the current

human action or activity. In this work, we mainly evaluate

the quality of action monitoring QoM(a). This measure can

Fig. 5. Generic model of sound-based activity monitoring.

be defined as a function of the entropy of predicted actions

a = (a1, a2, . . . , am) as follows:

QoM(a) = 1 − H (a|D1:n)/ log2 m

= 1 +

�

m
	

i=1

p(ai |D1:n) log2(p(ai |D1:n))




/ log2 m

(3)

where m is the number of actions defined previously. This

function maps the QoM(a) to a value in [0, 1]. When each

action is predicted with the equal confidence P(ai |D1:n) =

1/m, which means the robot has no knowledge regarding the

actions a, H (a|D1:n) = Hmax = log2 m [56] and QoM(a) = 0.

When any action ai is recognized at the confidence P(ai |D1:n)

of 1.0, H (a|D1:n) = 0 and QoM(a) = 1. Maintaining a

certain level of quality of monitoring QoM(a) requires that

the entropy of predicted actions a be less than a certain

threshold H th, or in other words, the robot is confident about

the predicted actions or activities.

2) Generic Model of Sound-Based Activity Monitoring:

Inspired by the work [57], we develop a generic model of the

SoHAM as shown in Fig. 5. This model shows the relationship

between the components of the SoHAM. Sound events are

recognized by fusing audio signal and contextual information

estimated from the human location. Action is determined by

a sound event and an object. However, some actions have no

object involved, such as falls, cough, heavy-breathing. To sim-

plify the action recognition task, in this work, we label each

sound event by the name of corresponding action. Activities

can be recognized from sequences of actions that occur in a

certain location and at a certain time. Some activities can be

recognized by only one action, such as watching TV, falls,

and drinking. Therefore, the activity monitoring task is to

recognize both actions and activities in each location in a home

environment over the time.

3) Overview of the SoHAM Framework: We propose a

SoHAM framework as shown in Fig. 6. The framework

consists of three modules: CoSER, dynamic sliding time

window-based human action recognition (DTW-HaR), and

CRF-based human activity monitoring (CRF-HAM). The

CoSER utilizes human location data as the context information

to improve the performance of sound event recognition. The

DTW-HaR post-processes the sequence of recognized sound

event labels from the CoSER to filter out false negative and
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Fig. 6. SoHAM framework.

false positive, detect acoustic event segments with their labels,

durations, and confidences, then recognizes actions based on

such acoustic event segments. The CRF-HAM uses location,

time, and actions to recognize human activities. The monitor-

ing results are the tuple (A, T (A), a, QoM(a), Cr(a), T (a)),

where A is the current activity of the human; T (A) is the

duration of the activity; a is the current action; QoM(a) is the

quality of monitoring with respect to action a; Cr(a) is the

criticalness of action a; T (a) is the duration of the action. Such

monitoring results enable the robot to make proper decisions

in taking care of the elderly living alone in their homes.

IV. COSER USING DBNS

In this work, the context of sound events defined as the

semantic area OC where the action occurs, which is the human

location L H that is estimated through the PIR sensors as

discussed in Section III-B. We propose the CoSER framework

as shown in Fig. 6. The framework features four main mod-

ules: 1) feature extraction, 2) vector quantization (VQ), and

3) DBN-based event recognition. The audio stream captured

by the auditory system on the robot is decomposed into frames.

These frames are extracted into feature vectors which are then

assigned the labels of codewords by the VQ. The sound event

observations O E are fused with their contextual information

OC using the DBN framework for final labels at the frame

level.

A. Feature Extraction

Statistical features are calculated for each audio frame.

The length of the frame ranges from 5 to 150 ms and the

overlap between two adjacent frames is set to half of the frame

size. We use the 31-dimension feature vectors that consist

of 12 MFCCs [58], 12 delta-MFCCs, log energy, zero cross

rate, entropy, centroid, spread, skewness, and kurtosis [59].

