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Abstract—In this paper we study the problem of regret
minimization in reinforcement learning (RL) under differ-
ential privacy constraints. This work is motivated by the
wide range of RL applications for providing personalized
service, where privacy concerns are becoming paramount.
In contrast to previous works, we take the first step towards
non-tabular RL settings, while providing a rigorous privacy
guarantee. In particular, we consider the adaptive control
of differentially private linear quadratic (LQ) systems. We
develop the first private RL algorithm, Private-OFU-RL
which is able to attain a sub-linear regret while guaran-

teeing privacy protection. More importantly, the additional

. . n 4,
cost due to privacy is only on the order of 1(15476/)2 given

privacy parameters £,5 > 0. Through this process, we
also provide a general procedure for adaptive control of
LQ systems under changing regularizers, which not only
generalizes previous non-private controls, but also serves
as the basis for general private controls.

I. INTRODUCTION

Reinforcement learning (RL) is a control-theoretic prob-
lem, which adaptively learns to make sequential deci-
sions in an unknown environment through trial and error.
RL has shown to have significant success for delivering
a wide variety of personalized services, including online
news and advertisement recommendation [1], medical
treatment design [2], natural language processing [3],
and social robot [4]. In these applications, an RL agent
improves its personalization algorithm by interacting
with users to maximize the reward. In particular, in
each round, the RL agent offers an action based on the
user’s state, and then receives the feedback from the
user (i.e., state information, state transition, reward, etc.).
This feedback is used by the agent to learn the unknown
environment and improve its action selection strategy.
However, in most practical scenarios, the feedback
from the users often encodes their sensitive information.
For example, in a personalized healthcare setting, the
states of a patient include personal information such as
age, gender, height, weight, state of the treatment etc.
Similarly, the states of a virtual keyboard user (e.g.,
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Google GBoard users) are the words and sentences she
typed in, which inevitably contain private information
about the user. Another intriguing example is the social
robot for second language education of children. The
states include facial expressions, and the rewards contain
whether they have passed the quiz. Users may not want
any of this information to be inferred by others. This
directly results in an increasing concern about privacy
protection in personalized services. To be more specific,
although a user might be willing to share her own
information to the agent to obtain a better tailored
service, she would not like to allow third parties to infer
her private information from the output of the learning
algorithm. For example, in the healthcare application, we
would like to ensure that an adversary with arbitrary side
knowledge cannot infer a particular patient’s state from
the treatments prescribed to her.

Differential privacy (DP) [5] has become a standard
mechanism for designing interactive learning algorithms
under a rigorous privacy guarantee for individual data.
Most of the previous works on differentially private
learning under partial feedback focus on the simpler
bandit setting (i.e., no state transition) [6]-[10]. For
the general RL problem, there are only a few works
that consider differential privacy [11]-[13]. More impor-
tantly, only the fabula-rasa discrete-state discrete-action
environments are considered in these works. However,
in real-world applications mentioned above, the number
of states and actions are often very large and can
even be infinite. Over the years, for various non-tabular
environments, efficient and provably optimal algorithms
for reward maximization or, equivalently, regret mini-
mization have been developed (see, e.g., [14]-[18]). This
directly motivates the following question: Is it possible
to obtain the optimal reward while providing individual
privacy guarantees in the non-tabular RL scenario?

In this paper, we take the first step to answer the
aforementioned question by considering a particular non-
tabular RL problem — adaptive control of linear quadratic
(LQ) systems, in which the state transition is a linear
function and the immediate reward (cost) is a quadratic
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function of the current state and action. In particular, our
main contributions can be summarized as follows.

« First, we provide a general framework for adaptive
control of LQ systems under changing regularizers
using the optimism in the face of uncertainty (OFU)
principle, which covers both the extreme cases —
non-private and fully private LQ control.

e« We then develop the first private RL algorithm,
namely Private-OFU-RL, for regret minimization
in LQ systems by adapting the binary counting
mechanism to ensure differencial privacy.

o In particular, we show that Private-OFU-RL satis-
fies joint differential privacy (JDP), which, infor-
mally, implies that sensitive information about a
given user is protected even if an adversary has
access to the actions prescribed to all other users.

