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ABSTRACT

Fast Radio Bursts (FRBs) are extreme astrophysical phenomena entering the realm of
non-linear optics, a field developed in laser physics. A classical non-linear effect is
self-modulation. We examine the propagation of FRBs through the circumburst environ-
ment using the idealised setup of a monochromatic linearly-polarised GHz wave propa-
gating through a uniform plasma slab of density N at distance R from the source. We
find that self-modulation occurs if the slab is located within a critical radius Rcrit ∼
1017(N/102 cm−3)(L/1042 erg s−1) cm, where L is the isotropic equivalent of the FRB lu-
minosity. Self-modulation breaks the burst into pancakes transverse to the radial direction.
When R . Rcrit, the transverse size of the pancakes is smaller than the Fresnel scale. The pan-
cakes are strongly diffracted as the burst exits the slab, and interference between the pancakes
produces a frequency modulation of the observed intensity with a sub-GHz bandwidth. When
R ∼ Rcrit, the transverse size of the pancakes becomes comparable with the Fresnel scale, and
the effect of diffraction is weaker. The observed intensity is modulated on a timescale of ten
microseconds, which corresponds to the radial width of the pancakes. Our results suggest that
self-modulation may cause the temporal and frequency structure observed in FRBs.

Key words: fast radio bursts – radio continuum: transients – plasmas – instabilities – rela-
tivistic processes

1 INTRODUCTION

Fast Radio Bursts (FRBs) are bright extragalactic radio flashes of

millisecond duration (e.g. Lorimer et al. 2007; Thornton et al. 2013;

Spitler et al. 2014, 2016; Petroff et al. 2016; Shannon et al. 2018;

CHIME/FRB Collaboration et al. 2019a,b,c). The high brightness

temperature of FRBs suggests that they are powered by a coherent

emission mechanism.

In FRBs, the electromagnetic field of the radio wave may ac-

celerate electrons up to a significant fraction of the speed of light

(e.g. Luan & Goldreich 2014). An initially static electron will reach

a speed a0c,1 where a0 = eE0/2πν0mec is the standard strength pa-

rameter of the electromagnetic wave (E0 is the electric field and ν0

is the frequency of the wave). For a typical FRB, one finds that

a0 ∼ 8× 10−6(ν0/GHz)−1(L/1042erg s−1)1/2(R/pc)−1, where L

is the isotropic equivalent of the burst luminosity and R is the dis-

tance from the source. Using the fact that L ∼ 4πD2Sν0
ν0, where

Sν0
is the observed flux density and D is the distance of the ob-

? E-mail: es3808@columbia.edu
1 This is only true when a0 � 1. More generally, one can show that the

maximum electron Lorentz factor is 1+a2
0/2 (e.g. Gunn & Ostriker 1971).

server, one may finally present the strength parameter as

a0 ∼ 8×10−6

(

Sν0

Jy

)1/2( ν0

GHz

)−1/2
(

D

Gpc

)(

R

pc

)−1

. (1)

Note that a0 � 1 at the large (R � 8× 10−6 pc) radii that we are

considering throughout the paper.

A wave propagating through an ambient medium can expe-

rience strong non-linear effects even when a0 � 1. Despite their

importance for laser-plasma interaction (for a review, see e.g.

Mourou et al. 2006), non-linear effects have received a limited at-

tention from the astrophysical community (in the context of FRBs,

see however Lyubarsky 2008, 2018, 2019; Gruzinov 2019; Be-

loborodov 2020; Lu & Phinney 2020; Lyutikov 2020a; Margalit

et al. 2020; Yang & Zhang 2020).

In this paper we focus on the self-modulation of a finite-

amplitude electromagnetic wave with a wave number k0. Self-

modulation occurs due to the exponential growth of two satellite

waves with wave numbers k0 ±k. The wave number k � k0 of the

electromagnetic wave intensity modulation is due to the beating of

the satellite waves. The instability is excited by the non-linear com-

ponent of the current at the frequency of the satellite waves. Drake

et al. (1974) considered the ponderomotive force, which expels the

electrons from the regions with a high intensity of radiation, as the

origin of the non-linear component of the current. Max et al. (1974)

included the non-linear relativistic corrections to the electron mo-
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2 Sobacchi et al.

tion, but neglected the effects of the ion motion and of the thermal

pressure. Both these studies considered only the case when k is ei-

ther aligned or perpendicular to k0, which is a significant limitation

since self-modulation naturally develops in three dimensions.

First of all, in Section 2 we review the properties of self-

modulation. We closely follow the approach of Max et al. (1974),

and extend their calculations to (i) include ion motion and thermal

pressure, and (ii) examine instabilities developing for arbitrary di-

rections of the perturbation wave vector. Readers not interested in

the technical details can skip to Tables 1 and 2, which summarise

the wave vectors and the growth rates of the most unstable modes.

Then, in Section 3 we discuss the impact of self-modulation

on FRBs. We focus on the propagation of the burst through an

electron-ion plasma with a non-relativistic temperature, located

within a parsec from the source, as inferred from the strong and

variable Faraday rotation in the repeating FRB 121102 (Michilli

et al. 2018). We show that sub-bursts with a finite duration and

bandwidth may be generated by self-modulation. Hence, the most

prominent features of the time-frequency structure of the bursts

from the repeating FRB 121102, reported by Hessels et al. (2019),

may be a by-product of the FRB propagation.

Guided by the results of Michilli et al. (2018) (see in par-

ticular their Figure 6), we adopt a fiducial number density N =
102 cm−3 and a fiducial magnetic field B = 1 mG for the electron-

ion plasma.2 The electron Larmor frequency, ωLe = eB/mec ∼
2× 104 Hz, is smaller than the electron plasma frequency, ωPe =
√

4πNe2/me ∼ 5×105 Hz. Since dominant component of the non-

linear current that excites the instability oscillates at twice the fre-

quency ω0 of the electromagnetic wave (e.g. Max et al. 1974), and

ω0 � ωPe � ωLe at the radii considered throughout the paper, the

non-linear current is nearly independent of the plasma magnetisa-

tion. Hence, we can neglect the effect of the magnetic field on the

development of self-modulation.

2 SELF-MODULATION

We model the FRB propagation through the circumburst environ-

ment by considering a monochromatic linearly-polarised electro-

magnetic wave that propagates through an electron-ion plasma with

constant number density N. We are interested in the non-linear ef-

fects caused by the finite amplitude of the wave.