B. Vector Quantization

VQ is to compress a dataset into a small set of repre-

sentatives, which reduces the space to store data but still

maintains sufficient information. Given a k-dimension feature

vector x ∈ Rk in a vector space S, after VQ, x is classified to

a vector subspace S j

q(x) = S j (4)

where q(.) is the quantization operator. The whole vector

space is S = S1 ∪ S2 ∪ · · · ∪ SM . Each partition S j forms

a nonoverlapping region and is characterized by its centroid

vector z j . Set Z = {z1, z2, . . . , zM } is called a codebook and

z j is the j th codeword that is labeled as j . M is the size of the

codebook. The error between a vector and a codeword d(x, z)

is called the distortion error. A vector is always assigned to

the region with the smallest distortion. Therefore, the observed

feature vector can be assigned to the label of a codeword as

follows:

O E = arg min j=1,2,...,M{d
�

x, z j

�

}. (5)

Linde–Buzo–Gray (LBG) algorithm [60] is applied to

design the codebook in VQ. The LBG algorithm is a

hierarchical clustering algorithm, which first starts with

a 1-level codebook, then uses a splitting method to obtain

a 2-level codebook, and continues until an M-level codebook

is acquired.

C. Hierarchical Context and Sound Event Model

To represent the sound event-human location correlation,

the given map of a home environment is segmented into dif-

ferent areas with corresponding probabilities of sound events.

In the time domain, the transition of human locations follows

certain patterns. For example, the human always walks from

one area to another adjacent area and there is a probability

distribution according to the floor plan and personal pref-

erence. We assume the transition of locations is a discrete

and first-order Markov process. In this article, the locational

contexts that are to be recognized are the rooms in a house,

including the living room, dining room, kitchen, bathroom, and

bedroom. The locations of the human given by the PIR-based

human localization module are mapped into NL semantic

areas.

In an indoor environment, human locations and sound events

have both intratemporal causal relationships and intertemporal

constraints, which are modeled by the two-level DBN model

shown in Fig. 6. The individual nodes in this graphical

model represent hidden states and the shaded nodes represent

observations. The solid arcs correspond to causal dependencies

between the nodes in the same time slice, while the dashed

arcs correspond to the temporal dependencies between two

slices at time t and t + 1.

The higher level of the model represents the hidden states

of sound context SC . The lower level represents the hidden

states of sound events SE . As discussed above, the human

locations estimated from the PIR network are clustered into

the context observation OC . The audio stream captured by

the robot is decomposed into frames which are extracted into

feature vectors and then assigned to the labels of codewords by

the LBG-based VQ. These labels are used as the observation

O E of event sounds. In our model, the dependencies between

the nodes in the DBN include both spatial and temporal
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components. The observation OC
t and O E

t are dependent

on the corresponding intratemporal hidden state SC
t and SE

t .

The context SC
t+1 at time t + 1 depends on the previous

context at time t . The sound event SE
t+1 at time t + 1

depends on the previous sound event at time t , the context at

time t + 1.

D. Implementation of the DBN

1) Mathematic Representations: In the two-level DBN

model, the superscript of states and observations represents

the levels including the locational context (top) and the sound

event (bottom), while the subscript represents the time index.

Each level has three basic elements as follows:

a) The state transition probability distribution: The state

transition probability distribution in each level reflects the

intratemporal dependence in Fig. 6.

The top level location transition probability represents the

topology of the layout of the home environment

aC
i, j = P

�

SC
t+1 = j |SC

t = i
�

. (6)

The bottom level sound event transition probability depends

on the context

aE
i, j,p = P

�

SE
t+1 = j |SE

t = i, SC
t+1 = p

�

. (7)

b) The observation symbol probability distribution: Since

the observed variables only depend on the corresponding

states in the same level, the observation symbol probability

distribution can be expressed as follows:

bC
i, j = P

�

OC
t = j |SC

t = i
�

(8)

bE
i, j = P

�

O E
t = j |SE

t = i
�

. (9)

c) The initial state distribution: Since the intratemporal

dependence exists from the beginning of the sequence, the ini-

tial state distribution also follows the relationship of the links

between levels in Fig. 6

πC
i = P

�

SC
1 = i

�

(10)

π E
j,i = P

�

SE
1 = j |SC

1 = i
�

. (11)

The above probability distributions are trained by using

Expectation Maximization (EM) as proposed in [61].

The Viterbi algorithm [62] is applied to estimate the

probability of state sequence given the observation sequence

recursively.

2) Short-Time Viterbi Algorithm for Online Smoothing:

The standard Viterbi algorithm retrieves the state sequence,

which maximizes the belief value [62]. The retrieved state

sequence has the maximum likelihood given the observation

sequence from time 1 to T . The computational complexity

of the standard Viterbi algorithm makes it not suitable for

real-time implementation. The short-time Viterbi algorithm

can solve this problem and enhance the efficiency [63], which

has three steps: initialization, recursion, and path smoothing.

