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Abstract—Goal-driven selective attention (GDSA) is a remark-
able function that allows the complex dynamical networks of the
brain to support coherent perception and cognition. Part I of
this two-part paper proposes a new control-theoretic framework,
termed hierarchical selective recruitment (HSR), to rigorously
explain the emergence of GDSA from the brain’s network
structure and dynamics. This part completes the development
of HSR by deriving conditions on the joint structure of the
hierarchical subnetworks that guarantee top-down recruitment of
the task-relevant part of each subnetwork by the subnetwork at
the layer immediately above, while inhibiting the activity of task-
irrelevant subnetworks at all the hierarchical layers. To further
verify the merit and applicability of this framework, we carry
out a comprehensive case study of selective listening in rodents
and show that a small network with HSR-based structure and
minimal size can explain the data with remarkable accuracy while
satisfying the theoretical requirements of HSR. Our technical
approach relies on the theory of switched systems and provides
a novel converse Lyapunov theorem for state-dependent switched
affine systems that is of independent interest.

I. INTRODUCTION

Our ability to construct a dynamic yet coherent percep-
tion of the world, despite the numerous parallel sources of
information that affect our senses, is to a great extent reliant
on the brain’s capability to prioritize the processing of task-
relevant information over task-irrelevant distractions according
to one’s goals and desires. This capability, commonly known
as goal-driven selective attention (GDSA), has been the subject
of extensive research over the past decades. Despite major
advances, a fundamental understanding of GDSA and, in
particular, how it emerges from the dynamics of the underlying
neuronal networks, is still missing. The aim of this work is to
reduce this gap by bringing tools and insights from systems
and control theory into these questions from neuroscience.

In this two-part paper, we propose the novel theoretical
framework of Hierarchical Selective Recruitment (HSR) for
GDSA. As stated in Part I, HSR consists of a novel hi-
erarchical model of brain organization, a set of analytical
results regarding the multi-timescale dynamics of this model,
and a careful translation between the properties of these
dynamics and well known experimental observations about
GDSA. Inspired and supported by extensive experimental
research [2]–[14], HSR relies on four major assumptions about
the neuronal mechanisms underlying GDSA. These include
(i) the brain’s hierarchical organization, so that (cognitively-
)higher areas provide control inputs to the activity of lower
level ones [6], [8]–[10], [12]–[14], (ii) its sparse coding, so
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that task-relevant and task-irrelevant stimuli is represented
and processed by sufficiently distinct neuronal populations
(particularly if the two stimuli differ in major or multiple
properties, such as location, sensory modality, etc.) [4]–[9],
[12], [14], (iii) the distributed and graded nature of GDSA,
so that selective attention happens at multiple layers of the
hierarchy [3], [5]–[9], [11], [12], [14], and (iv) the concurrence
of the suppression and enhancement of task-irrelevant and
task-relevant activity, resp. [2]–[7], [9]–[14] (formulated as
selective inhibition and top-down recruitment in HSR, resp.).

The hierarchical structure of the brain plays a key role
in both selective inhibition and top-down recruitment. The
position of brain areas along this hierarchy is determined based
on the direction in which sensory information and decisions
flow, but also by the separation of timescales between the
areas. As expected, the timescale of the internal dynamics of
the neuronal populations increases (becomes slower) as one
moves up the hierarchy [15]–[21]. Although this hierarchy of
timescales is well known in neuroscience, its role in GDSA
has remained, to the best of our knowledge, uncharacterized.
Using tools from singular perturbation theory, we here reveal
the critical role played by this separation of timescales in
the top-down recruitment of the task-relevant subnetworks and
provide rigorous conditions on the joint structure of all layers
that guarantee such recruitment.

Literature Review: The hierarchical organization of the
brain has been recognized for decades [22]–[24] and applies
to multiple aspects of brain structure and function. These
aspects include (i) network topology [24]–[27] (where nodes
are assigned to layers based on their position on bottom-
up and top-down pathways), (ii) encoding properties [28],
[29] (where nodes that have larger receptive fields and/or
encode more abstract stimulus properties constitute higher
layers), (iii) dynamical timescale [15]–[21], [25], [27], [30]–
[34] (where nodes are grouped into layers according to the
timescale of their dynamics), (iv) nodal clustering [35]–[38]
(where nodes only constitute the leafs of a clustering tree), and
(v) oscillatory activity [39] (where layers correspond to nested
oscillatory frequency bands). Note that while hierarchical
layers are composed of brain regions in (i)-(iii), this is not the
case for (iv) and (v). The hierarchies (i)-(iii) are remarkably
similar (in terms of the assignment of brain regions to the
layers of the hierarchy), and here we particularly focus on
(iii) (the timescale separation between hierarchical layers) as
it plays a pivotal role in HSR.

Studies of timescale separation between cortical regions are
more recent. Several experimental works have demonstrated
a clear increase in intrinsic timescales as one moves up the
hierarchy using indirect measures such as the length of stim-
ulus presentation that elicits a response [15], [16], resonance
frequency [17], the length of the largest time window over



which the responses to successive stimuli interfere [18], and
how quickly the activation level of any brain region can track
changes in sensory stimuli [19]. Direct evidence for this hier-
archical separation of timescales was indeed provided in [20]
using the decay rate of spike-count autocorrelation functions.
This was shown even more comprehensively in [21] using
linear-threshold rate models and the concept of continuous
hierarchies [25], [27] (whereby the layer of each node can
vary continuously according to its intrinsic timescale, therefore
removing the rigidity and arbitrariness of node assignment in
classical hierarchical structures). Interestingly, recent studies
show that this timescale variability may have roots not only in
synaptic dynamics of individual neurons [30], but also in sub-
neuronal genetic factors [31] as well as supra-neuronal net-
work structures [32]. In terms of applications, computational
models of motor control were perhaps the first to exploit this
cortical hierarchy of timescales [33], [34]. Despite the vastness
of the literature on its roots and applications, we are not aware
of any theoretical analysis of the effects of this separation of
timescales on the hierarchical dynamics of neuronal networks.

The accompanying Part I [40] proposes the HSR framework,
which is strongly rooted in this separation of timescales. Part
I analyzes the internal dynamics of the subnetworks at each
layer of the hierarchy. Using the class of linear-threshold
network models, it characterizes the networks that have a
unique equilibrium, are locally/globally asymptotically stable,
and have bounded trajectories. In Part I, we also provide a
detailed account of feedforward and feedback mechanisms for
selective inhibition between any two layers of the hierarchy
and show that the internal dynamical properties of the task-
relevant subnetwork at each layer is the sole determiner of the
dynamical properties achievable under selective inhibition.

In this paper, we complete the development of the HSR
framework for GDSA by analyzing the mechanisms for top-
down recruitment of the task-relevant subnetwork, combining
it with the feedforward and feedback mechanisms of selective
inhibition, and generalizing the combination to arbitrary num-
ber of layers. Top-down recruitment is one of the most exper-
imentally well-documented phenomena in selective attention,
see, e.g., [4]–[9], [12]–[14]. While the enhancement (a.k.a.
modulation) of activity in the task-relevant populations is the
simplest form of recruitment, our model is general and thus
also allows for more complex observed forms of recruitment,
such as changes in the receptive fields1 [41]–[43].

In the analysis of top-down recruitment, we use tools
from singular perturbation theory to rigorously leverage this
separation of timescales. The classical result on singularly
perturbed ODEs goes back to Tikhonov [44], [45, Thm 11.1]
and has since inspired an extensive literature, see, e.g. [46]–
[49]. Tikhonov’s result, however, requires smoothness of the
vector fields, which is not satisfied by linear-threshold dy-
namics. Fortunately, several works have sought extensions to
non-smooth differential equations and even differential inclu-
sions [50]–[53], culminating in the work [54] which we use
here. Similar to Tikhonov’s original work, [54] only applies
to finite intervals. Extensions to infinite intervals exist [55],

1The receptive field of each neuron is the area in the stimulus space where
the neuron is responsive to the presence of stimuli.

[56] but, as expected, they require asymptotic stability of the
reduced-order model (ROM) which we do not in general have.2

Statement of Contributions: The paper has four main contri-
butions. First, we use the timescale separation in hierarchical
brain networks and the theory of singular perturbations to
provide an analytic account of top-down recruitment in terms
of conditions on the network structure. These conditions
guarantee the stability of the task-relevant part of a (fast)
linear-threshold subnetwork towards a reference trajectory set
by a slower subnetwork. This, in particular, subsumes the
most classical enhancement (strengthening) of the activity of
task-relevant nodes but is more general and can account for
recent, complex observations such as changes in neuronal
receptive fields under GDSA 1. We further combine these
results with the results of Part I to allow for simultaneous
selective inhibition and top-down recruitment, as observed in
GDSA. Second, we extend this combination to hierarchical
structures with an arbitrary number of layers, as observed
in nature, to yield a fully developed HSR framework. Here,
we also derive an extension of the stability results in Part
I that guarantees GES of a multi-layer multiple timescale
linear-threshold network. Third, to validate the proposed HSR
framework, we provide a detailed case study of GDSA in
real brain networks. Using single-unit recordings from two
brain regions of rodents performing a selective listening task,
we provide an in-depth analysis of appropriate choices of
neuronal populations in each brain region as well as the
timescales of their dynamics. We propose a novel hierarchical
structure for these populations, tune the parameters of the
resulting network using a novel objective function, and show
that the resulting structure conforms to the theoretical results
and requirements of HSR while explaining more than 90% of
variability in the data. As part of our technical approach, our
fourth and final contribution is a novel converse Lyapunov
theorem that extends the state of the art on GES for state-
dependent switched affine systems. This result only requires
continuity of the vector field and guarantees the existence of
an infinitely smooth quadratically-growing Lyapunov function
if the dynamics is GES. Because of independent interest, we
formulate and prove the result for general state-dependent
switched affine systems.3

II. PROBLEM STATEMENT

The problem formulation is the same as in Part I [40].
We include here a streamlined description for a self-contained

2Recall that in two-timescale dynamics, ROM results from replacing the
fast variable with its equilibrium (reducing order to that of the slow variable).

