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Abstract. We present a novel method that automatically measures
quality of sentential paraphrasing. Our method balances two conflict-
ing criteria: semantic similarity and lexical diversity. Using a diverse
annotated corpus, we built learning to rank models on edit distance,
BLEU, ROUGE, and cosine similarity features. Extrinsic evaluation on
STS Benchmark and ParaBank Evaluation datasets resulted in a model
ensemble with moderate to high quality. We applied our method on both
small benchmarking and large-scale datasets as resources for the com-
munity.
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1 Introduction

In linguistics, lexical complexity is a multidimensional measure encompassing
lexical diversity, lexical density, and lexical sophistication [13, 16, 22]. Modern
natural language processing (NLP) adopted a bag-of-features approach on lexi-
cal complexity for paraphrase simplification. The general strategy is to perform
complex word identification (CWI) [1, 14, 17, 25] and then substitute those with
simpler words. Four categories of features used in CWI were: (1) word-level fea-
tures such as word length, syllable counts, (2) morphological features such as
part-of-speech, suffix length, noun gender, (3) semantic features derived from
WordNet or cosine similarity between word embedding vectors, and (4) corpus-
based features such as word frequencies, n-gram frequencies, or topic distribu-
tion in some reference corpora. These strategies measured single word and short
phrase complexity, thus rendering them unsuitable for measuring complexity of
complete sentences.

In sentential monolingual rewriting, most modern NLP methods focused on
semantic similarity between a reference sentence and its paraphrases [5, 9, 24].
Recent work sought to improve the lexical diversity of paraphrases by adding
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heuristic lexical constraints to the decoder [8, 10]. However, these works re-
sulted in most highly ranked paraphrases that were almost lexically identical to
the references. Thus, paraphrase generation became a trivial task unusable for
practical purposes such as: content generation in education, data augmentation
in language modeling, question answering, textual entailment, etc. Table 1 shows
examples of top ranking paraphrases from two human annotated datasets: STS
Benchmark4 and ParaBank Evaluation5.

Table 1. Example top ranking Reference/Paraphrase pairs in semantic similarity by
humans in STS Benchmark and ParaBank Evaluation datasets.

Datasets Top Examples

STS

R: A man with a hard hat is dancing.
P: A man wearing a hard hat is dancing.
R: A man is feeding a mouse to a snake.
P: The man is feeding a mouse to the snake.

ParaB

R: You weigh a million pounds.
P: You weigh one million pounds.
R: Ladies and gentlemen, young people.
P: Ladies and gents, young people.

In this study, we present a learnt quality measure of paraphrases that ad-
dresses the low lexical diversity issue in sentential paraphrasing. Our method not
only aligns with semantic similarity, but also significantly enhances the differ-
ence in lexical use between a paraphrase and its reference. Such desideratum was
referred to as quality or fluency of paraphrases [8]. We also adopted a bag-of-
features approach but did not use the four feature categories of CWI since these
features were developed for single-word complexity while our task aims to mea-
sure sentential complexity. We modeled paraphrase quality as a learning-to-rank
problem on a controlled corpus generated by educational specialists and anno-
tated by Amazon Mechanical Turk workers. We then used the trained model to
re-rank paraphrases in STS Benchmark and ParaBank Evaluation datasets and
showed that our model picked paraphrases with superior quality.

Hereinafter, we detail data collection, feature engineering, and measure mod-
eling in the Method section. Extrinsic evaluation is presented in the Results sec-
tion, and contribution together with model characteristics are explained in the
Discussion section. Lastly, we highlight the novelty and impact of this study in
the Conclusion section.

4https://ixa2.si.ehu.es/stswiki/index.php/STSbenchmark
5https://github.com/decompositional-semantics-initiative/ParaBank-Eval-Data
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2 Method

We define quality as the holistic fusion between semantic similarity and lexical
variation of a paraphrase compared to its reference sentence.

2.1 Data collection

Our dataset comprises of 5 documents, totaling 92 English sentences, from ACT
Test Preparation textbooks. Topics includes sport, history, biological science,
tourism, and geography.