« Finally, we prove that Private-OFU-RL achieves a
sub-linear regret guarantee, where the regret due to

; In(1/8)/4 . .
privacy only grows as — 72— with privacy levels
€,0 >0 implying that a high amount of privacy (low
€,0) comes at a high cost and vice-versa.

II. PRELIMINARIES
A. Stochastic Linear Quadratic Control

We consider the discrete-time episodic linear quadratic
(LQ) control problem with H time steps at every
episode. Let 2, €R™ be the state of the system, uj, € R?
be the control and ¢; € R be the cost at time h. An
LQ problem is characterized by linear dynamics and a
quadratic cost function

Tht1=Axp+ Bup +wp, chzxZQxh—i—uZRuh , (D
where A, B are unknown matrices, and @), R are known
positive definite (p.d.) matrices. The starting state z; is
fixed (can possibly be chosen by an adversary) and the
system noise wy € R™ is zero-mean. We summarize the
unknown parameters in © =[A, B]T e R(»Td)xn

The goal of the agent is to design a closed-loop control

policy 7 : [H] x R"® — R mapping states to controls
that minimizes the expected cost

Jr(0,z) :=E, [Zgzh 2)

for all h € [H] and z € R". Here the expectation is over
the random trajectory induced by the policy 7 starting
from state x at time h. From the standard theory for LQ
control (e.g., [19]), the optimal policy 7* has the form
m(x) = Kn(©)x , Vhe [H],
where the gain matrices K} (O) are given by
Kn(©)=—(R+B"P,(©)B)"'B"P,(©)A. (3)
Here the symmetric positive semidefinite matrices P, (©)
are defined recursively by the Riccati iteration

P(©)=Q+ AT P,1(0)A

Cp' | Th = CL'},

“4)

~A"Py11(©)B(R+B' Py11(0©)B) ' BT Py (0) A
with Pg1(0) := 0. The optimal cost is given by

H
J;; (@, .CE) = ITP}L (@)I +Zh/:}£E [’LU;LF/ Ph/+1 (@)wh/] . (5
We let the agent play K episodes and measure the per-
formance by cumulative regret.! In particular, if the true
system dynamics are ©, = [A,, B,], the cumulative
regret of the first K episodes is given by

K

R(K)=3"" (JP*(O 1) — J; (Ou21), (6)
where J{(O,,x,1) is the (expected) cost under an
optimal policy for episode k (computed via (5)), and
J" (O, xk,1) is the (expected) cost under the chosen
policy 7, at the start of episode k& (computed via (2)).
We seek to attain a sublinear regret R(K) = o(K),
which ensures that the agent finds the optimal policy
as K — oo. We end this section by presenting our
assumptions on the LQ system (1), which are common
in the LQ control literature [17].

Assumption 1 (Boundedness). (a) The true system dy-
namics ©, is a member of a set S :={0 =[A,B|":
1©|lp < 1 and [A, B] is controllable}. (b) There exist
constants C, Ca, Cp such that ||A.| < Ca < 1,
IB«l| < Cp <1, and |Q|| < C, ||R|| < C, (c) For all
k=1, ||zk 1l <1. (d) The noise wy,p, at any k>1 and
he[H], is (i) independent of all other randomness, (ii)
E [wg,n] =0, and (iii) ||wy, 1|, < Cw <1. () There exists
a constant ~y such that Cx +~vCpg 4+ C,, < 1.

B. Differential Privacy

We now formally define the notion of differential pri-
vacy in the context of episodic LQ control. We write
v=(v1,...,vK) € VX to denote a sequence of K unique
users participating in the private RL protocol with an RL
agent M, where V is the set of all users. Each user
vy, is identified by the state responses {Zy ni1}fne(m)
she gives to the controls {u,n}neim) chosen by the
agent. We write M (v) = {up ntre(x)nepm € (RY)FH
to denote the privatized controls chosen by the agent M
when interacting with the users v. Informally, we will
be interested in randomized algorithms M so that the
knowledge of the output M (v) and all but the k-th user
v, does not reveal ‘much’ about v;. We formalize in the
following definition, which is adapted from [20].

Definition 1 (Differential Privacy (DP)). For any € >0
and § €0, 1), an algorithm M :VE — (RO)EH 5 (g,5)-
differentially private if for all v,v' € VX differing on a
single user and all subset of controls UC (]Rd)K

P[M(v) e U] < exp(e)P M) eU] +6 .

