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Abstract—Seamless Internet access under extreme user mo-
bility is highly demanded on high-speed trains and vehicles.
However, existing mobile networks (e.g., 4G LTE and 5G NR)
cannot reliably satisfy this demand, with a 5.5%–12.6% handover
failure ratio at 200–350 km/h. A root cause is that, the 4G/5G
handovers have to balance the exploration of more measurements
for satisfactory handover and the exploitation for timely handover
before the fast-moving user leaves the coverage.

We design BaTT, an online learning solution for reliable han-
dovers in extreme mobility. BaTT decomposes the exploration-
exploitation tradeoff into two multi-armed bandit problems.
It uses ε-binary-search to optimize the threshold of a serving
cell’s signal strength to initiate the handover with O(log J log T )
regrets. It further adopts opportunistic Thompson sampling
to optimize the sequence of target cells measured for reliable
handovers. BaTT can be implemented using the recent Open
Radio Access Network (O-RAN) framework in operational 4G
LTE and 5G NR. Our evaluations over a dataset from operational
LTE networks on the Chinese high-speed rails show a 29.1%
handover failure reduction at the speed of 200-350 km/h.

Index Terms—Mobile network, 5G and beyond, extreme mo-
bility, reliability, online learning, multi-armed bandit

I. INTRODUCTION

The wide adoption of high-speed rail has made extreme
mobility a reality. Today, passengers on the high-speed train
want always-on Internet access at up to 350km/h. A com-
mon solution is mobile networks, such as 4G LTE and 5G
NR. However, 4G/5G struggles to retain reliable services in
extreme mobility. Empirical studies from real high-speed rail
show the handover failure ratio ranges from 5.5% to 12.6%,
which is 2× compared to low-mobility scenarios (§III-A).

A challenge for reliable handovers in extreme mobility is the
exploration-exploitation tradeoff. To decide the next cell a user
should migrate to, the serving cell asks the user to measure
available candidate cells (Figure 1). But in extreme mobility,
the fast-moving user may leave the serving cell’s coverage be-
fore initiating a handover, thus losing network services. It has
to balance the need to take more measurements (exploration)
for a satisfactory decision, and the demand to make a timely,
successful handover (exploitation) before the fast-moving user
leaves its coverage. The optimal tradeoff depends on diverse
factors, such as the train’s speed, wireless qualities, multi-path
fading, Doppler effect, and the external environment change.
A static, manually-crafted, or offline handover decision policy

Serving cellNeighboring cell(s) Mobile user

Measure more cells?

Yes

Policy-driven target 
cell decision

No

Handover to target cell 

Disconnect from serving cell, connect to target cell

Measure neighboring cells

Serving/neighboring cell measurements

Fig. 1: Wide-area mobility management in 4G/5G today.
will fall short in responsively optimizing handovers in such a
dynamic environment.

This paper studies if online learning can help automate the
optimization of reliable handovers in a dynamic environment.
The exploration-exploitation dilemma has been extensively
studied in online learning. It is provably responsive, adaptive,
and robust to the dramatic environmental changes in extreme
mobility. We show online learning can help enhance handover
reliability but be customized for extreme mobility to become
a practical solution. In §III, we formulate this exploration-
exploitation tradeoff as two distinct problems:

1) When to initiate the exploration: For each user, the
serving cell should first identify an optimal threshold to
trigger the handover and measurement procedure.

2) What target cell sequence to explore: With the threshold,
the serving cell determines when and in what sequence
to take a measurement, and when to execute a handover.

This decomposition is aligned with the readily-available mech-
anisms in 4G/5G, thus facilitating implementations in reality.