Initialization

δ1(i, j) = P
�

SC
1 = i

�

P
�

OC
1 |SC

1 = i
�

P
�

SE
1 = j |SC

1 = i
�

P
�

O E
1 |SE

1 = j
�

(12)

ψ1(i, j) = [0, 0]. (13)

Algorithm 1 Short-Time Viterbi for Smoothing in DBN

Initial Viterbi sequence length T , δ1, and ψ1 using (12)

and (13)

for each new observation Ot = [OC
t , O E

t ] do

- Obtain δt(i, j) and ψt (i, j) using (14) and (15)

- Obtain current state estimate q∗
t from δt(i, j) using (16)

- Backward one step and calculate the path (previous state

estimate) using (17)

- Correct previous state output if q∗
t−1 changes

- Save current δt (i, j) for next loop.

end for

Recursion

δt(i, j) = max
p,q




δt−1(p, q)aC
pi b

C
pia

E
qi j b

E
q j

�

= max
p,q




δt−1(p, q)P
�

SC
t = i |SC

t−1 = p
�

bC
pi

P
�

SE
t = j |SE

t−1 = q, SC
t = i

�

bE
q j

�

(14)

ψt (i, j) = arg max
p,q

δt(i, j) (15)

q∗
t = arg max

i, j
δt(i, j). (16)

Path Smoothing

q∗
t−1 = ψt

�

q∗
t

�

. (17)

The short-time Viterbi algorithm is shown in Algorithm 1.

V. DYNAMIC SLIDING TIME WINDOW (DTW)-HUMAN

ACTION RECOGNITION

As discussed above, the CoSER receives the audio stream

of sound events and the locational context information to

recognize the event labels. The recognition results are obtained

for every sequence of T consecutive frames based on the

maximum likelihood given the sequence of audio frames.

In real-time monitoring, in order to reduce the computational

complexity of state search in the DBN inference, the sequence

size T is set to be fixed and small. Due to the diversity of audio

signals, environmental noise, and reverberation, the sound

event recognition results have false positive and false negative

labels. Therefore, the robot has to improve the confidence

of its decisions. To this end, we implemented the DTW-

HaR. The DTW-HaR divides the sequence of sound event

labels into acoustic event segments based on the assumption

that the time window of an acoustic event is greater than a

minimal time window T a
min and the gap between active acoustic

events is greater than a minimal quiet time window T
g

min.

In other words, every recognized acoustic event that has a

duration less than T a
min is considered as false positive and every

recognized gap with a length less than T
g

min is considered as

false negative. Based on the dynamic sliding time window

approach, the DTW-HaR detects the duration of the current

action. Then the probabilities of sound event labels in this

duration are estimated and the activity label is assigned to

the sound event that has the maximum probability. Finally,

the criticalness of action and the quality of monitoring are
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Algorithm 2 Dynamic Time Sliding Window for Human

Action Recognition

+ Input: Sequence of sound event SE

+ Output: (a, QoM(a), Cr(a), T (a))

Initialize a, T (a), T a
min , T

g

min , Tstep

Initialize the sliding window Wa and the observed sequence

of sound event labels SE

for each new sequence SE of Tstep labels from the CoSER

do

Update SE and Wa :

SE = [SE SE ]

Wa = [Wa WE ] where WE is the time window of SE

{Remove false positives}

Detect sound event segments {Da} in the sliding window

Wa

for each segment di in {Da} do

if length(di) < T a
min then

Wa(di) = 0

end if

end for

{Remove false negatives}

Detect background segments {Dg} in the sliding window

Wa

for each segment di in {Dg} do

if length(di) < T
g

min then

Wa(di) = 1

end if

end for

a = arg maxa=a1,...,am
{P(a|SE(Wa))}

Compute Cr(a) = Cr Matri x(a, T s)

Compute QoM(a) using 18

if full event detected then

Update T (a) = length(Wa)

Store (a, QoM(a), Cr(a), T (a))

Reset a, Wa , T (a), SE

end if

end for

computed. The quality of monitoring is computed as follows:

QoM(a) = 1 − H (a|D1:n)/ log2 m

= 1 +

�

m
	

i=1

P
�

ai |O
C
1:Ta

, O E
1:Ta

�

log2


�

P
�

ai |O
C
1:Ta

, O E
1:Ta

��

/ log2 m (18)

where m is the number of activities of interest defined previ-

ously; T (a) is the duration of action.

