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Abstract

Random knot models are often used to measure the types of entanglements one
would expect to observe in an unbiased system with some given physical property or
set of properties. In nature, macromolecular chains often exist in extreme confine-
ment. Current techniques for sampling random polygons in confinement are limited.
In this paper, we gain insight into the knotting behavior of random polygons in ex-
treme confinement by studying random polygons restricted to cylinders, where each
edge connects the top and bottom disks of the cylinder. The knot spectrum generated
by this model is compared to the knot spectrum of rooted equilateral random polygons
in spherical confinement. Due to the rooting, such polygons require a radius of con-
finement R ≥ 1. We present numerical evidence that the polygons generated by this
simple cylindrical model generate knot probabilities that are equivalent to spherical
confinement at a radius of R ≈ 0.62. We then show how knot complexity and the rel-
ative probability of different classes of knot types change as the length of the polygon
increases in the cylindrical polygons.

1 Introduction

Many macromolecular chains live in a state of extreme confinement. For example, a single
human cell contains roughly two meters of DNA. Virus heads also contain DNA packed
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at almost unfathomable compaction. The P4 bacteriophage virus head, which is roughly
spherical with diameter around 50 nm, contains 3 µm of double-stranded DNA [29] and gel
electrophoresis shows that the DNA, upon circularization, forms very complex knots [2].

Polygons are often used as coarse grain models for macromolecular chains. As polygonal
chains grow in length (i.e. number of edges), the probability of knotting approaches one
[10, 36, 39]. Yet macromolecular chains, for example proteins [9], tend to contain less knotting
than what one would expect based on length alone. The similarities and differences between
natural systems and random models reveal clues into the mechanisms used to create and
remove entanglement in natural systems.

The technique for generating random chains depends on what system one is trying to
model. For example, wormlike chains [43] are used to model DNA and are typically generated
using Monte Carlo methods with energy terms to give the chains some excluded volume and
control local bending. Other terms can be added into the energy to simulate other conditions,
such as confinement or supercoiling [31]. While knotting in spherical confinement has been
studied using Monte Carlo techniques [3, 33, 34, 35, 42], it becomes increasingly difficult to
simulate the chains under higher and higher levels of compaction.

In [11, 12, 13, 14, 15, 16, 17, 18], the authors (most of whom are authors on this paper)
explored a direct method for generating knots in spherical confinement at levels of com-
paction that would be impractical using Monte Carlo methods. The idea was to explore
how the confinement condition alone affects the knotting spectrum and the structure of the
configurations as a function of length and confinement radius.

Unfortunately, even these direct generation methods have restrictions. In particular, the
techniques of [7, 13] require that one vertex is at the origin – we say such a polygon is rooted
at the origin. This restriction is necessary to compute the probability distributions that are
used to sample the polygons. Using the two methods of [7, 13], one can sample uniformly
from the set of unit-length edge equilateral polygons with any (possible) number of edges
in any sphere of radius one or greater. However, unit-length edge equilateral polygons exist
in any sphere of any radius R ≥ 1/2. With that said, the case of R = 1/2 is not very
interesting since the only possibility is that the polygons alternate between two antipodal
points of the confinement sphere and, thus, all such polygons are degenerate. Thus, a new
model is needed to study knotting in spheres of radii between 1/2 and one.

In this paper we explore extreme confinement, simulating the situation where the con-
finement radius is R = 1/2 + ϵ for some small ϵ > 0. In this case the possible equilateral
random polygons satisfy several properties: (i) each edge of the polygon has a length that
is close to the diameter of the sphere; (ii) all vertices must be close to the boundary of the
confinement sphere; (iii) if vi, vi+1, vi+2, vi+3 are four consecutive vertices of a polygon, then
vi and vi+2 (and vi+1 and vi+3) must be very close to each other; and (iv) if ϵ is small and
the number of edges of the polygon is not too large, then the vertices with even indices
and the vertices with odd indices are all close to two antipodal points, respectively, on the
confinement sphere. Moreover, the polygons have even lengths. Thus for each polygon P
there exists a cylinder C containing P whose top and bottom is capped by small spherical
disks S1 and S2 whose centers are antipodal points on a confinement sphere. Note that if

2



we allow the length of the polygon (i.e. number of edges) to increase without bound, then
of course such a cylinder C does not exist since the vertices for very long polygons can be
close to any point on the confinement sphere.

To gain insight into the topological complexity of tightly confined polygons, we construct
a simple model where the random polygons are nearly equilateral, lie within a cylinder, and
can be generated easily. We take a fixed cylinder C = C(h, r) of radius r and height h with
flat top and bottom disks D1 and D2. We now connect points alternately from the disks
D1 and D2, with the points chosen with uniform probability with respect to area on each
disk. The last point on D2 is connected to the first point on D1 to close the polygon. This
simple method generates non-equilateral random polygons with even numbers of edges that
are contained in the cylinder C. However, when h >> r the polygons are close to being
equilateral. We do not claim that these cylindrical polygons have the exact probabilities as
equilateral random polygons under tight spherical confinement. However, we believe we can
gain insight into knotting in extreme confinement by analyzing these configurations when
the number of edges in relatively small.

Next we want to understand how the relationship between the cylinder radius r and
cylinder height h affects the spectrum of knot types of these polygons. Let us assume that r
is fixed and h varies. For a given a set of vertices on the disks D1 and D2 and two different
heights h and h′, we can construct two polygons P and P ′ in the cylinders C(h, r) and
C(h′, r) respectively. Then P can be obtained from P ′ by a simple similarity, stretching or
shrinking C(h, r) until C(h′, r) is obtained. During this process no edges of P pass through
each other and, thus, the polygons P and P ′ have the same knot type. Similarly, stretching
or shrinking D1 and D2 by a similarity does not change the knot type of the polygon. Thus,
the topological information is independent of the actual values of h and r.

Since the spectrum of knot types in this model is independent of h and r, the reader
should worry that the model does not capture any information about knotting in spherical
confinement with R close to 1/2. However, we show that the cylindrical model is consistent
with our data from spherical confinement.

This manuscript is organized as follows. In Section 2 we provide some background in-
formation on knot theoretic concepts from this article and explain how our data set was
generated. In Section 3 we argue that the polygons in the cylindrical model behave like
spherically-confined polygons with a confinement radius smaller than one. In Section 4 we
analyze the knot spectrum of the cylindrical polygons and compare it to the knot spectrum
of the spherically-confined polygons. We conclude the article with Section 5 by summarizing
the results and indicating future work.