3Throughout the paper, we use the following notation. R, R≥0, R≤0, and
R>0 denote the set of reals, nonnegative reals, nonpositive reals, and positive
reals, resp. 1n, 0n, 0p×n, and In stand for the n-vector of all ones, the
n-vector of all zeros, the p-by-n zero matrix, and the identity n-by-n matrix,
resp. The subscripts are omitted when clear from the context. When a vector
x or matrix A are block-partitioned, xi and Aij refer to the ith block of x
and (i, j)th block of A, resp. Given A ∈ Rn×n, its element-wise absolute
value and spectral radius are |A| and ρ(A), resp. ∥·∥ denotes vector 2-norm.
For x ∈ R and m ∈ R>0 ∪ {∞}, [x]m0 = min{max{x, 0},m}, which is
the projection of x onto [0,m]. When x ∈ Rn and m ∈ Rn

>0 ∪ {∞}n,
we similarly define [x]m0 = [[x1]

m1
0 · · · [xn]

mn
0 ]T . For σ ∈ {0, ℓ, s}n,

Σℓ = Σℓ(σ) is a diagonal matrix with Σℓ
ii = 1 if σi = ℓ and Σℓ

ii = 0
otherwise. Σs is defined similarly. We set the convention that Σsm = 0 if
Σs = 0 and m = ∞1n. For D ⊆ Rn and A ∈ Rp×n,b ∈ Rp, we let
AD + b = {Ax+ b | x ∈ D}.
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Fig. 1: Hierarchical network structure considered in this work.

exposition. We consider a hierarchical neuronal network N ,
cf. Figure 1, whereby the nodes in each layer Ni are further
decomposed into a task-irrelevant part N 0

i and a task-relevant
part N 1

i . The state evolution of each layer Ni is modeled with
linear-threshold network dynamics of the form

τiẋi(t) = −xi(t) + [Wi,ixi(t) + di(t)]
mi
0 , 0 ≤ xi(0) ≤mi,

mi ∈ Rn>0 ∪ {∞}n, (1)

where xi ∈ Rni , Wi,i ∈ Rni×ni , di ∈ Rni , and m ∈ Rn>0

denote the state, internal synaptic connectivity, external inputs,
and state upper bounds of Ni, resp.4

The development of HSR is structured in four thrusts:
(i) the analysis of the relationship between structure (Wi,i)

and dynamical behavior for each subnetwork when operating
in isolation from the rest of the network (di(t) ≡ di);

(ii) the analysis of the conditions on the joint structure
of each two successive layers Ni and Ni+1 that allows for
selective inhibition of N 0

i+1 by its input from Ni, being
equivalent to the stabilization ofN 0

i+1 to the origin (inactivity);
(iii) the analysis of the conditions on the joint structure

of each two successive layers Ni and Ni+1 that allows for
top-down recruitment of N 1

i+1 by its input from Ni, being
equivalent to the stabilization of N 1

i+1 toward a desired
trajectory set by Ni (activity);

(iv) the combination of (ii) and (iii) in a unified framework
and its extension to the complete N -layer network of networks.
Problems (i) and (ii) are addressed in Part I [40], while
problems (iii) and (iv) are the subject of this work.

We let

di(t) = Biui(t) + d̃i(t), ui ∈ Rpi≥0, (2)

where ui is the top-down control used for inhibition of N 0
i .

While in Part I we assumed for simplicity that d̃i(t) is given
and constant, we here consider its complete form

d̃i(t) = Wi,i−1xi−1(t) +Wi,i+1xi+1(t) + ci,

where the inter-layer connectivity matrices Wi,i−1 and
Wi,i+1 have appropriate dimensions and ci ∈ Rni captures

4We note that this is a standard and widely used model in computational
neuroscience, as mentioned in Part I [40]. Please see therein for a detailed
literature review of its origins and prior analysis.

un-modeled background activity and possibly nonzero activa-
tion thresholds. Substituting these into (1), the dynamics of
each layer Ni is given by

τiẋi(t) = −xi(t) + [Wi,ixi(t) +Wi,i−1xi−1(t) (3)
+Wi,i+1xi+1(t) +Biui(t) + ci]

mi
0 .

Also following Part I, we partition network variables as

xi =

[
x
0
i

x
1
i

]
, Wi,j =

[
W

00
i,j W

01
i,j

W
10
i,j W

11
i,j

]
, Bi =

[
B

0
i

0

]
,

ci =

[
c
0
i

c
1
i

]
, mi =

[
m

0
i

m
1
i ,

]
(4)

where x
0
i ∈ Rri for all i, j ∈ {1, . . . , N}. By convention,

W1,0 = 0, WN,N+1 = 0, and r1 = 0 (so B1 = 0 and the
first subnetwork has no inhibited part). We assume that the
hierarchical layers have sufficient timescale separation, i.e.,

τ1 ≫ τ2 ≫ · · · ≫ τN . (5)

Finally, let ϵ = (ϵ1, . . . , ϵN−1), with

ϵi = τi+1/τi, i = {1, . . . , N − 1}. (6)

Next, we first develop the main concepts and results for the
case of bilayer networks (Section III) and then extend them
to the setup with N layers (Section IV).

III. SELECTIVE RECRUITMENT IN BILAYER NETWORKS

In this section we tackle the analysis of simultaneous
selective inhibition and top-down recruitment in a two-layer
network. We consider the same dynamics as in (3) for the
lower-level subnetwork N2, but temporarily allow the dy-
namics of N1 to be arbitrary. This setup allows us to study
the key ingredients of selective recruitment without the extra
complications that arise from the multilayer interconnections
of linear-threshold subnetworks and is the basis for our later
developments. Further, by keeping the higher-level dynamics
arbitrary, the results presented here are also of independent
interest beyond HSR, as they allow for a broader range of
external inputs d(t) than those generated by linear-threshold
dynamics. This can be of interest in, for example, direct brain
stimulation applications where x1(t) is generated and applied
by a computer in order to control the activity x2(t) of certain
areas of the brain. In this view, appropriate stimulation signals
x1(t) may be considered as an augmentation of the natural
hierarchy of the brain if they vary slow enough to satisfy (5).
Section IV builds on the insights obtained here to generalize
this framework to the multilayer case described in Section II.

For any W ∈ Rn×n, define h : Rn ⇒ Rn≥0 by

h(d) = hW,m(d) ≜ {x ∈ Rn≥0 | x = [Wx+ d]m0 }, (7)

which maps any constant input d ∈ Rn to the corresponding
set of the equilibria of (1). Due to the switched-affine form of
the dynamics, h has the piecewise-affine form

h(d) = {Fσd+ fσ | Gσd+ gσ ≥ 0, σ ∈ {0, ℓ, s}n}, (8)

Fσ = (I−ΣℓW)−1Σℓ, fσ = (I−ΣℓW)−1Σsm,

Gσ =
[
Σℓ +Σs − I Σℓ −Σℓ Σs

]T
Fσ,

gσ =
[
fTσ (Σℓ+Σs−I) fTσΣℓ (m−fσ)TΣℓ (fσ−m)TΣs

]T
.



The existence and uniqueness of equilibria of (1) precisely
corresponds to h being single-valued on Rn, in which case we
let h : Rn → Rn≥0 be an ordinary function. For our subsequent
analysis we need h to be Lipschitz, as stated next. The proof
of this result is a special case of Lemma IV.2 and thus omitted.

Lemma III.1. (Lipschitzness of h). Let h be as in (7) and
single-valued5on Rn. Then, it is globally Lipschitz on Rn.

The main result of this section is as follows.

Theorem III.2. (Selective recruitment in bilayer networks).
Consider the multilayer dynamics (3) where N = 2, W01

2,1 =

0, and c
0
2 = 0 but x1(t) is generated by the dynamics

τ1ẋ1(t) = γ(x1(t),x2(t), t). (9)

Let h12 = h
W

11
2,2,m

1
2

as in (7). If

(i) γ is measurable in t, locally bounded, and locally Lips-
chitz in (x1,x2) uniformly in t;

(ii) (9) has bounded solutions uniformly in x2(t);
(iii) p2 ≥ r2;

(iv) W
11
2,2 is such that τ ẋ1

2 = −x1
2 + [W

11
2,2x

1
2 + d

1
1]

m
1
2

0 is
GES towards a unique equilibrium for any constant d1

1;
then there exists K2 ∈ Rp2×n2 such that by using the feedback
control u2(t) = K2x2(t), one has

lim
ϵ1→0

sup
t∈[t,t̄]

x2(t)−
(
0r2 , h

1
2

(
W

11
21x1(t) + c

1
2

)) = 0,

(10)

for any 0 < t < t̄ < ∞, with ϵ1 given in (6). Further, if the
dynamics of x2 is monotonically bounded6, there also exists a
feedforward control u2(t) ≡ ū2 such that (10) holds for any
0 < t < t̄ <∞ and arbitrary W

01
2,1 and c

0
2.

Proof: First we prove the result for feedback control.
By (iii), there exists K2 ∈ Rp2×n2 almost always (i.e., for
almost all (W00

2,2,W
01
2,2,B

0
2)) such that

W2,2 +B2K2 =

[
0 0

W
10
2,2 W

11
2,2

]
. (11)

Further, by [40, Thm IV.7(ii) & Thm V.3(ii)], all the principal
submatrices of −I+(W2,2+B2K2) are Hurwitz. Therefore,
by [40, Thm IV.3 & Assump. 1], h12 is singleton-valued almost
always (i.e., for almost all W2,2). Thus, the x2-dynamics is

τ2ẋ
0
2 = −x0

2, (12)

τ2ẋ
1
2 = −x1

2 + [W
10
2,2x

0
2 +W

11
2,2x

1
2 +W

11
2,1x1 + c

1
2]

m
1
2

0 ,

and has a unique equilibrium for any fixed x1. Assumption (iv)
and [40, Lemma A.2] then ensure that (12) is GES relative to
(0r2 , h

1
2(W

11
21x1(t) + c

1
2)) for any fixed x1.

Based on assumption (ii), let D ⊂ Rn be a compact set
that contains the trajectory of the reduced-order model τ1ẋ1 =
γ(x1, (0r2 , h

1
2(W

11
21x1(t) + c

1
2)), t). By assumption (i), γ is

Lipschitz in (x1,x2) on compacts uniformly in t. Let Lγ be its

5It is possible to show, using the same proof technique, that h is
Lipschitz in the Hausdorff metric even when it is multiple-valued (recall
that the Hausdorff distance between two sets S1, S2 ∈ Rn is defined as
max{supa∈S1

infb∈S2
∥a− b∥, supb∈S2

infa∈S1 ∥a− b∥}).
6See [40, Def V.1].

associated Lipschitz constant on D×{0r2}×h
1
2(W

11
2,1D+c

1
2).

