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Energy-Transfer Edge Centrality
and Its Role in Enhancing Network Controllability

Prasad Vilas Chanekar∗ Erfan Nozari Jorge Cortés

✦

Abstract—The ability to modify the structure of network systems offers
great opportunities to enhance their operation, improve their efficiency,
and increase their resilience against failures and attacks. This paper
focuses on the edge modification problem, i.e., improving network con-
trollability by adding and/or re-weighting interconnections while keeping
the actuation structure fixed. We consider a network system following
linear dynamics and propose a novel edge centrality measure that
captures the extent to which an edge facilitates energy exchange across
the network through its defining nodes. We analyze the effectiveness
of the proposed measure by characterizing its relationship with the
gradient (with respect to edge weights) of trace, log determinant, and
inverse of the trace inverse of the Gramian. We show that the optimal
solution of the edge modification problem lies on the boundary of the
feasible search space when the objective is the trace of the Gramian
or the network has a diagonal controllability Gramian and the objective
is either log determinant or the inverse of the trace inverse of the
Gramian. Finally, using the proposed edge centrality measure we design
two network modification algorithms that restrict the search space to a
smaller subset of all possible edges and numerically demonstrate their
efficacy.

Index Terms—Complex networks, network controllability, edge central-
ity, network structure modification

1 INTRODUCTION

Recent years have witnessed a surge of interest from the scientific
community in improving the controllability of complex dynamical
networks, with a wide range of applications in infrastructure,
robotic, biological, and social networks. This body of work has
been largely focused on optimizing the location of the actuators
and sensors while assuming a given network interconnection
(whether fixed or time-varying). Complementary to this effort, the
modification of the network structure raises exciting and unex-
plored opportunities for improving functionality and resilience.
While network modification is certainly possible for man-made
systems, it is becoming increasingly feasible for biological ones,
such as gene regulatory and neuronal networks [2], [3]. These
observations motive the focus on this paper on the study of the
optimal edge modification problem for network systems described
by linear dynamics.

Literature review: The controllability notion for a dynamical
system addresses the question of whether its state can be steered
to any desired goal. Controllability of linear control systems can
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be established in a number of equivalent ways [4], [5] which,
however, do not quantify the effort required to steer the system [6].
In the context of network systems, a recent body of work [7]–[9]
has introduced metrics based on the controllability Gramian that
quantify the minimal energy necessary to move between any pair
of states. This has opened the way to explore a number of exciting
problems, including the relationship between network structure
and ease of controllability [8], the role of centrality [10]–[12], and
the optimal placement of actuators and sensors [9], [13]–[15] to
maximize network controllability. In the latter problem, it is worth
noting that if the existing edge structure of the network is not
suitable for control, this may pose significant constraints on the
best achievable degree of controllability via actuator scheduling.
This has motivated recent works that study the dual problem of
maximizing network controllability via edge modification. The
work [16] gives a procedure to compute the minimum number
of edges required to make a network structurally controllable and
proposes a polynomial-time algorithm to determine their locations,
but does not take into account the role of control energy or the
weights of newly-added edges. The work [17] considers the edge
addition problem in consensus networks and develops an algo-
rithm for enhancing network performance measured by the trace
of the observability Gramian. The work [18] introduces a class
of systemic performance measures which are spectral functions
of the Laplacian eigenvalues of the coupling graph and proposes
a greedy procedure for edge addition limited to linear consensus
networks. The work [19] develops a procedure to compute optimal
perturbations of existing edges given various energy-based metrics
which also allows for the addition of new edges if their location
is given a priori. The work [20] establishes explicit relationships
between network structure, weight distribution, and its degree of
controllability when the Gramian is diagonal, and proposes an
edge modification algorithm to generate stable and controllable
networks with pre-specified diagonal Gramians. The edge modi-
fication problem has also been tackled making use of notions of
network centrality. Originated in the network science literature,
centrality is a measure to quantify the influence and importance
of nodes and edges in a network. Many of these measures are
topological in nature (relying on the network interconnection
structure), generally oblivious to individual node dynamics and
its effect on network behavior. While topological-based centrality
measures include metrics for both nodes and edges [21]–[23] and
have also been used for edge modification [24], [25], dynamics-
based centrality measures encompass fewer metrics, which are
limited to node centrality [11], [12], [26]. The recent work [27]
proposes an edge centrality measure with respect to the H2−norm
for networks with continuous-time consensus dynamics having
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time delays and structured uncertainties.

In this work, we propose an energy-based measure of edge
centrality and build on it to design computational efficient edge
modification algorithms to improve network controllability. This
is in contrast with the state of the art where the edge modification
problem is addressed for special cases (consensus networks or net-
works with diagonal controllability Gramian), or only on existing
edges (i.e., without the possibility of adding new edges), or using
topological notions of edge centrality that do not take the effect of
network dynamics into account.

Statement of contributions: The contributions of this work
pertain to the optimal edge modification problem for network sys-
tems described by linear dynamics. We introduce a novel energy-
transfer edge centrality (ETEC) measure based on the Gramian
that captures the energy transfer across the network through
the nodes defining the edge. This measure is computationally
inexpensive, making it suitable for use in large networks. We show
the relationship of the proposed measure with the gradients of the
trace, logdet and inverse of the trace inverse of the controllability
Gramian by deriving lower and upper bounds that involve ETEC.
On the basis of this relationship, existing or potentially new edges
can be ranked in descending order of their ETEC as a proxy
for their effect on enhancing network controllability. We further
analytically establish the super-modularity nature of the trace
of the Gramian with respect to edge selection and weighting.
This, together with its non-decreasing nature with respect to
edge weights, implies that the standard performance guarantees
of greedy algorithms for optimization are not applicable. We also
show that the optimal solution of the edge modification problem
with the trace of the Gramian as objective lies on the boundary
of its feasible search space. Additionally, we arrive at the same
conclusion for systems with diagonal Gramian and logdet or
inverse of the trace inverse of the controllability Gramian as
objective. We rely on this result and the ordered list of edges to
reduce the search space to those edges with the largest ETEC
centrality measures and propose two computationally efficient
network modification procedures, termed restricted-set optimiza-
tion and restricted-set exhaustive greedy algorithms. We provide
examples to numerically demonstrate the utility of the proposed
algorithms in enhancing network controllability as measured by
the trace and logdet of the Gramian.

Notation: We let R and R>0 denote the set of reals and
positive reals, respectively. The jth canonical unit vector is denoted
by e j ∈ Rn, j ∈ {1, . . . ,n}. For x ∈ R, ⌊x⌋ denotes the greatest
integer less than or equal to x. For a matrix X ∈ Rm×m, we let its
transpose, trace, logarithm-determinant, eigenvalue with smallest
magnitude and its column-wise vectorized form be denoted by X⊤,
tr(X), logdet(X), λmin(X) and vec(X), respectively. The notation
X ≥ 0 (X > 0) signifies that all the entries of the matrix X are
non-negative (positive). The notation X ≤ 0 (X < 0) signifies that
all the entries of the matrix X are non-positive (negative). We
denote the Frobenius inner product of X ,Y ∈ Rn×n by ⟨X ,Y ⟩F =
tr
(
X⊤Y

)
and the Frobenius norm by ∥X∥F =

√
⟨X ,X⟩F . Note that

⟨X ,Y ⟩F = ∥X∥F∥Y∥F cosφ , where φ = ∠(vec(X) ,vec(Y )) is the
angle between the vectors vec(X) and vec(Y ). For a set X , we
denote its cardinality by card(X ). We let 1k represent the vector
of all 1’s of dimension k.