2 Background

2.1 Knot theory background

To help those readers that are not familiar with knot theory, we outline and discuss briefly
some topological concepts that are most relevant to this paper. For a more detailed exposi-
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(a)

K1 K2

(b)

Figure 1: (a) A knot and its mirror image. (b) A composite knot constructed from two
nontrivial knots K1 and K2.

tion, please refer to a standard text on knot theory such as [1, 4, 30, 32].
A closed curve in R3 with no self-intersections is a knot K. In this paper, we concentrate

on the subclass of knots which form space polygons with no self-intersections. Two knots
are topologically equivalent if one can be continuously deformed (as continuous curves)
to the other in R3 without being broken or causing self-intersection in the process. The
class of all equivalent configurations is called a knot type. The knot type that contains a
polygon representing the unit circle is called the trivial knot (type), and is denoted 01. Any
configuration in the knot type 01 is called an unknot, or is said to be unknotted.

For a fixed knot configuration K in R3, a regular projection of K is a projection of K onto
a plane such that no more than two segments of K cross at the same point in the projection
and endpoints of segments do not project onto other edges of the projection. An intersection
in a regular projection is called a crossing. We typically draw a regular projection of K with
the additional information that shows which strand passes over and which strand passes
under at each crossing in the projection and call such a projection a knot diagram. The
minimum number of crossings among all possible knot diagrams of a knot type K is called
the crossing number of K and is denoted cr(K).

A knot diagram is alternating if the strands alternate between under and over at crossings
as one travels along the curve. A knot type is alternating if it has an alternating diagram
and is nonalternating if it does not have an alternating diagram. Note that nonalternating
knots types have crossing number eight or greater. We obtain a diagram of the mirror image
of K if we switch the “over” and “under” at each crossing in a diagram of a knot type K,
see Figure 1(a).

A composite knot is a knot type that can be realized by connecting two nontrivial knots
as shown in Figure 1(b). If a knot type is not composite, then it is a prime knot type. It is
important to note that a composition of two nontrivial alternating knot types always admits
a minimum knot projection that is alternating, as well as a minimum knot projection that
is nonalternating. Thus, in our study the composite knots are not included in either of the
alternating or nonalternating knot groups. Composite knot types have crossing number six
or greater.

A knot type is amphichiral or achiral if a configuration of the given knot type is equivalent
to its mirror image (in which case all configurations of the given knot type are equivalent
to their mirror images). Through seven crossings, there are three prime amphichiral knot
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types: 01, 41, and 63. There are five prime 8-crossing and 13 prime 10-crossing amphichiral
knot types. Knot types that are not amphichiral are called chiral.

In this paper, we explore the effect of knot complexity on the probability of different knot
types and of groupings of knot types. Knot complexity can be measured in many different
ways using quantities of classical knot theory (such as crossing number, genus, braid index,
and bridge number) that can be found in any standard text on knot theory [1, 4, 30, 32]. In
this article we use the crossing number as our measure of knot complexity since the crossing
number is the most widely used measure of knot complexity and none of the alternatives
seem to have any intrinsic advantage over the crossing number.

2.2 Generating polygons in cylindrical confinement

For this study, random polygons were generated with the number of edges ranging from six
to 30 in steps of two. We call the number of edges in a polygon the length of the polygon.
For each length, one million polygons were generated and analyzed. We begin at length six
because all polygons with fewer than six edges are unknotted [38]. Our sampling ends at 30
because that is the smallest length where we cannot classify the knot types of over 50% of
the samples. The data set of vertex coordinates and knot types of the random cylindrical
polygons are posted at [21].

The data set polygons lie within a cylinder of unit radius and unit height, where the two
endcap disks are parallel to the xy-plane and centered at the points (0, 0, 0) and (0, 0, 1). The
vertices have (x, y)-coordinates chosen uniformly with respect to area on these disks and z-
coordinates which alternate between 0 and 1. More specifically, for the x and y coordinates,
it is easiest to think in terms of polar coordinates. One such x and y value is generated
as follows: a double θ is chosen uniformly from [0, 2π) and a random double d is chosen
uniformly from [0, 1], both using the Gnu Scientific Library’s gsl rng mt19937 as the random
number generator [26]. Then (x, y) = (

√
d cos(θ),

√
d sin(θ)).

2.3 Classifying knot types

For each polygon (a total of 13,000,000 polygons), we classify the exact chiral knot type for
almost all (more about this below) knot types with crossing number 16 or smaller. Knot
types had been fully enumerated through 16 crossings [28] until just recently, when the limit
was pushed to 19 crossings [5]. However, our tables only go through 16 crossings, which is
why we stop there. If the crossing number of a configuration is greater than 16, we compute
an upper bound for its crossing number. We implicitly assume that the crossing number of
a composite knot is the sum of the crossing numbers of its factors, although that remains an
open question [1].

Before we explain the details of the knot identification process, we summarize our as-
sumptions used in the remainder of the paper:

1. If a knot configuration has crossing number 16 or smaller, we know the exact knot type
without chirality (and with chirality, most of the time).
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2. If the knot type is not classified as a 16 or smaller crossing knot type, then our computed
crossing number upper bound is a good estimate of the actual crossing number.

For a given configuration, the knot identification process goes as follows:

1. We compute a crossing code for the configuration using software written by Rawdon.

2. We use Thistlethwaite’s unraveller software [41] to simplify the crossing code, while
keeping the knot type fixed.

3. We use Ewing and Millett’s lmpoly software [24] to compute the HOMFLYPT poly-
nomial [25, 37].

4. We look up the chiral knot types matching the given HOMFLYPT polynomial from a
table computed by Rawdon.

5. We use knotfind, a portion of Hoste and Thistlethwaite’s Knotscape [27], to compute
a canonical simplified Dowker code from the simplified crossing code.

6. We look up the canonical simplified Dowker code in a table that exists as a part of
Knotscape. This table provides the exact knot type, but without chirality information,
so e.g. 31 instead of +31 or −31.

7. We compare the output from (4) and (6) to compute the chiral knot type.

If the given configuration has a knot type with crossing number 16 or smaller, this process
usually gives us the exact chiral knot type. However, if the HOMFLYPT polynomial does
not appear in our table (implying that the knot type has a crossing number exceeding 16) or
a component of our software chain fails (which only occurs with knotfind), we do additional
detective work.