To generate paraphrases, we used Google Cloud Translation to translate each
reference English sentence into 10 foreign languages, then back-translate these
10 foreign sentences into English. The 10 foreign languages included Japanese,
Korean, Chinese, German, Spanish, Portuguese, Greek, Arabic, Slovenian, and
Turkish. This process generated 10 paraphrases per reference, resulting in a
dataset of 920 paraphrase/reference pairs.

We hired English speakers on Amazon Mechanical Turk to annotate quality
scores for the paraphrases. We restricted annotators to at least had graduated
from a U.S. high school and possessed excellent reviews by previous requesters.
Given the ACT documents were for college entrance exam, the selected annotator
population qualified to perform our task. We adopted the EASL framework [23]
to increase annotation efficiency by presenting all ten paraphrases (of the same
reference sentence) simultaneously in one page so that annotators could compare
between items while giving scores. We re-used the HTML template from EASL
to generate task pages on Amazon MTurk. The annotators were asked to give
a score in a range [0, 100] to each paraphrase/reference pair. Additionally, each
pair was annotated by 10 different annotators. Score 100 corresponds to same
meaning and different wording, while the contrasted score 0 is hypothetical and
corresponds to different meaning and same wording. Thus, the score measures
quality of the paraphrase. In total we obtained 9,200 paraphrase/reference rank-
ings.

2.2 Feature engineering

Table 2. Summary of semantic and lexical features

Type Category Metric

Semantic Sentence embedding Cosine similarity

Lexical
Edit distance

Constituent tree, word sequence, character se-
quence

BLEU 1-gram, 2-gram, 3-gram, 4-gram

ROUGE
1-gram, 2-gram, 3-gram, 4-gram, longest com-
mon subsequence (LCS), weighted LCS
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To model the fusion between semantic similarity and lexical difference, we
combined cosine similarity with edit distance and machine translation scores. In
total there were one semantic feature and thirteen lexical features. Table 2 gives
a summary of the features. In following description, we refer to two sentences as
a reference/paraphrase pair.

Cosine similarity : We invoked the universal sentence encoder [6] on deep
averaging network (DAN) [12] to generate embeddings of the two sentences,
then calculated cosine distance between the two embedding vectors to represent
semantic similarity.

Tree edit distance: We invoked the Stanford CoreNLP toolkit [18] to parse
constituent trees of the two sentences, then used Zhang-Shasha algorithm [27] to
compute the edit distance between the two trees. In addition, we normalized the
distance by the total number of nodes in both trees. Tree edit distance represents
the difference in grammatical structure between the two sentences.

Word and character edit distances: We used NLTK [3] implementation of
Levenshtein edit-distance [19] with substitution cost set to 2 to compute the
transformation cost between the two sequences of words (or characters) of the
two sentences. We also normalized the cost by the total number of words (or
characters) of both sentences. This normalization engulfs the substitution cost
of 2, which represent the removal of one word (or character) from a sentence
while adding another word (or character) into the other sentence. Sequence edit
distances represent the ordinal difference in vocabulary use between the two
sentences.

BLEU scores: We used NLTK [3] implementation of bilingual evaluation
understudy [20] to compute modified precision of overlapping n-grams for in-
dividual orders of n-gram. BLEU scores represent the precision of paraphrase
n-grams that match the reference sentence.

ROUGE scores : We used PyPI’s py-rouge package [2] to compute recall-
oriented understudy [15] of overlapping n-grams for individual orders of n-grams,
longest common subsequence (LCS), and weighted LCS. ROUGE scores repre-
sent the recall of reference sentence’s subsequences that match the paraphrase.

2.3 Learning to rank paraphrase quality

We formulated paraphrase quality as a learning-to-rank problem in information
retrieval. The reference sentence serves as a query; paraphrases serves as re-
trieved documents; and paraphrase quality score serves as the relevance score.
The learning-to-rank formulation optimizes relative orders of paraphrases; thus,
it is robust to both the inconsistency in score ranges and distances.