>

We now relax this definition motivated by the fact that
the controls recommended to a given user v is only

'In the following, we add subscript k to denote the variables for the
k-th episode — state x5, control uy_ p,, noise wy 5 and cost ci .
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observed by her. We consider joint differential privacy
[21], which requires that simultaneously for all k, the
joint distribution on controls sent to users other than vy,
will not change substantially upon changing the state
responses of the user vy. To this end, we let M _(v):=
M (v)\{ur,n}nepm) to denote all the controls chosen by
the agent M excluding those recommended to vy.

Definition 2 (Joint Differential Privacy (JDP)). For any
>0 and § € (0,1, an algorithm M : VE — (R4)EH
is (g,0)-jointly differentially private if for all k € [K],
all v,v' €V differing on the k-th user and all subset of
controls U_j, C (Rd) (K_l)Hgiven to all but the k-th user,

PIM_(v) € U_i] < exp(e)P[M_p(v') € U_k] + 6 .

This relaxation is necessary in our setting since knowl-
edge of the controls recommended to the user vy can
reveal a lot of information about her state responses. It
weakens the constraint of DP only in that the controls
given specifically to v, may be sensitive in her state
responses. However, it is still a very strong definition
since it protects vy, from any arbitrary collusion of other
users against her, so long as she does not herself make
the controls reported to her public.

In this work, we look for algorithms that are (e, ¢)-
JDP. But, we will build our algorithm upon standard DP
mechanisms. Furthermore, to establish privacy, we will
use a different relaxation called concentrated differential
privacy (CDP) [22]. Roughly, a mechanism is CDP if the
privacy loss has Gaussian tails. To this end, we let M
to be a mechanism taking as input a data-stream x € X"
and releasing output from some range ).

Definition 3 (Concentrated Differential Privacy (CDP)).
For any p > 0, an algorithm M : X" — Y is p-zero-
concentrated differentially private if for all x,x' € X™
differing on a single entry and all o € (1,00),

Do (M(@)|IM() <p o,
where D, (M(z)||M(z')) is the a-Renyi divergence
between the distributions of M(z) and M(z').2

III. OFU-BASED CONTROL

Our proposed private RL algorithm implements the op-
timism in the face of uncertainty (OFU) principle in LQ
systems. As in [14], the key to implementing the OFU-
based control is a high-probability confidence set for the
unknown parameter matrix ©.,.

A. Adaptive Control with Changing Regularizers

We start with the adaptive LQ control with changing
regularizers. This not only allows us to generalize previ-
ous results for non-private control, but more importantly
serves as a basis for the analysis of private control in
the next section. We first define the following compact

2For two probability distributions P and Q on €, the a-Renyi
divergence Do (P||Q) := 15 In ([, P(x)*Q(x)1~ du).

notations. For a state and control pair at step h in episode
k, ie., zpp and ugp, we write 2, = (2] ,,ul )"
For any k> 1, we define the following matrices: Zj, :=

[sz/,h’]k’E[kfl],h’E[H]’ XESXI = [xz’,h’jtl]k’E[kfl],h’e[H]
and W := [wl;r’,h’]k/e[k—l],h’e[H]' For two matrices
A and B, we also define ||A||QB := trace(AT BA).
Now, at every episode k, we consider the following
ridge regression estimate w.r.t. a regularizing p.d. matrix
Hy € R(n+d)><(n+d):
O := argmin || X7 — Zk@“i“ + ||@||3{k
OcR(n+d)xn
= (Z{ Zi+ Ho) "' Z{ XP,
In contrast to the standard online LQ control [14], here
the sequence of matrices {Z, Zi}x>1 is perturbed by a
sequence of regularizers {Hj};>1. In particular, when
Hi =M\, we get back the standard estimate of [14]. In
addition, we also allow Z,j X7 to be perturbed by a
matrix Ly, at every episode k. Setting Vj, ::Z,;er. +Hj,
and Uy := Z,CT Xpext+ Ly, we now define the estimate
under changing regularizers { Hy }x>1 and {Ly}r>1 as
O =V, Uy . (7)
We make the following assumptions on the sequence of
regularizers {Hy},>1 and {Lg}i>1.
Assumption 2 (Regularity). For any a € (0,1], there

exist constants Amax, Amin and v depending on « such
that, with probability at least 1 — «, for all k € [K],