In some cases, the software knotfind can fail. If this happens and the HOMFLYPT
polynomial of the configuration is found in our HOMFLYPT table, we compute the isometry
signature [19] of the configuration using SnapPy [8]. The isometry signature is a complete
knot invariant (but without chirality information, similar to knotfind), but is only defined
for knot types whose exteriors are cusped hyperbolic manifolds. While this is imperfect (for
example, composite knot types are not cusped hyperbolic manifolds), it allows us to classify
the knot types of some additional configurations by comparing the isometry signature to a
table computed by Rawdon using SnapPy.

If after these computations we have not found the knot type, we believe that the knot
type has crossing number 17 or greater. In those cases, the output from unraveller provides
an upper bound on the crossing number of the given knot type. To maximize the probability
that we have the actual crossing number, we also try to simplify the crossing code using the
command simplify in SnapPy. In most cases, the results from both programs agree. We
use the minimum of the results of the two computations to be our estimate of the crossing
number. If this estimate is 17 and the HOMFLYPT polynomial does not appear in our
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table, then we know that the crossing number really is 17. Beyond 17 crossings (or if the
HOMFLYPT polynomial does appear in our table and neither knotfind nor the isometry
signature is able to identify the knot type), we cannot guarantee that we have the correct
crossing number, although we have no reason to believe that the computations somehow fail
beyond 17.

It is important to note that we had no cases where the knot could be simplified to 16 or
fewer crossings and we did not identify the knot type.

There is one more peculiarity in this process. The software knotfind attempts to de-
compose composite knots if the composition is easily seen in the projection. We use this
functionality recursively to attempt to factor a knot into its prime knot factors. If the cross-
ing number of the composite knot does not exceed 16, then we determine the knot type
as described above. However, if the crossing number of a composite knot exceeds 16, yet
each of the prime factors has crossing number not exceeding 16 then we identify the prime
knot types of the factor knots. The net result is that for some configurations which form
composite knots with crossing number greater than 16, we still can compute their knot type
(e.g. 71#102). In these cases, we do not compute the chiralities of the factors. There is no
guarantee that knotfind always decomposes composite knots.

If the crossing number of the knot type is 16 or smaller, this process provides the chiral
knot type of the configuration with one caveat. There are some chiral knot types for which
both chiralities have the same HOMFLYPT polynomial, e.g. the 942 knot. For those knot
types, both chiralities are grouped together. There are 5344 such prime knot types (one
9-crossing, five 10-crossing, two 11-crossing, 91 12-crossing, 35 13-crossing, 616 14-crossing,
395 15-crossing, and 4199 16-crossing) and 463 composite knot types containing one of these
knot types.

We end our data gathering at a length of 30 edges because that is when the knot con-
figurations with more than 16 crossings becomes over half of the population. We call those
configurations unclassified, which also includes the composite knot types which knotfind

was able to classify with crossing number exceeding 16.

3 Comparison with earlier results on confined poly-

gons

Since the cylinders can be stretched while retaining the same knotting distribution, one might
ask whether these knots even behave as though they are confined. In this section, we argue
that the cylindrical knot model is a good approximation of knotting under spherical confine-
ment with a radius significantly smaller than one. We have studied knotting of equilateral
random polygons under spherical confinement [11, 12, 13, 14, 15, 16, 17, 18] concentrating
on how the confinement radius R and/or the polygon length L (i.e. the number of edges)
influence knot complexity. However, in order to generate these polygons directly, recall that
the polygons needed to be rooted (i.e. have one vertex at the origin).

We compare the cylinder polygon data generated for this paper (which has 1,000,000
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samples for even lengths between six and 30) to data generated in the above-mentioned
papers. There are two such data sets. First, for R ∈ {1.0, 1.1, · · · , 2.9, 3.0, 3.5, 4.0, 4.5} and
length values between 10 and 90 by steps of 10, we have 10,000 configurations for most (L,R)
pairs (we did not compute the knot types of the configurations for some of the mostly highly
confined pairs because we could classify so few knot types). Second, for length 30 and the
same R values, and for R = 3.0 and the same length values, we have 100,000 configurations.
We call these rooted data sets spherical data set 1, with 10,000 samples per (L,R) pair,
and spherical data set 2, with 100,000 samples per (30, R) and (L, 3.0) pair. The vertex
coordinates and corresponding knot types for these two data sets are posted at [22, 23].

The goal of the following subsections is to determine how the cylindrical and the two
rooted spherical polygon data sets align. In particular, is there evidence that the cylindrical
polygons behave as if they are in tighter confinement than the spherical polygons?

We compare the cylindrical and spherical data in various ways: by measuring the mean
topological complexity (Section 3.1), by analyzing the probabilities of different classes of
knot types (Section 3.2), and by computing the relative probabilities of knot types within
some fixed crossing numbers (Section 3.3).

3.1 Mean topological complexity

We measure the change in the complexity of the configurations by computing the mean
topological crossing number, i.e. the average of the crossing numbers of the configurations.
In Figure 2(a) we show the mean topological crossing number of the cylindrical polygon
configurations, both including the unknotted configurations and excluding them. In Figure
2(b), we include the maximum observed (estimated) crossing number, the highest (estimated)
crossing number observed with at least 10 samples, and the (estimated) crossing number
appearing at the 99.99% percentile. With the exception of Figure 2(b), we include error
bars in all graphs in this article. Most of the time, the error bars are so small that they can
barely be seen.

In Figures 3 and 4, we present a combination of data from spherical data sets 1 and 2, and
the cylindrical data related to the mean topological complexity. In Figure 3(a), we compare
the mean topological complexity of the cylindrical data with the spherical set 1 data. Note
that the spherical data graphs are ordered by the confinement radius and it is heartening to
see that the cylindrical data behaves as being significantly more confined than the spherical
data, even at R = 1. The question is: can we estimate a radius R0 at which the cylindrical
data is consistent with the extension of the spherical data to R0?

We begin by using our most reliable spherical data, which comes from spherical data set
2 for length 30 and contains 100,000 configurations for each analyzed radius. Figure 3(b)
shows the mean topological crossing number with confinement radii R = 1 through R = 4.5
for data including the unknots (100,000 configurations) and excluding the unknots (sample
size depends on R). Each point set is fit with a function of the form aebx + c. Table 1 shows
the computed fit parameters, the computed expected value (E) for mean topological crossing
number in the cylindrical model, and the radius value (X) at which the fit function passes
through the value E. Based on Table 1, we decided to use two digits beyond the decimal
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Figure 2: (a) Mean topological crossing number, including and excluding unknots, for the
cylindrical data. (b) Maximum observed (estimated) crossing number, highest (estimated)
crossing number with 10 or more samples, and the (estimated) crossing number at the 99.99th
percentile for the cylindrical data.

point and chose R0 = 0.62 since it is between the two X values of 0.6289 and 0.6160. The
next question is: does this estimate of R0 = 0.62 also match our other data?