Using (8) and Lemma III.1, for all x1, x̂1 ∈ D,

∥γ(x1, h
1
2(W

11
2,1x1 + c

1
2), t)− γ(x̂1, h

1
2(W

11
2,1x̂1 + c

1
2), t)∥

≤ Lγ∥(x1 − x̂1, h
1
2(W

11
2,1x1 + c

1
2)− h

1
2(W

11
2,1x̂1 + c

1
2))∥

≤ Lγ(∥x1 − x̂1∥+∥h
1
2(W

11
2,1x1 + c

1
2)−h

1
2(W

11
2,1x̂1 + c

1
2)∥)

≤ Lγ(1 + Lh∥W
11
2,1∥)∥x1 − x̂1∥,

so γ(·, h12(W
11
2,1·+c

1
2), t) : Rn1 → Rn1 is Lγ(1+Lh∥W

11
2,1∥)-

Lipschitz on D. Using this, Lemma IV.2 again, and the change
of variables t′ ≜ t/τ1, the claim follows from [54, Prop 1].7

Next, we prove the result for constant feedforward control
u2(t) ≡ ū2. Based on assumption (ii), let x̄1 ∈ Rn1

>0 be the
bound on the trajectories of (9) and ū2 be a solution of

B
0
2ū2 = −[[W00

2,2 W
01
2,2]]

∞
0 ν(x̄1)− [W

01
2,1]

∞
0 x̄1 + [c

0
2]

∞
0 ,

where ν comes from the monotone boundedness of the
dynamics of x2. This solution almost always exists by as-
sumption (ii). Then, the dynamics of x2 simplifies to (12),
and [40, Lemma A.2] guarantees that it is GES relative to
(0r2 , h

1
2(W

11
2,1x1 + c

1
2)) for any fixed x1. The claim then

follows, similar to the feedback case, from [54, Prop 1].

Remark III.3. (Validity of the assumptions of Theo-
rem III.2.). Assumption (i) is merely technical and satisfied by
all well-known models of neuronal rate dynamics, including
the linear-threshold model itself. Likewise, assumption (ii) is
always satisfied in reality, as the firing rates of all biological
neuronal networks are bounded by the inverse of the refrac-
tory period of their neurons. In theory, the verification of
this assumption depends clearly on γ. If a linear-threshold
model is used, we can instead use Theorem IV.3 and relax
assumption (ii) to a less restrictive one (assumption (i) of
Theorem IV.3), which can in turn be verified using the
sufficient condition in Theorem IV.4. Assumption (iii) requires
the existence of at least as many inhibitory control channels
as the number of nodes in N2 that are to be inhibited. Indeed,
selective inhibition is still possible without this assumption (cf.
Theorem IV.3), but may require excessive inhibitory resources.
The most critical requirement is assumption (iv), but is not
only sufficient but also necessary for inhibitory stabilization
(cf. [40, Thm IV.8] for conditions on W

11
2,2 that ensure this

assumption as well as [40, Thm V.2 & V.3] for its necessity
for feedforward and feedback inhibitory stabilization). □

The main conclusion of Theorem III.2 is the Tikhonov-
type singular perturbation statement in (10). According to this
statement, the tracking error can be made arbitrarily small, i.e.,
for any θ > 0,

|x2(t)− (0r2 , h
1
2(x1(t)))| ≤ θ1n2

, ∀t ∈ [t, t̄], (13)

provided that τ2/τ1 is sufficiently small. As discussed in Sec-
tion I, this timescale separation is characteristic of biological

7 [54, Prop 1] is applicable to singularly perturbed differential inclusions
and thus technically involved, but for non-smooth ODEs such as (3), its
assumptions can be simplified to: 1. Lipschitzness of dynamics uniformly in
t, 2. Existence, uniqueness, and Lipschitzness of the equilibrium map of fast
dynamics, 3. Lipschitzness and boundedness of the reduced-order model, 4.
asymptotic stability of the fast dynamics uniformly in t and the slow variable,
and 5. global attractivity of fast dynamics for any fixed slow variable.



neuronal networks. In general, the smaller the time constant
ratio τ2/τ1, the smaller the tracking error θ. As shown in [20],
several pairs of regions along the sensory-frontal pathways
have successive time constant ratios between 1/1.5 and 1/2.5,
which is often (more than) enough in simulations for (13) to
hold with small enough θ, as shown in Example III.4 below.

An important observation regarding (13) is that the equi-
librium map h

1
2 does not have a closed-form expression, so

the reference trajectory h12(x1(t)) of the lower-level network
is only implicitly known for any given x1(t). However, if
a desired trajectory ξ

1

2(t) ∈
∏n2

j=r2+1[0,m2,j ] for x
1
2 is

known a priori, one can specify the appropriate γ such that
h
1
2(x1(t)) = ξ

1

2(t). To show this, let the dynamics of ξ
1

2(t) be

τ1ξ̇
1

2(t) = γξ(ξ
1

2(t), t).

Then, choosing x1(t) = (W
11
2,1)

−1
(
(I−W

11
2,2)ξ

1

2(t)− c
1
2

)
,

[W
11
2,2ξ

1

2(t) +W
11
2,1x1(t) + c

1
2]

m
1
2

0 = [ξ
1

2(t)]
m

1
2

0 = ξ
1

2(t),

which, according to (7), implies ξ
1

2(t) = h
1
2(x1(t)).

We use this result to illustrate the core concepts of the
bilayer HSR in a synthetic but biologically-inspired example,
where a inhibitory subnetwork generates oscillations which are
selectively induced on a lower-level excitatory subnetwork.

Example III.4. (HSR of an excitatory subnetwork by in-
hibitory oscillations). Consider the dynamics (3) with N = 2,
a 3-dimensional excitatory subnetwork at the lower level, a
3-dimensional inhibitory subnetwork at the higher level, and
m1 = m2 =∞13 (Figure 2). Let

W1,1 =

⎡⎣ 0 −0.8 −1.7
−1 0 −0.5
−0.7 −1.8 0

⎤⎦ , c1 =

⎡⎣1110
10

⎤⎦ ,
W2,2 =

⎡⎣ 0 0.9 1.2
0.7 0 1
0.8 0.2 0

⎤⎦ , B2 =

⎡⎣−10
0

⎤⎦ , c2 =

⎡⎣ 2
3.5
2.5

⎤⎦ ,
W1,2 = 0, W2,1 = −I, u2 = 5. (14)

This example satisfies all the assumptions of Theorem III.2,
so we expect the actual x2-trajectory to be close to the desired
x2-trajectory (0, h

1
2(x1(t)) provided that ϵ1 ≪ 1. As shown in

Figure 2, x2(t) and (0, h
1
2(x1(t)) are remarkably close even

with a mild separation of timescales, ϵ1 = 0.5.
This example further illustrates the complementary roles of

selective inhibition and selective recruitment. The complete
x2-subsystem is unstable by itself, but any two-dimensional
subnetwork of it is stable. Therefore,N1 can selectively inhibit
any single node ofN2 while simultaneously recruiting (e.g., by
inducing oscillations in) the remaining two. Thus, as suggested
earlier in [40, Rem V.7], different “tasks” can be accomplished
at different times by varying the selectively recruited subnet-
work over time. Generalizing this to more complex networks
allows for more flexible selective recruitment schemes of
larger neuronal subnetworks, as observed in nature. □

Remark III.5. (Biological relevance of Example III.4).
In addition to providing a simple illustration of the HSR
framework developed here, Example III.4 has interesting sim-
ilarities with well-known aspects of selective attention in the

Inhibitory
τ1

Excitatory
τ2 = 0.5τ1

Fig. 2: The network structure (right) and trajectories (left)
of the two-timescale network in (14) for τ1 = 3.3ms. The
red pyramids and blue circles depict excitatory and inhibitory
nodes, resp., and the trajectory colors on the left correspond
to node colors on the right. The dashed lines show the desired
reference trajectories

(
0, h

1
2(W

11
2,1x1(t) + c

1
2)
)
.

brain. Extensive studies have demonstrated a robust correlation
between oscillatory activity, particularly in the gamma range
(∼ 30−100Hz), and selective attention [57]–[60]. Furthermore,
gamma oscillations in the cortex are shown to be primarily
generated by networks of inhibitory neurons, which then
recruit the excitatory populations (see [61] and the references
therein), as captured by the network structure of Figure 2.
Interestingly, the oscillations generated by the higher-level
inhibitory subnetwork fall within the gamma band by setting
τ1 ∼ 3ms which lies within the decay time constant range
of GABAA inhibitory receptors8 (the major type of inhibitory
synapse in the central nervous system). □

IV. SELECTIVE RECRUITMENT IN MULTILAYER NETWORKS

We tackle here the problem of Section II in its general form
and consider an N -layer hierarchical structure of subnetworks
with linear-threshold dynamics. Given (3), let

h
1
i : c

1
i ⇒ {x

1
i | x

1
i = [W

11
i,i+1h

1
i+1(W

11
i+1,ix

1
i + c

1
i+1)

+W
11
i,ix

1
i + c

1
i ]

m
1
i

0 }, i=2, . . . , N−1,

with h
1
N = h

W
11
N,N ,m

1
N

, be the recursive definition of the
(set-valued) equilibrium maps of the task-relevant parts of
the layers {2, . . . , N}. These maps play a central role in the
multiple-timescale dynamics of (3). Therefore, we begin by
characterizing their piecewise-affine nature. The proof of the
following result can be found in Appendix B.

Lemma IV.1. (Piecewise affinity of equilibrium maps is
preserved along layers of hierarchical linear-threshold net-
work). Let h : Rn → Rn be a piecewise affine function,

h(c) = Fλc+ fλ, ∀c ∈ Ψλ ≜ {c | Gλc+ gλ ≥ 0},
∀λ ∈ Λ,

where Λ is a finite index set and
⋃
λ∈Λ Ψλ = Rn. Given

matrices Wℓ, ℓ = 1, 2, 3 and a vector c̄, assume

x = [W1x+W2h(W3x+ c̄) + c′]m0 , (15)

8See, e.g., the Neurotransmitter Time Constants database of the CNR-
Glab at the University of Waterloo, http://compneuro.uwaterloo.ca/research/
constants-constraints/neurotransmitter-time-constants-pscs.html.

http://compneuro.uwaterloo.ca/research/constants-constraints/neurotransmitter-time-constants-pscs.html
http://compneuro.uwaterloo.ca/research/constants-constraints/neurotransmitter-time-constants-pscs.html


is known to have a unique solution x ∈ Rn′
for all c′ ∈ Rn′

and let h′(c′) be this unique solution. Then, there exists a
finite index set Λ′ and {(F′

λ′ , f ′λ′ ,G′
λ′ ,g′

λ′)}λ′∈Λ′ such that

h′(c′) = F′
λ′c′ + f ′λ′ , ∀c′ ∈ Ψ′

λ′ ≜ {c′ | G′
λ′c′ + g′

λ′ ≥ 0},
∀λ′ ∈ Λ′, (16)

and
⋃
λ′∈Λ′ Ψ′

λ′ = Rn′
. □

A special case of Lemma IV.1 is when W2 = 0, where
h′ becomes, like h

1
N , the standard equilibrium map (7).

Next, we characterize the global Lipschitzness property of the
equilibrium maps. The proof is in Appendix B.