2 PROBLEM DESCRIPTION

We consider a directed network of n nodes represented by the
triplet GA = (V ,EA,wA), where V = {1,2, . . . ,n} is the node set,
EA = {(i, j) | i ∈ V , j ∈ V , i ̸= j} is the edge set, and wA : EA ↦→
R>0 is the weight function. The pair (i, j) denotes an edge directed
from node i to node j. We consider linear time-invariant dynamics,

x(t +1) = Ax(t)+Bu(t) , t = {0, . . . ,T −1}, (1)

where T > 0 is a finite time horizon and x ∈ Rn and u ∈ Rm

denote state and input vectors, respectively. Here, A = (ai j) ∈
Rn×n
≥0 is the non-negative weighted adjacency matrix defined

by ai j = wA( j, i) > 0 if ( j, i) ∈ EA and ai j = 0 otherwise, and
B= (b1 · · · bi · · · bm)∈Rn×m

≥0 is the input matrix. In the case when
the actuation is through individual nodes, then each bi ∈ {0,1}n

is a vector with 0’s everywhere except at one entry, signifying the
presence of an actuator at the corresponding node. Our treatment,
however, is valid for arbitrary input matrices.

The dynamical system (1) is controllable in T steps if any
arbitrary initial state x(0) = x0 can be steered to any arbitrary
final state x(T ) = xT using a finite control input sequence
{u(0) ,u(1) , . . . ,u(T −1)}. Equivalently, (A,B) is controllable in
T steps if and only if the controllability Gramian

WA =
T−1

∑
t=0

AtBB⊤At⊤, (2)

is non-singular [5]. This controllability test, however, does not
distinguish between systems that are easier or harder to control.
To do so, the literature [8], [9] has explored various performance
metrics based on the spectral properties of WA, including tr(WA),
(tr(W −1

A ))−1, det(WA) (or its logarithm), and λmin(WA). Here, we
employ tr(WA), logdet(WA) and (tr(W −1

A ))−1 as our measures
of network controllability. The metric tr(WA) is related to the
average controllability in all directions in the state space. The
metric det(WA) is a volumetric measure of the set of states that
can be reached with up to one unit of input energy. The metric
(tr(W −1

A ))−1 is related to the average energy needed to move the
system around in the state space. Maximizing tr(WA) generally
gives more relevance to large eigenvalues of WA over smaller ones,
which might make a few particular directions hard to reach. This
is part compensated by the fact that, for large networks, control-
lability is not needed in all the state-space directions in general,
cf. [12]. For large networks, tr(WA) is analytically tractable and
computationally feasible to compute, and also intrinsically less
conservative than other metrics that rely on the smallest eigenvalue
of WA (which also makes them hard to compute due to limited
machine precision). We refer the reader to [12, Appendix B] for a
comparison and detailed discussion of the (dis)advantages of these
measures.

Our problem of interest is improving controllability by mod-
ifying the network structure. In doing so and for simplicity, we
keep the input structure fixed. Edge modification may involve
perturbing existing edges or adding new ones. We represent the
modification or the sub-graph to be added by GδA = (V ,EδA,wδA)
with weighted adjacency matrix δA=(δai j)∈Rn×n

≥0 . The resulting
network is GA ∪GδA = (V ,EA ∪EδA,wA +wδA). Both the number
of modified edges and the total added weight may be constrained
by bounds Nmax and wmax ∈ R>0, respectively. Formally, we seek
to solve

max
δA

f (A+δA) (3)
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s.t. card(EδA)≤ Nmax,

∑wδA (EδA)≤ wmax,

where f (A+ δA) = tr(WA+δA), f (A+ δA) = logdet(WA+δA), or
f (A + δA) = (tr(W −1

A+δA))
−1, and WA+δA is the controllability

Gramian of the modified network,

WA+δA =
T−1

∑
t=0

(A+δA)t BB⊤(A+δA)t⊤.

Note that the formulation (3) does not explicitly consider the
stability of the resulting network. One could consider stability
explicitly in the design problem by, for instance, resorting to
techniques [28] for converting spectral stability constraints into
algebraic ones. As our ensuing discussion shows, the study of the
controllability problem presents significant technical challenges
when considered on its own, and we defer for future work its
consideration in combination with the stability problem.

The problem (3) is a non-convex mixed-integer nonlinear
program (MINLP) which quickly becomes computationally in-
tractable as the network size grows. The selection of Nmax edges
and their respective optimal weights requires reasoning over 2n2

variables, where n2 are binary (corresponding to the edge selec-
tion) and n2 are continuous (corresponding to the edge weight).
This quadratic growth of the number of variables with the network
size and the presence of integer variables prohibits the direct
solution of (3) for large networks.

Our proposal instead consists of first restricting the possible
edge choices to a smaller search space ES with cardinality NS such
that Nmax <NS ≤ n2. This does not change the nonconvex nature of
the optimization problem but reduces the number of optimization
variables to 2NS. The optimization problem then takes the form

max
η ,w

f (A+δA)

s.t. δA =
NS

∑
k=1

ηkwk∆k, (4)

η =
(
η1 η2 . . . ηk . . . ηNS

)⊤ ∈ {0,1}NS ,

w =
(
w1 w2 . . . wk . . . wNS

)⊤
,

0 ≤ wk ≤ wub,
NS

∑
k=1

ηk ≤ Nmax,
NS

∑
k=1

wk ≤ wmax.

Here, η and w are the binary edge selection vector and the edge
weight vector, respectively. Also, for each 1 ≤ k ≤ NS, if ( j, i) is
the corresponding element in ES, ∆k ∈Rn×n is such that (∆k)i j = 1
while all its other entries are zero. Note that if NS = n2, then (4)
corresponds to (3).

In general, to simplify the computation of a solution to (4), we
can take NS ≪ n2. The key question then is how to select the set
of candidate edges ES over which the optimal search is performed.
The underlying idea is that a good selection would yield an optimal
solution of (4) that is a near-optimum of (3). An alternative
viewpoint is that, by removing edges from consideration that
do not significantly affect the objective function in the original
optimization problem, the resulting optimal value is not negatively
affected. Our strategy to tackle this selection it is to characterize
what makes edges important in enhancing controllability and build
on this understanding to perform the selection of candidate edges
over which to restrict the search.

3 ENERGY-TRANSFER EDGE CENTRALITY

We introduce here a novel notion of edge centrality that seeks to
quantify the influence of an edge in shaping network behavior.
This notion builds on measures of the energy exchange between
an individual node and the network, for which we employ the
controllability and observability Gramians. We later demonstrate
how the proposed notion of edge centrality can be invoked to
address the network modification problem stated in Section 2.

3.1 Node-Network Interactions

As the input matrix B is fixed, so is the location of input (energy)
injection from external sources. The distribution and flow of
energy is therefore only dependent on the network edge structure.
Due to the original structure of the network, the energy supplied
may get accumulated at some nodes. At the same time, some
nodes which are efficient at distributing energy may not receive
adequate energy from input nodes. By modifying the network
structure, one can thus redistribute the energy flow that takes
place in the system. Intuitively, the modified edges should connect
(or strengthen existing connections from) nodes which accumulate
energy to the nodes which are in a good position to distribute it.
Following the exposition of [11], we next quantify these properties
by the complementary notions of the influence of the network on
a node and the influence of a node on the network, respectively.

Node-to-Network Influence: To quantify the influence of a
particular node on the network, we consider that particular node
as the only input node to the network and compute the trace of the
resulting controllability Gramian [5]. For node j and time horizon
t ∈ {1, . . . ,T}, this Gramian takes the form

W
(t)
j =

t−1

∑
k=0

Ake je⊤j Ak⊤. (5)

We compute the influence of node j on the network at time t,
denoted by p(t)j , as

p(t)j = tr(W (t)
j ) =

n

∑
u=1

t−1

∑
k=0

e⊤u Ake je⊤j Ak⊤eu. (6)

Clearly p(t)j ≥ 1. If p(t)j = 1 for all t > 1, then that node j is a sink
and thus accumulates energy, cf. [11].