Figure 4 shows the mean topological crossing number for 10 and 20 edges and radii
1.0 ≤ R ≤ 4.5 from spherical data set 1, which has 10,000 configurations per (R,L) pair when
we include unknots. We fit each of the data sets, with and without unknots independently,
again using functions of the form aebx+c, and include the cylindrical data point at R0 = 0.62.
The fit parameters are in Table 1. In the graphs, the fitting functions pass through the
cylindrical data points when the unknots are included. When the unknotted configurations
are not included, the cylindrical data points do not lie exactly on the fitting graph. However,
the X values in Table 1 for these situations (0.5861 and 0.6994) are still within 13% of
R0 = 0.62 despite the considerably smaller data sets (see the Min N and Max N columns).

Figures 3 and 4 show that, with respect to mean topological crossing number, cylindrical
polygons behave consistent with the data for polygons under spherical confinement extended
to a radius R0 ≈ 0.62. In the following subsections, we analyze whether this behavior extends
to probability data.

3.2 Probabilities of classes of knot types

In Figure 5, we analyze the relative probabilities of different classes of knot types at L = 30
from spherical data set 2. Figure 5(a) shows the plots for the unknots, alternating prime,
nonalternating prime, composite, and unclassified knot types with the cylindrical data shown
at R0 = 0.62. The cylindrical data and spherical data for R ≤ 1.5 is shown in Table 2
under “Raw percent”. Unfortunately, the unclassified knot types dominate the cylindrical
population, making it difficult to predict the relative probabilities of the other classes in the
cylindrical model.
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Figure 3: (a) Mean topological crossing number (including unknots) for the cylindrical data
and for spherical confinement radii 1.0 ≤ R ≤ 2 and lengths 6 ≤ L ≤ 50 from spherical data
set 1. (b) Mean topological crossing number, including and excluding unknots, for 30-edge
polygons at radii 1.0 ≤ R ≤ 4.5 from spherical data set 2. The fitting functions, of the form
aebx + c, from Table 1 are shown along with the mean topological crossing number for the
cylindrical data placed at R0 = 0.62.
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Figure 4: (a) Mean topological crossing number, including and excluding unknots, for 20-
edge polygons. (b) Mean topological crossing number, including and excluding unknots, for
10-edge polygons. Both graphs are based on data from spherical data set 1. The fitting
functions, of the form aebx + c, from Table 1 are shown along with the mean topological
crossing number for the cylindrical data placed at R0 = 0.62.
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Table 1: Table of fitting values for Figures 3(b) and 4, both including and excluding un-
knots, for the mean topological crossing number of the spherical data. The mean topological
crossing number values were fit by functions of the form aebx + c for fixed length values and
varying radii. The first column shows the length. The second column shows whether the
unknotted configurations are included for this fit. The next three columns show the com-
puted fitting values. The E column is the computed mean topological crossing number for
the cylindrical data. The X column shows the x value where aebx + c = E, i.e. the spherical
radius corresponding to E based on the fitting function. The number of configurations used
to compute the mean topological crossing number varies greatly depending on whether we
include or exclude unknots and whether we are using spherical data set 1 versus 2. For
L = 30, the data comes from spherical data set 2 with 100, 000 configurations per radius
when including the unknots. For L = 20 and L = 10, the data comes from spherical data set
1 with 10, 000 configurations per radius when including the unknots. The last two columns
(Min N and Max N) show the minimum and maximum number of configurations used to
compute the mean topological crossing data points within the given class of data. For ex-
ample, for L = 30 when the unknots are not included, the data size ranges from 85, 145
configurations at R = 1.0 to 7, 275 at R = 4.5. Because our data is much more robust for
L = 30 than for L = 10 and L = 20, we chose R0 = 0.62 based on the average X value (to
two digits) for L = 30.

L unknots? a b c E X Min N Max N
30 yes 92.6351 -2.50150 0.419792 19.63 0.6289 100,000 100,000
30 no 86.6144 -2.68784 3.56612 20.11 0.6160 7275 85,145

20 yes 27.9923 -2.53166 0.151451 5.74 0.6365 10,000 10,000
20 no 18.4617 -2.45392 3.27287 7.66 0.5861 288 4908

10 yes 3.32472 -2.82008 0.0210849 0.62 0.6097 10,000 10,000
10 no 5.39080 -3.44447 3.06999 3.55 0.6994 71 685
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In Figure 5(b), we redistribute the unclassified knots for the spherical data when R ≤ 1.5
and for the cylindrical data to approximate what Figure 5(a) might look like without the
unclassified configurations. Table 2 shows some of the data plotted in Figure 5(a) and Figure
5(b). In particular, note the “unclass” column, i.e. the percentage of unclassified knot types,
whose values we would like to redistribute to the other categories. Recall that the unclassified
knot types are prime and composite knot types with crossing numbers of 17 or greater. As
such, we do not assign any of the unclassified knots to the unknots category.

In Table 3, we show the breakdown by category for 16, 15, and 14-crossing knot types for
the spherical data when R ≤ 1.5 and the cylindrical data. Note that the sample sizes within
this data are small, but there are still lessons to be learned. Looking at the rows, we see
that the 16-crossing knot types have the lowest percentage of alternating knot types and the
highest percentage of nonalternating knot types. The percentages of composite knot types
also generally are the lowest for 16 crossings.

This information suggests that the unclassified cylindrical knot types have fewer than
2.34% alternating prime knot types, greater than 92.29% nonalternating prime knot types,
and fewer than 5.37% composite knot types. Since the great majority are nonalternating, we
adjust the cylindrical knot classes by splitting the 59.16% of unclassified knot types based
on the relative percentages for the 16-crossing knot types: namely, 2.34% of the 59.16%
are assigned to the alternating prime category, 92.29% of the 59.16% to the nonalternating
prime category, and 5.37% of the 59.16% to the composite category. Note that we could have
assigned a higher percentage to the nonalternating category (since the data shows that the
percentage of nonalternating knots is growing with crossing number) and lower values to the
alternating and composite categories, although the differences would barely be noticeable on
the graph. We adjust the categories for the spherical data analogously using the 16-crossing
data from Table 3, as shown in the adjusted percent columns of Table 2.