Lemma IV.2. (Piecewise affine equilibrium maps are glob-
ally Lipschitz). Let h : Rn → Rn be a piecewise affine
function of the form

h(c) = Fλc+ fλ, ∀c ∈ Ψλ ≜ {c | Gλc+ gλ ≥ 0},
∀λ ∈ Λ,

where Λ is a finite index set and
⋃
λ∈Λ Ψλ = Rn. Then, h is

globally Lipschitz. □

We are now ready to generalize Theorem III.2 to an N -
layer architecture while at the same time relaxing several of
its simplifying assumptions in favor of generality.

Theorem IV.3. (Selective recruitment in multilayer net-
works). Consider the dynamics (3). If

(i) The reduced-order model (ROM)

τ1 ˙̄x
1
1 = −x̄1

1 + [W
11
1,1x̄

1
1 +W

11
1,2h

1
2(W

11
2,1x̄

1
1 + c

1
2) + c

1
1]

m
1
1

0 ,

of the first subnetwork has bounded solutions (recall x1 ≡
x
1
1 since r1 = 0);

(ii) For all i = 2, . . . , N ,

τiẋ
1
i (t) =− x

1
i (t) + [W

11
i,ix

1
i (t)

+W
11
i,i+1h

1
i+1(W

11
i+1,ix

1
i (t) + c

1
i+1) + c

1
i ]

m
1
i

0 ,

is GES towards a unique equilibrium for any c1i+1 and c
1
i ;

then there exists Ki ∈ Rpi×ni and ūi : R≥0 → Rpi≥0, i ∈
{2, . . . , N} such that using the feedback-feedforward control

ui(t) = Kixi(t) + ūi(t), i ∈ {2, . . . , N}, (17)

we have, for any 0 < t < t̄ <∞,

lim
ϵ→0

sup
t∈[t,t̄]

∥x0
i (t)∥ = 0, ∀i ∈ {2, . . . , N}, (18a)

and

lim
ϵ→0

sup
t∈[0,t̄]

∥x1
1(t)− x̄

1
1(t)∥ = 0, (18b)

lim
ϵ→0

sup
t∈[t,t̄]

∥x1
2(t)− h

1
2(W

11
2,1x

1
1(t) + c

1
2)∥ = 0, (18c)

...
lim
ϵ→0

sup
t∈[t,t̄]

∥x1
N (t)−h1N (W

11
N,N−1x

1
N−1(t)+c

1
N )∥=0. (18d)

Proof: For any 2 × 2 block-partitioned matrix W, we
introduce the convenient notation Wℓ,all ≜ [Wℓ0 Wℓ1] and
Wall,ℓ ≜ [(W

0ℓ)T (W
1ℓ)T ]T for ℓ = 0, 1. Further, for any

i ∈ {2, . . . , N}, let x1:i = [xT1 . . . xTi ]
T . To begin with, let

KN and ūN be such that

B
0
NKN ≤ −W

0,all
N,N , (19a)

ūN (t) ≤ −W0,all
N,N−1xN−1(t)− c

0
N , ∀t, (19b)

Note that, if pN ≥ rN , then (19a) can be satisfied with
equality. Otherwise, (19a) can still be satisfied since all the
rows of B

0
N are nonzero, but may require excessive amounts

of inhibition. Also, notice that ūN is set by the subnetwork
N−1, which has access to xN−1(t) and can thus fulfill (19b).
As a result, the nodes in x

0
N are fully inhibited and evolve

according to τN ẋ
0
N = −x0

N . The overall dynamics become

τ1ẋ1=−x1 + [W1,1x1 +W1,2x2 + c1]
m1
0 ,

...
τN−1ẋN−1=−xN−1 + [WN−1,N−1xN−1+BN−1uN−1

+WN−1,NxN+WN−1,N−2xN−2+cN−1]
mN−1

0 ,

ϵN−1τN−1ẋ
0
N =−x0

N ,

ϵN−1τN−1ẋ
1
N =−x1

N+[W
1,all
N,NxN+W

1,all
N,N−1xN−1+c

1
N ]

m
1
N

0 .

Letting ϵN−1 → 0, we get our first separation of timescales be-
tween xN and x1:N−1, as follows. For any constant xN−1, the
xN dynamics is GES by assumption (ii) and [40, Lemma A.2].
Further, the equilibrium map hN = (0rN , h

1
N ) of the N ’th

subnetwork is globally Lipschitz by Lemmas IV.1 and IV.2,
and the entire vector field of network dynamics is globally
Lipschitz due to the Lipschitzness of [ · ]m0 . Therefore, it
follows from [54, Prop 1] that for any 0 < t < t̄ <∞,

lim
ϵN−1→0

sup
t∈[t,t̄]

∥x0
N (t)∥ = 0,

lim
ϵN−1→0

sup
t∈[t,t̄]

∥x1
N (t)− h1N (W

1,all
N,N−1xN−1(t) + c

1
N )∥ = 0,

lim
ϵN−1→0

sup
t∈[0,t̄]

∥x1:N−1(t)− x
(1)
1:N−1(t)∥ = 0.

Here, x(1)
1:N−1 is the solution of the “first-step ROM”

τ1ẋ
(1)
1 = −x(1)

1 + [W1,1x
(1)
1 +W1,2x

(1)
2 + c1]

m1
0 ,

...

τN−1ẋ
(1)
N−1 = −x(1)

N−1 + [WN−1,N−1x
(1)
N−1

+W
all,1
N−1,Nh

1
N (W

1,all
N,N−1x

(1)
N−1(t) + c

1
N )

+WN−1,N−2x
(1)
N−2 +BN−1uN−1 + cN−1]

mN−1

0 ,

which results from replacing xN with its equilibrium value.
Except for technical adjustments, the remainder of the proof
essentially follows by repeating this process N − 2 times. In
particular, for i = N − 1, . . . , 2, let Ki and ūi be such that

B
0
iKi ≤ −|W

0,all
i,i | − |W

01
i,i+1|F̄i+1|W

1,all
i+1,i|,

ūi(t) ≤ −W
0:
i,i−1xi−1(t)− c

0
i , ∀t,

where F̄i ∈ R(ni−ri)×(ni−ri) is the entry-wise maximal gain
of the map h1i over Rni−ri (cf. Theorem IV.4). This results in



the “(N − i)’th-step ROM”

τ1ẋ
(N−i)
1 =−x(N−i)

1 +[W1,1x
(N−i)
1 +W1,2x

(N−i)
2 +c1]
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Similarly to above, invoking [54, Prop 1] then ensures that

lim
ϵ→0

sup
t∈[t,t̄]

∥x(N−i)0
i (t)∥ = 0,

lim
ϵ→0

sup
t∈[t,t̄]

∥x(N−i)1
i (t)−h1i (W

1,all
i,i−1x

(N−i)
i−1 (t)+c

1
i )∥ = 0,

lim
ϵ→0

sup
t∈[0,t̄]

∥x(N−i)
1:i−1 (t)− x

(N−i+1)
1:i−1 (t)∥ = 0.

Note that, after every invocation of [54, Prop 1], the super-
index inside the parenthesis increases by 1, showing one more
replacement of a fast dynamics by its equilibrium state. In
particular, after the (N − 1)’th invocation of [54, Prop 1],
we reach x

(N−1)1

1 , which is the same as x̄
1
1 in the statement.

Together, these results (and sufficiently many applications of
the triangle inequality and Lemma IV.2) ensure (18).

An instructive difference, by design, between Theo-
rems III.2 and IV.3 is the separate treatment of feedforward
and feedback inhibition in the former versus the combina-
tion of the two in the latter. While the separate treatment
in Theorem III.2 is conceptually simpler and highlights the
theoretical difference between the two inhibitory mechanisms,
the combination in Theorem IV.3 results in more flexibility
and less conservativeness: in pure feedforward inhibition,
countering local excitations requires monotone boundedness
and a sufficiently large ū providing inhibition under the worst-
case scenario, a goal that is achieved more efficiently using
feedback. On the other hand, pure feedback inhibition needs
to dynamically cancel local excitations at all times and is
also unable to counter the effects of constant background
excitation, limitations that are easily addressed when combined
with feedforward inhibition.

Similar to Theorem III.2 (cf. Remark III.3), assumption (ii)
of Theorem IV.3 is its only critical requirement which we next
relate to the joint structure of the subnetworks.

Theorem IV.4. (Sufficient condition for existence and
uniqueness of equilibria and GES in multilayer linear-
threshold networks). Let h : Rn → Rn be a piecewise affine
function of the form

h(c) = Fλc+ fλ, ∀c ∈ Ψλ ≜ {c | Gλc+ gλ ≥ 0},
∀λ ∈ Λ, (20)

where Λ is a finite index set and
⋃
λ∈Λ Ψλ = Rn. Further, let

F̄ ≜ maxλ∈Λ |Fλ| be the matrix whose elements are the maxi-
mum of the corresponding elements from {|Fλ|}λ∈Λ. For arbi-
trary matrices Wℓ, ℓ = 1, 2, 3, if ρ

(
|W1|+|W2|F̄|W3|

)
< 1,

then the linear-threshold dynamics

τ ẋ(t) = −x(t) + [W1x(t) +W2h(W3x(t) + c̄) + c]m0 ,

is GES towards a unique equilibrium for all c̄ and c.