The criticalness of activity is computed based on

the criticalness matrix of activities over the time

CrMatrix(a, t), which is predefined. For example,

Cr(fall) = 1, Cr(having breakfast in the morning) = 0.5,

and Cr(having shower in the evening) = 0. The online

monitoring results are updated over the time window step

Tstep based on Algorithm 2.

Fig. 7. Conditional random filed-based activity monitoring; Ai and X i are
the activity hidden state and the observation at the time step i , respectively.

VI. CRF-BASED ACTIVITY MONITORING (CRF-HAM)

In this section, we develop a method that fuses location,

time, sequences of actions to recognize human activities.

Recognizing human activities is challenging because human

activities are complex, diverse, interleaved, and ambigu-

ous [64]. The order of actions to perform an activity is different

for different people. In practice, it is common that a person

stops an activity to do another one then resumes the previous

one again. Similar actions can be interpreted as different

activities. Recognizing activities using sound events is even

harder. The same sound event may be generated by different

activities. For example, a water-running sound event can

belong to several activities, such as washing-hands, washing-

dishes, or filling-water. Thus, the models for sound-based

activity recognition must address these challenges. In practice,

many activities may have nondeterministic natures [57], where

some actions of an activity may be performed in any order and

not every action generates sound. In this work, we design a

CRF model [65] to implement human activity monitoring.

CRF [65] has recently gained popularity in activity recog-

nition [16], [66]. CRF is a discriminative model that uses an

undirected graphical model to represent conditional probability

P(Y |X) of a sequence of labels Y (hidden states) given a

sequence of observations X . CRF can model any dependencies

between different labels and flexibly capture arbitrary depen-

dences amongst observation variables. This model can capture

long-range dependences, therefore, has a potential to recog-

nize complex activities. Additionally, CRF does not consider

the order constraint of the hidden states, therefore, can be

used for human activity recognition, where many activities

may have nondeterministic features, i.e., some actions can

be conducted in any order with ambiguous and interleaved

activities. We implement a skip-chain CRF model for activity

recognition based on sound events, which is shown in Fig. 7.

This model represents the conditional likelihood P(A|X) of

the sequence of activity labels A, A = [A1, A2, . . . , AT ],

given the sequence of observations X , X = [X1, X2, . . . , XT ],

where X i includes the human location L i , the time of the

day T di , the recognized action ai , and its duration dai , thus,

X i = [x1, x2, ..., xk] = [L i , T di , ai , dai ]. The activity labels

are predicted as follows:

A∗ = arg maxA{P(A|X)}. (19)

The probability P(A|X) is computed as follows:

P(A|X) =
1

Z X

T
�

t=1

9t(At , At−1, X)

T −1
�

t=1

9tT (At , AT , X) (20)
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Fig. 8. Floor plan (left) and the smart home testbed (right).

where Z X is the normalization constant computed by aggregat-

ing the numerator as shown in 20; 9t is the potential function

that considers the relationship between observations over a

period of time and activities; and 9tT is the transition feature

function that considers the relationship between past activities

and future activities; These functions are computed as follows:

Z X=
	

A

T
�

t=1

9t(At , At−1, X)

T −1
�

t=1

9tT (At , AT , X)

(21)

9t(At , At−1, X) = exp

�

Kt
	

k

λk fk(At , At−1, X, t)

�

(22)

9tT (At , AT , X) = exp

⎧

⎨

⎩

K f
	

k

µk gk(At , AT , X, t, T )

⎫

⎬

⎭

(23)

where θt = {λk}
Kt

k=1 and θ f = {µk}
K f

k=1 are the parameters

of the proposed skip-chain CRF; fk and gk are the feature

function and transition function for each state pair and each

observation-state pair, which are defined as follows:

fk(At , At−1, X, t) = δ
�

At , Ãt

�

δ
�

At−1, Ãt−1

�

qk(X t ) (24)

gk(At , AT , X t , t, T ) = δ
�

At , Ãt

�

δ
�

AT , ÃT

�

q 0
k(X t , XT ) (25)

where δ(y, i) is the indicator function and takes the value 1 if

y = i and 0 otherwise; Ãt is the single output configuration

value of At ; qk(X t) is the feature representation function of X t ;

q 0
k(X t , XT ) is the feature representation function that combine

the features of X t and XT . The parameters of the model are

trained based on maximum likelihood technique [67].

