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1 Introduction

Uniform domains play a special role in the study of planar quasiconformal mappings (see
for example [MS] where the concept of uniform domains was first introduced, [Mar, GeO,
BKR, H, KL]) and in potential theory (see for example [KP, KT, LLMS, A1, A2, HK, BSh)).
The notion of uniform domains does not require the underlying space to be Euclidean or
smooth, and so the notion of uniform domains has a natural extension to general metric
spaces, see Definition 2.4 below. On the other hand, the notion of curvature, as defined in
Riemannian geometry, is a second order calculus notion and so does not easily lend itself
to the setting of more general metric spaces. Instead, in that non-smooth setting, the
role of negative curvature is played by two possible alternatives, Alexandrov curvature and
Gromov hyperbolicity, see the discussion in [BH, BuS, CDP|. Gromov hyperbolic spaces
were first defined in [Gr] in the context of studying hyperbolic groups.

The work [BHK] demonstrates a strong connection between Gromov hyperbolic spaces
and uniform domains. It was shown there that uniform domains in metric spaces, equipped
with the quasihyperbolic metric k (see (1)) are necessarily a Gromov hyperbolic spaces.
Conversely, given a geodesic Gromov hyperbolic space X, there is a positive number g
such that whenever 0 < € < ¢, the uniformization X, of X corresponding to the parameter
¢ is a uniform domain.

It is not difficult to see that if X and Y are two complete geodesic spaces with X a
Gromov hyperbolic space, and if there is a rough isometry ® : X — Y as in Definition 2.6,
then Y is also Gromov hyperbolic; that is, Gromov hyperbolicity is a large scale property
and is not destroyed by small-scale perturbations. Therefore it is natural to ask whether
the allowable range of uniformization parameters is preserved by rough isometries. This is
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the goal of this current note. In particular, we show that if X and Y are Gromov hyperbolic
and ® : Y — X is a rough isometry, and if € > 0 is such that X, is a uniform domain, then
Y. is also a uniform domain, see Theorem 3.7. In [BBS] it was shown that if a Gromov
hyperbolic space X is uniformized to a uniform domain X, (for sufficiently small ¢ > 0),
and the subsequent boundary Z := 90X, has a hyperbolic filling Y with appropriate scaling
parameters, then Y is roughly isometric to X. It follows from our results then that Y; is
also a uniform domain (since we know that X. is). It is not difficult to see that JY; is
isometric to dX., and hence our result ties the potential theoretic properties of X, to
those of Y, even though X, itself could be ill-connected from the point of view of potential
theory. It was shown in [BBS] that Y; has a suitable measure with respect to which Y; is
doubling and supports a 1-Poincaré inequality if it is a uniform domain.

Observe that by the results of [BHK] we know that Y. is a uniform domain if ¢ is
small enough, but here we do not require smallness of €. The key reason in [BHK] for
requiring € be sufficiently small is that for small enough € a Gehring-Hayman property
holds for hyperbolic geodesics. Since we do not assume € to be small, we cannot rely on
this property; instead, our proof uses the technique of discretization of paths.

The next section is devoted to providing the relevant definitions. The first part of the
third section develops the tools necessary to prove our main theorem, Theorem 3.7, and
the proof of that theorem is given in the last part of that section. We adopt the convention
that Q1 2 Q2 if there is a constant C' > 0 such that C' Q; > Q2. We say that Q1 < Qo if
Q2 2 Q1, and we say that Q1 ~ Q2 if Q1 = @2 and Q1 < Q2. We say that Q1 ~ Q2 with
comparison constant C' > 0 if
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2 Background

We provide the relevant definitions of the notions used in this note. In what follows, given
a metric space (Z,d), z € Z and r > 0, we set B(z,r) := {z € Z : d(x,z) < r} and
B(z,r):={z € Z : d(z,z) <r}.