Proof: We use the same proof technique as in [62,
Prop. 3]. For simplicity, assume that |W1| + |W2|F̄|W3| is
irreducible (i.e., the network topology induced by it is strongly
connected)9. Then, the left Perron-Frobenius eigenvector α of
|W1| + |W2|F̄|W3| has positive entries [63, Fact 4.11.4],
making the map ∥ · ∥α : v → ∥v∥α ≜ αT |v| a norm on Rn.
Further, it can be shown, similar to the proof of Lemma IV.2,
that for all c1, c2 ∈ Rn, |h(c1)− h(c2)| ≤ F̄|c1 − c2|, where
the inequality is entrywise. Thus, for any x, x̂ ∈ Rn,[W1x+W2h(W3x+w) + c]m0

− [W1x̂+W2h(W3x̂+w) + c]m0

α

= αT
⏐⏐[W1x+W2h(W3x+w) + c]m0

− [W1x̂+W2h(W3x̂+w) + c]m0
⏐⏐

≤ αT
⏐⏐W1(x− x̂) +W2(h(W3x+w)− h(W3x̂+w))

⏐⏐
≤ αT

(
|W1|+ |W2|F̄|W3|

)
|x− x̂|

= ρ
(
|W1|+ |W2|F̄|W3|

)
αT |x− x̂|

= ρ
(
|W1|+ |W2|F̄|W3|

)
∥x− x̂∥α.

This proves that x ↦→ [W1x +W2h(W3x +w) + c]m0 is a
contraction (on Rn≥0 if m = ∞1n or on

∏
i[0,mi] if m <

∞1n) and has a unique fixed point, denoted x∗, by the Banach
Fixed-Point Theorem [64, Thm 9.23].

To show GES, let ξ(t) ≜ (x(t)− x∗)et, satisfying

τ ξ̇(t) = M(t)Wξ(t), (21)

where M(t) is a diagonal matrix with diagonal entries

Mii(t) ≜

(
[W1x(t) +W2h(W3x(t) +w) + c]m0 − x∗)i

ξi(t)

if ξi(t) ̸= 0 and Mii(t) ≜ 0 otherwise. Then

|M(t)| ≤ |W1|+ |W2|F̄|W3|, ∀t ≥ 0,

where the inequality is entry-wise. Then, by using [65,
Lemma] (which is essentially a careful application of
Gronwall-Bellman’s Inequality [45, Lemma A.1] to (21)),

∥ξ(t)∥α ≤ ∥ξ(0)∥αeρ(|W1|+|W2|F̄|W3|)t

⇒ ∥x(t)−x∗∥α≤ ∥x(0)−x∗∥αe−(1−ρ(|W1|+|W2|F̄|W3|))t,

establishing GES by the equivalence of norms on Rn.

9If |W1|+ |W2|F̄|W3| is not irreducible, it can be “upper-bounded” by
the irreducible matrix |W1|+|W2|F̄|W3|+µ1n1T

n , with µ > 0 sufficiently
small such that ρ(|W1|+ |W2|F̄|W3|+µ1n1T

n ) < 1. The same argument
can then be employed for this upper bound.



Note that Theorem IV.4 applies to each layer of (3) sepa-
rately. When put together, Theorem IV.3(ii) is satisfied if

ρ
(
|W11

2,2|+ |W
11
2,3|F̄

1
3|W

11
3,2|

)
< 1,

...
ρ
(
|W11

N−1,N−1|+ |W
11
N−1,N |F̄

1
N |W

11
N,N−1|

)
< 1,

ρ
(
|W11

N,N |
)
< 1, (22)

where F̄
1
i , i = 2, . . . , N is the matrix described in Theo-

rem IV.4 corresponding to h
1
i , and the affine form (20) of

h
1
i is computed recursively using Lemma IV.1. Moreover, if

m
1
1 = ∞1r1 , then ρ

(
|W11

1,1| + |W
11
1,2|F̄

1
2|W

11
2,1|

)
< 1 serves

as a sufficient condition for Theorem IV.3(i) (which is trivial
if m1

1 <∞1r1 ).

V. CASE STUDY: SELECTIVE LISTENING IN RODENTS

We present an application of our framework to a specific
real-world example of goal-driven selective attention using
measurements of single-neuron activity in the brain. Beyond
the conceptual illustration of our results in Example III.4
above, we argue that the cross-validation of theoretical results
with real data performed here is a necessary step to make
a credible case for neuroscience research and significantly
enhances the relevance of the developed analysis. We have
been fortunate to have access to data from a novel and care-
fully designed experimental paradigm [13], [66] that involves
goal-driven selective listening in rodents and displays the key
features of hierarchical selective recruitment noted here.

A. Description of Experiment and Data

A long standing question in neuroscience involves our
capability to selectively listen to specific sounds in a crowded
environment [2], [67]. To understand the neuronal basis of this
phenomena, the work [13] has rats simultaneously presented
with two sounds and trains them to selectively respond to
one sound while actively suppressing the distraction from the
other. In each trial, the animal simultaneously hears a white
noise burst and a narrow-band warble. The noise burst may
come from the left or the right while the warble may have
low or high pitch, both chosen at random. Which of the two
sounds (noise burst or warble) is relevant and which is a
distraction depends on the “rule” of the trial: in “localization”
(LC) and “pitch discrimination” (PD) trials, the animal has
to make a motor choice based on the location of the noise
burst (left/right) or the pitch of the warble (low/high), resp.,
to receive a reward. Each rat performs several blocks of LC
and PD trials during each session (with each block switching
randomly between the 4 possible stimulus pairs), requiring it
to quickly switch its response following the rule changes.

While the rats perform the task, spiking activity of single
neurons is recorded in two brain areas: the primary auditory
cortex (A1) and the medial prefrontal cortex (PFC). A1 is the
first region in the cortex that receives auditory information
(from subcortical areas and ears), thus forming a (relatively)
low level of the hierarchy. PFC is composed of multiple
regions that form the top of the hierarchy, and serve functions

(a) (b)

Fig. 3: Excitatory/inhibitory classification of neurons. (a) Clus-
ters of spike waveforms. For illustration, clusters are shown in
the two-dimensional space arising from t-distributed stochastic
neighbor embedding (t-SNE) dimensionality reduction. (b)
The spike waveforms of clustered neurons. As expected, the
inhibitory neurons have faster and narrower spikes.

such as imagination, planning, decision-making, and atten-
tion [68]. Spike times of 211 well-isolated and reliable neurons
are recorded in 5 rats, 112 in PFC and 99 in A1, see [66].

Using statistical analysis, it was shown in [13] that (i) the
rule of the trial and the stimulus sounds are more strongly en-
coded by PFC and A1 neurons, resp., (ii) electrical disruption
of PFC significantly impairs task performance, and (iii) PFC
activity temporally precedes A1 activity. These findings are
all consistent with a model where PFC controls the activity of
A1 based on the trial rule in order to achieve GDSA. We next
build on these observations to define an appropriate network
structure and rigorously analyze it using HSR.

B. Choice of Neuronal Populations

To form meaningful populations among the recorded neu-
rons, we perform three classifications of them:

(i) first, we classify the neurons into excitatory and in-
hibitory. The procedure for this classification is based on the
neuron’s spike waveform: excitatory neurons have slower
and wider spikes while inhibitory neurons have faster and
narrower ones [69]. Using standard k-means clustering on the
24-dimensional spike waveform time-series, we identify 174
excitatory and 36 inhibitory neurons 10 (Figure 3(a)). These
clusters conform with spike width difference of excitatory and
inhibitory neurons (Figure 3(b)) and the common expectation
that about 80% of mammalian cortical neurons are excitatory.

(ii) Second, we classify the PFC neurons based on their
rule-encoding (RE) property. This classification was also done
in [13], so we briefly review the method for completeness.
A neuron is said to have a RE property if its firing rate is
significantly different during the LC and PD trials before the
stimulus onset. In the absence of stimulus, any such difference
is attributable to the animal’s knowledge of the task rule (i.e.,
which upcoming stimulus it has to pay attention to in order to
get the reward). Thus, it is standard to assess neurons’ RE
property during the hold period, namely, the time interval

10The type of one neuron could not be identified with confidence and was
discarded from further analysis.



between the initiation of each trial and the stimulus onset
of that trial. Therefore for each PFC neuron, we calculate
its mean firing rate during the hold period of each trial and
then statistically compare the results for LC and PD trials
(p < 0.05, randomization test). Among the 112 neurons
in PFC, 40 encoded for LC while 44 encoded for PD (the
remaining PFC neurons with no RE property are discarded).

(iii) Finally, we classify the A1 neurons based on their
evoked response (ER) property. In contrast to RE, a neuron
has an ER property if its firing rate is significantly different
in response to the white noise (LC stimulus) and warble (PD
stimulus) after the stimulus onset. Since the white noise and
warble are always presented simultaneously, it is not possible
to make such a distinction based on normal trials. However,
before each LC or PD block, the animal is only presented with
the respective stimulus for a few cue trials (which is how the
animal realizes the rule change). Thus, for each A1 neuron,
we compare its mean firing rate during the listening period
of each cue trial (namely, the interval between the stimulus
onset and the time that the animal commits to a decision) and
statistically compare the distribution of the results for LC and
PD cue trials (p < 0.05, randomization test). Among the 99
A1 neurons, 21 had an ER for LC while another 21 had an
ER for PD (the remaining A1 neurons with no ER property
are discarded from further analysis).

Remark V.1. (RE vs. ER detection). It is noteworthy that a
smaller fraction of PFC and A1 neurons also have ER and
RE properties, resp. However, it is expected from systems
neuroscience that these properties arise from the PFC-A1
interaction, as auditory and attention/decision making informa-
tion disseminate from A1 and PFC, resp. This motivates our
classification of A1 and PFC neurons based on ER and RE,
resp., and their reciprocal connection in the proposed network
structure below. Further, we note that our ER detection has a
difference with respect to [13]. In [13], the difference between
the post-stimulus and pre-stimulus firing rates (the latter being
RE) is used for ER detection, with the motivation of removing
the portion of post-stimulus firing rate that is due to RE (and
thus independent of stimulus). However, this relies on the
strong assumption that the RE and ER responses superimpose
linearly, which we found likely not to be true based on the
statistical analysis of the present dataset, perhaps as RE may
have driven neurons close to their maximum firing rate, leaving
little room for additional ER. We thus use the complete post-
stimulus firing rate for ER detection, as above. □

As a result of the classifications described above, we group
the neurons into 8 populations based on the PFC/A1, excita-
tory/inhibitory, and LC/PD classifications. The firing rate of
each population (as a function of time) is then calculated as
follows. For each neuron and each trial, the interval [−10, 10]
(with time 0 corresponding to stimulus onset) is decomposed
into 100ms-wide bins and the firing rate of each bin (spike
count divided by bin width) is assigned to the bin’s center
time. This time series is then averaged over all trials with the
same stimulus pair and all the neurons within each population,
and finally smoothed with a Gaussian kernel with 1s standard
deviation. This results in one firing rate time series for each

neuron and each stimulus pair.
We limit our choice of stimulus pairs as follows. Recall

that each of LC and PD blocks contains 4 stimulus pairs (left-
low, left-high, right-low, right-high). In each block, these 4
pairs are divided into two go and two no-go pairs. When
the animal hears a go stimulus pair, his correct response is
to go to a nearby food port to receive his reward. In no-
go trials, the correct response is simply inaction (action is
punished by a delay before the animal can do the next trial).
Due to strong motor and reward-consumption artifacts in go
trials (cf. [13, Fig. S4]), we limit our analysis here to no-go
trials. Further, we also discard the no-go stimulus pair that is
shared between LC and PD blocks, since the correct decision
(no-go) is independent of the block and thus does not require
selective attention. Hence, our analysis only involves one firing
rate time series for each neuronal population in each block.