The plan of this section is the following. In Section 2.1 we

find the leading non-linear corrections to the number density and

to the transverse velocity of the electrons moving in the field of

the electromagnetic wave (called “pump wave” below). From the

non-linear component of the electron current, we calculate the cor-

rections to the dispersion relation of the pump wave. Using these

results, in Section 2.2 we study the stability of the pump wave by

considering the growth of the two satellite waves k0 ±k.

2 The repeating FRB 121102 has a compact (. 0.7 pc) persistent radio

counterpart (Chatterjee et al. 2017; Marcote et al. 2017), which suggests the

additional presence of a relativistically hot, luminous nebula with a lower

density N ∼ 1 cm−3 in a higher magnetic field B ∼ 60 mG (Beloborodov

2017). Both the hot and the cool plasma components may be present around

FRB 121102. Since we consider only the effect of the FRB propagation

through the cool plasma component, the effects described below do not re-

quire the presence of a hot radio nebula around the FRB source.

2.1 Electromagnetic pump wave

Let mi and me be the ion and the electron mass, and let e and −e

be the ion and the electron charge. The transverse electric field of

the wave is E = exE0 cosχ0, where χ0 = ω0t −k0z (the wave prop-

agates along the z axis). We have defined the angular frequency

ω0 = 2πν0. We focus on the weakly-relativistic regime a0 � 1,

where a0 = eE0/ω0mec is the strength parameter of the pump wave.

We are interested in the case ω0 � ωPe, where ωPe =
√

4πNe2/me

is the electron plasma frequency. The ion plasma frequency, ωPi =
√

4πNe2/mi, is smaller than the electron plasma frequency by the

square root of the mass ratio me/mi � 1.

2.1.1 Electron motion in the wave field

It is useful to introduce the vector potential A and the scalar poten-

tial φ, so that B = ∇×A and E = −∇φ− (1/c)∂A/∂t. Since the

electric field of the wave is in the x direction, we have A = exAx,

where Ax = −(cE0/ω0)sinχ0 = −(mec2/e)a0 sinχ0. The scalar

potential φ(χ0) is calculated below. We work in the Coulomb

gauge, ∇ ·A = 0.

From the conservation of the generalised momentum, one

finds that the x component of the electron momentum is Pex =
eAx/c =−meca0 sinχ0. At the lowest order in a0, the x component

of the electron velocity is therefore Vex/c =−a0 sinχ0. The z com-

ponent of the Lorentz force is −eVexBy/c= (a2
0/2)ω0mecsin(2χ0),

where we have used the approximation By = E0 cosχ0, which holds

in the leading order for the regime of interest, ω0 � ωPe. Neglect-

ing the effect of the electrostatic force, which is justified below,

from the z component of the equation of motion one finds that

Vez/c =−(a2
0/4)cos(2χ0).

The electron number density, including the small non-linear

corrections, can be calculated from the continuity equation, which

gives

Ne = N

[

1−
1

4
a2

0 cos(2χ0)

]

, (2)

where we have used k0Vez/ω0 = Vez/c in the leading order. Since

the non-linear corrections to the ion number density are of the order

of (m2
e/m2

i )a
2
0 � a2

0, we make the approximation that Ni = N. Us-

ing the Gauss law, ∂2φ/∂z2 = 4πe(Ne−Ni), we find that eφ/mec2 =
(a2

0/16)(ω2
Pe/ω2

0)cos(2χ0). Hence, the electrostatic force is a fac-

tor ω2
Pe/ω2

0 � 1 smaller than the z component of the Lorentz force.

The x component of the electron velocity, including the rela-

tivistic corrections of the order of a2
0, is

Vex

c
=−a0 sinχ0

[

1−
1

4
a2

0 +
1

4
a2

0 cos(2χ0)

]

. (3)

We have used the expansion Vex/c = Pex/
√

m2
ec2 +P2

ex =
Pex/mec−P3

ex/2m3
ec3, where Pex/mec =−a0 sinχ0. Since Vez/c is

of the order of a2
0, we have neglected its contribution to the electron

Lorentz factor.

2.1.2 Dispersion relation

The x component of the Ampère’s law can be presented as

(

c2∇2 −
∂2

∂t2

)

a = ω2
Penevex , (4)
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where a = eAx/mec2 = −a0 sinχ0, vex = Vex/c, and ne = Ne/N.

Substituting Eqs. (2)-(3) into Eq. (4), we find the dispersion relation

ω2
0 = c2k2

0 +ω2
Pe −

1

4
a2

0ω2
Pe . (5)

The last term is due to the non-linear component of the electron

current at the frequency of the pump wave. Eq. (5) is consistent

with the classical result of Sluijter & Montgomery (1965) (see also

Max et al. 1974).

We have neglected the contribution of the linear and of the

non-linear components of the ion current to Eqs. (4)-(5). These

components are much smaller than the corresponding electronic

components since the mass ratio is me/mi � 1.

2.2 Stability analysis

2.2.1 Wave equation

Modulations with frequency ω and wave vector k of the pump

wave intensity are described by two satellite waves with frequen-

cies ω±ω0 and wave vectors k± k0ez. We assume that k2 � k2
0,

namely the wavelength of the modulations is much longer than the

wavelength of the pump wave. Our goal is deriving an equation for

the evolution of the satellite waves.

We consider for simplicity perturbations that are independent

of x. As we discuss below, the dispersion relation is invariant for

rotations of the perturbation wave vector, k, around the z axis. Per-

turbing Eq. (4), and neglecting terms that are quadratic in the per-

turbed quantities, we find that

(

c2∇2 −
∂2

∂t2

)

δa = ω2
Pe (vexδne +neδvex) . (6)

We write the perturbed vector potential as δa =∫
δa(ω′,k′y,k

′
z)exp[ß(ω′t − k′yy − k′zz)]dω′dk′ydk′z, and we in-

troduce analogous definitions for the velocity perturbations and for

the density perturbations.3 We substitute these definitions and Eqs.