Definition 2.1. A complete geodesic metric space (Z,d) is said to be Gromov hyperbolic
if there exists d > 0 such that whenever z,y, z € Z and [z, y], [y, 2], [z, 2| are geodesic paths

in Z with end points x,y, end points y, z, and end points z, x respectively, then
oyl |J  Bw,d).
we[y,z]U[z,7]
Here, if 6 = 0, we interpret B(w,d) to be the set {w}.

Definition 2.2. We say that a Gromov hyperbolic space (Z,d) is roughly starlike if there
exists M > 0 and zp € Z such that for all z € Z there is a geodesic ray v : [0,00) — Z
with v(0) = zp and ¢y € [0, 00) such that d(z,7v(t9)) < M.



Trees are Gromov hyperbolic with § = 0 and are roughly starlike with M = 0. Uniform
domains, equipped with the quaishyperbolic metric, are necessarily Gromov hyperbolic and
rough starlike, see the discussion in [BHK, Chapter 3.

Following [BHK], for each ¢ > 0 we consider uniformization of Gromov hyperbolic
spaces with parameter €.

Definition 2.3. Let (Z,d) be a Gromov hyperbolic space, zp € Z, and £ > 0. We consider
the “density” function pZ : Z — (0, 1] given by

—ed(z,20)

Z
pz(z)=e :
This density function induces a metric on Z, given by

de(z1, 22) = inf/ﬂaz ds,
7 Jy

for z1, 29 € Z, where the infimum is over all rectifiable paths v in Z with end points z; and
z9. We denote this induced metric space (Z,d.) by Z-..

The above construction of uniformization is from [BHK, Chapter 4]. As mentioned
above, from [BHK] we know that if Z is Gromov hyperbolic and ¢ < g9 = £¢(), then Z.
is a uniform domain, that is, it satisfies the following definition.

Definition 2.4. Let Z be a locally complete, non-complete metric space, and set 07 :=
Z\ Z. We say that Z is a uniform domain (or a uniform space) if there is a constant A > 1
such that for each pair of points =,y € Z there is a rectifiable curve v in Z with end points
x and y satisfying

L £(y) < Ad(z,y),
2. for each z € ~,
§(2) = dist(z,02) > X' min{l(v(z, 2)), £(v(2,y))}.

Here v(z, z) is any of the subcurves of v with end points z, z.

From [MS, GeO, BHK], there is a natural deformation of the metric on a uniform
domain (Z,d), called the quasihyperbolic metric.

Definition 2.5. Given a locally compact, non-complete metric space (Z,d), the quasihy-
perbolic metric k on Z is given by

. 1
k(x,y) = 13f/752(fy(t))ds(t) (1)

when z,y € Z. Here the infimum is over all rectifiable curves v in Z with end points = and
y, and with 0Z := Z \ Z,
dz(w) := dist(w,07)

whenever w € Z.



We assume from now on that (X, d), (Y, d) are geodesic Gromov hyperbolic spaces.
Definition 2.6. A map ®: Y — X is a 7-rough isometry if

for all z,y € Y and ®(Y) is 7-dense in X, that is, for each x € X there is some z, € Y
such that d(z, ®(z;)) < 7.

Note that we do not require ¢ to be continuous nor do we require it to be injective or
surjective.

Lemma 2.7. Given a T-rough isometry ® : Y — X, there exists a 37-rough isometry
®~': X =Y such that for ally €Y and x € X we have

d(y, 27 (@) <21, dle,B(@(2)) <.

This seems to be well-known (see for example [BS]), but as we were not able to find a
published proof of this fact, we provide the proof here for the convenience of the reader.

Proof. We first construct ®~! : X — Y as follows. Given z € X, by the fact that
every point in X is within a distance 7 of ®(Y), we can find a point y, € Y such that
d(®(yz), ) < 7. We choose one such y, and set ®~!(z) = y,. Note that

d(®(@ (2)),2) = d(D(y,),2) < 7.

Moreover, for y € Y, we see that with the choice of z = ®(y), we have the point yg,) as a
point in Y that ®~! maps x to; then d(®(Ya(y)); ) < 7, and so

A HPY)),y) = dyaw),y) < T+ AP (Yay)), P(y) < 27.