C. Network Binary Structure

We next describe our proposed network binary structure11.
In each of the two regions (PFC and A1), the 4 populations
are connected to each other according to the following physi-
ological properties (see [70]–[72] and [72]–[74] for evidence
of these properties in PFC and A1, resp.):

(i) each excitatory population projects to (i.e., makes
synapses on) the inhibitory population with the same
LC/PD preference (RE in PFC or ER in A1);

(ii) neurons in each excitatory population project to each
other (captured by the excitatory self-loops in Figure 4).

(iii) each inhibitory population projects to the populations
(both excitatory and inhibitory) with opposite LC/PD
preference (the so-called lateral inhibition property);

While within-region connections are both excitatory and in-
hibitory, between-region connections in the cortex (including
PFC and A1) are almost entirely excitatory, completing the
binary structure shown in Figure 4.

Hierarchical Structure: To apply the HSR framework to
the network of Figure 4, we still need to assign the nodes
to hierarchical layers. This assignment is in general arbitrary
except for two critical requirements, (i) the existence of
timescale separation between layers and (ii) the existence of
both excitatory and inhibitory projections from any layer to
the layer below (to allow for simultaneous inhibition and
recruitment). The trivial choice here is to consider each region
as a layer, which also satisfies (i) (since PFC has slower
dynamics than A1) but not (ii) (since there would be no
inhibitory connection between regions). We thus propose an
alternative 3-layer choice, as shown in Figure 4.12 This choice
clearly satisfies (ii), and we next show that it also satisfies (i).

Computation of Timescales: To assess the intrinsic
timescales of each population, we employ the common method
in neuroscience based on the decay rate of the correlation
coefficient [20], [21]. In brief, for each neuron ℓ, we partition

11We here make a distinction between the binary structure of the network,
composed of only the connectivity pattern among nodes, and its full structure,
that also includes the connection weights.

12The bottom-most layer N4 represents “external” inputs from sub-cortical
areas. Since we have no recordings from these areas, we do not consider any
dynamics for N4 and accordingly do not include it in HSR analysis.
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Fig. 4: Proposed network binary structure. The physiological
region, hierarchical layer, and encoding properties of nodes
are indicated on the left, right, and above the figure, resp.

the time window before the stimulus onset13 into small bins
(200ms-wide here) and compute the smoothed mean firing rate
of this neuron during each bin and each trial. This yields
a set {rℓi,k}i,k,ℓ, where rℓi,k denotes the mean firing rate of
neuron ℓ in the k’th time bin of trial i. The Pearson correlation
coefficient between two time bins k1 and k2 is estimated as

ρℓk1,k2 =

∑
i(r

ℓ
i,k1
− r̄ℓk1)(r

ℓ
i,k2
− r̄ℓk2)√∑

i(r
ℓ
i,k1
− r̄ℓk1)

2
∑
i(r

ℓ
i,k2
− r̄ℓk2)

2
∈ [−1, 1],

where r̄ℓk is the average of rℓi,k across all the trials for neuron
ℓ. Let ρℓk be the average of ρℓk1,k2 over all k1, k2 such that
|k1 − k2| = k and ρ̄pk, for any population p, be the average
of ρℓk for all the neurons ℓ in the population p. Figure 5
shows this function for populations of excitatory and inhibitory
neurons in PFC and A1 (we do not split the neurons based on
their LC/PD preference because it is not relevant for timescale
separation). Fitting ρ̄pk by an exponential function of the form
Ae−k/τ gives an estimate of the intrinsic timescale τ of this
population, which becomes exact for spikes generated by a
Poisson point process under certain regularity conditions [20].
Here, we use the range of k values for which the decay of ρ̄pk
is approximately exponential for calculating the fit. As seen in
Figure 5, there is a clear timescale separation between the layer
of A1 excitatory neurons, the layer of A1 inhibitory and PFC
excitatory neurons, and the layer of PFC inhibitory neurons,
satisfying the requirement (i) above.14

Exogenous Inputs and Latent Nodes: The last step in
specifying the binary structure of the network involves the ex-
ogenous inputs to the prescribed neuronal populations (nodes).
Clearly, nodes at the bottom layer (layer 3) receive auditory
inputs from subcortical areas which we represent as two input

13In general, the time interval used for timescale estimation should not
include stimulus presentation in order to reduce the effects of external factors
on the internal neuronal dynamics.

14Note that this method inherently underestimates the timescale separation
between layers due to the mutual dynamical interactions between them.

Fig. 5: Timescale separation among the layers N1, N2, and
N3 in Figure 4. The circles illustrate the values of the average
auto-correlation coefficient ρ̄pk as a function of time lag k,
whereas the lines represent the best exponential fit over the
range of time lags where each ρ̄pk decays exponentially (note
the logarithmic scale on the y-axis).

signals x41 and x42 coming from layer 4 and corresponding
to the white noise and warble, resp. Both these signals are
constructed by smoothing a square pulse that equals 1 during
stimulus presentation and 0 otherwise with the same Gaussian
window used for smoothing the firing rate time-series.

The choice of the inputs to the PFC populations is more
intricate. PFC is itself composed of a complex network of
several regions, each involved in some aspects of high-level
cognitive functions. The RE properties of the recorded PFC
populations is only one outcome of such complex PFC dynam-
ics that also host the animal’s overall understanding of how
the task works, his perception of time, etc. In order to capture
the effects of such unrecorded PFC dynamics, we consider 3
additional excitatory PFC populations, as follows. Two input
populations x13 and x14 simply encode the rule of each block15:

x13 ≡

{
1, if in LC block,
0, if in PD block,

x14 ≡

{
0, if in LC block,
1, if in PD block.

Populations with such a sustained constant activity only as a
function of task parameters are indeed observed during GDSA
in PFC [75]. The third additional PFC population encodes
the time relative to the stimulus onset, which is critical for
the functioning of the recorded PFC populations. Among the
various forms of encoding time, we consider a population x15
with firing rate

x15(t) =

{
|t0| − t t ∈ [t0, 0),

0 t ∈ (0, tf ],

where [t0, tf ] = [−7, 7] is the duration of each trial, since
populations with such activity patterns have been observed
in PFC [76].16 Since these three populations have very slow
dynamics but are excitatory, following the same logic as
before, we position them in the layer 1 together with the
recorded inhibitory PFC populations x11, x12.

Finally, to capture the effects of the large populations of
neurons whose activity is not recorded, we consider one latent

15Note that this static response is different from, and much simpler than,
the RE of the recorded PFC neurons, which is greatly dynamic.

16Even though both [75] and [76] involve primates, populations with similar
activity patterns are expected to exist in rodents.



node for each of the 8 manifest nodes in the network17 with the
same in- and out-neighbors as their respective manifest node
(latent nodes are not plotted in Figure 4 to avoid cluttering
the network structure). We let {x1,j}j=6,7, {x2,j}8j=5, and
{x3,j}j=3,4 denote these nodes in N1, N2, and N3, resp.

D. Identification of Network Parameters

Having established the binary structure of the network, we
next seek to determine its unknown parameters Wi,j . While
there are physiological methods for measuring the synaptic
weight between a pair of neurons in vitro, they are not
applicable in vivo and thus not available for our dataset. Also,
our nodes consist of several neurons, making their aggregate
synaptic weight an abstract quantity. Therefore, we resort to
system identification/machine learning techniques to “learn”
the structure of the network given its input-output signals. For
this purpose, the choice of objective function is crucial, for
which we propose

f(z) = fSSE(z) + γ1fcorr(z) + γ2fvar(z), (23)

fSSE(z) =

2∑
ℓ=1

3∑
i=1

nm,i∑
j=1

∑
k

(x̂i,j(kT ; ℓ)− xi,j(kT ; ℓ))2,

fcorr(z) = 1− 1

2nm

2∑
ℓ=1

1

nm

3∑
i=1

nm,i∑
j=1

1

K − 1

×
K∑
k=1

(x̂i,j(kT ; ℓ)− µ̂i,j,ℓ)(xi,j(kT ; ℓ)− µi,j,ℓ)
σ̂i,j,ℓσi,j,ℓ

,

fvar(z) =
( 2∑
ℓ=1

3∑
i=1

nm,i∑
j=1

(σ̂i,j,ℓ − σi,j,ℓ)4
)1/4

,

where,
– z is the vector of all unknown network parameters

consisting of not only the synaptic weights but also the time
constants τi, the background inputs ci, and the initial states
xi(0), i = 1, 2, 3;

– nm,i is the number of manifest nodes in layer i (so
nm,1 = 2, nm,2 = 4, nm,3 = 2) and nm = 8 is the total
number of manifest nodes;

– xi,j(t; ℓ) is the measured state of j’th node in the i’th
layer in response to the ℓ’th stimulus at time t (where ℓ = 1
indicates the LC block and ℓ = 2 the PD block) and x̂i,j(t; ℓ)
is its model estimate;

– T = 0.1 is the sampling time and K is the total number
of samples of each signal; and

– µi,j,ℓ, σi,j,ℓ, µ̂i,j,ℓ, σ̂i,j,ℓ are the means and standard devi-
ations of xi,j(·; ℓ) and x̂i,j(·; ℓ), resp.