We devise BaTT, an online learning-based solution to both
problems (§IV). To determine when to start the measurements,
we formulate the problem as a J-armed stochastic bandit
problem over T rounds, and solve it with ε-Binary-Search-First
with O(log J log T ) regret. To solve what sequence of target
cells to measure, BaTT formulates it as an opportunistic bandit
with side observations. We adopt opportunistic Thompson
sampling to solve this problem with O(log T ) regret. Both
algorithms can be realized under the recent O-RAN framework
[1] (§V). To our best knowledge, BaTT is the first use case
in O-RAN for reliability rather than other performance QoS
metrics, thus complementing existing use cases [2], [3]. Our
experiments in §VI with an operational LTE dataset on the
Chinese high-speed trains show BaTT reduces 29.1% han-
dover failures compared to the 4G/5G handover policies and
has lower regret than traditional multi-armed bandit policies.978-0-7381-3207-5/21/$31.00 ©2021 IEEE
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User speed (km/h) 200 300 350
Total handover failures 5.5% (100%) 12.1% (100%) 12.6% (100%)

• Due to the serving cell 4.9% (90.0%) 9.3% (77.1%) 11.0% (87.3%)

• Due to the target cell 0.6% (10.0%) 2.8% (22.9%) 1.6% (12.7%)

TABLE I: Handover failures in extreme mobility

II. WIDE-AREA MOBILITY MANAGEMENT IN 4G/5G

The 4G LTE and 5G NR mobile networks offer wide-area
mobility support for ubiquitous network access. They deploy
base stations to cover geographical areas. Each base station
may run multiple cells under various frequency bands (using
separate antennas) with different coverage and performance.
Each user is primarily served by a single cell, and migrated
to another (handover) if it leaves the current cell’s coverage.

Figure 1 shows the handover in 4G/5G based on the radio
resource control (RRC) protocol [4], [5]. When a user connects
to a serving cell, it receives a list of neighboring cells. The
user can measure these cells’ radio quality sequentially. If
any neighboring cell satisfies the standard triggering criteria
(e.g., its signal strength is offset better than the serving cell’s),
the user will report this measurement to the serving cell. The
serving cell will then run its local handover policy to decide if
more neighboring cells should be measured, whether handover
should begin, and which target cell the user should hand over
to. If the serving cell chooses to take new measurements, it
will provide the user with a new cell list. If it chooses to
hand over, the serving cell will send the handover command
with the target cell’s identifier to the user. The user will then
disconnect from the serving cell and connect to the target cell.

III. PROBLEM AND FORMULATION

A. Is 4G/5G Reliable in Extreme Mobility?

The current 4G/5G handover is primarily designed for static
and low-mobility scenarios. Recent studies [6], [7] have shown
that fast-moving users suffer from non-negligible handover
failures, thus frequently losing Internet access. Table I shows
the LTE handover failure ratios from a Chinese high-speed
train from Beijing to Shanghai based on the dataset from [7].
On average, 5.5%, 12.1% and 12.6% handovers fail at the train
speed of 200km/h, 300km/h and 350km/h, respectively.

By analyzing the LTE signaling messages, we find the late
handover causes 77.1%–90.0% of these failures, i.e., by the
user not receiving the handover command from the serving
cell by the time it leaves the serving cell?s radio coverage. The
remaining failures occur when the user receives the handover
command from the serving cell but fails to connect to the new
target cell, i.e., the selected target cell is unreliable.

B. New Challenge: Exploration-Exploitation Trade-off

Frequent handover failures in extreme mobility arise from
the dilemma between exploration (more measurements for
satisfactory target cell selection) and exploitation (fast mea-
surements for timely handover). As explained in §II, the
serving cell relies on the user to measure and report the cells’
signal strengths for the handover decision. The moving user
must deliver these measurements before it leaves the serving

cell?s radio coverage to retain Internet access. But finding a
satisfactory target cell may require scanning and measuring
all available cells sequentially. As shown in Figure 2a, on
average, a user on a Chinese high-speed train measures 16
different neighboring cells before making a handover decision.
If the user is moving fast, it may not be able to deliver all its
measurements and trigger a handover before leaving its serving
cell’s radio coverage (resulting in a late handover failure).
Reducing the number of cells to measure can mitigate late
handovers, but risks missing better cells and therefore com-
mitting a handover to an unreliable target cell (thus failures) 1.
This exploration-exploitation dilemma only becomes apparent
with the recent emergence of extreme mobility.

C. Problem Formulation

As shown in §III-B, a fast-moving user has a short but
critical time window to conduct measurements for handover. It
should use this period effectively by measuring the right target
cells before losing the service. For reliable handover, we must
answer two questions: 1) When should measurement start? 2)
what is the right sequence of target cells to measure?