Network-to-Node Influence: In parallel to the above definition,
we quantify the influence of the network on a particular node by
considering that particular node as the only output node of the
network and computing the trace of the resulting observability
Gramian [5]. For node i and time horizon t ∈ {1, . . . ,T}, this
Gramian takes the form

M
(t)
i =

t−1

∑
k=0

Ak⊤eie⊤i Ak, (7)

and we compute the influence of the network on node i at time t,
denoted by q(t)i , as

q(t)i = tr(M (t)
i ) =

n

∑
v=1

t−1

∑
k=0

e⊤v Ak⊤eie⊤i Akev. (8)

Similarly, q(t)i ≥ 1 and if q(t)i = 1 for all t > 1, node i is a
source [11] and distributes energy (if receiving external input).
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3.2 Edge Centrality Measure

Here, we combine the node-network notions above to define a
novel edge centrality measure based on energy exchange. In-
tuitively, the influence of an edge in a network is related to
the nodes it connects and the extent to which it facilities the
energy distribution in the network. If an edge connects an energy-
rich node (one with high qi) to a node with high potential for
facilitating energy distribution (one with high p j), then the edge
has more influence on the energy distribution in the network. Thus,
we propose the energy-transfer edge centrality (ETEC)

ci j =
T−1

∑
t=1

c(t)i j , (9a)

c(t)i j = q(t)i p(t)j , (9b)

as a measure of the centrality of the edge directed from node i to
node j. For simplicity, we also refer to c(t)i j as the edge centrality

at time t. Clearly c(t)i j ≥ 1, so the minimum attainable centrality at

time t is 1, which has a simple intuitive interpretation. If c(t)i j = 1
for all t > 1, then the corresponding edge is directed from a
source node i to a sink node j, and thus constitutes a minimally-
influential interconnection, cf. Figure 1(a). A highly-influential
interconnection, in contrast, is one with c(t)i j ≫ 1 for all t > 1, e.g.,
one connecting a sink node i to a source node j, cf. Figure 1(b). In
general, there may be limited or no source/sink nodes in a network.
In such situations, the concept of edge centrality can then help us
to identify and compare the importance of edges in regards to the
input energy distribution across the network.

i j

source sink
(a) Edge with low centrality

j i

source sink
(b) Edge with high centrality

Fig. 1: Examples of edges with (a) low (ci j = 1) and (b) high (ci j ≫ 1)
centrality.

Remarkably, ETEC has a strong relationship with the objective
function of the optimization problem (3). Figure 2 shows the
histogram of the correlation coefficients [29] between the elements
of the gradient of the trace of the Gramian (with respect to all
the edge weights {a ji}i, j) and {ci j}i, j for 103 Erdős-Rényi (ER)
random networks with n = 25 nodes, m = 8 input nodes, 0.2 edge
probability, and T = n. This is calculated in MATLAB using the
function ‘corr’, which returns the pairwise correlation coefficient
between the gradient with respect to an edge weight and its
corresponding edge centrality as well as the p-value for testing
the hypothesis of no correlation against the alternative hypothesis
of a nonzero correlation. The plot shows a remarkable average
correlation coefficient of R≃ 0.9, with p-value < 10−6 in all cases,
revealing an extreme statistical significance [30]. These results
motivate our ensuing investigation of the relationship between
both notions. Incidentally, through numerical experiments, we
have also found that statistically the ETEC measure is related to
the notion of non-normality of network quantified using, cf. [31],
the distance from commutativity and Henrici’s departure from
normality, and also with the network diameter.

Fig. 2: Histogram of the correlation coefficient (R-value) between
the values of edge centrality {ci j}i, j and { ∂ tr(WA)

∂a ji
}i, j for 103 random

networks. The plot suggests that the former can be used as a proxy
for the latter.

3.3 Relationship with Functions of the Gramian

In this section we establish a relationship between the proposed
notion of ETEC and the gradient direction of the objective
functions in (3). Consider the modification of the weight of an
edge directed from node i to node j. The corresponding adjacency
matrix δA only has one non-zero element, δA = e je⊤i . Let,

C(t)
j = (At−1e j At−2e j · · · Ae j e j),

O(t)
i = (ei A⊤ei · · · At−2⊤ei At−1⊤ei)

⊤. (10)

The next result provides an expression for the derivative of the
Gramian with respect to edge weights in terms of the matrices C(t)

j

and O(t)
i .

Theorem 3.1. (Derivative of Gramian with respect to edge
weight). For the network dynamics (1) and any i, j ∈ V ,

∂

∂a ji
WA =

T−1

∑
t=1

(
C(t)

j O(t)
i BB⊤At⊤+AtBB⊤(C(t)

j O(t)
i

)⊤)
,

where the controllability Gramian WA is defined in (2).

Proof. From (2), consider the derivative of a general term in
the expression of WA with respect to the scalar a ji. Using
∂At

∂a ji
= ∑

t−1
k=0 Ak ∂A

∂a ji
At−1−k we get,

∂

∂a ji
AtBB⊤At⊤ =

t−1

∑
k=0

(
Ak ∂A

∂a ji
At−1−kBB⊤At⊤

+AtBB⊤(Ak ∂A
∂a ji

At−1−k)⊤). (11)

Now ∂A
∂a ji

is a matrix with 1 as the ( j, i)th element and rest all 0s.

So, using ∂A
∂a ji

= e jei
⊤ and

t−1

∑
k=0

Ak ∂A
∂a ji

At−k−1 =
t−1

∑
k=0

Ake je⊤i At−k−1 =C(t)
j O(t)

i ,

where C(t)
j and O(t)

i are defined in (10) yields

∂

∂a ji
AtBB⊤At⊤ =

(
C(t)

j O(t)
i BB⊤At⊤+AtBB⊤(C(t)

j O(t)
i

)⊤)
.

The result follows by summing up ∂

∂a ji
AtBB⊤At⊤ above from t = 1

to t = T −1.
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We next rely on Theorem 3.1 to derive expressions for the
gradient of the trace, logdet, and inverse of the trace inverse of the
Gramian.

Corollary 3.2. (Gradient of the trace, logdet and inverse of the
trace inverse of the Gramian with respect to edge weight). For the
network dynamics (1), any i, j ∈ V ,

1) ∂

∂a ji
tr(WA) = 2∑

T−1
t=1 tr

(
BB⊤At⊤C(t)

j O(t)
i

)
,

2) ∂

∂a ji
logdet(WA) = 2∑

T−1
t=1 tr

(
BB⊤At⊤W −1

A C(t)
j O(t)

i

)
,

3) ∂

∂a ji
(tr(W −1

A ))−1 = 2
(tr(W −1

A ))2 ∑
T−1
t=1 tr

(
BB⊤At⊤W −2

A C(t)
j O(t)

i

)
.

Proof. The proof of 1) follows from taking the trace of the
expression ∂

∂a ji
WA in Theorem 3.1 and using the facts tr( ∂U

∂a ji
) =

∂

∂a ji
tr(U); tr(U1U2U3) = tr(U2U3U1); and tr(U1U2

⊤) = tr(U1
⊤U2).

To establish 2), we rely on the following equality, cf. [32,
Appendix A],

∂

∂a ji
logdet(WA) = tr

(
W −1

A
∂WA

∂a ji

)
.

The result now follows from combining Theorem 3.1, tr(∑i Ui) =

∑i tr(Ui), tr(U1
⊤U2) = tr(U1U2

⊤), and tr(U1U2U3) = tr(U3U1U2).

To establish 3), we note that ∂

∂a ji
(tr(W −1

A ))−1 =
−1

(tr(W −1
A ))2

∂

∂a ji
tr(W −1

A ). The result follows by combining

∂

∂a ji
tr(W −1

A ) =− tr
(
W −1

A
∂WA

∂a ji
W −1

A

)
,

cf. [32, Appendix A] with the properties of the trace invoked to
establish 2).