The graphs of the adjusted values in Figure 5(b) are shown with cubic splines fit to the
data. What can we learn from this figure? First, for these groupings of knot types, the
cylindrical data is consistent with the spherical data at a radius value R0 ≈ 0.62. Second,
we can conjecture on the behavior of length 30 polygons as R approaches 0.5. Our overall
assumption here is that there are no radical changes between R = 0.5 and the rest of the
data. It could be the case that the knotting spectrum changes quickly as R → 0.5+, although
we have no such evidence and no argument for why that would be the case.

The unknots appear to be approaching a probability of 0 as R → 0.5+, although it is
possible that the limiting probability is strictly greater than 0. If that is the case, we would
expect that this is a small-length phenomenon and that when the lengths are longer, the
unknot probability approaches 0 as R → 0.5+.

The nonalternating knot types increase in probability as R → 0.5+. The spline fit between
R = 0.62 and R = 1.0 suggests that there is an inflection point between these two values,
which would likely provide a value around 0.8 as R → 0.5+.

The probability of alternating knot types decreases as R → 0.5+. Based on the spline fit
between R = 0.62 and R = 1.0, it seems unlikely that the probability would approach 0. It
seems more likely that there is an inflection point between R = 0.62 and R = 1.0 and that
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Table 2: Percentages of unclassified (unclass), alternating prime (alt), nonalternating prime
(non), and composite (comp) knot types at L = 30 for the cylindrical polygons and for
the spherical data set 2 polygons with 1.0 ≤ R ≤ 1.5. In Figure 5(b), we redistribute
the unclassified knot types to the other categories based on the relative percentages for 16-
crossing knot types shown in Table 3, except for the unknot counts. The table shows the
measured (raw) percentages along with the adjusted percentages plotted in Figure 5(b) for
the tightest confinements.

Raw percent Adjusted percent
R unclass unknot alt non comp unknot alt non comp
cyl 59.16 2.36 14.47 20.47 3.54 2.36 15.85 75.07 6.72
1.0 9.06 14.86 43.05 26.47 6.57 14.86 43.14 35.09 6.92
1.1 3.67 21.65 47.96 20.57 6.17 21.65 47.98 24.05 6.32
1.2 1.53 29.04 49.31 14.57 5.55 29.04 49.31 16.01 5.63
1.3 0.57 36.07 48.87 9.96 4.52 36.07 48.87 10.51 4.54
1.4 0.25 43.15 46.37 6.60 3.62 43.15 46.37 6.85 3.62
1.5 0.11 49.58 42.92 4.47 2.94 49.58 42.92 4.57 2.94

the limiting value is around 0.12. The estimation for alternating knot types is likely a bit
high. However, even if we assume that none of the unclassified knot types are alternating
knot types (this is essentially the case in Figure 5(a)), it still appears that the limiting value
would be around 0.08.

For the composite knot types, with R = 0.62, 1.0, 1.1, and 1.2, the probability values
are 6.72%, 6.92%, 6.32%, and 5.63%, respectively. It is unclear if the slightly lower value at
R = 0.62 versus R = 1 is real, or numerical error, or error in our adjustment assumptions.
It seems that there are two possibilities: 1) the composite knot type percentage increases as
R → 0.5+, approaching an asymptotic value around 7%, or 2) the percentage of composite
knots decreases as R → 0.5+ with a peak somewhere between R = 0.62 and R = 1.1, tending
to a limiting value around 0.065. We see a slight decrease like this again in Section 4.1. As
such, we would conjecture that the latter property holds, i.e. that the limiting value is around
0.065.

Next we analyze probabilities when we group together knot types with the same crossing
number. We begin by graphing the probabilities as a function of length for the cylindrical
polygons and spherical polygons of set 1 with R values between 1.0 and 1.8 by steps of 0.2
(which was done simply to provide some separation between the graphs). Figure 6 shows the
probability graphs for just the 01 and just the 31 knot types (the only knot types with crossing
numbers 0 and 3, respectively). Figure 7 shows the probability graphs when we combine
all 5-crossing knot types and combine all 6-crossing knot types. Again the cylindrical data
behaves similar to the spherical data at a confinement radius smaller than 1.0, although
there is no easy way to glean an approximated R value.

Alternately, we can view the probability values as a function of radii for various lengths,
see Figures 8 and 9. For these graphs, we include the cylindrical values at R = 0.62 and find
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Table 3: Percentages of alternating prime (alt), nonalternating prime (non), and composite
(comp) knot types with fixed crossing numbers for L = 30. The data is shown for crossing
numbers 16, 15, and 14 within the cylindrical data (cyl) and spherical data set 2 with radii
1.0 ≤ R ≤ 1.5. The P columns show the percentages of the 100, 000 configurations with the
given number of crossings.

16 crossings 15 crossings 14 crossings
R alt non comp P alt non comp P alt non comp P
cyl 2.34 92.29 5.37 3.95 4.30 89.76 5.93 4.03 7.77 84.95 7.28 3.73
1.0 0.96 95.16 3.88 2.40 1.60 94.30 4.10 3.07 3.63 90.26 6.10 3.44
1.1 0.60 95.18 4.22 1.33 1.49 93.73 4.78 1.88 3.11 91.39 5.49 2.18
1.2 0.15 94.59 5.26 0.67 1.04 94.90 4.06 0.96 2.50 91.36 6.14 1.24
1.3 0.33 96.03 3.64 0.30 0.77 93.45 5.78 0.52 2.07 91.73 6.20 0.68
1.4 0.00 97.87 2.13 0.14 0.47 95.75 3.77 0.21 1.12 94.10 4.78 0.36
1.5 0.00 95.59 4.41 0.07 1.49 97.01 1.49 0.13 2.58 92.78 5.43 0.13
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Figure 5: (a) The split between unknots, alternating prime, nonalternating prime, composite,
and unclassified knot types for length 30 polygons with different radii from spherical data
set 2 along with the cylindrical data placed at R0 = 0.62. (b) We split the unclassified knot
types (as described in the text) to obtain an approximation of what the length 30 data might
look like without the unclassified knot types, and fit that data with cubic splines.
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Figure 6: The spherical data set 1 probabilities of the (a) unknot 01 and (b) trefoil 31 as a
function of length for various R values together with the cylindrical data.
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Figure 7: The spherical data set 1 probabilities of (a) 5-crossing and (b) 6-crossing knot
types as a function of length for various R values together with the cylindrical data.
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that the values, again, are consistent with the spherical data.
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Figure 8: The spherical data set 1 probabilities of the (a) unknot 01 and (b) trefoil 31 as a
function of radius for various lengths together with the cylindrical data plotted at R0 = 0.62.
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Figure 9: The spherical data set 1 probabilities of the (a) 5-crossing and (b) 6-crossing knot
types as a function of radius for various lengths together with the cylindrical data plotted
at R0 = 0.62 for lengths 10, 20, and 30.