VII. EXPERIMENTS AND RESULTS

We conducted physical experiments to test and evaluate

the proposed framework. A smart home testbed was set up

in our lab which has an area of 16 ft × 22 ft as shown

in Fig. 8. It simulates a small apartment, which includes

a living room, a bedroom, a kitchen, a dining room, and

a bathroom. A sound simulation system was developed to

simulate the multiple sound events like those heard in a typical

house [68]. The sound simulation system includes multiple

audio nodes, an audio server, and an audio control application

as shown in Fig. 9. The audio nodes were developed using

Beagleboard minicomputers and speakers. The sound events in

Fig. 9. Sound simulation system.

the bathroom, kitchen, dining room, living room, and bedroom

were recorded in real environments and collected from the

Google AudioSet [69] and freesound.org. These sound samples

form the ASCC sound library (ASCCsoundLib). Currently,

it has 43 sound events and each has 3 or 4 clips, including 6

dining room sounds, 5 living room sounds, 5 bathroom sounds,

16 kitchen sounds, 2 bedroom sounds, and 12 other sounds.

Sound events and their labels are as follows:

Dining Room: 2:preparing-dining-table, 3:using-fork-

spoon-plate, 4:eating (cereal, pizza, snack), 5:pouring-water-

in-glass, 6:drinking-water, 7:clean-dining-table.

Living Room: 5:pouring-water-in-glass, 6:drinking-water,

8:opening-door, 9:closing-door, 10:TV.

Bathroom: 11:brushing-teeth, 12:having-shower,

13:washing-hands, 14:flushing-toilet, 15: filling-sink.

Kitchen: 16:using-faucet, 17-using-blender, 18-sifting-flour,

19-chopping, 20-boiling (water, cooking), 21-frying-pan,

22:teapot-whistle, 23:mixing-sauce, 24:controlling-

microwave, 25:microwave-running, 26:closing-microwave,

27:opening-microwave, 28:making-coffee, 29:cooker-hood,

30:dish-washer-machine, 31:washing-dishes.

Bedroom: 32:heavy-breathing-sleeping, 33:snoring.

Other Sounds: 1: background-sound, 34-laughing,

35:eructation, 36:heavy-breathing, 37:cough, 38:yawning,

39:footsteps, 40:speaking, 41:falling-sounds, 42:dropping,

43:vacuum, 44:other-sounds.

The audio control program on a smartphone can trigger the

playback of a sequence of sound events associated with human

activities or multiple simultaneous sound events using different

audio nodes placed at different locations. This approach allows

the robot to collect sound data with strong labels quicker

than manual annotation. We conducted experiments in our

smart home testbed to evaluate the CoSER, DTW-HaR, and

CRF-HAM as well as show the capabilities of the home

service robot in monitoring the elderly in the smart home

environment. We moved the robot around the home testbed to

collect audio data at different locations with different setups.

The robot was stationary when it recorded sound events. The

experimental audio data were collected with 5 graduate student

subjects doing various activities in the testbed multiple times.

Authorized licensed use limited to: University of Louisville. Downloaded on August 16,2021 at 14:43:24 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

Fig. 10. Mean square distortion error of the codebooks.

The audio control program on the smartphone triggered the

playback of some event sounds which cannot be collected in

the home environment, such as flushing the toilet. Actions

happened from about 0.5 s (e.g., falling, closing-microwave,

etc.) to around 30 s (e.g., preparing-dining-table, and having

a shower). These audio data were recorded by the robot

at a sampling rate of 16 kHz. The total recording time is

approximately 200 min.

A. Context-Aware Sound Event Recognition

The above experimental audio data were used to train

the codebooks with different codebook sizes and window

sizes. The sliding steps were set to half of the window

sizes. As shown in Fig. 10, the mean square distortion errors

of codebooks decrease almost linearly with the numbers of

codewords in the codebooks but increase with the window

sizes. However, using a large number of codewords and the

small number of window size incurs more computation. Those

parameters also affect the accuracy of sound event recognition.

Therefore, they were also considered in the experiments to

evaluate the CoSER.