Corollary 3.2 establishes an important relationship between the
gradient of the trace of the controllability Gramian of the original
network with input matrix B, the controllability matrix of the
network with node j as the only input node, and the observability
matrix of the network with node i as the only output node. It
is worth noticing that in the case where A = −L, where L is
a Laplacian matrix, then Part 1 in Corollary 3.2 corresponds to
the centrality measure proposed in [27] for the no-delay case.
Corollary 3.2 serves as a basis for establishing a relationship
between the proposed ETEC measure and the gradient of the trace
of Gramian, as we show next.

For any edge (i, j) and t ∈ {1, . . . ,T −1}, let

g(t)i j = tr
(
BB⊤At⊤C(t)

j O(t)
i

)
(12)

so that, according to Corollary 3.2, the gradient can be compactly
expressed as ∂

∂a ji
tr(WA) = 2∑

T−1
t=1 g(t)i j . The matrix C(t)

j O(t)
i in (12)

is of size n×n, and its (u,v)th element is given by,[
C(t)

j O(t)
i

]
uv
= e⊤u

( t−1

∑
k=0

At−1−ke je⊤i Ak
)

ev. (13)

The following results present two independent sets of bounds
relating g(t)i j with the ETEC c(t)i j at time t = 1, . . . ,T −1.

Theorem 3.3. (ETEC-based bounds on the gradient of trace of
Gramian (I)). For any t ∈ {1, . . . ,T −1},

0 ≤ g(t)i j ≤ ∥AtBB⊤∥F

√
c(t)i j . (14)

Proof. From the definition (12) of g(t)i j and A being a non-negative

weighted adjacency matrix, it is clear that g(t)i j ≥ 0. Using the
definition of the trace of the product of two matrices,

tr(BB⊤At⊤C(t)
j O(t)

i ) =
n

∑
u=1

n

∑
v=1

[
AtBB⊤

]
uv

[
C(t)

j O(t)
i

]
uv
,

≤ ∥AtBB⊤∥F∥C(t)
j O(t)

i ∥F . (15)

Using the definition of Frobenius norm [33],

∥C(t)
j O(t)

i ∥2
F =

n

∑
u=1

n

∑
v=1

[
C(t)

j O(t)
i

]2

uv
,

=
n

∑
u=1

n

∑
v=1

[
e⊤u

(
t−1

∑
k=0

At−1−ke je⊤i Ak

)
ev

]2

. (16)

Consider[
e⊤u

(
t−1

∑
k=0

At−1−ke je⊤i Ak

)
ev

]2

=

[
t−1

∑
k=0

(
e⊤u At−1−ke j

)(
e⊤i Akev

)]2

≤
t−1

∑
k=0

(
e⊤u At−1−ke j

)2 t−1

∑
k=0

(
e⊤i Akev

)2
.

Summing from u = 1 to u = n and from v = 1 to v = n in this
expression, and using

n

∑
u=1

t−1

∑
k=0

(
e⊤u Ake j

)2
=

n

∑
u=1

t−1

∑
k=0

e⊤u Ake je⊤j Ak⊤eu = p(t)j ,

n

∑
v=1

t−1

∑
k=0

(
e⊤i Akev

)2
=

n

∑
v=1

t−1

∑
k=0

e⊤v Ak⊤eie⊤i Akev = q(t)i ,

gives ∥C(t)
j O(t)

i ∥F ≤
√

p(t)j q(t)i =
√

c(t)i j , which together with (15)
implies the result.

Theorem 3.3 provides analytical evidence of the high correla-
tion between the gradient of tr(WA) and the centrality measured
ci j observed in Figure 2. We build on this relationship later in
Section 5 in our algorithm design for optimal edge selection.

In general, one cannot discard that the upper bound obtained
in Theorem 3.3 provides a loose approximation to g(t)i j because
the lower bound does not scale with ETEC. Interestingly, the edge
centrality measure ci j is not only related to the gradient of tr(WA)
but also to the gradient of logdet(WA) and (tr

(
W −1

A

)
)−1, as we

show next. For any edge (i, j) and t ∈ {1, . . . ,T −1}, let

h(t)i j = tr
(

BB⊤At⊤PC(t)
j O(t)

i

)
(17)

so that, according to Corollary 3.2, the gradient can be com-
pactly expressed as ∂ f

∂a ji
= 2∑

T−1
t=1 h(t)i j with P = I for f = tr(WA),

P = W −1
A for f = logdet(WA) and P =

W −2
A

(tr(W −1
A ))2 for f =

(tr
(
W −1

A

)
)−1. Note that for P = I, h(t)i j = g(t)i j . Let Ω

(t)
i j be the

projection of PAtBB⊤ on C(t)
j O(t)

i denoted as,

Ω
(t)
i j = ∥PAtBB⊤∥F cosω

(t)
i j .
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with the projection angle ω
(t)
i j = ∠(vec(PAtBB⊤),vec(C(t)

j O(t)
i )).

In addition, let s(t)j
2

be the variance of the eigenvalues of C(t)
j

⊤
C(t)

j
given by,

s(t)j =

√ tr
(
(C(t)

j
⊤

C(t)
j )

2)
r(t)j

−
( p(t)j

r(t)j

)2

, r(t)j = rank(C(t)
j

⊤
C(t)

j ).

(18)

We are now ready to state our next result.

Theorem 3.4. (ETEC-based bounds on the gradient square of
trace, logdet and inverse of the trace inverse of Gramian). For
P = I for f = tr(WA), P = W −1

A for f = logdet(WA), and P =
W −2

A
(tr(W −1

A ))2 for f = (tr
(
W −1

A

)
)−1, and any t ∈ {1, . . . ,T −1},

h(t)i j ≤ h(t)i j
2
≤ h

(t)
i j , (19)

where,

h(t)i j = Ω
(t)
i j

2
(c(t)i j

r(t)j

−q(t)i s(t)j

√
r(t)j −1

)
,

h
(t)
i j = Ω

(t)
i j

2
(c(t)i j

r(t)j

+q(t)i s(t)j

√
r(t)j −1

)
.

Proof. Using the definitions of h(t)i j , ω
(t)
i j and Ω

(t)
i j , we observe that

h(t)i j = ∥PAtBB⊤∥F∥C(t)
j O(t)

i ∥F cosω
(t)
i j

= Ω
(t)
i j ∥C(t)

j O(t)
i ∥F .

Using the definition of Frobenius norm [33],

∥C(t)
j O(t)

i ∥F =

√
tr
(
C(t)

j
⊤

C(t)
j O(t)

i O(t)
i

⊤)
. (20)

From [34, Lemma 1], the trace of the product in the latter term
can be lower and upper bounded as

λmin
(
C(t)

j
⊤

C(t)
j

)
tr
(
O(t)

i O(t)
i

⊤)
≤ tr

(
C(t)

j
⊤

C(t)
j O(t)

i O(t)
i

⊤)
≤ λmax

(
C(t)

j
⊤

C(t)
j

)
tr
(
O(t)

i O(t)
i

⊤)
, (21)

where λmin(·) and λmax(·) denote the smallest and largest eigen-
values of a symmetric matrix, respectively. Using

tr
(
C(t)

j
⊤

C(t)
j

)
=

n

∑
u=1

t−1

∑
k=0

e⊤u Ake je⊤j Ak⊤eu = p(t)j ,

and [35, Theorem 2.1] and (18), we further have the bounds

p(t)j

r(t)j

− s(t)j

√
r(t)j −1 ≤ λmin

(
C(t)

j
⊤

C(t)
j

)
,

λmax
(
C(t)

j
⊤

C(t)
j

)
≤

p(t)j

r(t)j

+ s(t)j

√
r(t)j −1. (22)

Now using (21), (22), and the fact that

tr
(
O(t)

i O(t)
i

⊤)
=

n

∑
v=1

t−1

∑
k=0

e⊤v Ak⊤eie⊤i Akev = q(t)i ,

we get

(
Ω

(t)
i j

)2
(c(t)i j

r(t)j

−q(t)i s(t)j

√
r(t)j −1

)
(23)

≤
(
tr
(
BB⊤At⊤PC(t)

j O(t)
i

))2

≤ (Ω
(t)
i j )

2
(c(t)i j

r(t)j

+q(t)i s(t)j

√
r(t)j −1

)
,

from which the result follows.