(2)-(3) into Eq. (6), and we keep terms up to the order of a2
0. As

we show in Appendix B, following this procedure one can derive

two coupled equations for the amplitude of the satellite waves,

δa±1 = δa(ω±ω0,ky,kz ± k0), namely

[

ω2
+1 − c2k2

+1

]

δa+1 −ω2
Peδvex+1 =

=
ß

2
a0ω2

Pe [δne0 −δne+2]−
1

8
a2

0ω2
Peδvex−1 (7)

[

ω2
−1 − c2k2

−1

]

δa−1 −ω2
Peδvex−1 =

=
ß

2
a0ω2

Pe [δne−2 −δne0]−
1

8
a2

0ω2
Peδvex+1 (8)

where we have defined ω±1 = ω±ω0 and k±1 = k±k0ez. We have

also defined δne±m = δne(ω ± mω0,ky,kz ± mk0) and δvex±m =
δvex(ω±mω0,ky,kz ±mk0).

Finding the dispersion relation from Eqs. (7)-(8) is straightfor-

ward once the velocity and the density perturbations are expressed

as a function of the perturbed vector potential. In Sections 2.2.2 and

2.2.3, we determine the velocity and the density perturbations. The

dispersion relation is then presented in Section 2.2.4.

3 To avoid heavy notation, we are using the same symbol δa for the rep-

resentation of the vector potential in both coordinate and Fourier space. It

will be clear from the context whether we are working in coordinate or in

Fourier space.

2.2.2 Velocity perturbations

Let us define the x component of the electron four-velocity, uex =
γevex, where γe is the electron Lorentz factor. We find that δvex =
δuex/γe − (uex/γ2

e)δγe. Since u2
ex = γ2

e − 1, we have that uexδuex =
γeδγe (contributions from uey and uez are at least of the order of

a3
0). Hence, we find that δvex = δuex/γ3

e = δa/γ3
e . Using the fact

that γe = 1+(a2
0/2)sin2 χ0, we eventually find that

δvex =

[

1−
3

4
a2

0 +
3

4
a2

0 cos(2χ0)

]

δa . (9)

Using the identities presented in Appendix C, from Eq. (9) we find

that

δvex±1 =

[

1−
3

4
a2

0

]

δa±1 +
3

8
a2

0δa∓1 . (10)

We have neglected terms proportional to δa±3, which would give

corrections of order higher than a4
0 to the dispersion relation.

2.2.3 Density perturbations

Since δne0 and δne±2 are multiplied by a factor of a0 in Eqs. (7)

and (8), it is sufficient to calculate exact expressions up to the order

of a0. The perturbed continuity equation for the electron fluid is

∂δne

∂t
+∇ ·δVe = 0 , (11)

and the perturbed Euler’s equation, which we derive in Appendix

B, is

∂δVe

∂t
=−

mi

me
c2

s ∇δne +
e

me
∇δφ+

+
e

mec

∂δA

∂t
− ezc

2k0a0 cosχ0δa+ c2a0 sinχ0∇δa , (12)

where cs =
√

3kBT/mi is the thermal velocity of the ions. We have

assumed that the electrons and the ions have the same temperature

T , and that the thermal velocity of the electrons is non-relativistic.

Note that the last two terms on the right hand side of Eq. (12)

come from the gradient of the perturbed ponderomotive potential,

δφpond = mec2aδa. As we show in Appendix B, substituting Eq.

(11) into the divergence of Eq. (12) and using the perturbed Gauss

law, ∇2δφ = 4πNe(δne −δni), one finds that

[

ω2 −ω2
Pe −

mi

me
c2

s k2

]

δne0 +ω2
Peδni0 =

ß

2
a0c2k2 [δa−1 −δa+1]

(13)
[

ω2
+2 −ω2

Pe −
mi

me
c2

s k2
+2

]

δne+2 +ω2
Peδni+2 =

ß

2
a0c2k2

+2δa+1

(14)
[

ω2
−2 −ω2

Pe −
mi

me
c2

s k2
−2

]

δne−2 +ω2
Peδni−2 =−

ß

2
a0c2k2

−2δa−1

(15)

where we have defined ω±2 = ω±2ω0 and k±2 = k±2k0ez. The

perturbed continuity equation for the ion fluid is

∂δni

∂t
+∇ ·δVi = 0 , (16)

and the perturbed Euler’s equation is

∂δVi

∂t
=−c2

s ∇δni −
e

mi
∇δφ . (17)



4 Sobacchi et al.

Since the mass ratio is me/mi � 1, we have neglected the oscilla-

tions of the ions in the electromagnetic field of the wave. Substitut-

ing Eq. (16) into the divergence of Eq. (17), we find that

[

ω2 −ω2
Pi − c2

s k2
]

δni0 +ω2
Piδne0 = 0 (18)

[

ω2
+2 −ω2

Pi − c2
s k2

+2

]

δni+2 +ω2
Piδne+2 = 0 (19)

[

ω2
−2 −ω2

Pi − c2
s k2

−2

]

δni−2 +ω2
Piδne−2 = 0 (20)

Since ωPi � ω0 and cs � c, from Eqs. (19)-(20) one sees that

δni±2 =−(ω2
Pi/4ω2

0)δne±2, and therefore δni±2 � δne±2.

The low-frequency electron density perturbation δne0 is deter-

mined by solving Eqs. (13) and (18). We find that

δne0 =
ß

2
Qa0 [δa−1 −δa+1] , (21)

where

Q =
c2k2

(

ω2 −ω2
Pi − c2

s k2
)

ω2
(

ω2 −ω2
Pe

)

− mi

me
c2

s k2
(

ω2 −2ω2
Pi − c2

s k2
) . (22)

Since δni±2 � δne±2, the high-frequency electron density pertur-

bations δne±2 are simply determined by solving Eqs. (14) and (15).

We find that

δne±2 =±
ß

2
a0δa±1 , (23)

where we have used the fact that (mi/me)c
2
s � c2 since the thermal

velocity of the electrons is non-relativistic.

An important point is the following. In the general case when

the perturbations depend also on x, one should consider the contri-

bution of the perturbed electrostatic potential to Eq. (6), and the

contributions of the perturbed electrostatic potential, of the per-

turbed ponderomotive potential, and of the perturbed density gra-

dient to Eq. (9). The non-vanishing Fourier components of these

additional terms have the frequencies ω and ω±2ω0. Hence, Eqs.

(7), (8), and (10) remain the same since they describe Fourier com-

ponents at the frequency ω±ω0. One therefore sees that the disper-

sion relation, Eq. (24), is invariant for rotations of the perturbation

wave vector, k, around the z axis.