We also used the above recorded audio files and context

observations provided by the PIR network to train and evaluate

the DBN using threefold cross-validation. The sound event

data were partitioned into three equal-sized subsets. All frames

in the same event have the same label. Sequentially one subset

was tested using the DBN trained on the other 2 subsets.

The cross-validation accuracy is the average of the rate of

audio frames that are correctly classified in 3 testing subsets.

To evaluate the performance of the proposed sound event

recognition model, evaluation measures are computed from the

confusion matrices. These measures include the true positive

TP, true negative TN, false positive FP, false negative FN,

recall R, precision Pr, F1 score F1, accuracy acc, and overall

accuracy ACC—the average accuracy of the total number

N_tests of tested instances for every classes.

In order to evaluate the context-aware SER (CoSER),

context-independent SER was implemented by using the

Fig. 11. Context-independent sound event recognition.

Fig. 12. Average accuracy of the CoSER with respect to the sequence sizes.

Fig. 13. Average accuracy of CoSER with respect to the window sizes.

one-level DBN as shown in Fig. 11. In this model, O E
t is

dependent on the corresponding intratemporal hidden state

SE
t . The sound event state SE

t+1 at time t + 1 depends on

the previous sound event state at time t . The testing data

were used to test both SERs with the same parameters of the

VQ and DBNs. In order to reduce the effect of the codebook’s

distortion error on the SER performance, the codebook size

was set to 2048. Therefore, the numbers of states SE , O E , SC ,

and OC are 44, 2048, 5, and 5, respectively.

We also evaluated the SERs on different DBN parameters

which include the sliding step and Viterbi sequence length.

First, the window size was set to 512 and the sequence length

was changed from 5 to 50. The average accuracy of the CoSER

with respect to the sequence sizes is shown in Fig. 12. The

accuracy increases slightly as the sequence length increases.

The longer sequence is, the more confidence the CoSER

has in long-time sound events such as cough sounds and

bushing-teeth sounds, but less confidence in short-time sound

events such as falling sounds. In order to test the SERs in
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Fig. 14. Recognition accuracy of sound events at the frame level of the context-independent SER, HMM-based CoSER, and DBN-based CoSER with the
window size of 1024 and the codebook size of 2048.

real-time, the Viterbi sequence length is set to 10, which

corresponds to 160, 320, or 640 ms, given the window step is

256, 512, or 1024, respectively. The overlap between the two

adjacent sequences is 1. The average accuracy of both SERs

at the frame level is shown in Fig. 13. The context-aware SER

produces much better results than the context-independent

SER. Its average accuracy is about 70% with a window size

of 512 and achieves more than 90% with a window size

of 2048. Although larger window sizes have less time-domain

resolution, they give better frequency resolution, which is more

efficient in classifying sound events that have a wide range of

frequencies. The recognition accuracy of sound events at the

frame level with a window size of 1024 is shown in Fig. 14.

While the context-independent SER has poor performance,

the CoSER produces the results at accuracy rates of more than

80% for over half of the sound events. Only five sound events

have an accuracy rate of between 50% and 50%. Besides,

the evaluation result of each class is shown in Table I.

In addition, the recognition accuracy of DBN-based CoSER

was compared with that of the HMM-based CoSER that was

proposed in [50]. The HMMs were implemented and trained

for each context by threefold cross-validation as the DBN

model. As shown in Fig. 14, the DBN-based method has a

better performance in more than two thirds of sound events

and has a higher average accuracy rate than the HMM-based

method.

B. DTW-Based Human Action Recognition (DTW-HaR)

The DTW-HaR was evaluated by the above testing data

with a window size of 1024, a cookbook size of 2048, and

a Viterbi sequence length of 10. We tested the DTW-HaR

with different values of T a
min, T

g

min, Tstep. We found the best

values via grid-search on T a
min, T

g

min = 5, 6, 7, 8, 9, 10, 11, 12

and Tstep = 10, 12, 14, 16, 18, 20, 22, 24. Various settings are

tried and the best one is (T a
min, T

g

min, Tstep) = (9, 9, 18). The

average accuracy of action recognition reaches approximately

95.62% at the frame level. Moreover, the robot can update the

Fig. 15. Monitoring results of the SoHAM.