Theorem 3.4 shows that each h(t)i j
2

belongs to an interval whose

lower and upper bounds are functions of c(t)i j and their average,

Ω
(t)
i j

2 c(t)i j

r(t)j

, (24)

is again directly proportional to ETEC. However, an important
difference is given by the fact that the elements of the matrices
WA and BB⊤At⊤C(t)

j O(t)
i are non-negative while the elements of

the matrix W −1
A may be negative. Hence, unlike g(t)i j in (12), which

is always non-negative, h(t)i j may be negative when considering the
logdet or the inverse of the trace inverse of the Gramian and, in
such cases, a large c(t)i j may not always correspond to a large h(t)i j .

We note that the lower bound in Theorem 3.4 may become
negative as t increases, in which case it would be possible for
c(t)i j to be large while h(t)i j is not, even in the case of the trace of
the Gramian. Understanding whether this possibility can actually
occur is an open problem, but we note that Theorem 3.4 provides
an analytical basis to understand the tight correlation, cf. Figure 2,
between ETEC and the gradient of the trace of Gramian observed
in simulation.

Also, note that for the case of the trace of the Gramian, the
upper bound in Theorem 3.4 is better than the upper bound in
Theorem 3.3. In fact, we have

h
(t)
i j

∥AtBB⊤∥2
F c(t)i j

= cos2
ω

(t)
i j

(
1

r(t)j

+
s(t)j

p(t)j

√
r(t)j −1

)
.

As p(t)j and s(t)j
2

are the sum and variance of the eigenvalues of

C(t)
j

⊤
C(t)

j , respectively, we have
s(t)j

p(t)j

≤ 1
r(t)j

√
r(t)j −1, and therefore,

h
(t)
i j

∥AtBB⊤∥2
F c(t)i j

≤ cos2
ω

(t)
i j ≤ 1.

3.4 Efficient Computation of Edge Centrality

In this section, we show that computing the proposed edge cen-
trality measure ci j offers a significant reduction in computational
complexity with respect to the computation of the gradient of the
trace or logdet of Gramian in the edge modification problem (3).
In particular, we show how the redundancy in the calculations
of the network-node influences can be exploited to enhance the
computational efficiency of calculating ETEC, and compare this to
the computation of the gradients ∂

∂a ji
tr(WA), ∂

∂a ji
logdet(WA) and

∂

∂a ji
(tr
(
W −1

A

)
)−1. Let p̂(t)j be the vector of the diagonal elements

of W
(t)
j in (5) and

H (t) =
(

p̂(t)1 . . . p̂(t)j . . . p̂(t)n

)
∈ Rn×n. (25)

The following result shows how to employ this matrix to compute
the network-node influences in the definition of ETEC.
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Proposition 3.5. (Network-node influences are column and row
sums of H (t)). Let H (t) be defined as in (25). Then,

p(t)j =
n

∑
i=1

H
(t)

i j , (26a)

q(t)i =
n

∑
j=1

H
(t)

i j . (26b)

Proof. H
(t)

i j is the ith diagonal element of W
(t)
j , i.e.,

H
(t)

i j =
t−1

∑
k=0

e⊤i Ake je⊤j Ak⊤ei,

and thus (26a) follows from the definition of p(t)j in (6). Similarly,

since H
(t)

i j is a scalar,

H
(t)

i j =
t−1

∑
k=0

e⊤i Ake je⊤j Ak⊤ei =
t−1

∑
k=0

e⊤j Ak⊤eie⊤i Ake j,

and so (26b) follows by noting that

n

∑
j=1

H
(t)

i j =
n

∑
j=1

t−1

∑
k=0

e⊤j Ak⊤eie⊤i Ake j = q(t)i ,

using (8).

Based on this result, we can simplify the computation of
the centrality measures {ci j}i, j as follows. Define the vectors of
network-node influences,

p(t) =
(

p(t)1 p(t)2 . . . p(t)j . . . p(t)n−1 p(t)n

)⊤
,

q(t) =
(

q(t)1 q(t)2 . . . q(t)i . . . q(t)n−1 q(t)n

)⊤
.

Using Proposition 3.5, both p(t) and q(t) can be computed from
H (t). We define Θ(t) = p(t)q(t)

⊤ ∈ Rn×n and

Θ =
T−1

∑
t=1

Θ
(t) ∈ Rn×n. (27)

Then, from (9) and (27), it is straightforward to see that

c(t)i j = q(t)i p(t)j = Θ
(t)
ji and ci j =

T−1

∑
t=1

q(t)i p(t)j = Θ ji.

This discussion, together with the definition of H (t), shows that
the knowledge of {p̂(t)j }n

j=1 is sufficient to compute Θ(t). We are
now ready to substantiate our claim of computational efficiency of
ETEC versus the gradients of the objective functions:

Computation of gradients of objective functions: the compu-
tation of ∂

∂a ji
tr(WA), ∂

∂a ji
logdet(WA) and ∂

∂a ji
(tr
(
W −1

A

)
)−1

requires g(t)i j and h(t)i j respectively. The latter can be ef-
ficiently computed using their definitions (12) and (17),
respectively, as discussed next. At each time t and for
each edge (i, j), we have A, A2, . . . ,At−1, e j,Ae j, . . .At−2e j,
ei
⊤,ei

⊤A, . . . ,ei
⊤At−2 and W −1

A available from previous
times 1,2, . . . , t − 1. To compute g(t)i j or h(t)i j , we need to
additionally compute At , At−1e j, and e⊤i At−1. With all this
information, we then form C(t)

j , O(t)
i , compute the products

BB⊤At⊤C(t)
j O(t)

i and BB⊤At⊤PC(t)
j O(t)

i , and take their trace.
Note that this computation needs to be done for n2 edges.

Computation of ETEC: To calculate c(t)i j , we first need to com-

pute p̂(t)j for each node j. This computation requires to form

the Gramian ∑
t
k=0 Ake je⊤j Ak⊤. To do this, we only need the

term Ate je⊤j At⊤, as ∑
t−1
k=0 Ake je⊤j Ak⊤ is available from the

previous times. Once p̂(t)j are computed for each node, we
form the matrix H (t), sum its rows and columns to form
vectors p(t),q(t) and then perform the outer product p(t)q(t)

⊤

to get Θ(t). Note that this computation needs to be done for n
nodes.

The above discussion shows that the computational effort in
calculating c(t)i j is far less than what is required to calculate g(t)i j

and h(t)i j , respectively.

4 PROPERTIES OF THE METRICS AND IMPLICA-
TIONS FOR OPTIMAL EDGE MODIFICATION

The notion of ETEC introduced in Section 3 helps identify those
edges that have a significant effect on enhancing network control-
lability. In this section we characterize properties of the solution
of the optimization problems (3) and (4) that will later guide our
design of computationally efficient algorithms for network edge
modification. We first analyze the case of trace of the Gramian
followed by logdet and inverse of the trace inverse of the Gramian.

4.1 Trace of Gramian as Objective

Here we prove that the optimal solution of either (3) or (4),
when the objective function is the trace of Gramian, lies on the
boundary of its feasibility set. To establish this, we rely on the
non-decreasing nature of the trace of Gramian and its gradient,
shown next. Throughout this section, f (A) = tr(WA).

Lemma 4.1. (Trace of Gramian is non-decreasing). Let A1 and
A2 be non-negative weighted adjacency matrices. If A2 −A1 ≥ 0
then f (A2)≥ f (A1).