To answer both questions, we formulate the reliable han-
dover problem as follows. Consider a serving cell with K
neighbor cells. Given a set of mobile users t = 1, . . . , T , our
goal is to minimize the handover failure ratio for all T users.
When should the measurements for handover begin? As
a user leaves the serving cell’s coverage, its signal strength
weakens. So the user’s critical time starts when the user-
perceived signal strength of the serving cell is below a certain
threshold. In 4G/5G, this threshold has been defined (A2 in
[4], [5]) and configurable for each cell. Manually tuning this
threshold is a hard task. On one hand, it should be high enough
so that 1) handover failure will not often occur due to weak
serving cell; and 2) the user has sufficient time to measure
neighboring cells to obtain a good target cell for handover.
On the other hand, this threshold should also be low enough
to avoid “ping-pong” loops (where a user oscillates between
two cells due to signal fluctuations) and a false start (when a
desirable target cell is too far away to measure appropriately).

To automatically learn this threshold, we formulate this
“when” question as the closest sufficient threshold identifi-
cation problem. We consider discrete signal strengths stan-
dardized in 4G/5G [4], [5]. Given a serving cell, let {Zj} =
Z1, . . . Zj , . . . , ZJ be the sequence of J serving cell signal
strength observed by a mobile user. Let [J ] denote the list
{1, 2, . . . , J}. Let the random variable f(Zj) indicate a han-
dover failure event due to the serving cell’s signal strength
Zj . Note f(Zj) ∈ {0, 1}, where 0 indicates handover failure
and 1 indicates success. The probability of a handover failure
due to signal strength Zj is rj = P[f(Zj) = 0]. Let R be

1Although high-speed trains operate on the fixed route at a predictable speed,
the available candidate cells at each time are not always fixed or predictive.
This is because each cell’s quality varies over time [6], [7] and depends
on various unknown factors like operators’ cell breath (for energy saving),
multi-path fading, external environmental changes, to name a few. Without
runtime measurements, simply caching or predicting the target cells will risk
missing better cells and causing handover failures.
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Fig. 2: Characteristics of LTE handovers over Chinese high-speed train.

the given serving cell handover failure tolerance level. We
assume that as the serving cell’s signal strength Zj increases,
the handover failure probability rj monotonically decreases.
This is coherent with the physical laws and empirical results
from the high-speed rail dataset in Fig. 2b. Our goal is to
find a threshold M ∈ {Zj} that is the smallest Zj such that
rj ≤ R. That is, M is the lowest signal strength at which the
probability of handover failure is no larger than R.
What target cells to measure? Given threshold M , the
next issue is to decide the sequence of target cells to measure
and the time to stop measurement for handover. Consider
a user t. Once the measurement procedure is triggered, the
serving cell starts a sequence of measurements of neighboring
cells indexed by n. Whether to take more measurements or
to execute a handover is the central exploitation-exploration
dilemma faced by the serving cell. This tradeoff may vary
from user to user, depending on their movement speed.

At the n-th measurement, let It,n be the index of the target
cell to measure. In 4G/5G, the user can observe the serving
(target) cell’s signal strength Yt,n (XIt,n ). Let Xbest be the
strongest target cell observed thus far. After n measurements,
if the handover is decided, the user will migrate to the best
target cell with signal strength Xbest. We define g(X) as
the handover failure caused by the target cell with signal
strength X , where g(·) and f(·) may be distinct functions. The
handover failure probability of user t is E[f(Yt,n)g(Xbest)]
when the handover happens after n measurements and Xbest

is the best target cell. In general, Yt,n decreases with n as the
mobile user is moving away from the serving cell. Therefore,
the tradeoff is whether to make more measurements, which
improves Xbest, but at the risk of decreasing Yt,n. Today, the
typical practice is to measure target cells following a fixed
sequence and trigger actual handover when Xbest is greater
than or equal to Yt,n plus an offset quantity determined by
the network provider [4], [5]. The objective of the “what
sequence” question is to decide the best order of target cell
measurement and when to stop measurement for handover.
Online or offline learning? Both online learning and
offline learning may solve the “when” and “what” problems.
We note that online and offline algorithms have fundamentally
different assumptions concerning whether there exists suffi-
cient prior data to learn an optimal policy. In online learning,
we do not assume such prior information. The algorithm

Measure serving cell

Serving cell YNeighboring cell X

Measurements: Yt,n

Yt,n>M?

t-th mobile user

Yes

Measure neighboring cell I(t,n)
Measurements: (XI(t,n), YI(t,n))

Measure more cells?