2.2.4 Dispersion relation

The procedure to obtain the dispersion relation is the following. We

substitute Eqs. (10), (21), and (23) into Eqs. (7)-(8). We obtain a

linear homogeneous system of two equations for δa±1. The disper-

sion relation is found by imposing the condition that the determi-

nant of the matrix of the coefficients vanishes. Using the fact that

ω2
±1 − c2k2

±1 = (ω2 − c2k2)± 2(ω0ω− c2k0kz) +ω2
Pe(1− a2

0/4),
which can be obtained using Eq. (5), we find that

(

ω2 − c2k2
)2

−4
(

ω0ω− c2k0kz

)2
+

+
1

2
a2

0ω2
Pe (1−Q)

(

ω2 − c2k2
)

= 0 , (24)

where Q is defined in Eq. (22). The general dispersion relation, Eq.

(24), is cumbersome due to the complicated dependence of Q on

the parameters of the problem. Hence, it is convenient to discuss

the relevant regimes separately, which we do in the following.

When ω2 � ω2
Pi and c2

s k2 � ω2, one finds that Q =

(ω2
Pi/ω2

Pe)(c
2k2/ω2), and the dispersion relation is

(

ω2 − c2k2
)2

−4
(

ω0ω− c2k0kz

)2
+

+
1

2
a2

0

(

ω2
Pe −

c2k2

ω2
ω2

Pi

)

(

ω2 − c2k2
)

= 0 . (25)

When ω2 � ω2
Pi and ω2 � c2

s k2 � ω2
Pi, one finds that Q =

−(1/2)(ω2
Pi/ω2

Pe)(c
2/c2

s ), and the dispersion relation is

(

ω2 − c2k2
)2

−4
(

ω0ω− c2k0kz

)2
+

+
1

2
a2

0

(

ω2
Pe +

1

2

c2

c2
s

ω2
Pi

)

(

ω2 − c2k2
)

= 0 . (26)

When ω2
Pi � ω2 � ω2

Pe and c2
s k2 � ω2

Pi, one finds that Q =
−c2k2/ω2

Pe, and the dispersion relation is

(

ω2 − c2k2
)2

−4
(

ω0ω− c2k0kz

)2
+

+
1

2
a2

0

(

ω2
Pe + c2k2

)(

ω2 − c2k2
)

= 0 . (27)

When ω2
Pe � ω2 and (ω2

Pe/ω2
Pi)c

2
s k2 � ω2, one finds that Q =

c2k2/ω2, and the dispersion relation is

(

ω2 − c2k2
)2

−4
(

ω0ω− c2k0kz

)2
+

+
1

2
a2

0ω2
Pe

(

1−
c2k2

ω2

)

(

ω2 − c2k2
)

= 0 . (28)

When ω2
Pe � ω2 and ω2 � (ω2

Pe/ω2
Pi)c

2
s k2, or when ω2 � ω2

Pe

and ω2
Pi � c2

s k2, one finds that Q = −(ω2
Pi/ω2

Pe)(c
2/c2

s ), and the

dispersion relation is

(

ω2 − c2k2
)2

−4
(

ω0ω− c2k0kz

)2
+

+
1

2
a2

0

(

ω2
Pe +

c2

c2
s

ω2
Pi

)

(

ω2 − c2k2
)

= 0 . (29)

In the following we characterise the unstable modes in the different

regimes.

2.2.5 Unstable modes

In order to characterise the most unstable modes, it is convenient to

define ω = c2k0kz/ω0 +∆ω. With this definition, we have (ω0ω−
c2k0kz)

2 = ω2
0(∆ω)2. One can also make the approximation that

ω2 − c2k2 = −c2k2
y − c2k2

z ω2
Pe/ω2

0. The reason is that both (∆ω)2

and ckz(∆ω) are much smaller than c2k2
y , which can be verified

a posteriori case by case (see Tables 1 and 2). Finally, since we

will find that ∆ω is purely imaginary for the unstable modes, the

instability is purely growing in the frame moving with the group

velocity of the pump wave.

It is convenient to start considering the modes that are not

affected by the ion dynamics and by the thermal motions. When

(c2k2/ω2)ω2
Pi � ω2

Pe, Eq. (25) gives

4ω2
0 (∆ω)2 =

(

c2k2
y +

ω2
Pe

ω2
0

c2k2
z

)(

c2k2
y +

ω2
Pe

ω2
0

c2k2
z −

1

2
a2

0ω2
Pe

)

,

(30)

which is consistent with the results of Max et al. (1974). There are

two important effects that determine the behaviour of the modes,

namely (i) the non-linear component of the current, which gives

the destabilising contribution proportional to a2
0 to the dispersion
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cky ckz Γ range of a0

a0ωPe a0ω0 a2
0ω2

Pe/ω0 a0 . ωPe/ω0

a0ωPe ωPe a2
0ω2

Pe/ω0 a0 & ωPe/ω0

Table 1. Wave number in the transverse direction (ky) and in the longi-

tudinal direction (kz), and growth rate (Γ) of the unstable modes that are

independent of the ion dynamics and of the thermal motions (see also Eqs.

31-33). For these modes, one finds that ky � kz, i.e. the modulations are

elongated in the direction perpendicular to the direction of propagation of

the electromagnetic pump wave.

relation; (ii) diffraction, which stabilises the modes with a short

wavelength by softening the gradients of the radiation intensity.

From Eq. (30), the maximum growth rate of the instabil-

ity is found when c2k2
y + (ω2

Pe/ω2
0)c

2k2
z = a2

0ω2
Pe/4, which gives

(∆ω)2 = −a4
0ω4

Pe/64ω2
0. Since typically cky ' a0ωPe/2 and ckz '

a0ω0/2, the most unstable modes are elongated in the direction

perpendicular to the direction of propagation of the pump wave.

We neglect the effect of the unstable modes with a wave vector sig-

nificantly different than the typical one, since these modes occupy

a small volume of the phase space. Since (c2k2/ω2)ω2
Pi ' ω2

Pi �
ω2

Pe, neglecting the effect of the ion motion is justified.

Eq. (25) can be used when c2k2
z ' ω2 � ω2

Pi, which requires

that a0ω0 �ωPi. When instead ωPi � a0ω0 �ωPe, one should use

Eq. (27). Using the fact that c2k2 ' a2
0ω2

0 � ω2
Pe, Eq. (27) gives the

same dispersion relation as before, Eq. (30).

Finally, from Eq. (28) one sees that self-modulations are sta-

bilised when ω2
Pe � c2k2

z ' ω2. Hence, when ωPe � a0ω0 the most

unstable modes have the same transverse wave number as before,

cky ' a0ωPe/2, while the longitudinal wave number is ckz . ωPe.