For z,2’ € X, we have
d((b_l(x)v (I)_l(x/)) = d(yxvy:c’) <7+ d( yx)v q)(yx’))

<7+ d(P(yr),x) +d(2,2") + d(z', P(ya))

<37 +d(x, 2’

a(
D(ya),
).
Furthermore,

d(@ ™ (2), 7 (2")) = d(ya, yar) = d(@ (), P(yar)) — 7

>
> _d(q)(yx)a SU) + d(xv 33/) - d(xlv (I)(yz’)) -T
> d(z,2') — 37.

Finally, given y € Y, we set = ®(y) and note from the first part of the argument that
d(y, @' (z)) = d(y, @ (®(y))) < 2.

This concludes the proof. O



Remark 2.8. Note that if ® is a 7-rough isometry, then it is also a 37-rough isometry.
Hence, by replacing 7 with 37 if necessary, we will assume in the rest of the paper that
both ® and ®~! are 7-rough isometries with

d(y, @ (2(y) <7, d(z, (@7 (2))) < 7.

The density pZ as considered in Definition 2.3 is an example of a large class of densities,
called conformal densities, used to deform metrics on a given metric space, see for exam-
ple [KL, BKR]. A non-negative continuous function p on a metric space Z is a conformal
density or Harnack weight if there is a constant A > 1 such that whenever x,y € X with
d(z,y) <1, we have

lS@SA (2)

The nomenclature is justified by the fact that if p is a conformal density on (Z,d) and the
metric on Z is modified to a new metric d, according to the scheme given in Definition 2.3
with p playing the role of pZ, then the natural identity map Id : (Z,d) — (Z,d,) is a
(metrically) 1-quasiconformal map.

We are concerned with two densities,

pX(x) = emelom) - pl(y) = em=do),

We denote by X. and Y: the e-uniformizations of X and Y. We also assume that X is
roughly starlike with respect to xg, with constant M > 0.

Remark 2.9. Given a conformal density p on Z as in (2), and Z a geodesic space, we see
that whenever K € N and z,y € X such that d(z,y) < K, then

AK = p(y)
Note that by the triangle inequality,

X
Pe (.%’) _ e—a[d(a:,xo)—d(y,:co)] > e—ad(x,y) > e ¢

P (y)
when d(z,y) < 1. Similarly, we get

X
P} (@) _ —cld(ec0)—d(y.e0)] < o) < o2
pe ()

Thus both pX and pY satisfy (2) with A = e°.

As described above, a given roughly starlike Gromov hyperbolic space can be uni-
formized and then the resulting space can be equipped with its quasihyperbolic metric
(see (1) above for the definition of quasihyperbolic metric). The outcome may not be
isometric to the original Gromov hyperbolic space, but as the next lemma shows, it is
biLipschitz equivalent.



Lemma 2.10. Let (X,d) be a roughly starlike Gromov hyperbolic space and € > 0. Then
(Xe, k) is biLipschitz equivalent to (X, d).

In the above lemma, k is the quasihyperbolic metric with respect to the uniformized
space that is X.. Note that we do not assume any condition on ¢ apart from that it is
positive. The above lemma was proved in [BHK, Proposition 4.37] for the setting where
g < gg. For the convenience of the reader, we provide this short proof here.

Proof. Note that the quasihyperbolic distance k is given by

. 1
K(z,y) = inf L S )

where we took 7y to be arc-length parametrized with respect to the metric d on X with end
points x and y, and ds. is the arc-length metric with respect to the uniformized metric d..
By the construction of uniformization, we have that ds.(z) = e~*%*20) ds. On the other
hand, from Lemma 3.4 we know that d.(z) ~ e~¢%*20) Tt follows that

k(z,y) = inf la(y) = d(=,y)-

O

What about starting from a uniform space, quasihyperbolize it, and then
try to uniformize it; is there a choice of ¢ for which we get (biLipschitzly) the
original uniform domain back?