QoM(a) and Cr(a) in realtime after every 18 frames, which

corresponds to 576 ms. As shown in Fig. 15, the DTW-HaR

produces smoother sound event segments. Each segment is
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TABLE I

EVALUATION MEASURES OF COSER PERFORMANCE (TOTAL NUMBER OF TESTED AUDIO FRAMES: 378507)

labeled with the action index which corresponds to the dom-

inant sound event in that segment. All action indexes are

shown in the second column of Table I. The DTW-HaR can

produce the sequences of actions with their duration, quality

of monitoring QoM(a), and criticalness of action Cr(a) as

shown in Fig. 15.

C. CRF-Based Activity Monitoring

This section evaluates the performance of the CRF-HAM

using the above sound dataset. We simulated the activities in

the simulated smart home testbed, which are composed of

sequences of actions that generate sound events. The activities

are 12 popular daily activities: 0-Idle, 1-Leaving-home,

2-Entering-home, 3-Hygiene-morning (personal hygiene in

the morning), 4-Preparing-breakfast, 5-Having-breakfast,

06-Preparing-meal, 7-Having-lunch, 8-Having-dinner,

9-Watching-TV, 10-Cleaning, 11-Hygiene-evening (personal

hygiene in the evening), 12-Others, where 0-Idle is no action

Fig. 16. Examples of semantic activity graphs.

and 12-Others is the activity that consists of single action

only. We defined each of the 10 other activities by using a

semantic activity graph that represents the likely transitions
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Fig. 17. Confusion matrix of the activity recognition (overall accuracy
ACC = 0.75).

between actions. For example, the semantic activity graphs

of 3-Hygiene-morning and 4-Preparing-breakfast (Using a

microwave) is are shown in Fig. 16, where a shaded node

represents a core action that is essential for identifying an

activity; a dash node represents an unexpected action; and

the other nodes represent those actions that are not essential.

An example of the unexpected action in the activity of

hygiene in the morning is whatever generates a human sound

event (HuS) such as cough, footsteps, speaking, breathing,

snoring, or laughing. We randomly generated 100 sample

sequences for each activity based on its graph. The time of

the day T di is divided into the discretized values of every

30 min. The value are binned into the following ranges:

0-10 (Night: 0:00-5:00), 11-20 (Morning: 5:00-10:00), 21-26

(Midday: 10:00-13:00), 27-34 (Afternoon: 13:00-17:00),

35-44 (Evening: 17:00-22:00), 45-48 (Night: 22:00-24:00).

The CRF model was trained and evaluated by these datasets

using threefold cross-validation. The confusion matrix of

activity recognition is shown in Fig. 17. The true positives of

activity recognition are around 70%. However, most of the

false negatives are in 12-Others. In such cases, the recognized

actions are mainly considered as the activities.

VIII. CONCLUSION AND FUTURE WORK

In this research, we proposed and developed a framework of

SoHAM for home service robots. The framework consists of

the CoSER module, the dynamic time window-based human

action recognition (DTW-HaR) module, and the CRF-based

activity monitoring module. In the CoSER, the locational

context of sound events associated with human daily activities

is recognized based on the PIR network. The audio stream

of sound events in the home environment is captured by the

robot and extracted into feature vectors. Based on the context

and sound event observations, the robot can recognize the

sound events in real-time through a two-level DBN model

using the short-time Viterbi algorithm. We tested and evaluated

the framework with different parameters of the VQ and the

DBN. We also proposed an algorithm called DTW-HaR to

observe the sequence of sound event labels from the CoSER to

estimate the current action, the duration of activity, the quality

of monitoring, and the criticalness of action. A CRF model

was implemented to recognize human activities based on

the sequences of recognized actions. Experimental evaluation

verified that our proposed framework can improve sound-based

activity monitoring significantly.

In the future, we will address some limitations in the current

work. First, we will keep collecting new sound data and

build a larger home sound dataset with more data variations,

including sound events with very short durations. This dataset

will be made available to the research community. Second,

machine learning methods for identifying the criticalness of

each activity will be investigated, which can reduce human

involvement to the minimum. Third, the proposed CRF-HAM

will be enhanced to handle multiple unexpected transitions.

Fourth, the proposed SoHAM framework can also be applied

to distributed microphones in a smart home setting. We will

compare the performance of these two microphone setups.

Fifth, we will investigate how to leverage robot mobility to

improve activity recognition accuracy. Finally, we will develop

applications that can deliver elderly care services in response

to recognized human activities.
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