Proof. Let δA = A2 − A1 and note that δA is a non-negative
matrix. From (2),

WA2 =
T−1

∑
t=0

At
2BB⊤At

2
⊤

=
T−1

∑
t=0

(A1 +δA)t BB⊤(A1 +δA)t⊤

=
T−1

∑
t=0

At
1BB⊤At

1
⊤
+Ψ(A1,δA) ,

where Ψ(A1,δA) is an appropriate matrix function of A1 and δA
consisting of the remaining terms of the Gramian expansion at A2.
Therefore, f (A2) = f (A1)+ tr(Ψ(A1,δA)). The non-negativeness
of A1,δA and the input matrix B implies f (A2)≥ f (A1).

From Lemma 4.1 it follows that with the addition or enhance-
ment of each new edge, the trace of the controllability Gramian
can only increase. Next we show that the gradient of the trace
of the controllability Gramian with respect to any edge is also a
non-decreasing function.

Lemma 4.2. (Gradient of trace of Gramian is non-decreasing).
Let A1 and A2 be non-negative weighted adjacency matrices. If
A2 −A1 ≥ 0, then ∂

∂a ji
f (A2)≥ ∂

∂a ji
f (A1) for any (i, j) ∈ V ×V .
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Proof. From (11) in the proof of Theorem 3.1, we deduce

∂

∂a ji
f (A) = 2

T−1

∑
t=1

tr
( t−1

∑
p=0

(
Ap

∆ jiAt−p−1BB⊤At⊤)),
where ∆ ji =

∂A
∂a ji

is a matrix whose ( j, i)th element is 1 and all

other elements are 0. Evaluating the expression above for ∂

∂a ji
f (A)

at A = A2 and noting that A2 = A1 +δA, we can write

∂

∂a ji
f (A2) =

∂

∂a ji
f (A1)+ tr(Θ(A1,δA)),

where Θ(A1,δA) is an appropriate matrix function of A1 and δA
consisting of the remaining terms of the gradient expansion at
A2. Using the non-negativeness of A1,δA and B, we deduce that
tr(Θ(A1,δA))≥ 0, which implies the result.

Next, we turn our attention to characterize the optimal solution
of (3) and (4). Note that we can break the edge addition process
in two parts: (i) the selection of Nmax edge locations and (ii) the
computation of the weights to be added to the Nmax selected edges.
Let Eopt ⊂ ES be the set of optimal edge locations of cardinality
Nmax solving (i). Fixing Eopt , the optimal weight computation in
(ii) becomes

max
w

f (A+δA) = tr(WA+δA) , (28a)

s.t. δA =
Nmax

∑
k=1

wk∆k, (28b)

w =
(
w1 w2 . . . wNmax

)⊤
, (28c)

0 ≤ wk ≤ wub, k = 1, . . . ,Nmax, (28d)
Nmax

∑
k=1

wk ≤ wmax. (28e)

The next result characterizes the solutions of this problem.

Proposition 4.3. (Characterization of optimal edge weight modi-
fication for trace). Given the edge addition set Eopt of cardinality
Nmax, consider the optimization problem (28). Then,

(i) there always exists a global maximum w∗ of (28) satisfying
Nmax

∑
k=1

w∗
k = wmax, (29)

when wmax ≤ Nmaxwub; otherwise w∗
k = wub for all k;

(ii) if, further, f is not constant as a function of wi for any i =
1, . . . ,Nmax, then any global maximum of (28) satisfies (29).
In particular, no global maximum may lie in the interior of
the feasibility set.

Proof. (i) Let us first consider wmax ≤ Nmaxwub. If a global
optimum w∗ of (28) does not already satisfy (29), then

Nmax

∑
k=1

w∗
k < wmax. (30)

However, it is trivial to find ŵ ≥w∗ satisfying (29). By Lemma 4.1
and using the fact that w∗ is a global maximum, it follows that ŵ
is also a global maximum. For the case wmax > Nmaxwub due to
Lemma 4.1, it is trivial to see that each w∗

k takes the value wub.

(ii) We prove the result by contradiction. Assume w∗ is a
global maximum satisfying (30) and let Ns

w∗ > 0 be the number
of components of w∗ that equal wub. Define

Uw∗ = {w ≥ w∗ | w ≤ wub1Nmax , 1T
Nmax w ≤ wmax}.

Note that Uw∗ has a positive Lebesgue measure in RNmax−Ns
w∗ .

Moreover, f is constant on Uw∗ by Lemma 4.1 and the fact that
w∗ is a global maximum. Therefore f is a constant function over
RNmax−Ns

w∗ , cf. [36, §4.1], which is a contradiction. Therefore, any
global maximum satisfies (29).

Proposition 4.3 means that the solutions of (4) have optimal
edge weights lying on the boundary of the feasible weight set. A
similar result also holds for the original optimization problem (3).
Proposition 4.3, however, does not determine what happens on
the boundary (29): in fact, the global optima may lie at a corner
point of the boundary or in its relative interior. Both scenarios
may happen, cf. Figure 3, although corner points seem to be
predominant. Finally, the following result gives a sufficient (but
not necessary) condition for the trace of the Gramian not to be
constant as a function of any present or non-present edge weight
in the network.

46%

48%

2%4%

Fig. 3: Dependence patterns of tr(WA+δA) on edge weights when the
constraint (28e) holds with equality. We constructed 104 Erdős-Rényi
random graphs with n = 25, m = 5, 20% edge probability, and T = 2n
and, for each graph, chose two non-self-loop edges at random and
solved problem (28) with Nmax = 2, and wub =wmax = 1 to specifically
study the trade-off between w1 and w2. As shown in Proposition 4.3,
we know that the optimal solution satisfies w1 + w2 = 1, so we
classified the networks according to the pattern of tr(WA+δA) on
the edge of the feasibility set where w1 +w2 = 1 into four classes:
monotonically increasing, monotonically decreasing, local minimum
in the interior, and local maximum in the interior. In particular, we see
that in 96% of the cases the globally optimal solution lies at a corner
point of the feasibility set.

Lemma 4.4. (Non-trivial dependence of trace of Gramian on edge
weights). The function f in (28) is not constant as a function of
any entry of δA if (A,B) is controllable and T − 2 is at least as
large as the input depth of the network1.

1. Similar to the notion of the depth of a directed tree [37], the input depth
of the network is defined as max j∈V mini∈VB dist(i, j), where VB is the set
of input nodes of the network and dist(i, j) is the topological (unweighted)
distance from node i to node j.
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Proof. Expanding the definition of the trace of the controllability
Gramian, we have

f (A+δA) =
T−1

∑
t=0

n

∑
ℓ=1

n

∑
i=1

n

∑
r=1

B2
iℓ((A+δA)t)2

ri + f̃ (A+δA)

where f̃ (A + δA) only contains sums and products of positive
terms. Therefore, the derivative with respect to any edge weight
of both the first term on the right-hand side and f̃ is always
nonnegative. From this, we deduce that the result holds if the
first term is not a constant function of any entry of δA (since the
derivative of f̃ cannot cancel out the derivative of the first term).
The term Biℓ equals the input weight from input uℓ(t) to node i
while ((A+ δA)t)ri equals the sum of the weight of all directed
paths of length t from node i to node r (with the weight of a path
being equal to the product of the weights of the edges along it).
Note that all of the terms inside the sum also consist of sums and
products of positive values and, hence, the result would hold if at
least one B2

iℓ((A+δA)t)2
ri is not constant as a function of any entry

of δA.

Consider an arbitrary entry (r,s) of δA, whether already
present in A or not. Recall that this indicates an edge from node r
to node s. Since the network is controllable, there is at least one
path from one input node i (receiving some input signal uℓ(t))
to r. The length of this path can be at most equal to the input
depth of the network, so appending it with the edge (r,s) creates
a path with length t ≤ T −1. Therefore, the term B2

iℓ((A+δA)t)2
ri

for these values of t, ℓ, i,r is non zero and, thus, is not a constant
function of (δA)rs, completing the proof.