3.3 Relative probabilities of individual knot types with a given
crossing number

In [16, 18], we analyzed the relative probability of different knot types within a given crossing
number under spherical confinement. In particular, we observed that the relative probability
of different knot types is largely independent of the strength of confinement and, to a lesser
extent, also independent of length (provided the length is sufficiently large). Here we provide
some examples including the cylindrical data.
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In this analysis, we group mirror images together and compute the relative probabilities
of individual knot types within a given crossing number. For example, there are five knot
types with crossing number six, namely 61, 62, 63, 31#31, and 31#m31 (where m denotes
the mirror chirality). We compute the probabilities of these five knot types relative to the
sum of these probabilities. This means that in each figure the probability values of all curves
for the same confinement-value add up to one. Figure 10 shows the relative probability data
for 6-crossing and 7-crossing knot types at L = 30 and varying R values. The data for
L = 30 from R = 1 to R = 2 comes from spherical data set 2 and the leftmost point is from
the cylindrical polygons. We note that the percentage of 3.1#3.1 knot types is essentially
equal to the percentage of 3.1#m3.1 knot types in the cylindrical data in Figure 10(a).
Similarly, Figure 11 shows the data for the 8-crossing composite and nonalternating knot
types. While the cylindrical data point really could be set at any 0.5 < R < 1 value, we use
R = 0.62 to be consistent with earlier graphs. Note that the relative probability heights and
orderings, considering the size of the error bars, are consistent between the cylindrical data
and the spherical data. Also, note that the percentage of 3.1#5.1 (or 3.1#5.2) knot types
is essentially equal to the percentage of 3.1#m5.1 (or 3.1#m5.2) knot types in cylindrical
data in Figure 11(a).
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Figure 10: The relative probabilities of (a) 6-crossing and (b) 7-crossing knot types for length
30 polygons at different radii from spherical data set 2 together with the cylindrical data
plotted at R = 0.62.

3.4 Conclusion

The cylindrical polygon data is consistent with spherical data at a confinement radius smaller
than 1. More specifically, the cylindrical data is consistent with a spherical confinement
radius of approximately R0 = 0.62.
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Figure 11: The relative probabilities for (a) 8-crossing composite and (b) 8-crossing non-
alternating knot types for length 30 polygons at different radii from spherical data set 2
together with the cylindrical data plotted at R = 0.62.

4 The knot spectrum of cylindrical polygons

Now that we have established that the cylindrical polygons behave like spherical polygons
under tight confinement, our goal is to explore knotting complexity and different classes of
knot types as a function of length. Furthermore, we speculate on what one might expect as
the length grows without bound.

4.1 Probabilities of classes of knot types

Figure 12(a) shows the probability of unknots, prime alternating knot types, prime nonalter-
nating knot types, composite knot types, and unclassified knot types as a function of length
for the cylindrical polygons. Note that we can only separate the prime knots from the com-
posite knots when the crossing number is 16 or smaller. We see the prime alternating knot
types and prime nonalternating knot types reach local maxima within the range of edges.
However, the population of unclassified knot types increases to nearly 60% of our population
at L = 30, so it is difficult to decipher whether these behaviors are real.

To provide some clarity, we divide the unclassified knots by estimating how many of
the unclassified configurations are prime alternating, prime nonalternating, and composite
(similar to what we did earlier for mean topological crossing number). In Table 4, we show
the number of unclassified configurations (out of 1,000,000 samples per number of edges)
along with the percentage of alternating prime, nonalternating prime, and composite knot
types within the populations of knot types with crossing numbers 16, 15, and 14. Recall
that the unclassified knots have crossing number 17 and higher. As in Section 3.1, we use
the relative percentages of these populations at 16 crossings to reassign the unclassified
configurations. For example, at 26 edges, 2% of the 294,759 unclassified knots are added
to the alternating prime knots, 94% are added to the nonalternating prime knots, and 4%
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are added to the composite knots (although we do not round off the percentages). The
table shows that, for a fixed length, the percentage of alternating prime and composite knot
types decrease with increasing crossing number and the percentage of nonalternating prime
increases with increasing crossing number. Thus, these estimations likely slightly overcount
prime alternating and composite knots and undercount nonalternating prime knots. Since
the percentages of prime alternating knot types and composite knot types are small (between
0% and 5%), these small amounts of overcounting and undercounting result in minimal
changes in the graphs.

Figure 12(b) shows the probability of the different classes after these reassignments.
There are several lessons here. We see the unknots approaching an asymptotic value of 0,
which we would expect since the probability of unknotted configurations approaches 0 with
increasing confinement pressure (see Figure 8(a)). The nonalternating knot types dominate
at long lengths. The alternating prime knots reach a peak at length 18. Since the ad-
justments for prime alternating knot types appear to be overestimations, this peak is real.
Asymptotically, we would expect the prime alternating graph to continue to decrease. It is
not clear if the alternating prime knots approach a probability of 0 or some positive number.

The composite knot data is also ambiguous. For lengths 24, 26, 28, and 30, the adjusted
values are 6.28%, 6.63%, 6.80%, and 6.72%, respectively. Like we saw in Section 3.2, it
is unclear if the slightly lower value at L = 30 versus L = 28 is real, or numerical error,
or error in our adjustment assumptions. Again, it seems that there are two possibilities:
1) the composite knot type percentage increases with L, approaching an asymptotic value
around 7%, or 2) the percentage of composite knots decreases after length 28 (or somewhere
near there), tending towards some asymptotic value (which could be 0 or non-zero). We
attempted to address this issue, but ultimately could not find any compelling evidence one
way or the other. Since we see this same behavior for fixed length and varying R, we lean
towards believing that the percentage of composite knots does decrease after length 28.

In short, our data does not address the asymptotics of the alternating prime and com-
posite knot types. If we had to guess, we would conjecture that the prime alternating knot
types approach a probability of 0 and the composite knot types approach a probability of
around 0.065.

4.2 Probabilities for fixed crossing numbers

For a given number of crossings, what would we expect for the probability curve in the
cylindrical confinement model as length increases? There are different factors at play which
restrict and encourage knotting of different levels of complexity.