The growth rate remains (∆ω)2 =−a4
0ω4

Pe/64ω2
0.

The effect of the thermal motions can be always neglected

since (ω2
Pe/ω2

Pi)c
2
s k2 � ω2. This is the case because, if the ther-

mal velocity of the electrons is non-relativistic, one finds that

(ω2
Pe/ω2

Pi)c
2
s k2 ' (ω2

Pe/ω2
Pi)c

2
s k2

z � c2k2
z ' ω2. Hence, we do not

need to discuss Eqs. (26) and (29).

We conclude that there is a first class of unstable modes that

are independent of the ion dynamics and of the thermal motions

(see also Max et al. 1974). For these modes, we may estimate the

most unstable wave number as

ky ' a0
ωPe

c
(31)

kz ' min
[

a0
ω0

c
,

ωPe

c

]

(32)

and the growth rate as

Γ ' a2
0

ω2
Pe

ω0
. (33)

These results are summarised in Table 1. Since ky � kz, the modu-

lations are elongated in the direction perpendicular to the direction

of propagation of the electromagnetic pump wave.

We now consider the modes where the effect of the ion dynam-

ics and of the thermal motions is important. When (c2k2/ω2)ω2
Pi �

ω2
Pe and (∆ω)2 � c2k2

z , one may approximate ω2 − c2k2 = −c2k2
y

and (c2k2/ω2)ω2
Pi = (c2k2

y/(∆ω)2)ω2
Pi. Hence, Eq. (25) gives

4ω2
0

(

∆ω

cky

)4

− c2k2
y

(

∆ω

cky

)2

−
1

2
a2

0ω2
Pi = 0 , (34)

which is consistent with the results of Drake et al. (1974). Accord-

ing to Eq. (34), the wave number of the most unstable modes is

cky �
√

a0ω0ωPi, and the corresponding growth rate is (∆ω)2 =

cky ckz Γ range of a0

a0β−1
s ωPi a0ωPi a2

0β−2
s ω2

Pi/ω0 a0 . β2
s ω0/ωPi

√
a0ω0ωPi a0ωPi a0ωPi a0 & β2

s ω0/ωPi

Table 2. Wave number in the transverse direction (ky) and in the longitu-

dinal direction (kz), and growth rate (Γ) of the unstable modes that depend

on the ion dynamics and on the thermal motions (see also Eqs. 36-38). We

have defined βs = cs/c, where cs is the thermal velocity of the ions. For

these modes, one finds that ky � kz, i.e. the modulations are elongated in

the direction of propagation of the electromagnetic pump wave.

−a2
0ω2

Pi/2. The condition that (∆ω)2 � c2k2
z gives ckz � a0ωPi.

When instead (c2k2/ω2)ω2
Pi � ω2

Pe and (∆ω)2 � c2k2
z , one may

approximate (c2k2/ω2)ω2
Pi = (k2

y/k2
z )ω

2
Pi, in which case Eq. (25)

does not give any instability.

Eq. (25) can be used when c2
s k2 � ω2, which requires that

a0 � (c2
s/c2)(ω0/ωPi). When instead ω2 � c2

s k2, one should use

Eq. (26). Using the fact that (ω2
Pe/ω2

Pi)c
2
s � c2 since the thermal

velocity of the electrons is non-relativistic, we find that

4ω2
0 (∆ω)2 = c2k2

y

(

c2k2
y −

1

4
a2

0

c2

c2
s

ω2
Pi

)

, (35)

which is consistent with the results of Drake et al. (1974). Ac-

cording to Eq. (35), the wave number of the most unstable mode

is cky = (1/2
√

2)a0(c/cs)ωPi, and the corresponding growth rate

is (∆ω)2 = −(a4
0/256)(c4/c4

s )(ω
4
Pi/ω2

0). The condition that ω2 �
c2

s k2 requires that ckz � csky, which gives ckz � a0ωPi. Finally, it

turns out that the regime where Eq. (29) is valid is not relevant for

self-modulation.

We conclude that there is a second class of unstable modes

that depend on the ion dynamics and on the thermal motions (see

also Drake et al. 1974). For these modes, we may estimate the most

unstable wave number as

ky ' min

[

a0
ωPi

cs
,

√
a0ω0ωPi

c

]

(36)

kz ' a0
ωPi

c
(37)

and the growth rate as

Γ ' min

[

a2
0

c2

c2
s

ω2
Pi

ω0
, a0ωPi

]

. (38)

These results are summarised in Table 2. Since ky � kz, the modu-

lations are elongated in the direction of propagation of the electro-

magnetic pump wave.

3 IMPLICATIONS FOR FAST RADIO BURSTS

In this Section we discuss the observational signatures of the modes

that are independent of the ion dynamics and of the thermal mo-

tions. These modes, which are described by Eqs. (31)-(33), have a

typical wave number ky ' a0ωPe/c in the transverse direction and

kz ' min[a0ω0/c, ωPe/c] in the longitudinal direction (the direc-

tion of the pump wave propagation). The growth rate of the modu-

lations is Γ ' a2
0ω2

Pe/ω0. Self-modulation saturates when the mod-

ulation amplitude becomes comparable to unity, so that the wave

packet breaks up into pancakes of transverse size λy = 2π/ky and

radial width λz = 2π/kz � λy. The exact shape of these pancakes

may depend on the form of the seed perturbations amplified by

the instability. The characteristic separation between the pancakes

should be comparable to their sizes.
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is the wavelength of the pump wave. Since we are assuming the an-

gular separation between the pancakes to be comparable with θsph,

the pancakes interfere with each other if θscat & θsph (see Figure 1),

while the effect of interference becomes negligible if θscat . θsph

(see Figure 2). The condition that θscat . θsph may be presented as

λy & λF, where λF =
√

λ0R is the Fresnel scale. As we show in

Sections 3.1 and 3.2, the ratio λy/λF (and therefore the observa-

tional signatures of self-modulation) is determined by the position

of the plasma slab.

The observer sees a patch of the plasma slab of radius Rθscat,

and the corresponding angular size is (R/D)θscat. For our fiducial

parameter choice, one finds that θscat ∼ 2× 10−8(Rcrit/R) rad ∼
5(Rcrit/R) mas, and therefore (R/D)θscat ∼ 2×10−10 mas. Hence,

there is not any significant broadening of the source image.