Note that, if T is small, it is possible that for a controllable pair
(A,B), the trace of the Gramian remains constant as a function of
some entries of δA. We conclude this section by establishing an
important property of the trace of the Gramian when viewed as a
set function. Given a node set V , for an arbitrary matrix A with
non-negative edge weights, let GA =(V ,EA,wA) denote the associ-
ated network triplet. Let ZG denote the set of all possible directed
network triplets GA = (V ,EA,wA). Given adjacency matrices A1
and A2 with corresponding directed network triplets GA1 and GA2 ,
we note that GA1 ∪GA2 is the network triplet associated to A1+A2.
We also say, cf. [18],

GA1 ⊂ GA2 if and only if A2 > A1. (31)

Given the input matrix B, we view the trace as a set function by
defining f̃ : ZG ↦→ R≥0 such that for GA ∈ ZG , f̃ (GA) = tr(WA).

Proposition 4.5. (Trace of Gramian is a super-modular set
function of edge locations and weights). The set function f̃ is
super-modular under the definition of set inclusion given by (31).

Proof. From the definition of f̃ , we have f̃ (GA) = tr(WA) = f (A).
For arbitrary γ ∈ R≥0 and D ∈ Rn×n, note that

d f (A+ γD)

dγ
= tr

(
∇ f (A+ γD)⊤ D

)
.

Now, consider directed network triplet sets GA1 and GA2 such that
GA1 ⊂ GA2 . Consider the addition of D ∈ Rn×n with non-negative
entries, and associated directed network triplet set GD, to A1 and
A2. Then,

d
dγ

( f (A1 + γD)− f (A2 + γD))

= tr
(
(∇ f (A1 + γD)−∇ f (A2 + γD))⊤ D

)
.

From Lemma 4.2, ∂ f (A)
∂a ji

is non-decreasing for all 1 ≤ i, j ≤
n. Using this fact and (31), we deduce that ∇ f (A1 + γD)−
∇ f (A2 + γD)≤ 0. Since the entries of D are non-negative, we also
have tr

(
(∇ f (A1 + γD)−∇ f (A2 + γD))⊤ D

)
≤ 0, which implies

d
dγ

( f (A1 + γD)− f (A2 + γD))≤ 0.

Integrating this expression gives∫ 1

0

d
dγ

( f (A1 + γD))dγ ≤
∫ 1

0

d
dγ

( f (A2 + γD))dγ,

which in turn yields f (A1 +D)− f (A1)≤ f (A2 +D)− f (A2). In
terms of f̃ , this inequality reads as

f̃ (GA1 ∪GD)− f̃ (GA1)≤ f̃ (GA2 ∪GD)− f̃ (GA2) ,

as claimed.

Proposition 4.5 generalizes the result in [38, Theorem 1],
which considers the case where edge weights are fixed (in which
case (31) simplifies to the standard definition of set inclusion) and
equal to 1.

Remark 4.6. (Non-applicability of classical greedy algorithms
for edge modification). Classical greedy algorithms provide ap-
proximations of the optimal solution with guaranteed accuracy
for set function optimization when the set function is super-
modular and non-increasing in the set variable, see cf. [39]–
[41]. From Proposition 4.5 and Lemma 4.1, however, the trace
of Gramian is a super-modular and non-decreasing set function,
and hence the guarantees on the performance of greedy algorithms
are not applicable. The optimal edge addition problem falls in the
category of super-modular function maximization (equivalently,
sub-modular function minimization) problems, for which we refer
the reader to [42] for a survey of available solution procedures. As
the edge set cardinality is n2, these solution procedures in general
have an order of computational complexity nk, where k ≥ 6, which
becomes computationally infeasible as the network size increases.
□

4.2 Log-det or Inverse of Trace Inverse of Gramian as
Objective

The task of characterizing the optimal solution of (3) or (4) when
the objective function is logdet(WA) or (tr(W −1

A ))−1 is chal-
lenging. Here, we restrict our attention to systems with diagonal
controllability Gramian and prove that the optimal solution lies on
the boundary of the feasibility set if modifications are made only
on the existing edges (edge re-weighing). An example of systems
with diagonal controllability Gramian are ‘stem-bud’ networks,
cf. [43]. We start by showing that the diagonal nature of the
Gramian is preserved after weight modifications in existing edges.

Lemma 4.7. (Diagonal Gramian systems under existing edge
modification). Consider a network system (1) with diagonal con-
trollability Gramian WA. Let δA be any modification with positive
weights in its existing edges. Then, the resulting controllability
Gramian WA+δA is also diagonal.

Proof. By assumption, A,B,δA have non-negative elements and
modifications are made only on existing edges. Therefore, the
matrices WA+δA and WA have zero (resp. non-zero entries) at
identical places, and the result follows.
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Note that, when modifications are made in non-existing edges,
the Gramian may lose its diagonal character. Next, we prove
that gradient of logdet(WA) and (tr(W −1

A ))−1 for systems with
diagonal controllability Gramian is non-negative.

Lemma 4.8. (Log-det and inverse of trace inverse for diagonal
Gramians are non-decreasing). Consider a network system (1)
with diagonal controllability Gramian WA. If f = logdet(WA) or
f = (tr(W −1

A ))−1, then ∂ f
∂a ji

≥ 0, i.e., if A2 −A1 ≥ 0 then f (A2)≥
f (A1).

Proof. Both WA and W −1
A are diagonal and positive definite,

with ∂WA
∂a ji

having non-negative entries. The result follows from
Corollary 3.2.

From Lemmas 4.7 and 4.8, we infer that when we modify
existing edges, the system retains the diagonal nature of the
Gramian and logdet(WA) and (tr(W −1

A ))−1 are non-decreasing.
Consider the following optimization problem similar to (28) by
fixing Eopt as a subset of existing edge locations,

max
w

f (A+δA) = logdet(WA+δA) or (tr(WA+δA))
−1, (32a)

s.t. δA =
Nmax

∑
k=1

wk∆k, (32b)

w =
(
w1 w2 . . . wNmax

)⊤
, (32c)

0 ≤ wk ≤ wub, k = 1, . . . ,Nmax, (32d)
Nmax

∑
k=1

wk ≤ wmax. (32e)

We next characterize the optimal solution of the edge modifi-
cation problem when the objective is logdet(WA) or (tr(W −1

A ))−1.

Proposition 4.9. (Characterization of optimal solution for logdet
and inverse of trace inverse of Gramian). Consider a network
system (1) with diagonal controllability Gramian. Given the edge
addition set Eopt as a subset of the existing edge set, with
cardinality Nmax, consider the optimization problem (32). Then,

(i) there always exists a global maximum w∗ of (32) satisfying

Nmax

∑
k=1

w∗
k = wmax, (33)

when wmax ≤ Nmaxwub; otherwise w∗
k = wub for all k;

(ii) if, further, f is not constant as a function of wi for any i =
1, . . . ,Nmax, then any global maximum of (32) satisfies (33).
In particular, no global maximum may lie in the interior of
the feasibility set.

The proof of Proposition 4.9 follows the same line of argu-
mentation as that of Proposition 4.3, and we omit it for brevity.
This result is not true if WA is non-diagonal and/or modifications
are made in non-existing edges. This is because a non-diagonal
W −1

A may have negative non-diagonal elements, due to which
no guarantee can be made regarding the monotonicity of f . To
prove super/sub-modularity of f , one needs to investigate the
increasing/decreasing nature of the gradient, which is itself a
challenging task and a direction of future research.

5 EDGE MODIFICATION ALGORITHMS

In this section, we build on the results of Sections 3 and 4 to pro-
pose two computationally efficient edge modification procedures
that yield approximate solutions to the optimization problem (3).

Given the computational complexity of solving this problem,
our designs are based on the idea of restricting the search space.
In both cases, we employ the term ‘Restricted-set’ to refer to the
shrinking of the original feasible set to a smaller edge selection
subset ES as formulated in (4). We construct ES using the ETEC
measure introduced in Section 3.2. To do so, we compute the
ETEC of every possible edge (including non-existing ones), sort
the edges in decreasing order according to their ETEC, and select
the top NS edges. The value of NS is a design parameter whose
choice may be driven by a number of factors (e.g., considerations
about computational capability, significant gaps in the sequence of
ETEC values, etc.).