First, for a knot type, or fixed number crossings (or, knot types with bounded crossing
number like in Figure 12(a), or really, any finite set of knot types), we expect the probability
to approach 0 as the number of edges tends to infinity. In particular, suppose we have a
(2n)-gon and we add two more edges to create a (2n + 2)-gon. Those two extra edges are
likely to pierce several triangles created by other pairs of consecutive edges and create many
new crossings. When n is large, it is difficult for these new crossings to be all nugatory
crossings or to “undo” some of the knotting from other edges (which would likely be a very
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Table 4: Within the cylindrical configurations, the number of unclassified knot types (un-
class) along with the percentages of alternating prime (alt), nonalternating prime (non), and
composite (comp) knot types at different lengths for crossing numbers 16, 15, and 14. The
N columns show the number of configurations (out of the 1,000,000 samples) with the given
number of crossings. This table shows the non-adjusted values.

16 crossings 15 crossings 14 crossings
L unclass alt non comp N alt non comp N alt non comp N
12 2 0 0 0
14 96 0 100 0 87 0 100 0 249 0 99 1 440
16 1240 0 99 1 949 0 99 1 1714 1 98 1 2574
18 7903 0 99 1 3987 0 98 2 6391 1 96 2 8360
20 29573 0 98 2 10916 1 97 2 15321 2 94 3 18565
22 80364 1 97 3 21729 2 95 3 27721 4 92 4 30799
24 168878 1 95 4 33127 2 94 4 39366 5 90 5 41677
26 294759 2 94 4 41236 3 92 5 45853 6 88 6 46499
28 442976 2 93 5 43852 4 91 5 45854 7 87 7 44267
30 591562 2 92 5 39525 4 90 6 40283 8 85 7 37285
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Figure 12: (a) Probabilities of unknots, prime alternating knot types, prime nonalternat-
ing knot types, composite knot types, and unclassified knot types for all lengths from the
cylindrical data. (b) We split the unclassified knot types (as described in the text) to obtain
an approximation of what the cylindrical data might look like without the unclassified knot
types.
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local action where a triangle pierced by one edge would be pierced in the other direction by
a nearby edge), so one would expect the (2n+2)-gon to be a knot type with crossing number
greater than the crossing number of the (2n)-gon most of the time. As such, any particular
knot type eventually becomes “crowded out” by more complicated knot types at very large
lengths.

Second, each knot type has a stick number, i.e. the smallest number of edges needed to
create a polygon realizing that knot type, and the stick number has a lower bound that
increases with crossing number [6]. So for edge numbers less than the stick number for that
knot type, the given knot type is not even possible. At the stick number (or the stick number
plus one, in case the value is odd) the knot type is barely possible. But as the number of
edges increases, there is more flexibility in the available configurations forming this knot
type, making it increasing probable.

The tension between these two ideas suggests that the probability peaks at some length,
which differs depending on the knot type, seemingly with simpler knot types reaching the
peak at lower numbers of edges.

Figure 13 shows the probability of knot types with crossing numbers 0 through 10. The
cylindrical data curves are similar in shape to curves we computed for polygons under spher-
ical confinement in [11]. In particular, the 0-crossing (unknot) data is always decreasing,
beginning concave downward before hitting an inflection point and then decreasing concave
upward to an asymptotic value of 0. For higher crossing numbers, the graph starts increasing
concave upward, has an inflection point to turn concave downward, reaches a maximum, has
another inflection point to turn concave upward, and then approaches an asymptotic value
of 0.

For crossing numbers between 0 and 10, the behavior of the probability is not entirely
ordered by crossing number. In Figure 13(a), the 4-crossing knot types, which consist of just
the amphichiral 41 knot, has lower probability over most of the graph than the 5-crossing
knot types, which includes 51 and 52, both of which are chiral. In Figure 13(b), the 5-crossing
knot types are more probable than the 6-crossing knot types prior to their peaks. However,
the 8-crossing knot types are more probable than the 7-crossing knot types at most lengths,
and the 10-crossing knot types are more probable than the 9-crossing knot types at most
lengths. Thus, in this range, there is a real advantage to having an even crossing number,
likely due to the even numbers of edges.

If we restrict our attention to just the odd (or just the even) crossing numbers, then we
see the graphs of the knot types ordered by crossing number (Figure 14), at least prior to
their peaks. Following their peaks, the probabilities dissipate at different rates. We do not
have a good idea for how to predict the dissipation rates.

Even amongst the even crossing numbers in Figure 14(b), the 4-crossing knot types seem
out of place. As mentioned above, the 4-crossing knot types contain only the amphichiral 41

knot. At 6-crossings, we see the first composite knot types (plus two chiral and one amphichi-
ral knot type) and at 8-crossings we see the first nonalternating knot types. Furthermore,
the number of knot types per crossing number increases exponentially with crossing num-
ber asymptotically [20, 40]. We expect that the higher peak for 6-crossing knots than for
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Figure 13: Probabilities of knot types in the cylindrical data with (a) crossing numbers
between 0 and 5, and (b) crossing numbers between 5 and 10.
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Figure 14: Probabilities for knot types in the cylindrical data with (a) odd crossing numbers:
3, 5, 7, and 9, and (b) even crossing numbers 4, 6, 8, and 10.

4-crossing knots is due to the additional knot types. For crossing numbers between 5 and
10 divided into even and odd crossing numbers, smaller crossing numbers have higher peaks
and that peak occurs at smaller lengths.

Beyond 10 crossings, prior to their peaks, the combined probabilities of all knot types with
a given crossing number are ordered simply by crossing number. Furthermore, the length at
which such probabilities peak for a given crossing number is ordered by the crossing number.
In Figure 15(a), we see this behavior. We also see that the probability graphs cross as the
smaller crossing numbers are dissipating while the higher crossing numbers are just beginning
to decrease. One can speculate that if we were to go to a polygonal length of 32 edges, the
ordering of the probabilities would be inverted with respect to crossing number.

In Figure 15(b), we show the probability curves for the estimated crossing numbers 17
through 59, along with the 16-crossing probability data. The graph is stunningly uniform,
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Figure 15: Probabilities for knot types in the cylindrical data with (a) crossing numbers
between 10 and 16 and (b) crossing numbers between 16 and 59.

and suggests that our crossing number estimates within the unclassified knot types are really
quite good. While the graph includes multiple repeats on colors, the take-home message is
that the ordering by crossing number persists in this range, and one would expect to see the
same “lower crossing number implies peaks at smaller numbers of edges” behavior to persist
for all crossing numbers 10 and higher.

Furthermore, the graphs of Figure 15(a), and the graphs for crossing numbers 16 through
18 in Figure 15(b), show that the peak probability value decreases with increasing complexity.
We believe this is because so many new knot types, and crossing numbers, become available
with the addition of two new edges between cylinder knot lengths.