IHkll < Amaxs [ Hg | < 1/ Amin and | L]l -1 < v

Lemma 1 (Concentration under changing regularizers).
Under assumptions 1 and 2, the following holds:

Vae(0,1], P {HkEN: HG)*—@;C‘ " 26;.3(@)} <a,
i

where B () ::C’w\/Z ln(%)—!—nln det (I—|—)\;111DZ,IZ;C)—|—
vV Amax + V.

Lemma 1 helps us to introduce the following high
probability confidence set

Crla) := {G) : H@ - ék‘

<m@f. ®

We then search for an optimistic estimate O within this
confidence region Cy(«), such that

O € argmin JI (O, zk1),

9€eCL(a)NS

where J{(0©,x5,1) is the optimal cost when system
dynamics are © (can be computed from (5)). With the
estimate Oy, the agent then chooses policy 7 and selects
the controls recommended by this policy

Vi

(€))

e = () = Kn(Or)zin (10)
where K, (©y) can be computed from (3). We call this
procedure OFU-RL and bound its regret as follows.

Theorem 1 (Regret under changing regularizers). Under
Assumptions 1 and 2, for any « € (0, 1], with probability

487
Authorized licensed use limited to: Univ of Calif Davis. Downloaded on September 05,2021 at 04:20:32 UTC from IEEE Xplore. Restrictions apply.



at least 1 — q, the cumulative regret of OFU-RL satisfies

R(K) = O (HVE (VH + n(n+ d)in,,, +In(1/a)))

+0 (HVE (Vax +v) Vil + D, )
=In(1+HK/(n + d) Amin)-

Proof sketch. Inspired by [17], we first decompose the
regret under the following ‘good’ event: Ex (o) :={O. €
Cr(a) NS, ¥k € [K]}, which, by Assumption 1 and
Lemma 1, holds w.p. at least 1 — . Then, under the
‘good’ event, the cumulative regret (6) can be written as

K H
R(K) < Z - Zh—l(Ak’h + A;C)h + A;C’)h), where
A p=E

where 1y

min °*

[ h+1(®*7xk h+1)|]:k h] h+1(®*’$k h+1)

o= 2k nll 5, i E fok h+1 ”ﬁkyhﬂ|}—k,h} and

wni=0. ZthP“H H@lczkh’ )

Py h41
in which Pk7h = Ph(G)k) is given by (4) and Fj j
denotes all the randomness present before time (k, h).
Now, we are going to bound each term, respec-
tively. For the first two terms, we can show that both
of them are bounded martingale difference sequences.
Therefore, by Azuma-Hoeffding inequality, we have
Zk,h Ak,h = O(V KHS) and Zk,h A;c,h = O(\/ KH)
with high probability. We use Lemma 1 and the OFU
principle (9) to bound the third term as >_, , A}, =

O(H\/Eﬁk(a)\/lndet (I+AninZ) Zi)). To put ev-

min

erything together, first note from Assumption 1 that

Indet (I+X-+ 2 Z d)In|1
Plugging this into Sy («) given in Lemma 1 and the third
term above, yields the final result. O

We end the section with a proof sketch of Lemma 1.
Proof sketch (Lemma 1). Under Assumptions 1 and 2,
with some basic algebra, we first have

|0 =8 =16, - ZT Wi — Ly|, -
Vi k

1
N2 Wil e numryor + |2, + el

T T2

By Assumption 2, we have w.p. at least 1 — «, T3 <
VvV Amax + v. To bound 77, by the boundedness of wy, p,
in Assumption 1, we first note that each row of the matrix
Wi is a sub-Gaussian random vector with parameter C',.
We then generalize the self-normalized concentration
inequality of vector-valued martingales [23, Theorem 1]
to the setting of matrix-valued martingales. In particular,
we show that w.p. at least 1 — a,

Ti < Cun/21n (1/a) + nlndet(T+A,5 2] Z4).

Combining the bounds on 77 and 7> using a union bound
argument, yields the final result. O

HK(1 +7)2> .