The rationale behind (23) is as follows. fSSE(z) is the stan-
dard sum of squared error (SSE). In HSR, an important prop-
erty of nodal state trajectories is the sign of their derivatives,
which transiently indicate recruitment (positive derivative) or
inhibition (negative derivative). This is captured by the average
correlation coefficient fcorr(z), which is added to fSSE(z) to
enforce similar recruitment and inhibition patterns between

17A node is manifest if its activity is recorded during the experiment and
latent otherwise.

Fig. 6: State trajectories of manifest nodes in the network of
Figure 4 (blue: measured, red: model estimate). t = 0 indicates
stimulus onset. Solid and dashed lines correspond to LC and
PD blocks, resp. The description of each node is indicated
above its corresponding panel. The LC/PD in the legend refers
to the trial rule, while the LC/PD above each panel refers to
the preference of that particular node.

measured states and their estimates. Nevertheless, correlation
coefficient between a pair of signals is invariant to the amount
of variation in them, requiring us to add the third term fvar(z).
The use of 4-norm in fvar(z) particularly weights the nodes
with large standard deviation mismatches. Appropriate weights
γ1 = 250 and γ2 = 150 were found via trial and error.

The objective function f is highly nonconvex and we thus
use the GlobalSearch algorithm from the MATLAB Optimiza-
tion Toolbox to minimize it. Figure 6 shows the manifest nodal
states as well as their best model estimates. In order to quantify
the similarity between these states and their estimates, we use
the standard R2 measure given by

R2 = 1−
∑
ℓ,i,j,k(xi,j(kT ; ℓ)− x̂i,j(kT ; ℓ))2∑

ℓ,i,j,k(xi,j(kT ; ℓ)− µi,j,ℓ)2
≃ 93.6%.

This high value is indeed remarkable, especially given the
small network size and the limited availability of measure-
ments in the experiment (2240 data points, 175 parameters).

E. Concurrence of the Identified Network with Analysis

To conclude, we verify here whether the identified network
structure satisfies the requirements of the HSR framework



in terms of timescale separation and stability. Regarding the
former, the identified time constants are given by

τ1 = 3.36, τ2 = 1.68, τ3 = 0.70,

yielding an almost twofold separation of timescales conform-
ing to Figure 5. Regarding stability, we have to consider the LC
and PD blocks separately (as the definition of task-relevant (1)
and task-irrelevant (0) nodes changes according to the block).

In the LC block, the (manifest) LC nodes are task-relevant
and the (manifest) PD nodes are task-irrelevant. Therefore,
under this condition,

W
11
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11
3,2 =

[
0.01 0

]
,

W
11
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0.83 0
0.76 0

]
, W

11
2,3 =

[
0.04
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It is then straightforward to see that
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satisfying the sufficient conditions for GES in (22). Similarly,
in the PD block, we have

W
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11
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4.7× 10−3 0

]
,

W
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1
3 |W
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0.12 0
0.56 0

])
= 0.12 < 1,

also satisfying the GES conditions of (22).
While this concurrence is promising, its robustness to the

choice of dataset and data processing steps is critical. A
comprehensive robustness analysis requires access to multiple
datasets and experimental re-design, which is beyond the scope
of this case study. However, we repeated our entire analysis
with Mann-Whitney-Wilcoxon rank-sum test (used originally
in [13]) and also with varying significance thresholds 0.001 ≤
α ≤ 0.05 and observed that, despite the change in the neural
populations, our theoretical conditions remained satisfied.

Given the concurrence between the identified network struc-
ture and the hypotheses of our results, Theorems III.2 and IV.3
provide strong analytical support to explain the conclusions
drawn in [13], [66] from experimental data and statistical
analysis. We believe HSR constitutes a rigorous framework
for the analysis of the multiple-timescale network interactions
underlying GDSA, complementing the conventional statistical
and computational analyses in neuroscience.

VI. CONCLUSIONS AND FUTURE WORK

We have proposed hierarchical selective recruitment as a
framework to explain several fundamental components of goal-
driven selective attention. HSR consists of an arbitrary number
of neuronal subnetworks that operate at different timescales

and are arranged in a hierarchy according to their intrinsic
timescales. In this paper, we have resorted to control-theoretic
tools to focus on the top-down recruitment of the task-relevant
nodes. We have derived conditions on the structure of multi-
layer networks guaranteeing the convergence of the state of
the task-relevant nodes in each layer towards their reference
trajectory determined by the layer above in the limit of
maximal timescale separation between the layers. In doing
so, we have characterized the piecewise affinity and global
Lipschitzness properties of the equilibrium maps and unveiled
their key role in the multiple-timescale dynamics of the net-
work. Combined with the results of Part I, these contributions
provide conditions for the simultaneous GES of the state of
task-irrelevant nodes of all layers to the origin (inhibition) as
well as the GES of the state of task-relevant nodes towards an
equilibrium that moves at a slower timescale as a function of
the state of the subnetwork at the layer above (recruitment).
To demonstrate that applicability to brain networks, we have
presented a detailed case study of GDSA in rodents and
showed that a network with a binary structure based on HSR
and parameters learned using a carefully designed optimization
procedure can achieve remarkable accuracy in explaining the
data while conforming to the theoretical requirements of HSR.
Our technical treatment has also established a novel converse
Lyapunov theorem for continuous GES switched affine sys-
tems with state-dependent switching. Future work will include
the extension of this framework to selective inhibition using
output feedback and cases where the recruited subnetworks are
asymptotically stable towards more complex attractors such
as limit cycles. Also of paramount importance is the study of
the robustness of network trajectories as well as the theoret-
ical conditions of HSR to network parameters, disturbances,
and experimental variations (inter-subject variability, different
tasks, measurement noise, etc.). Other topics of relevance to
the understanding of GDSA that we plan to explore are the
analysis of the information transfer along the hierarchy, the
controllability and observability of linear-threshold networks,
and the optimal sensor and actuator placement in hierarchical
interconnections of these networks.
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APPENDIX A. A CONVERSE LYAPUNOV THEOREM FOR
GES SWITCHED-AFFINE SYSTEMS

The existence of a converse Lyapunov function for asymp-
totically/exponentially stable switched linear systems has
been extensively studied for time-dependent switching. Early
works [77], [78] showed that if a switched linear system is
asymptotically (or, equivalently, exponentially) stable under
arbitrary switching, then it admits a common Lyapunov func-
tion. This was later extended to infinite-dimensional spaces
in [79]. The limitations of these works, however, is the strong
requirement of stability under arbitrary switching. [80] proved
the existence of a Lyapunov function under the weaker condi-
tion of exponential stability with minimum dwell-time. Nev-
ertheless, similar results are still missing for state-dependent
switching. In this appendix, we prove a converse Lyapunov
theorem for continuous GES switched affine systems with
state-dependent switching that is used in both Parts I and II
of this work via [40, Lemma A.2]. The considered dynamics
are general and subsume the linear-threshold dynamics.

Theorem A.1. (Converse Lyapunov theorem for GES
switched affine systems). Consider the state-dependent
switched affine system

τ ẋ = f(x), x(0) = x0, (24)
f(x) = Aλx+ bλ, ∀x ∈ Ωλ = {x ∈ D | Nλx+ pλ ≤ 0},

∀λ ∈ Λ,

where Λ is a finite index set, Aλ is nonsingular for all λ ∈ Λ,
D =

⋃
λ∈Λ Ωλ ⊆ Rn is an (open) domain, and {Ωλ}λ∈Λ

have mutually disjoint interiors. Assume that f is continuous.
If (24) is GES towards a unique equilibrium x∗, then there
exists a C∞-function V : Rn≥0 → R and positive constants
c1, c2, c3, c4 such that for all x ∈ D,

c1∥x− x∗∥2 ≤ V (x) ≤ c2∥x− x∗∥2, (25a)
∂V

∂x
f ≤ −c3∥x− x∗∥2, (25b)∂V

∂x

 ≤ c4∥x− x∗∥. (25c)

Proof: We structure the proof in three steps: (i) showing
that the solutions of (24) are continuously differentiable with
respect to x0 along its trajectories, (ii) construction of a (not
necessarily smooth) Lyapunov-like function that satisfies (25)
along the trajectories of (24), and (iii) construction of V from
this Lyapunov-like function (smoothening). We only prove the
result for x∗ = 0 as the general case can be reduced to it with
the change of variables x← x− x∗.

(i) Let ψ(t;x0) denote the unique solution of (24) at time
t ∈ R (note that we let t < 0). In this step, we prove that ψ
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is continuously differentiable with respect to x0 on D if x0

moves along ψ. Precisely, that

∂

∂τ
ψ(t;ψ(τ ;x0)) exists and is continuous at τ = 0, (26)

for all x0 ∈ D. First, assume that x0 /∈ H , where H ⊂ D is
the union of all the switching hyperplanes.18 Thus, x0 belongs
to the interior of a switching region, say Ωλ1

. Let {λj}Jj=1,
with J = J(t) ≥ 1, be the indices of the regions visited by
ψ(τ ;x0) during τ ∈ [0, t]. With a slight abuse of notation, let
Aj ≜ Aλj

and bj ≜ bλj
, for j = 1, . . . , J . Then,

ψ(τ ;x0) = (27)⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
eA1τ (x0 +A−1

1 b1)−A−1
1 b1; τ ∈ [0, t1],

eA2(τ−t1)(ψ(t1;x0) +A−1
2 b2)−A−1

2 b2; τ ∈ [t1, t2],
...

eAJ (τ−tJ−1)(ψ(tJ−1;x0)+A−1
J bJ)−A−1

J bJ ; τ ∈ [tJ−1, t],

where tj = tj(x0) is the time at which ψ(τ ;x0) crosses the
boundary between Ωλj

and Ωλj+1
. This expression for ψ is

valid for all x near x0 that undergo the same sequence of
switches. To be precise, let S ⊂ D be the set of points lying
at the intersection of two or more switching hyperplanes and

S(−∞,0] = {x ∈ D | ∃t ∈ [0,∞) s.t. ψ(t;x) ∈ S}.

In words, S(−∞,0] is the set of all points that, when evolving
according to (24), will pass through S at some point in time.
Since S is composed of a finite number of affine manifolds of
dimensions n − 2 or smaller, S(−∞,0] is in turn the union of
a finite number of manifolds of dimensions n− 1 or smaller,
and thus has Lebesgue measure zero.