4.3 Probabilities of alternating knot types by crossing number

The alternating knot types show more regularity than the general probabilities seen in the
previous section. In Figure 16(a), we show the probabilities of alternating knot types with
crossing numbers between five and 10. Note that all of the 3-crossing and 4-crossing knot
types are alternating knot types. We did not include the 3-crossing data since the probabili-
ties are so much higher than the five through 10 crossing data, nor the 4-crossing data since
we have already discussed its behavior. Also note that we do not have alternating versus
nonalternating data for crossing numbers beyond 16 (i.e. within the unclassified data).

Within alternating knot types, the probability graphs are ordered simply by crossing
number with lower crossing number implying that the peak is higher and it occurs at a
smaller number of edges. In fact, the curves are perfectly ordered by crossing number prior
to their peaks in both Figures 16(a) and Figure 16(b).
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Figure 16: Probabilities for alternating prime knot types in the cylindrical data with (a)
crossing numbers between 5 and 10, and (b) crossing numbers between 10 and 16.

4.4 Probabilities of nonalternating knot types by crossing number

The nonalternating probability data by crossing number (Figures 17 and 18) has a number
of unusual features which help explain some of the full probability data in Section 4.2.

In Figure 17(a), we see anomalous behavior for nonalternating knot types with crossing
numbers between eight and 10. The 8-crossing nonalternating knot types have a higher
peak than the 9-crossing nonalternating knot types. Also, the 10-crossing knot types have
higher probability than the 9-crossing knot types at all reported edges except 10 (0.000178
for 9-crossings versus 0.000135 for 10-crossings at 10 edges) and their peaks both occur at
22 edges.

In Figure 17(b), we see the behavior for nonalternating knot types between 10 and 16
crossings. We observe that the curves do not look as nicely ordered as the curves for alter-
nating knots shown in Figure 16(b). To see the location of the peaks more clearly, we isolate
the odd and even crossings numbers for nonalternating knot types in Figure 18. Within these
groupings, we again see an ordering by crossing number with respect to peak probabilities
and the position of the peak. We observe that the curves in Figure 17(b) are ordered by
crossing number prior to their peak and seem mostly to be ordered again by crossing number
at length 30. We also see that as the crossing number increases, the peak occurs a longer and
longer lengths. The probability values of the peaks themselves increase up to 13 crossings.
The probability values of the peaks from 13 to 15 crossings are all very similar. However the
value for 16 crossings is slightly smaller. Thus we can speculate that with increasing crossing
number the height of these peaks does not increase any further, and most likely declines, as
was seen in Section 4.2.

From Table 4, we know that a very high percentage (at least 92%) of the knot types with
crossing number exceeding 16 are nonalternating prime knot types. Therefore, if we were
to plot the probability graphs for nonalternating knot types beyond 16 crossings, we would
expect the graphs to look much like those in Figure 15(b) which contain all classes of knots
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Figure 17: Probabilities for nonalternating prime knot types in the cylindrical data with (a)
crossing numbers between 8 and 10, and (b) crossing numbers between 10 and 16.
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Figure 18: Probabilities for nonalternating knot types in the cylindrical data with (a) odd
crossing numbers: 9, 11, 13, and 15, and (b) even crossing numbers: 8, 10, 12, 14, and 16.

with a given crossing number.

4.5 Probabilities of composite knot types by crossing number

The composite knot types, with the exception of the 7-crossing composite knot types, behave
regularly. In Figure 19(a), we see that the 7-crossing composite knot types seem out of place.
The 7-crossing composite knot types contain just two knot types 31#41 and its mirror image
m31#41, where 31 and m31 are mirror images. There are three 6-crossing composite knot
types, 31#31, 31#m31, and m31#m31, but recall that the 31 knot type, which includes both
31 and m31, has greater probability than the 41. If we disregard the 7-crossing composite
knot types, we again see that knot types with lower crossing number have higher peaks and
those peaks appear at smaller lengths than higher crossing number knot types. This occurs
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Figure 19: Probabilities for composite knot types in the cylindrical data with (a) crossing
numbers between 6 and 10, and (b) crossing numbers between 10 and 16.

in both Figure 19(a) and Figure 19(b).
In Figure 19(b), we include the probabilities from the composite knots classified by

knotfind with crossing number exceeding 16 from the unclassified knots . The results
for 17, 18, and 19 crossings look consistent with the data for crossing numbers less than 17.
However, there is a large gap between 19 and 20 crossings. For length 30 at 19 crossings
there are 1459 configurations, of which 1091 are 31 knots composed with a 16-crossing knot
type. At 20 crossings, then, we would expect a majority of the knot types to be 31 knots
composed with 17-crossing knot types. But we do not classify the 17-crossing knot types
with our software, so those configurations are considered unclassified. It could also be the
case that knotfind is less and less effective at factoring composite with increasing crossing
numbers, although we have no way of measuring to what extent this is true. To be fair, the
software knotfind was not designed to optimize the factoring of composite knot types.

5 Summary

The configurations generated in the cylindrical model are independent of the ratio h/r where
h is the cylinder height and r is the cylinder radius. Furthermore, they are not equilateral and
not rooted at the origin – all the spherical polygons we generated earlier were equilateral and
rooted at the origin. Still, our results show that the distribution of knot types of the polygons
generated in the cylinder behave like the polygons under rooted spherical confinement with a
confinement radius considerably smaller than one – estimated at an approximate confinement
radius of R = 0.62. This suggests that both the rooting in the spherical model with values
R ≥ 1 and the non-equilateral nature of the cylindrical model do not greatly affect the
distributions of knot types. Geometric quantities like average crossing number, curvature
and torsion change depending on the ratio h/r and this will be the topic of a separate article.

For length 30, we find that the probabilities of unknotted and prime alternating knot
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types in the cylindrical polygons decrease as R → 0.5+. We conjecture that the unknot
probability approaches 0 and that the prime alternating probability approaches a positive
value between 0.08 and 0.12. The composite knot types appear to approach a value around
0.065 as R → 0.5+, which leaves around 80% of the polygons to be nonalternating knot
types.

We also analyze the cylindrical polygons as length increases. Unknotted polygons are
already virtually extinct at length 30 while the probability of polygons representing a prime
alternating knot type is initially increasing with a peak around 18 edges of 49% and then
decreasing. At 30 edges still 16% of polygons represent alternating knot types, although we
conjecture that this value approaches 0 as length increases. We conjecture that the composite
knot types approach a value around 0.065 as length increases, which leaves around 93% of
the polygons to be nonalternating knot types as L → ∞.
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