3 Results

In what follows, all curves are assumed to be parametrized by (hyperbolic) arclength unless
otherwise specified.

Lemma 3.1. Suppose that p: Y — (0, 00) satisfies the Harnack condition (2) with constant
A. Let L>1 and ~: [0,L] =Y be a curve with £(vy) = L, v(0) = a and y(L) = b. Choose
N € N such that N <L <N +1. Then

/pds ~ pla;), (3)
~ ;

where a; = ~v(iq) with q := # The comparison constant in (3) can be taken to be 2A2.

If L <1 we instead have fv pds ~ L - p(v(0)) with comparison constant A.



Proof. Note that 1 < g < 2. For 0 <i < N —1, let 7;: [0,¢q] — Y be the curve given by
~i(t) = v(ig+t). Note that ~; is parametrized by arclength because v is. Hence the length
£(7y;) of ; satisfies 1 < ¢(v;) < 2. By condition (2), it follows that

1
o) < [ pds < 24%(a).
i

Hence

N-1 N-1

> plai) ~ Z/ pds:/pds

i= = Vi Yy
with comparison constant 2A42. O

Remark 3.2. Lemma 3.1 holds in X as well.

Lemma 3.3. Suppose z,y € Y with d(z,y) > 1. Let L > 1 and v: [0,L] — Y be a curve
with v(0) =z and v(L) =y. Fix N € N such that N < L < N + 1. Then,

N—-1 N—-2
[oas= Y @) = (Z o <<1><az->>) )
v i=0 i=0

where q = % and a; = y(iq) for 0 < i < N. In the above, we adopt the convention that

Zij\;? pX(®(ag)) =0 if N = 1. The comparison constants depend solely on & and T.

Proof. Note that ap = z and ay = y. For 0 <i < N, let b; = ®(a;). By Lemma 3.1, we

have
N-1
JELE AT
v i=0

with comparison constant e?*. Now, pf(ai) = ¢~ %dW0:3) and, as ® is a T-rough isometry,
we have
d(yo, ai) — 7 < d(wo, b;) < d(yo, a;) + 7.

In particular,

~ pX(bi)
for all 7. Hence we have
N—1 N-1
> oY (ai) = D pX (2(ar)),
=0 =0

with comparison constant €. Hence
N—-1
Y X
[ ois= Y X (@)
v i=0

7



with comparison constant 2e2¢17¢,

The second comparability follows as d(ax_1,y) < 2, and so p) (ax_1) =~ p! (y) with
comparison constant e?¢, see Remark 2.9. O

Lemma 3.4. Let Y be a roughly starlike Gromov hyperbolic space and € > 0. Then for
each x € Y we have

5 (x) := dist(z, dYz) := dist(z, Yz \ Yz) ~ e~oU@w0) (4)

with comparison constant [M + e~ 1]esM.

Proof. We set dc(x) := infeepy. de(z, () for x € Y. Recall that Y is roughly starlike with
starlikeness constant M. Let x € Y and 7 : [0,00) — Y be a geodesic ray from yy so that
there is some ¢ € [0, 00) for which we have d(z,7v(t9)) < M. Let 8 be a geodesic with end
points x and 7(to); then the concatenation . of 7[j, o) and 3 gives us that

5.(z) < / o—ed(v-(D.w0) gy
Note that for points w € 3, d(x,y0) — M < d(w,yo) < d(z,yo) + M, and so

0
55(-%') < MeaMe—ad(Lyo) +/ e—at dt < MeaMe—ad(oc,yo) + 5_1€_Et0.

to

Moreover, to = d(v(to),yo) > d(yo, ) — M. Therefore
55($) < [M+€_1]€5M e—ad(yo,a:)_

On the other hand, if + is any path from x that leaves every compact subset of Y, then we
have

/ =l (0w0) gt > / % el gy _ €
¥ 0 -
It follows that
0e(2) =~ e‘sd(ziyo)’ (5)
with comparison constant [M + g*l}esM ) o

Lemma 3.5. Let x,y € Y such that d(xz,y) < 44 7, and let v be a Gromov hyperbolic
geodesic in'Y with end points x,y. Then

e (y) = de(z,y) ~ e~ U@W0) g (2, y) (6)

and 7y s a uniform curve with respect to the metric d. on Y., with uniformity constant
depending only on e, M, and 7.