B. Private Control

In this section, we introduce the Private-OFU-RL al-
gorithm (Alg. 1). At every episode k, we keep track of
the history via private version of the matrices Z,;r Z
and Z] X} To do so, we first initialize two pri-
vate counter mechanisms B; and B,, which take as
parameters the privacy levels €, §, number of episodes
K, horizon H and a problem-specific constant v (see
Assumption 1). The counter By (resp. Bs) take as in-
put an event stream of matrices {Y°,_; zk.n 2} j, re(K]
(resp. {321, Zkh T 41 Yee[k])» and at the start of each
episode k, release the private version of the matrix
Z,;r Zy, (resp. ZkT X7, which itself is a matrix of the
same dimension. Let T’ ; and 75 j denote the privatized
versions for Z;] Z, and Z;] X', respectively. For some
7 > 0 (will be determined later), we define Vj, :=T1 401
and Uy, :=1T5 ;. We now instantiate the general OFU-RL
procedure under changing regularizers (Section III-A)
with these private statistics. First, we compute the point
estimate O, from (7) and build the confidence set Cy, ()
from (8). Then, we choose the most optimisitic policy
7, w.r.t. the entire set Cx(a) from (9) and (10). Finally,
we execute the policy for the entire episode and update
the counters with observed trajectory.

We now describe the private counters B; adapting
the Binary countmg mechamsm of [24]. First, we write
Yili,g] = S hZj, to denote a partial sum
(P-sum) involvmg the state-control pairs in episodes
1 through j. Next, we consider a binary interval tree,
where each leaf node represents an episode (i.e., the
tree has k — 1 leaf nodes at the start of episode k),
and each interior node represents the range of episodes
covered by its children. At the start of episode k, we
first release a noisy P-sum ¥[i,j] corresponding to
each node in the tree. Here X;[i,j] is obtained by
perturbing both (p,q)-th and (¢,p)-th, 1 < p < g <
(n+d), entries of ¥1[é,j] with i.i.d. Gaussian noise
Cp.g ~N(0,0%).3 Then Ty, is computed by summing
up the noisy P-sums released by the set of nodes that
uniquely cover the range [1,k—1]. Observe that, at the
end each episode, the mechanism only needs to store
noisy P-sums required for computing private statistics
at future episodes, and can safely discard P-sums that
are no longer needed. For the prlvate counter Bg, we
maintain P-sums 357, j] = Zh | Zkon 2y, With
i.i.d. noise N(0,03) and compute the private statistics
T5 ;, using a similar procedure. The noise levels o1 and
o9 depends on the problem intrinsics (K, H, ) and
privacy parameters (¢, ). These, in turn, govern the
constants Apax, Amin, ¥ appearing in the confidence set
Ci () and the regularizer 7). The details will be specified
in the next Section as needed.

3This will ensure symmetry of the P-sums even after adding noise.
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Algorithm 1: Private-OFU-RL

Input: Number of episodes K, horizon H,
privacy level >0, § € (0, 1], constants -,
Cly, confidence level a € (0, 1]
1 initialize private counters 3; and By with
parameters K, H, e, 8,7~
2 for each episode k=1,2,3,..., K do
compute private statistics T ; and T5 j,
construct confidence set Cy(«)
find Oy € argmingec, (ayns J1 (0, zk,1)
for each step h=1,2,...,H do
execute control uk,h:Kh((:)k)xk,h
observe cost ¢y ; and next state Ty 41

- RN B Y )

H T H T
9 send ), Zk,h 2y, p, @nd Y e Zkh T g 1O
the counters 1 and Bs, respectively

IV. PRIVACY AND REGRET GUARANTEES

In this section, we show that Private-OFU-RL is a JDP
algorithm with sublinear regret guarantee.

A. Privacy Guarantee

Theorem 2 (Privacy). Under Assumption 1, for any € >0
and 0 € (0, 1], Private-OFU-RL is (¢, d)-JDP.