We utilized XGBoost gradient boosted trees [7] to train our ranking model.
XGBoost was successfully used by multiple winners in machine learning chal-
lenges and Kaggle competitions. We parametrized XGBoost to use LambdaMART
[4] to perform list-wise ranking with mean average precision (MAP) objective
function. Learning rate was set to 0.1; minimum loss reduction was set to 1.0;
minimum sum of instance weights in a child was set to 0.1; maximum depth of a
tree was set to 6; number of trees was set to 10. To evaluate model performance,
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we implemented five-fold cross-validation with 80% data for training and 20%
data for validation, then used Scikit-learn’s implementation [21] of normalized
discounted cumulative gain (NDCG) for evaluation. We experimented with some
variation of above parameter settings and found insignificant NDCG gain/loss.

2.4 Label smoothing regularization

We observed that annotators diverted to different score ranges and scales. For
example, ten paraphrases of a sentence “The Fulton fish market” were given
scores [60, 61, 60, 77, 50, 50, 50, 60, 70, 60] by one annotator and scores [42, 45,
51, 57, 49, 55, 55, 53, 45, 51] by another annotator. Thus, the first annotator
preferred scores in range [50, 80] while the second annotator preferred scores
in range [40, 60]. Calculating Spearman’s rank correlation coefficient between
annotation scores of paraphrases from the same reference sentence resulted in
mean = 0.24 and standard deviation = 0.40. Agreement between annotators were
low and spreading. We hypothesizes that quantification of paraphrase quality was
affected by annotators’ individual bias. Since we pioneered the study of sentential
paraphrase’s holistic quality in this work, we were not aware of any prior formal
composition of paraphrase quality, nor a proven scale to reduce annotator bias.

To smooth annotator bias, we first experimented with z-score normalization
in various scopes (e.g. per annotator, per reference sentence, and per paraphrase),
but they all resulted in the same rank correlation coefficient. By trials and er-
rors, we discovered that the scores could be smoothed using their sorted indices.
Specifically, we sorted the original scores and then substituted them by their in-
dices in the sorted list. Thus, scores [80, 89, 60, 78, 76, 74, 63, 32, 72, 70] becomes
[1, 0, 8, 2, 3, 4, 7, 9, 5, 6]. When ties occured, the earlier item in the list was
aribitrarily assigned a smaller index score. Hereinafter, we denote models using
the smoothed labels as Index models, and models using the original annotator
scores as Raw models. Spearman’s rank correlation coefficient on Index scores
agreement reached higher means = 0.28 and smaller standard deviation = 0.38
compared to Raw scores agreement.

2.5 Augmenting semantic similarity

Measuring semantic similarity based on sentence embedding is a challenging
task [5, 26], and we expected our semantic feature to be a weak one. To offset
this weakness, we experimented augmentation of our paraphrase quality score
(Q) with the human annotated semantic similarity score (S) in benchmarking
datasets (STS Benchmark and ParaBank Evaluation). We experimented with
linear combinations of Q and S and found the best linear coefficient performed
equally well as a harmonic mean F1 combination. We picked the balanced F1 as
the combined score to simplify hyper-parameter tuning.

F1(Q,S) = 2×Q× S/(Q+ S)
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Table 3. Top ranking examples from the STS-Benchmark and ParaBank datasets.
Raw and Index (Idx) models were ranked by Q. Augmented models (prefix A-) were
ranked by F1. S is ground truth for semantic similarity. Q reflects lexical diversity. STS
score range is [0, 5]; ParaBank score range is [0, 100].

Model Reference(R)-Paraphrase(P) Sentence Pair S Q

STS Benchmark

Raw
R: A man is cutting a potato.

4.4 3.16
P: A man is slicing some potato.

ARaw
R: A man is playing the drums.

5.0 1.47
P: A man plays the drum.

Idx
R: A man plays an acoustic guitar.

0.0 4.51
P: A woman and dog are walking together.

AIdx

R: I realized there is already an accepted answer

5.0 4.01
but I figure I would add my 2 cents.

P: I know this is an old question
but I feel I should add my 2 cents.

R:You may have to experiment and find what you like.
5.0 4.49

P:You have to find out what works for you.

ParaBank Evaluation

Raw
R: I’ve known Miguel since childhood.