Proof. If z,y € Y with d(z,y) < 4+ 7, then set 7 to be a Gromov hyperbolic geodesic
curve with end points x,y. Then the length ¢.(v) of v in the uniformized metric d. is given
by

0o(y) = / e—=d((00) g,
ol

and as
d(z,y0) —4 — 7 < d(z,y0) — d(z, 2) < d(yo, z) < d(z,y0) + d(z,2) < d(z,y0) +4+T.
for each z in the trajectory of v, we see that
0y )esd@90) =<4+ < g () < f(y)e@0) 2(4+T).

Observe that d(z,y) = £(y). On the other hand, with 5 any rectifiable non-geodesic curve
in Y with end points = and y, we must have ¢(5) > d(z,y), and so with to € [0,4(3)] the
smallest number for which d(x, 8(to)) = d(x,y), we get

to
/pz ds > / pY o B(t)dt > d(x, y)efsd(x,yo)efs(4+r)'
B 0
Therefore

(e, y)e MM ) > 4, (3) > d(a,y) = in / pY ds > d(a, y)e oUW =),
B

Hence  is a quasigeodesic in Yz, with constant depending only on € and 7. Moreover, from
Lemma 3.4 and the fact that d(x,y) < 4+ 7 we know that for z € ~,

b:(2) 2 eoUCW) > @m0 > 4 (),

that is, v is a uniform curve, with uniformity constants that depend only on M,e,7. [

From the above lemma, to show that Y. is a uniform domain it suffices to show that
z,y € Y can be connected by a uniform curve when d(x,y) > 4 + 7. This is the focus of
the remaining discussion.

Lemma 3.6. Let x,y € Y be such that d(x,y) > 2+ 7. Then

da(m’ y) = da(q)(x)a (I)(y))

In the proof of this lemma we use ®~! together with ®, see Lemma 2.7 regarding the
construction of &~



Proof. Let v: [0,L] — Y be any curve with v(0) = z, {(y) = L, and v(L) = y. Note that
L>2427>2 Wefix N Nsuchthat N <L < N+1. Let ¢ = %and,forOSz’SN,let
a; = v(iq) with b; = ®(a;). Then d(b;, bi+1) < d(ai, ai+1)+7 < 447, and so by Lemma 3.5
we have

de (i, bit1) S e =10om0) = pX (b))

with comparability constant depending only on €, 7, and M. It follows that

N-1 N-1
de(D(2), D(y)) < D delbisbis1) S D o2 (bi):
i=0 i=0

By Lemma 3.3, we have va 01 pX (b;) f pY ds. Infimizing over all paths v connecting z
to y yields

de(®(z),®(y)) < mf/ Yds = d-(z,y).

Next, note that d(®(x),®(y)) > d(x,y) — 7 > 2. Hence, for @ }(®(x)) = 2’ and
d~1(®(y)) =/ we can apply the same argument above to conclude that

de(2',y) S d-(P(z), D(y)).

It remains to relate d.(z',%') with d.(z,y). As d(®~ ! o <I>( ),z) < 7 for each z € Y,
it follows from Lemma 3.5 that do(z/,x) < e e¥@v0) and d.(y/,y) S e e—ed(y:w0). Moreover,

~

d(z,yo) > d(®(x),z9) — 7 and d(yjyg) d(®(y),zo) — T. Hence
de(z,y) < de(@,2) + de(2, ) + de(y,y) S de(@ (), B(y)) + e =PE)m0) 4 med(@W)zo),

Since d.(®(x), ®(y)) > de(z,y) —T > 2, we can apply Lemma 3.3 together with Lemma 3.1
to see that
de(®(z), B(y)) = e cUP@)m0) 4 —ed(®()20)

from which we obtain the desired conclusion
de(z,y) < de(®(x), 2(y)).
O

Theorem 3.7. Let (X,d) and (Y,d) be two complete Gromouv hyperbolic geodesic spaces,
and suppose that there exists a T-rough isometry ® :' Y — X. Let yo € Y and set zg =
D(yo). If X is roughly starlike with constant M > 0 with respect to xg, and € > 0 such that
(Xe,de) is a uniform domain, then (Ye,d.) is also a uniform domain.