Proof sketch. We first show that both the counters B
and By are (¢/2,6/2)-DP. We begin with the counter
Bi. To this end, we need to determine a global upper
bound A; over the L-sensitivity of all the P-sums
31[i, j]. Informally, A; encodes the maximum change
in the Frobenious norm of each P-sum if the trajectory
of a single episode is changed. By Assumption 1, we
have ||z 5| <1+, and hence A; = H(1+4~)?. Since
the noisy P-sums %[, ;] are obtained via Gaussian
mechanism, we have that each X[, j] is (A%/20%)-
CDP [22, Proposition 1.6]. We now see that every
episode appears only in at most m:= [logy K| P-sums
3[i,7]. Therefore, by the composition property, the

whole counter B; is (mA%/20%)-CDP, and thus, in

m 2 m 2
turn, ( 2?%1 +2 2?‘%1 In (2), g)-DP for any 6 >0 [22,

Lemma 3.5]. Now, setting 0% ~ 8mA?In(2/4) /2, we
can ensure that By is (¢/2,6/2)-DP. A similar analy-
sis yields that counter Bs is (¢/2,5/2)-DP if we set
o3 ~8mA3In(2/8)/e?, where Ag:=H(1+7).

To prove Theorem 2, we now use the billboard
lemma [25, Lemma 9] which, informally, states that
an algorithm is JDP under continual observation if the
output sent to each user is a function of the user’s
private data and a common quantity computed using
standard differential privacy. Note that at each episode
k, Private-OFU-RL computes private statistics 77
and 75, for all users using the counters B; and Bs.
These statistics are then used to compute the policy .
By composition and post-processing properties of DP,

we can argue that the sequence of policies {7y }rc|x)
are computed using an (g, d)-DP mechanism. Now, the
controls {ug,x}nem) during episode k are generated
using the policy 7, and the user’s private data xy ; as
U, h = Tk,h(Tk,n). Then, by the billboard lemma, the
composition of the controls {ug n}re(x)ne(m) sent to
all the users is (¢, 0)-JDP.

B. Regret Guarantee

Theorem 3 (Private regret). Under Assumption 1, for
any privacy parameters ¢ > 0 and § € (0,1], and
for any a € (0,1], with probability at least 1 — a,
Private-OFU-RL enjoys the regret bound

R(K) = O(H**VE (n(n-+d) n K +n(1/a)) )
1n(1/5)1/4>

cl/2
Theorems 2 and 3 together imply that Private-OFU-RL
can achieve a sub-linear regret under (&, §)-JDP privacy
guarantee. Furthermore, comparing Theorem 3 with The-
orem 1, we see that the first term in the regret bound
corresponds to the non-private regret, and the second
term is the cost of privacy. More im})ortantly, the cost
due to privacy grows only as 1“(15{7‘214 with ¢, d.

Proof sketch (Theorem 3). First note that the private
statistics 77 can be computed by summing at most
m=[log, K] noisy P-sums X [¢, j]. We then have that
the total noise IV in each T} j is a symmetric matrix
with it’s (p,¢)-th entry, 1 < p < ¢ < (n+d), being
iid. N(0,mo?). Therefore, by an adaptation of [26,
Corollary 4.4.8], we have w.p. at least 1—a/2K,

INk| <A =01 vim (4VnFd+/BIn(AK] ) )

Similarly, the total noise Ly, in each T3 j, is an (n—+d) x
n matrix, whose each entry is i.i.d. N'(0,mo3). Hence
||Lk||12; /mo3 is a x2-statistic with n(n+d) degrees of
freedom, and therefore, by [27, Lemma 1], we have w.p.
at least 1—a /2K,

Lkl <o2v/m <\/2n(n+d)+\/4 ln(2K/a)) .
By construction, we have the regularizer Hy = Ny +nl.
Setting n = 2A, we ensure that Hy is p.d., and hence
Lkl < A~Y/2||Lg|lp. Then, by a union bound
argument, Assumption 2 holds for A\ =A, Apax=3A
and v = o2y/m/A <\/2n(n+d)+\/4ln(2K/a))_ Ap-
propriating noise levels 01,09 from Section IV-A, the
regret bound now follows from Theorem 1. O
V. CONCLUSION

We develop the first DP algorithm, Private-OFU-RL,
for episodic LQ control. Through the notion of JDP, we
show that it can protect private user information from
being inferred by observing the control policy without
losing much on its regret performance. We leave as
future work private control of non-linear systems [16].

+O(H3/2\/EIHK(n(n+d)+ an/a)
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