In analogy with the standard results of pulsar scintillation the-

ory (e.g. Narayan 1992), one would expect the effects of interfer-

ence to disappear if the source size, Rs, exceeds the transverse size

of the pancakes, λy. The condition that Rs . λy gives an upper limit

on the source size, Rs . 109(R/Rcrit) cm, which can be satisfied by

millisecond duration bursts.5

In addition, the effect of turbulence in the circumburst medium

can be neglected if the density fluctuations on scales smaller than

the observable patch, r � Rθscat, produce small phase perturba-

tions, ∆φ . π. In order to estimate ∆φ, we follow the classical ap-

proach of Scheuer (1968). Assuming a Kolmogorov-like spectrum,

the density fluctuations on a scale r are ∆N ∼ sN(r/R)1/3, where

s is a numerical factor quantifying the turbulence amplitude. Due

to the fluctuation of the refraction index, ∆n ∼ (e2λ2
0/2πmec2)∆N,

the phase is perturbed by δφ∼ (r/λ0)∆n while the wave propagates

over a distance r. As the wave crosses a distance R, the contribu-

tion of the turbulent eddies with size r to the random walk of phase

is ∆φ ∼ (R/r)1/2δφ ∼ (s/2π)(e2/mec2)λ0NR(r/R)5/6. The condi-

tion that ∆φ . π gives s . 0.7(Rθscat/r)5/6(Rcrit/R)1/6. Since we

are interested in scales r � Rθscat, this condition can be satisfied

even for a strong turbulence, e.g. with s ∼ 1.

The observational signatures of the modes that depend on the

ion dynamics and on the thermal motions, which are described by

Eqs. (36)-(38), are discussed in Appendix A. These modes may

give an important contribution to the scattering time of FRBs. How-

ever, these modes can only develop very close to the source (we find

that Rcrit ∼ 2× 10−5 pc), since at larger distances the radial width

of the pancakes would exceed the length of the burst itself. Since

the properties of the plasma are poorly constrained at these small

radii, the results of Appendix A are very speculative.

3.1 Frequency structure

The physical scenario discussed in this section is sketched in Fig-

ure 1. We consider the effect of a plasma slab at R � Rcrit, which

corresponds to ΓR/c � 10. Using the fact that Γ ' c2k2
y/ω0, one

sees that λy �
√

λ0R. Hence, the transverse size of the pancakes is

much smaller than the Fresnel scale, and the observer sees the in-

terference pattern of a large number of pancakes. The typical scat-

tering time is τscat ' Rθ2
scat/c, where θscat ' λ0/λy, and the corre-

5 In the synchrotron maser emission model of FRBs (e.g. Beloborodov

2017, 2020; Metzger et al. 2019), the burst is emitted by a relativistic blast

wave propagating with Lorentz factor Γsh. Then radiation is Doppler col-

limated within an angle of 1/Γsh, and the effective source size is Rs ∼
Rem/Γsh, where Rem is the emission radius.

sponding frequency modulation bandwidth, ∆ν ' 1/τscat, is

∆ν ∼ 0.6
( ν0

GHz

)

(

R

Rcrit

)

GHz . (40)

Hence, we expect ∆ν to be smaller than ν0. If the plasma is con-

fined into a thin slab, using the definition of Rcrit, Eq. (39), we find

that ∆ν ∝ ν3
0. The dependence of ∆ν on ν0 is less clear if there is

a continuous distribution of plasma along the line of sight. In this

case, modulation may occur in a wide range of frequency bands,

which corresponds to the wide distribution of R/Rcrit. If the value

of R/Rcrit giving the dominant contribution to ∆ν were indepen-

dent of ν0, one would find that ∆ν ∝ ν0. In general, we expect the

frequency modulation bandwidth, ∆ν, to increase with the center

frequency of the burst, ν0.

The study of high-signal-to-noise bursts from the repeating

FRB 121102 has shown that the bursts have a complex time-

frequency structure, which includes sub-bursts with a finite dura-

tion and bandwidth (Hessels et al. 2019). The observed bandwidth

is ∼ 100 − 400 MHz for the bursts with a frequency of 1.4 and

2.0 GHz, and ∼ 1 GHz for the bursts with a frequency of 6.5 GHz,

which is consistent with the trend expected from Eq. (40).6 Bright

FRBs in the ASKAP sample may also show some broadband fre-

quency structure (e.g. Shannon et al. 2018).

3.2 Time structure

The physical scenario discussed in this section is sketched in Fig-

ure 2. We consider the effect of a plasma slab at R ∼ Rcrit, in

which case ΓR/c ∼ 10 and λy ∼
√

λ0R. Now the transverse size

of the pancakes is comparable with the Fresnel scale, and hence the

broadening of the pancakes exiting the plasma slab is marginal.7 In

this regime, the observer receives sub-burst of duration τsb ∼ λz/c,

where λz = 2π/kz is the radial width of the pancakes. One finds that

τsb is the longest between

τsb ∼ 10

(

N

102 cm−3

)−1/2

µs (41)

and

τsb ∼ 4

(

Sν0

Jy

)1/2( ν0

GHz

)−5/2
(

N

102 cm−3

)(

D

Gpc

)

µs , (42)

which correspond to the two cases in Eq. (32). Eq. (41) provides

a robust lower limit on the duration of the sub-bursts that can be

produced by self-modulation.

In the case of the repeating FRB 121102, the observed sub-

burst duration is ∼ 0.5 − 1 ms, and it is anti-correlated with the

center frequency of the bursts (Hessels et al. 2019), which is con-

sistent with Eq. (42). However, the observed sub-burst durations

6 Interestingly, the high-frequency interpulse of the Crab pulsar also shows

a banded frequency structure with ∆ν ∝ ν0 (e.g. Hankins & Eilek 2007;

Hankins et al. 2016). However, in this case the instability could only develop

well inside the radius of the pulsar wind termination shock, because the

pulsar radio waves are weak compared with FRBs. Self-modulation in a

magnetised pair plasma such as the Crab pulsar wind is an interesting topic

for future investigation.
7 Self-modulation cannot reduce the opening angle of the FRB emission

since the angular scale of the pancakes, λy/R ∼ 2 × 10−8 rad, is much

smaller than the opening angle. It is therefore unlikely that the event rate of

FRBs is underestimated due to non-linear propagation effects, as recently

proposed by Yang & Zhang (2020).
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require the plasma density to be significantly larger than our fidu-

cial value. Sub-bursts of finite duration have been observed also

in other FRBs, including the FRB 121002 (Champion et al. 2016),

the FRB 170827 (Farah et al. 2018), the FRB 181017 (Farah et al.