87 36
P: I knew Miguel from childhood.

ARaw
R: You’re confusing humility, with humiliation.

100 24
P: I think you mistake humility with humiliation.

Idx
R: I am at your service.

20 90
P: Dyce’s here to see you.

AIdx

R: One doesn’t detect the tiniest trace of jealousy, does one?
99 90

P: I don’t hear a tiny undertone of jealousy in your voice?
R: Let me check once again.

100 87
P: I’ll look again.

3 Results

Our models were evaluated on two extrinsic benchmarking datasets: STS Bench-
mark and ParaBank Evaluation. In each dataset, we applied both Raw and Index
models together with their augmneted versions (Section 2.5). We then sorted
the datasets in descending order of computed scores and compared top ranking
paraphrases. In Table 3, each pair of reference/paraphrase sentences was accom-
panied by a semantic score S, and a lexical diversity score Q. We chose score
Q of the Index model to represent lexical diversity because it best reflected the
lexico-grammatical difference between the two sentences.

Results showed that the Raw model preserved the reference meaning well but
only performed moderately on lexical diversity. Paraphrases of the Raw model
repeated key phrases from the reference sentences. Augmented Raw model gave
higher semantic similarity but at the cost of reduced lexical diversity. Index
model failed at preserving reference meaning, but prevailed at promoting lexical
diversity. Paraphrases found by the vanilla Index model showed large lexico-
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grammatical difference, but also carried almost different meaning from the ref-
erence sentences. The Augmented Index model was the most interesting one as
it not only throve at semantic similarity, but also showed high lexical diversity.
Paraphrases found by the Augmented Index model expressed significant lexico-
grammatical difference while preserving the original meaning of the reference
sentences. In addition to Table 3, we made the full ranking of STS Benchmark
and ParaBank Evaluation datasets publicly available for community investiga-
tion.

To gain insights and intuition about model behaviors, we analyzed mod-
els’ feature importance based on decision trees’ node split gain (Figure 1). The
Raw model prioritized cosine similarity for sentence meaning and ROUGE-1
for single-word lexical difference. This explained its tendency to keep almost
identical meaning and picked paraphrases with few single-word difference. In
contrast, the Index model prioritized tree edit distance for difference in gram-
matical structure and ROUGE-L for variation of long sub-phrases. The Index
model was the opposite of the Raw model. The Index model’s features favored
lexico-grammatical difference at the expense of reference meaning. When aug-
mented with a strong semantic similarity signal S, the Augmented Raw model
inclined even more toward preserving reference meaning, while the Augmented
Index model achieved a rare equilibrium that produced both significant lexico-
grammatical difference and strong similarity with reference meaning. In our
study, Augmented Index was the highest quality ranking model for monolingual
paraphrasing.

We call our method LexDivPara for lexical diversity in paraphrasing. Our
experiment and evaluation suggested that the Augmented Index model should
be used when a strong feature for semantic similarity is available. Otherwise,
the Raw model should be used to deliver a moderate quality device for para-
phrase ranking. In addition to scoring paraphrase quality of STS Benchmark
and ParaBank Evaluation datasets, we have scored and sorted the ParaBank
2.0 dataset [11] comprising of 19 million reference sentences and made it pub-
licly available as a large-scale resource for researchers interested in training good
quality paraphrase generative models.

4 Discussion

Measuring quality of monolingual paraphrasing is a challenging task, as it strug-
gles to balance between two conflicting desiderata: semantic preservation and
maximal lexical variation. In this work, we projected a holistic quality score for
paraphrases and factorized it into two contradicting components: semantic sim-
ilarity, and lexical diversity. While semantic similarity had been studied well in
the computational linguistics literature [5, 9, 24], sentential lexical diversity was
mostly un-explored. A recent work close to ours is the development of ParaBank
[8, 10] that used heuristic lexical constraints to encourage diverse use of words in
the decoding sequence. However, this work only used one single measure, BLEU
without length penalty, to evaluate how different the paraphrases are to the





els. Our source code, feature set, annotated data, and ranked datasets are freely
available at: http://languageandintelligence.cs.okstate.edu/tools.
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