10



Proof. Let z,y € Y. If d(z,y) < 4+ 7, then by Lemma 3.5 we know that the hyperbolic
geodesic connecting z to y is a uniform curve in (Y, d;). Therefore to verify that Y. is
a uniform domain, it suffices to consider only points z,y € Y with d(z,y) > 4+ 7. For
such x,y we have that d(®(x),®(y)) > 4. Let v be a uniform curve in X, with end points
®(x),®(y). Then £(y) > 4, and so we can apply Lemma 3.1 to . With a; = v(ig),
q= L/N, we see that
(i) = da(@(2), 0(0)) = [ o ds.
v

Here we have also used Lemma 3.6. Now applying Lemma 3.3 with ®~! : X — Y playing
the role of ® there, we obtain

N-2

de(z,y) = > pX (7 (@) + pL (271(®(y)))-

1=0

As d(y,® 1o ®(y)) <7 and d(z,® ! o ®(x)) < 7, we have that

de(x,y) = p (x) + pl (y +ZPE Har))

Note that d(a;, a;+1) < 2, and so d(®~(a;), ® 1 (a;1)) < 2+ 7. Similarly, d(x, ®~(az)) <
2 + 27, d(y,® Yan_2)) < 2+ 27. We set 31 to be the hyperbolic geodesic with end
points ®~!(as) and x, and set Sy_1 to be the hyperbolic geodesic with end points y and
<I>_1(aN 9). Fori=2,--- /N —2let 5; be the hyperbolic geodesic in Y with end points
®~1(a;) and ®'(a;y1). By Lemma 3.5 we have that

le(Bi) = p2 (@7} (ai)d(D7 " (a), @ H(air1)) < p2 (@7 (ai)),

and so
N—1
r,y) 2 Y L(Bi) = L(B),
i=0
where ( is the concatenation of the finitely many curves g;, i = 1,--- ;N — 1. Thus 8 is

a quasiconvex curve connecting x to y in Y. We now show that this curve is a uniform
curve, that is, it satisfies Condition 2 of Definition 2.4.

Let z € 8. If z € 81 U By_1, then the result follows from Lemma 3.5. Thus we may
assume that z € §; for some i € {2,--- | N —2}. Then by Lemma 3.4,

0c(2) = pi (2) = pZ (27" (1))
On the other hand, as d(a;, z0) — 7 < d(®(a;),y0) < d(ai, o) + 7, we have that

1

0c(2) = p2 (a;) = 8:(a;) 2 TLe(7[®(2), a).

>

11



A repeat of the arguments above also tell us that

C(y[®(x),ai)) = > pX(ay) = Y pX (@7 (a5)) 2 L=(Blx, 2).
7=0 j=0

Combining the above estimates, we obtain

0c(2) 2 Le(Blz, 2]).

References

[A1]

[A2]

[BBS]

IBSL]

[BHK]

[BuS]

H. Aikawa, Fquivalence between the boundary Harnack principle and the Carleson
estimate. Math. Scand. 103 (2008), no. 1, 61-76.

H. Aikawa, Potential-theoretic characterizations of nonsmooth domains. Bull. Lon-
don Math. Soc. 36 (2004), no. 4, 469-482.

A. Bjorn, J. Bjorn, and N. Shanmugalingam, Extension and trace results for dou-
bling metric measure spaces and their hyperbolic fillings. In preparation.

J. Bjorn and N. Shanmugalingam, Poincaré inequalities, uniform domains and
extension properties for Newton-Sobolev functions in metric spaces. J. Math. Anal.
Appl. 332 (2007), no. 1, 190-208.