2019), the FRB 181112 (Cho et al. 2020), and the repeating FRB

180814.J0422+73 (CHIME/FRB Collaboration et al. 2019a). The

shortest observed sub-burst duration, which is of the order of 10 µs

for the FRBs 170827 and 181112, is consistent with being produced

by self-modulation, and does not necessarily imply an upper limit

on the duration of the burst.

Finally, note that our model does not explain the frequency

drift observed in the repeating FRBs 121102 and 180814.J0422+73

(a similar drift has been also detected in other repeaters by

CHIME/FRB Collaboration et al. 2019c). The frequency drift may

be produced inside the source (e.g. Beloborodov 2017, 2020; Met-

zger et al. 2019; Lyutikov 2020b).

4 CONCLUSIONS

We have studied the possible effects of self-modulation on FRBs

by considering the propagation of a monochromatic linearly-

polarised wave with frequency ν0 ∼ 1 GHz through a uniform

plasma slab of density N, located at distance R from the source.

Strong self-modulation occurs if its growth rate Γ exceeds ∼ 10 c/R

(then a seed perturbation is amplified by & 10 e-foldings as the

wave crosses the slab). The condition that ΓR/c & 10 requires

the plasma slab to be located within a critical radius Rcrit ∼
1017(N/102 cm−3)(L/1042erg s−1) cm, where L is the isotropic

equivalent of the FRB luminosity. Self-modulation breaks the burst

into pancakes transverse to the radial direction. The observational

signature that self-modulation leaves on FRBs depends on the po-

sition of the plasma slab:

• If R . Rcrit, the transverse size of the pancakes is smaller than

the Fresnel scale. The pancakes are strongly broadened by diffrac-

tion as the burst exits the plasma slab, and the observer sees the in-

terference pattern of a large number of pancakes. Interference pro-

duces a broadband frequency modulation of the burst, with band-

width ∆ν ∼ 0.6(R/Rcrit)ν0. This effect is illustrated in Figure 1.

• If R ∼ Rcrit, the transverse size of the pancakes is compara-

ble with the Fresnel scale. Hence, the time structure produced by

self-modulation is not smeared out due to diffraction. The observed

intensity of the burst is modulated on a timescale of ten microsec-

onds, which corresponds to the radial width of the pancakes. This

effect is illustrated in Figure 2.

Since in reality the plasma distribution along the line of sight is

likely continuous, the natural next step is to consider the propaga-

tion of the FRB through a sequence of plasma slabs. We speculate

that propagation at R . Rcrit generates frequency modulation, and

then a strong temporal structure (sub-bursts) develops at R ∼ Rcrit,

before self-modulation stops affecting the wave. This may explain

the time-frequency structure reported in FRB 121102 (Hessels et al.

2019). However, our model does not explain the origin of the ob-

served frequency drift.

Several aspects of self-modulation are left for future investi-

gation, including the effects of (i) continuous plasma distribution

along the line of sight, (ii) strong plasma magnetisation, (iii) differ-

ent plasma composition (electron-positron instead of electron-ion),

and (iv) relativistic electron temperature. These effects may be par-

ticularly important closer to the source. Yet more challenging is the

full analysis of self-modulation at small radii where the wave has

strength parameter a0 � 1.
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APPENDIX A: SCATTERING TIME

We discuss the observational signatures of the modes described

by Eqs. (36)-(38). These modes have a typical wave number

ky ' min[a0ωPi/cs,
√

a0ω0ωPi/c] in the transverse direction and

kz ' a0ωPi/c in the longitudinal direction, and their growth rate is

Γ ' min[a2
0(c

2/c2
s )(ω

2
Pi/ω0), a0ωPi]. Since ky � kz, the instability

breaks the wave packet into filaments elongated in the direction of

propagation of the pump wave.

The instability may develop if the radial width of the pancakes,

λz ' 2π/kz, is shorter than the length cτ of the burst, where τ ∼
1 ms. The condition that λz . cτ may be presented as R . Rcrit,

where

Rcrit ∼ 2×10−5

(

Sν0

Jy

)1/2( ν0

GHz

)−1/2

×

×
(

D

Gpc

)(

N

102 cm−3

)1/2( τ

ms

)

pc . (A1)

Hence, the instability may develop only close to the source (our

analysis remains valid since a0 . 1 at R ∼ Rcrit). The modes de-

scribed by Eqs. (36)-(38) may play a dominant role at these small

radii, since they have a larger growth rate and a shorter transverse

size than the modes described by Eqs. (31)-(33).

Considering the effect of a plasma slab at R ∼ Rcrit, whose

thickness is slightly smaller than R, we find that λy �
√

λ0R. The

scattering angle is θscat ' λ0/λy, and the corresponding scattering

time is τscat ' Rθ2
scat/c. If the plasma is hot, we find that

τscat ∼ 0.5

(

Sν0

Jy

)1/2( ν0

GHz

)−5/2
(

D

Gpc

)

×

×
(

N

102 cm−3

)1/2( τ

ms

)−1
(

T

107 K

)−1

ms . (A2)

If the plasma is cold, we find that

τscat ∼ 2

(

Sν0

Jy

)1/2( ν0

GHz

)−3/2
(

D

Gpc

)(

N

102 cm−3

)1/2

ms .

(A3)

In general, τscat will be the minimum of the two. Eqs. (A2)-(A3)

correspond to the two cases in Eq. (36).

Eqs. (A2)-(A3) may be used to constrain the properties of

the circumburst medium by requiring that the contribution of self-

modulation to the scattering time is shorter than a few millisec-

onds, which is the observed scattering time at the frequency of

1 GHz (e.g. Cordes & Chatterjee 2019). However, two important

caveats are (i) the fact that we have neglected the effect of the

plasma magnetisation, which may be large in the region close to

the source; (ii) the possible presence of pairs (electron-positron in-

stead of electron-ion plasma).

APPENDIX B: DERIVATION OF THE EQUATIONS

B1 Derivation of Eqs. (7)-(8)

We write the perturbed vector potential as δa =∫
δa(ω′,k′y,k

′
z)exp[ß(ω′t − k′yy − k′zz)]dω′dk′ydk′z, and we in-

troduce analogous definitions for the velocity perturbations and for

the density perturbations. Substituting these definitions and Eqs.