If x0 /∈ S(−∞,0], then it follows from the continuity of ψ
with respect to x0 on D, see e.g., [45, Thm 3.5], that (27) is
valid over a sufficiently small neighborhood of x0. Clearly,
∂ψ
∂x0

then exists and is continuous if and only if tj’s are
continuously differentiable with respect to x0. Consider t1 and
let nTx+p = 0 be the corresponding switching surface, where
nT is equal to some row of Nλ1 and equal to minus some
row of Nλ2

. t1 is the (smallest) solution to

nT
(
eA1τ (x0 +A−1

1 b1)−A−1
1 b1

)
+ p = 0, τ ≥ 0. (28)

The derivative of the lefthand side of (28) with respect to
τ equals nT f(ψ(t1;x0)), which is nonzero if and only if the
curve of ψ is not tangent to nTx+p = 0. If so, then the contin-
uous differentiability of t1 with respect to x0 follows from the
implicit function theorem [81]. Otherwise, it is not difficult to
show that ψ(t;x0) remains in Ωλ1 after t119, contradicting the
fact that t1 is a switching time. The same argument guarantees
that tj , j = 2, . . . , J are also continuously differentiable with
respect to x0, and so is ψ(t;x0).

Before moving on to the case when x0 ∈ S(−∞,0], we
analyze the case where still x0 /∈ S(−∞,0] but x0 ∈ H ,
i.e., x0 belongs to a switching hyperplane, say nTx+ p = 0
between Ωλ1

from Ωλ2
, as above. For simplicity, assume t is

18Recall that for each λ, each row of Nλx+pλ = 0 defines a switching
hyperplane.

19This is a general fact about the solutions of linear systems and can be
shown using the series expansion of the matrix exponential.

small enough such that ψ(τ ;x0) remains within Ωλ2
for all

τ ∈ [0, t].20 Let x belong to a sufficiently small neighborhood
of x0 such that for τ ∈ [0, t],

ψ(τ ;x) = (29)⎧⎪⎨⎪⎩
eA2τ (x+A−1

2 b2)−A−1
2 b2; x ∈ Ωλ2

,

eA1τ (x+A−1
1 b1)−A−1

1 b1; x ∈ Ωλ1
, τ ≤ t1,

eA2(τ−t1)(ψ(t1;x) +A−1
2 b2)−A−1

2 b2; x ∈ Ωλ1
, τ ≥ t1,

where t1 = t1(x) is now the solution to nTψ(t1;x) + p = 0.
It is not difficult to show that for x ∈ Ωλ1

,

∂ψ(t;x)

∂xi
= eA2t

[
e−A2t1eA1t1ei +

∂t1
∂xi

×
(
−A2e

−A2t1eA1t1(x+A−1
1 b1) + e−A2t1A1e

A1t1

× (x+A−1
1 b1) +A2e

−A2t1(A−1
2 b2 −A−1

1 b1)
)]
,

where ei is the i’th column of In. Taking the limit of this
expression as x→ x0 and using the facts that limx→x0

t1 = 0
and A1x0 + b1 = A2x0 + b2, we get

lim

x
Ωλ1→ x0

∂ψ(t;x)

∂xi
= eA2tei, ∀i ∈ {1, . . . , n},

⇒ lim

x
Ωλ1→ x0

∂ψ(t;x)

∂x
= eA2t = lim

x
Ωλ2→ x0

∂ψ(t;x)

∂x
,

where the second equality follows directly from (29). There-
fore, ψ(t;x0) is continuously differentiable with respect to x0

on the entire D \ S(−∞,0].
Finally, if x0 ∈ S(−∞,0], the same expression as (27) or (29)

(depending on whether x0 ∈ H or not) holds for x0 and
also for all x within a sufficiently small neighborhood of it
that lie on the same system trajectory as x0. This curve can
be parameterized in many ways, one of which is given by
ψ(τ ;x0). Together with the analysis of the case x0 /∈ S(−∞,0]

above, this proves that (26) exists and is continuous at τ021.
(ii) In this step we introduce a function V̂ that may not be

smooth but satisfies properties similar to (25). Let

V̂ (x) ≜
∫ δ

0

∥ψ(t;x)∥2dt, ∀x ∈ D,

where δ is a constant to be chosen. It is straightforward to
show that f is globally Lipschitz. Using this and the GES
of (24), the same argument as in [45, Thm 4.14] shows that

2c1∥x∥2 ≤ V̂ (x) ≤ 2

3
c2∥x∥2, (30)

for some c1, c2 > 0. Further, let

Dψ◦ψ(t; τ ;x) ≜
∂

∂τ
ψ(t;ψ(τ ;x)), t, τ ∈ R,x ∈ D.

By the definition of ψ, we have the identity ψ(t;ψ(s−t;x)) =
ψ(s,x), t, s ∈ R,x ∈ D. Taking d

dt of both sides, we get
ψt(t;ψ(s − t;x)) −Dψ◦ψ(t; s − t;x) = 0, where ψt(t;x) =

20Note that if t is larger, then subsequent switches to Ωλj
, j ≥ 3 are

similar to the case above (where x0 was not on a switching hyperplane) and
thus do not violate continuous differentiability of ψ with respect to x0.

21We have indeed proved a slightly stronger result than (26) for x0 /∈
S(−∞,0], which we use in step (ii) below.



∂ψ(t;x)
∂t . Setting s = t+τ , Dψ◦ψ(t; τ ;x) = ψt(t;ψ(τ ;x)). For

the parallel of (25b), we then have

d

dτ
V̂ (ψ(τ ;x)) =

∫ δ

0

2ψ(t;ψ(τ ;x))TDψ◦ψ(t; τ ;x)dt

=

∫ δ

0

2ψ(t;ψ(τ ;x))Tψt(t;ψ(τ ;x))dt

=

∫ δ

0

∂

∂t
∥ψ(t;ψ(τ ;x))∥2dt

= ∥ψ(δ;ψ(τ ;x))∥2 − ∥ψ(τ ;x)∥2.

Thus
d

dτ
V̂ (ψ(τ ;x))

⏐⏐⏐
τ=0

= ∥ψ(δ;x)∥2 − ∥x∥2 ≤ −2c3∥x∥2, (31)

where the last inequality holds, as shown in [45, Thm 4.14],
for an appropriate choice of δ and c3 = 1

4 . Finally, for the
parallel of (25c), recall from step (i) that ∂

∂xψ(t;x) exists and
is continuous on D \ S(−∞,0]. Therefore, from (24), we have

∂

∂t

∂ψ(t;x)

∂x
=
∂f

∂x
(ψ(t;x))

∂ψ(t;x)

∂x
,

∂ψ(t;x)

∂x

⏐⏐⏐⏐
t=0

= In,

on D \ (S(−∞,0] ∪ H). Using the global Lipschitzness of f
and the fact that D \S(−∞,0] is invariant under (24), we have∂ψ(t;x)∂x

 ≤ eLt, for all x ∈ D \ S(−∞,0], where L is the
Lipschitz constant of f . The same argument as in [45, Thm
4.14] then yields∂V̂

∂x

 ≤ 2

3
c4∥x∥, ∀x ∈ D \ S(−∞,0], (32)

for some c4 > 0.
(iii) In this step, we follow [82, Thm 3 & 4] to construct

V as an smooth approximation to V̂ and show that it satis-
fies (25). Since f is globally Lipschitz, ψ(t;x) is Lipschitz in
x (see, e.g., [83, Ch 5]) and so is V̂ . This, together with (31),
satisfies all the assumptions of [82, Thm 4], which in turn
guarantees the existence of an infinitely smooth V such that

|V (x)− V̂ (x)| < 1

2
V̂ (x), ∀x ∈ D, (33a)

∂V

∂x
f(x) < −c3∥x∥2, (33b)

for all x ∈ D. Equation (25a) follows immediately from (33b)
and (30). To prove (25c), we note that the same construction
of V as in [82, Thm 3 & 4] satisfies∂V

∂x
− ∂V̂

∂x

 < 1

2

∂V̂
∂x

, ∀x ∈ D \ S(−∞,0],

if the constants ξi,k and ζi,k, i, k = . . . ,−2, 0, 2, . . . (and
consequently the corresponding r̄i,k, i, k = . . . ,−2, 0, 2, . . . )
are chosen sufficiently small. This, together with (32), guar-
antees (25c), completing the proof.

APPENDIX B. ADDITIONAL PROOFS

Proof of Lemma IV.1: Pick c′ ∈ Rn′
and let x∗ be the

unique solution of (15). Since
⋃
λ∈Λ Ψλ = Rn, let λ ∈ Λ with

W3x
∗ + c̄ ∈ Ψλ. (34)

If W3x
∗ + c̄ lies on the boundary of more than one Ψλ, pick

one arbitrarily. Therefore, x∗ satisfies

x∗ = [(W1 +W2FλW3)x
∗ +W2(Fλc̄+ fλ) + c′]m0 .

From (8), it follows that h′ has the form (16) with λ′ ≜ (λ,σ)
and Λ′ = Λ×{0, ℓ, s}n′

. The quantities F′
λ′ , f ′λ′ ,G′

λ′ ,g′
λ′ also

have the same form as in (8) except that here

W = W1 +W2FλW3,

f ′λ′ = (I−ΣℓW)−1Σsm+ (I−ΣℓW)−1ΣℓW2(Fλc̄+ fλ).

The proof is complete noting that
⋃
λ′∈Λ′ Ψ′

λ′ = Rn′
since

any c′ ∈ Rn′
must be in at least one Ψ′

λ′ by construction.
Proof of Lemma IV.2: Pick any c, ĉ ∈ Rn. Since all the

sets Ψλ are convex, the line segment γ ≜
{(
θ, (1 − θ)c +

θĉ
)
| θ ∈ [0, 1]

}
joining c and ĉ can be broken into k ≤

|Λ| <∞ pieces such that γ =
⋃k
i=1 γi, γi ≜

{(
θ, (1− θ)c+

θĉ
)
| θ ∈ [θi−1, θi]

}
, θ0 = 0, θk = 1 and each γi ⊂ Ψλi

for
some λi ∈ Λ. Let ci ≜ (1− θi)c+ θiĉ. Then,

∥h(c)− h(ĉ)∥ =
 k∑
i=1

(
h(ci−1)− h(ci)

)
≤

k∑
i=1

∥h(ci−1)− h(ci)∥ =
k∑
i=1

∥Fλi(ci−1 − ci)∥

≤
[
max
λ∈Λ
∥Fλ∥

] k∑
i=1

∥ci−1 − ci∥ =
[
max
λ∈Λ
∥Fλ∥

]
∥c− ĉ∥.
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