M. Bonk, J. Heinonen, and P. Koskela, Uniformizing Gromov hyperbolic spaces.
Astérisque 270 (2001), viii+-99 pp.

M. Bonk, P. Koskela, and S. Rohde, Conformal metrics on the unit ball in Eu-
clidean space. Proc. London Math. Soc. (3) 77 (1998), no. 3, 635-664.

M. Bonk and O. Schramm, Embeddings of Gromouv hyperbolic spaces. Geom. Funct.
Anal. 10 (2000), no. 2, 266-306.

M. R. Bridson and A. Haefliger, Metric spaces of mnon-positive curvature.
Grundlehren der Mathematischen Wissenschaften 319, Springer-Verlag, Berlin,
1999. xxii+643 pp.

S. Buyalo and V. Schroeder, Elements of asymptotic geometry. EMS Monographs
in Mathematics, European Mathematical Society (EMS), Ziirich, 2007. xii+200
pp.

12



[CDP] M. Coornaert, T. Delzant, and A. Papadopoulos, Géométrie et théorie des groupes.
Les groupes hyperboliques de Gromov, Lecture Notes in Mathematics 1441,
Springer-Verlag, Berlin, 1990. x+165 pp.

[GeO] F.W. Gehring and B.G. Osgood, Uniform domains and the quasihyperbolic metric.
J. Analyse Math. 36 (1979), 50-74.

[GH] E. Ghys and P. de la Harpe, Le bord d’un espace hyperbolique. Sur les groupes
hyperboliques d’aprés Mikhael Gromov (Bern, 1988), 117134, Progr. Math. 83,
Birkh&user Boston, Boston, MA, 1990.

[Gr] M. Gromov, Hyperbolic groups. Essays in group theory, 75-263, Math. Sci. Res.
Inst. Publ., 8, Springer, New York, 1987.

[H] D. Herron, Conformal deformations of uniform Loewner spaces. Math. Proc. Cam-
bridge Philos. Soc. 136 (2004), no. 2, 325-360.

[HK]  P. Hjlasz and P. Koskela, Sobolev met Poincaré. Mem. Amer. Math. Soc. 145
(2000), no. 688, x+101 pp.

[KP] C. Kenig and J. Pipher, The h-path distribution of the lifetime of conditioned
Brownian motion for nonsmooth domains. Probab. Theory Related Fields 82
(1989), no. 4, 615-623.

[KT] C. Kenig and T. Toro, Free boundary reqularity for harmonic measures and Pois-
son kernels. Ann. of Math. (2) 150 (1999), no. 2, 369-454.

[KL] P. Koskela and P. Lammi, Gehring-Hayman theorem for conformal deformations.
Comment. Math. Helv. 88 (2013), no. 1, 185-203.

[LLMS] J. Lewis, P. Lindqvist, J. Manfredi, S. Salsa, Regularity estimates for nonlin-
ear elliptic and parabolic problems. Notes of the CIME course held in Cetraro,
2009. Edited by Ugo Gianazza and Lewis. Lecture Notes in Mathematics, 2045.
Fondazione CIME/CIME Foundation Subseries. Springer, Heidelberg; Centro In-
ternazionale Matematico Estivo (C.I.M.E.), Florence, 2012. xii4+247 pp

[Mar]  O. Martio, Definitions for uniform domains. Ann. Acad. Sci. Fenn. Ser. A T Math.
5 (1980), no. 1, 197-205.

[MS] O. Martio and J. Sarvas, Injectivity theorems in plane and space. Ann. Acad. Sci.
Fenn. Ser. A I Math. 4 (1979), no. 2, 383-401.

Address: University of Cincinnati, Department of Mathematical Sciences, P.O. Box 210025,
Cincinnati, OH 45221-0025, U.S.A.

13



E-mail:
J.L.: 1indqujy@ucmail.uc.edu
N.S.: shanmun@uc.edu

14