(2)-(3) into Eq. (6), and neglecting terms of order higher than a2
0,

we obtain
∫
(

ω′2 − c2k′2
)

δa
(

ω′,k′y,k
′
z

)

−ω2
Pe

∫
δvex

(

ω′,k′y,k
′
z

)

=

=−a0ω2
Pe sinχ0

∫
δne

(

ω′,k′y,k
′
z

)

+

−
1

4
a2

0ω2
Pe cos(2χ0)

∫
δvex

(

ω′,k′y,k
′
z

)

, (B1)

where a factor of exp[ß(ω′t − k′yy− k′zz)]dω′dk′ydk′z is implicit in

all the integrals. Using the identities presented in Appendix C, Eq.

(B1) gives

(

ω′2 − c2k′2
)

δa
(

ω′,k′y,k
′
z

)

−ω2
Peδvex

(

ω′,k′y,k
′
z

)

=

=−
ß

2
a0ω2

Peδne

(

ω′+ω0,k
′
y,k

′
z + k0

)

+

+
ß

2
a0ω2

Peδne

(

ω′−ω0,k
′
y,k

′
z − k0

)

+

−
1

8
a2

0ω2
Peδvex

(

ω′+2ω0,k
′
y,k

′
z +2k0

)

+

−
1

8
a2

0ω2
Peδvex

(

ω′−2ω0,k
′
y,k

′
z −2k0

)

. (B2)

Substituting ω′ = ω+ω0, k′y = ky, and k′z = kz + k0 into Eq. (B2),

we obtain Eq. (7). Substituting ω′ = ω−ω0, k′y = ky, and k′z = kz −
k0, we obtain Eq. (8). We neglect terms proportional to δvex±3 =
δa±3, which would give corrections of order higher than a4

0 to the

dispersion relation.

B2 Derivation of Eq. (12)

Neglecting the relativistic corrections to the electron motion, the

Euler’s equation for the electron fluid is

∂Ve

∂t
+(Ve ·∇)Ve =−

mi

me
c2

s ∇ne+

+
e

me

[

∇φ+
1

c

∂A

∂t
−

Ve

c
× (∇×A)

]

. (B3)

Taking into account that ∇ne and ∇φ are small, the zeroth order

solution of Eq. (B3) is Ve = eA/mec. Substituting such solution

back into Eq. (B3), we find that

∂Ve

∂t
=−

mi

me
c2

s ∇ne +
e

me
∇φ+

e

mec

∂A

∂t
−

e2

2m2
ec2

∇A2 . (B4)

Perturbing Eq. (B4), and neglecting terms that are quadratic in the

perturbed quantities, we find that

∂δVe

∂t
=−

mi

me
c2

s ∇δne +
e

me
∇δφ+

e

mec

∂δA

∂t
−

e2

m2
ec2

∇(A ·δA) .

(B5)

Substituting A ·δA =−(m2
ec4/e2)a0 sinχ0δa into Eq. (B5), we ob-

tain Eq. (12).
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B3 Derivation of Eqs. (13)-(15)

Substituting Eq. (11) into the divergence of Eq. (12), and using the

perturbed Gauss law, ∇2δφ = 4πNe(δne −δni), we find that

(

mi

me
c2

s ∇2 −
∂2

∂t2

)

δne = ω2
Pe [δne −δni]+ c2a0 sinχ0∇2δa+

−2c2k0a0 cosχ0
∂

∂z
δa− c2k2

0a0 sinχ0δa . (B6)

We write the perturbed vector potential as δa =∫
δa(ω′,k′y,k

′
z)exp[ß(ω′t − k′yy − k′zz)]dω′dk′ydk′z, and we in-

troduce an analogous definition for the density perturbations.

Using the identities presented in Appendix C, Eq. (B6) gives
(

ω′2 −ω2
Pe −

mi

me
c2

s k′2
)

δne

(

ω′,k′y,k
′
z

)

+ω2
Peδni

(

ω′,k′y,k
′
z

)

=

=−
ß

2
a0c2

(

k′+ k0

)2
δa
(

ω′+ω0,k
′
y,k

′
z + k0

)

+

+
ß

2
a0c2

(

k′− k0

)2
δa
(

ω′−ω0,k
′
y,k

′
z − k0

)

+

+ßa0c2k0

(

k′z + k0

)

δa
(

ω′+ω0,k
′
y,k

′
z + k0

)

+

+ßa0c2k0

(

k′z − k0

)

δa
(

ω′−ω0,k
′
y,k

′
z − k0

)

+

−
ß

2
a0c2k2

0δa
(

ω′+ω0,k
′
y,k

′
z + k0

)

+

+
ß

2
a0c2k2

0δa
(

ω′−ω0,k
′
y,k

′
z − k0

)

. (B7)

Substituting ω′ = ω, k′y = ky, and k′z = kz into Eq. (B7), we obtain

Eq. (13). Substituting ω′ = ω+ 2ω0, k′y = ky, and k′z = kz + 2k0,

we obtain Eq. (14). Substituting ω′ = ω− 2ω0, k′y = ky, and k′z =
kz−2k0, we obtain Eq. (15). We neglect terms proportional to δa±3.

APPENDIX C: USEFUL IDENTITIES

Suppose that f =
∫

f̃ (ω′,k′y,k
′
z)exp[ß(ω′t − k′yy− k′zz)]dω′dk′ydk′z.

The following identities turn out to be useful:

cos(mχ0) f =
1

2

∫
exp
[

ß
(

ω′t − k′yy− k′zz
)][

f̃+m + f̃−m

]

(C1)

sin(mχ0) f =
ß

2

∫
exp
[

ß
(

ω′t − k′yy− k′zz
)][

f̃+m − f̃−m

]

(C2)

cos(mχ0)
∂ f

∂z
=−

ß

2

∫
exp
[

ß
(

ω′t − k′yy− k′zz
)]

×

×
[(

k′z +mk0

)

f̃+m +
(

k′z −mk0

)

f̃−m

]

(C3)

sin(mχ0)∇2 f =−
ß

2

∫
exp
[

ß
(

ω′t − k′yy− k′zz
)]

×

×
[

(

k′+mk0

)2
f̃+m −

(

k′−mk0

)2
f̃−m

]

(C4)

where we have defined f̃±m = f̃ (ω′ ±mω0,k
′
y,k

′
z ±mk0). All the

integrals are performed over dω′dk′ydk′z.
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