Yes

Choose target cellNo
Handover to target cell

(arm pulling) 
Disconnect from serving cell, connect to target cell

No

Fig. 3: Workflow of BaTT in extreme mobility.

adapts to learned information and adapts to the optimal base
station selection (quickly). For comparison, offline learning
requires sufficient information to learn a good policy for a
fixed environment. The cellular networks experience frequent
dynamics and configuration changes. In this situation, online
learning can much better capture such dynamics.

IV. BATT: RELIABLE HANDOVER VIA BANDITS

We show how online learning helps solve both problems for
reliable handovers in extreme mobility. Our solution, BaTT,
explores multi-armed bandit algorithms. Compared to other
learning algorithms, bandit algorithms are lightweight and
responsive for fast-moving users. Moreover, bandit algorithms
are highly adaptive to environmental dynamics, network con-
figuration changes, and user movement variations.

A. When: ε-Binary-Search-First

Recall that our objective is to find the handover threshold
M , i.e., the lowest signal strength at which the probability of
serving cell handover success is no smaller than R. Clearly,
exploring each value of the J signal strengths is expensive. In-
stead, we should leverage the monotonicity property between
the signal strength and handover failure rate.

To this end, we propose the ε-Binary-Search-First based
on multi-armed bandit algorithms. We provide an exploration
parameter 0 ≤ ε ≤ 1. Each arm j ∈ [J ] is associated with a
random variable f(Zj) where E[f(Z1)] ≤ E[f(Z2)] ≤ · · · ≤
E[f(ZJ)]. The goal is to identify the optimal threshold:

M = arg min
Zj

{E[f(Zj)] ≥ R} (1)

2021 IEEE/ACM 29th International Symposium on Quality of Service (IWQOS)

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on September 05,2021 at 04:31:44 UTC from IEEE Xplore.  Restrictions apply. 



Algorithm 1 shows how ε-Binary-Search-First works. In ex-
ploration, it pulls the arms in a binary search manner (Binary-
Arm-Search subroutine). Exploration lasts ≤ εT rounds. In
exploitation, Algorithm 1 identifies the estimated best arm and
pulls it for the remainder of the game.

Algorithm 1 ε-Binary-Search-First
Input: J , T , R, 0 ≤ ε ≤ 1

1: Explore: Binary-Arm-Search(J ,b εT
log J c,1,J ,R)

2: Select arm j such that r̂j ≥ R and j ∈ arg mini∈[J] |r̂i − R|
3: for remaining rounds n ≤ T do
4: Play arm j
5: end for
6: M = arg minZj {E[f(Zj)] ≥ R}

Binary-Arm-Search(J , P , R, Start, End)

1: if End ≥ Start then
2: Play arm j = dStart + End−Start

2 e for a total of P times. Denote the
empirical mean reward r̂j .

3: if r̂j ≥ R then
4: Return Binary-Arm-Search(J , P , Start, j − 1, R)
5: else
6: Return Binary-Arm-Search(J , P , j + 1, End, R)
7: end if
8: end if

Algorithm 2 Opportunistic Thompson Sampling (TS)
Input: t,K, M̂ , current TS posterior

1: n = 0, Xbest = 0, Yt,n =∞, B = ∅
2: if Xbest < M̂ then
3: if Yt,n > Xbest then
4: Measure target cell It,n using TS, where It,n 6∈ B.
5: Receive (XIt,n , Yt,n); Update()
6: else
7: Handover to Xbest
8: end if
9: else if Yt,n ≥ M̂ + c then % “free” observation

10: Measure target cell It,n using TS where It,n 6∈ B.
11: Receive (XIt,n , Yt,n); Update()
12: else
13: Handover to Xbest
14: end if

def Update()
15: if XIt,n > Xbest then
16: Xbest ← XIt,n
17: end if
18: n← n+ 1, B = B ∪ It,n. Update TS posterior distribution of arm It,n

B. What Sequence: Opportunistic-TS

Consider a mobile user t with a given threshold M̂ decided
by the ε-Binary-Search-First algorithm. Once the handover
measurement is triggered by Yt,0 < M̂ , our goal is to
determine the optimal sequence of target cells to measure.

We propose an opportunistic Thompson sampling (TS)
for extreme mobility. As empirically validated in Fig.2c,
changes in signal strength over consecutive measurement are
bounded. We assume there exists some positive constant c
such that |Yt,n − Yt,n+1| < c. This ensures the serving cell
signal strength does not change quickly between consecutive
measurements. Under this assumption, we gain “free” mea-
surements when the best target cell so far is good enough
(Xbest ≥ M̂ ) and the serving cell is still strong enough
(Yt,n ≥ M + c). So the next measurement is risk-free.
Therefore, we can find the best target cell and then use the
“free” observations to satisfy the need for exploration.

Algorithm 2 shows BaTT’s opportunistic TS. It requires the
number of available neighboring cells K, the user index t, and
the threshold M̂ from ε-Binary-Search-First. If the best target

cell Xbest is not satisfactory (Xbest < M̂ ), then Algorithm 2
compares the serving cell to Xbest (Line 2). If Yt,n > Xbest,
then the algorithm continues to measure the best unmeasured
target selected using TS. If Yt,n < Xbest, the user t handovers
to Xbest. Otherwise, if Xbest is satisfactory and Yt,n ≥ M̂ +
c, then the algorithm can make “free” measurements. Then
Algorithm 2 explores an unmeasured target selected using TS.

C. Regret Analysis

When: ε-Binary-Search-First. To analyze Algorithm 1, we
first define its regret. Let NT (j) be the number of times a
threshold setting j is pulled under a given policy Γ. We define
the regret over T rounds as

RΓ(T ) = T − E[NT (a∗)] =
∑
a6=a∗

E[NT (a)]

Define ∆ = rM − R, D = minj |rM − rj |, and d =
minj |rj − R|, and δ = min(∆, D/2), where rM is the
probability associated with the signal strength M . Then the
regret bound is as follows (with proofs available in [8]):

Theorem 1. Algorithm 1 achieves regret bounded by

R(T ) ≤ log J

(
log 6δ2TJ

2δ2
− log log J

2δ2
+

1

2δ2
+ 1

)
when d <

√
log(T log J)

2P , where d is the minimum absolute dis-
tance between a searched arm and R, and δ = min(∆, D/2).

What Sequence: Opportunistic-TS. We note the exact
regret of the general “what sequence” is difficult to evaluate.
The reason is Yt,n is an unknown and non-stationary process
over n. A simpler case is where the user is only allowed to
measure one target cell and then handover to it. In this case,
Opportunistic-TS reduces to the classic Thompson Sampling
with O(log T ) regret. We note the ability to select among
multiple target cells should yield better performance than
classic TS in general. This is empirically validated in §VI.

V. SOFTWARE-DEFINED BATT IN 4G/5G WITH O-RAN

Traditionally, most 4G/5G handover policies are hard-coded
in base stations’ proprietary firmware or dedicated hardware,
making it hard to adopt new policies like BaTT. Fortunately,
the recent advances in O-RAN framework [1] makes it possi-
ble for software-defined, learning-driven handover customiza-
tions. We next sketch an O-RAN-based BaTT implementation.
An O-RAN primer: Initiated in 2018 by global telecom
industry, O-RAN offers open standards for infrastructure ven-
dors and operators to quickly customize their mobile network
functions. Figure 4 shows its framework (adopted from the
standards [9], [10]). O-RAN provides built-in support for
machine learning modules to empower the network intelli-
gence. It introduces the software-defined near-real-time RAN
intelligent controller on top of the control and user planes.
The intelligent controller reads the radio information base, runs
operator-customized AI algorithms, and adapts the control and
user-plane operations. It can host diverse applications such
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O-RAN Radio Unit (PHY-low)

O-RAN Data Unit (PHY-high/MAC/RLC)

O-RAN Control Plane (RRC) O-RAN User Plane (PDCP)

Radio Information Base

BaTT TS-Sampling
Mobility management

BaTT ε-binary search
Interference 
management

Load balancing

Rounds, cells, signal strengths and failure ratio

Serving cell threshold 
Cell sequence
and handover

3rd-party apps

…

O-RAN Near-Real Time Intelligent Controller 
O-RAN module BaTT module Control loop

Fig. 4: BaTT implementation via O-RAN.
(a) Reliability with M=-120 dBm (b) Regret with M=-120 dBm

Fig. 5: BaTT and other algorithms with c=4.

as mobility management, load balancing, radio interference
management, and 3rd-party applications from cloud and edge.
BaTT implementation with O-RAN: BaTT can be realized
as an extension of 4G/5G mobility management in O-RAN’s
near-real-time intelligent controller. As shown in Figure 4,
BaTT adds two modules in existing mobility management:
the ε-binary-search in §IV-A, and the opportunistic-TS in
§IV-B. Both algorithms’ inputs are available from the 4G/5G
RRC signaling messages, i.e., RRC measurement report
and RRC connectivity reconfiguration. At runtime, O-RAN
collects these messages from its control-plane central point and
uploads them to the radio information base. Given these inputs,
BaTT runs Algorithm 1 to output the serving cell’s threshold
(i.e., A2 in 4G/5G RRC [4], [5]). This threshold is passed
to the opportunistic-TS (Algorithm 2). If Algorithm 2 decides
to explore more cells, it notifies O-RAN to issue an RRC
connectivity reconfiguration message to the user device with
the new cells to measure. Otherwise, Algorithm 2 notifies O-
RAN to issue a handover command to the end device.
Interoperability with other network functions: As shown
above, BaTT reuses the standard RRC procedures for measure-
ments (exploration) and handover (exploitation). In practice,
these procedures are shared by other functions such as the
radio interference management and load balancing. Additional
measurements by other functions can prolong BaTT’s explo-
ration phase and cause late handovers and failures. To avoid
so, we recommend the operators prioritize BaTT’s actions
since reliability is the prerequisite of other network functions.
Other functions can reuse BaTT’s measurements via shared
radio information base, and refine the handover decisions given
multiple equally-reliable target cells from BaTT.
Impact on the devices and infrastructure: As a network-
side solution, BaTT does not modify end devices. Moreover,
BaTT-empowered base stations can co-exist with legacy ones.
It will not negatively impact the legacy base stations and users.

VI. EVALUATION

We evaluate BaTT using operational LTE dataset in extreme
mobility and compare it with existing handover policies.

A. Experimental Setup

Dataset: We use a large-scale 4G LTE dataset on Chinese
high-speed trains from [7]. This dataset was collected on the

rails between Beijing and Shanghai over 135,719 km of trips.
In these tests, a phone using China Mobile or China Telecom
4G LTE runs continuous iperf data transfer on the train at 200–
350 km/h. Meanwhile, the phone runs MobileInsight [11] to
collect LTE signaling messages from the hardware modem.
These messages include 38,646 runtime configurations of
neighboring cell lists and thresholds, 81,575 measurement
reports of serving/neighboring cell’s signal strengths, and
23,779 handover commands as exemplified in Figure 2.
Benchmarks: We conduct a two-step evaluation of BaTT.
We first evaluate BaTT with a given threshold M , and compare
its handover success rate with four algorithms: (1) Oracle:
This is the theoretically optimal solution. It assumes the aver-
age handover failure rates of the target cells are known, and
select the target cell with the lowest failure ratio. (2) Baseline:
This is the state-of-the-art 4G/5G handover [4], [5], [11]. It
compares the serving cell and target cell’s signal strengths
and selects the first neighboring cell with Xbest > Yt,n as
the target cell. The user’s device measures the target cells
randomly. (3) UCB: The serving cell maintains UCB estimates
for the target cells and instructs a user to measure target
cells based these estimates. (4) TS: Similar to UCB, except
using Thompson sampling. Note in all these algorithms the
handover happens when Xbest > Yt,n, which is same as
existing 4G/5G handovers. The algorithms differ in deciding
the measurement order. The regret is defined as the handover
failure rate difference between a the Oracle and a given
algorithm. Recall that a failure happens when f(Ytn) = 0 or
g(Xbest) = 0, where we draw f(·) and g(·) from real traces as
shown in Figure 2b. Also note the evaluation results are driven
by real traces and not limited by the assumptions made for the
analysis. Next, we assess BaTT’s efficiency by comparing its
BaTT’s ε-Binary-Search-First with a uniform threshold search.

B. Results

We test a cell with K = 10 neighboring cells. We draw each
cell’s expected reward (handover success rate) by mapping
their signal strength distribution to the handover success rate
based on f(·) and g(·) from real traces in Figure 2b. This
results in the reward vector [0.76, 0.88, 0.90, 0.91, 0.92, 0.93,
0.94, 0.95, 0.97]. We then replay all sequences of serving
cell’s measurements before each handover in the dataset. We
generate each neighboring cell’s measurements based on its
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empirical distribution of signal strengths from the dataset.
Then we run each algorithm to decide the handover target.
Comparison with state-of-the-art Figure 5a shows that
BaTT improves mean handover success rate from 89.7% to
92.7% compared to the baseline in 4G/5G today. It prevents
29.1% handover failures in 4G/5G today. Note BaTT approx-
imates the Oracle, which is the optimal performance we can
expect in reliable mobility today. Compared to the baseline,
BaTT reorders the cells to measure when the serving cell’s
quality is decreasing, thus mitigating late handover failures.
Comparison with other bandit algorithms Figure 5b
shows BaTT outperforms UCB and TS in terms of regret
(i.e., failed handovers). This is because BaTT balances the
exploration and exploitation based on the runtime serving cell
quality, while UCB and Thompson sampling do not. BaTT can
accelerate the exploration when the serving cell quality is good
and mitigate late handover failures when serving cell quality
is not. This is crucial, since late handovers due to the serving
cells dominate the handover failures in reality (Table I).
Effectiveness of ε-Binary-Search-First Following [4], [5],
we consider a serving cell with J = 81 signal strength thresh-
old values available to search from -140dBm to -60dBm. We
draw each corresponding serving cell failure rate by mapping
their signal strength distribution to the handover success rate
based on f(·) from the real traces as shown in Figure 2b. We
run ε-Binary-Search-First over T = 25000 rounds, with results
averaged over 10 trials. We compare ε-Binary-Search-First
with Uniform-Search-First algorithm, which takes εT rounds
to uniformly sample all available arms and then picks the one
with sample mean closest to optimal. Our experiments shows
that, compared to Uniform-Search-First, BaTT significantly
reduces the number of users (from 470 to 189) who select a
serving cell with less desirable serving cell signal strength.

VII. RELATED WORK

Reliable mobility management has been actively studied
recently, such as its sub-optimal coverage [12], policy conflicts
[13], [14], late handovers [15], to name a few. Our work
studies a different aspect of handover failures in extreme
mobility. In this scenario, [16], [7] report the non-negligible
handover failures in reality and [6] unveils the exploration-
exploitation tradeoff in handovers and alleviates it by refining
wireless communications. In contrast, our work moves further
to explicitly address the exploration-exploitation trade-off us-
ing online learning. There are efforts to refine the performance
of handover with machine learning techniques like XGBoost
[15], fuzzy logic [17], neural networks [18], and SVM [19].
Our work differs from them because we focus on the handover
reliability. BaTT is motivated by recent advances in multi-
armed bandits. Its problem formulation is inspired by the
cascading bandit [20], [21]. But our problem differs from them
since our problem does not assume a known cost.

VIII. CONCLUSION

This work strives for reliable 4G/5G handover in extreme
mobility using online learning. We formulate and decompose

the exploration-exploitation dilemma in extreme mobility into
two online learning problems. Then we showcase a multi-
armed bandit-based strategy to search for the optimal threshold
of signal strength to address this dilemma and opportunisti-
cally balance the exploration and exploitation of target cells
based on the runtime serving cell’s signal strength. Our anal-
ysis shows O(log J log T ) overall regret of handover failures.
BaTT can be incrementally deployed in 4G LTE and 5G
NR under the recent O-RAN framework. Experiments with
operational LTE datasets from the Chinese high-speed trains
demonstrate the viability of handover failure reduction.
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