5.1 Restricted-Set Optimization (RSO)

Restricted-Set Optimization consists of solving the optimization
problem (4) with the set ES of NS edges of largest ETEC
measure. The resulting MINLP is then computationally tractable
and we solve it by using publicly available software such as the
OPTI TOOLBOX [44] for MATLAB which uses the BONMIN
solver [45] for integer variables. Algorithm 1 describes the pseudo-
code of the resulting edge modification procedure.

Algorithm 1 Restricted-set optimization
Input: A,B,n,T,Nmax,wmax,NS,wub
Output: δA

1: Compute {W (t)
j }T

t=1 as in (6) for each node j ∈ {1, . . . ,n}
2: Form H (t) as in (25)
3: Compute p(t),q(t),Θ(t) and Θ as in (27)
4: Rank all the edges according to decreasing ETEC measure ci j
5: Select the first NS edges and form the set ES
6: Solve the optimization problem (4) to get η ,w
7: Compute δA = ∑

NS
k=1 ηkwk∆k

We note that, albeit the optimization problem solved by RSO
is certainly more tractable than the original optimization (3), it still
is an MINLP problem and, as such, is subject to the limitations of
nonconvex solvers (particularly, the choice of initial conditions).

5.2 Restricted-Set Exhaustive Greedy (RSEG)

This approach is based on the following observations: (i) from
Proposition 4.3, the optimal solution has weights lying on the
boundary of the feasible region; (ii) the optimal solution tends
to have weights in a corner point of the boundary, cf Fig-
ure 3; and (iii) the supermodularity of the trace of Gramian, cf.
Proposition 4.5, means that, when adding new or strengthening
existing edges, larger weights are more beneficial. Therefore,
in this second approach we choose the weights first (by letting
Nm = ⌊wmax

wub
⌋ edges to have weight wub and one edge to have

weight wr =wmax−Nmwub) and then determine the edge locations,
choosing them one at a time. For the latter, we sort the edges
with respect to their ETEC, select the search set ES, exhaustively
search for the best edge location in the set ES (only considering
weight assignments of the form wub,wub, . . . ,wub,wr), update the
adjacency matrix A with the best edge location, and repeat the
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procedure Nm + 1 times to get the optimal edge set Eopt (in case
Nm +1 < Nmax, we assign the first Nm edges weight wub, wr to the
next edge, and zero weight to the remaining Nmax−Nm−1 edges).
We summarize the procedure in Algorithm 2.

Algorithm 2 Restricted-set exhaustive greedy
Input: A,B,n,T,Nmax,wmax,NS,wub
Output: δA

1: Compute Nm, wr
2: Set k = 1, δA = 0, Eopt = {}, and E equal to the set of all

possible edges
3: Compute {W (t)

j }T
t=1 as in (6) for each node j ∈ {1, . . . ,n}

4: Form H (t) as in (25)
5: Compute p(t),q(t),Θ(t) and Θ as in (27)
6: Rank all the edges according to decreasing ETEC measure ci j

for edges in E \Eopt .
7: Select the first NS edges and form the set ES
8: Assign w = wub if 1 ≤ k ≤ Nm else w = wr
9: Compute (i, j)∗ = argmax

(i, j)∈ES

f (A + w∆ ji) (∆ ji ∈ Rn×n has the

( j, i) entry equal to 1 and all other entries equal to zero)
10: Set δA = δA+w∆ ji

∗, A = A+w∆ ji
∗. Update k = k+1, Eopt =

Eopt ∪{(i, j)∗} and repeat Step 3 to Step 10 until k = Nm +2

5.3 Exhaustive Greedy (EG)

For comparison purposes with the two methods proposed above,
we also implement a third approach termed Exhaustive greedy. In
this method, the weight vector is the same as in the ‘Restricted-set
exhaustive greedy’ method. However, we then exhaustively search
the best edge to be modified in the set of all possible edges E .
This step is similar to Step 9 in Algorithm 2 with ES replaced
by E . After each edge modification, we decrease the size of the
set E by 1 as the modified edge location is deleted from it. In
the case of using RSEG or EG, one could ensure the stability of
the resulting network by checking whether the magnitude of the
maximum eigenvalue of the system matrix is smaller than 1 after
each edge modification.

5.4 Numerical Examples

Here, we provide two examples to illustrate the efficacy of the
proposed edge modification procedures in improving network
controllability. We perform all the simulations using MATLAB
on a desktop with Intel core-i7-8700, 3.20 GHz processor with 16
GB of RAM. It should be noted that, while modifying edges, we
exclude the addition of self-loops.

The optimal edge modification problem (3) is a non-convex
MINLP problem and has discrete edge location variables. This
results in multiple local maxima corresponding to different combi-
nations of variables. For such non-convex MINLPs, the number of
local maxima increases with the number of optimization variables
(2NS) and the computed solution will eventually depend on the
initial starting solution used for the optimization process [46].
Further, as the number of variables increases, the computational
efficiency deteriorates rapidly, making the computation of even
local maximum a challenging task.

5.4.1 10-Node Numerical Example

We consider a network with n = 10 nodes and 14 edges without
self-loops, and adjacency matrix A whose entries are all zero
except for

a12 = 0.69, a18 = 0.36, a1,10 = 1.24,
a23 = 0.20, a25 = 0.02, a26 = 0.87,
a27 = 0.64, a37 = 0.37, a46 = 0.76,
a51 = 0.66, a76 = 0.99, a84 = 0.50,
a91 = 0.52, a10,9 = 0.74,

and a diagonal B ∈ Rn×n with diagonal entries

diag(B) = (0 0 0 1 1 1 0 1 0 0) .

We have constraint bounds on the optimal edge modification
problem (4) as Nmax = 3, wmax = 0.6, and wub = 0.25, and the time
horizon is T = 2n. We take NS = 5, which represents just 5.6% of
the complete edge selection space (of cardinality 90 due to the
removal of self-loops). The top five edges in descending order of
their ETEC are 1 → 6, 1 → 10, 1 → 9, 5 → 6, and 5 → 10.

We compare the performance of the three approaches dis-
cussed in Section 5 to find an approximate solution to (4). We
perform the edge modification for the trace as well as the logdet of
Gramian as objective functions, and present the results in Tables 1
and 2.

TABLE 1: Performance comparison of edge modification algorithms
with trace of the Gramian as objective function. Here, both RSO and
RSEG only reason over 5.6% of the set of all possible edges, whereas
EG reasons over all 100% of them.

Property RSO RSEG EG

Edges
Edge 1 1 → 6 1 → 9 1 → 9
Edge 2 1 → 10 1 → 10 1 → 10
Edge 3 1 → 9 1 → 6 1 → 6

Weights
w1 0.25 0.25 0.25
w2 0.25 0.25 0.25
w3 0.10 0.10 0.10

Initial tr(WA) 9.27 9.27 9.27
Final tr(WA) 36.4 32.8 32.8

Percentage increase 293% 254% 254%
Initial logdet(WA) −12.37 −12.37 −12.37
Final logdet(WA) −9.2 −7.9 −7.9
Initial λmin(WA) 0.00030 0.00030 0.00030
Final λmin(WA) 0.00033 0.00040 0.00040

From Table 1, with trace of Gramian as the objective function,
we can see that the performance of RSEG is the same as that of
EG, and that RSO performs the best. Interestingly, all the three
approaches result in the same edge selections but with different
weight combinations. Furthermore, even though the RSO and
RSEG approaches seek to maximize tr(WA), one can see that they
also maintain (and even improve) worst-case controllability. We
show the original and modified graphs using all approaches in
Figure 4.

From Table 2, with logdet of Gramian as the performance
objective, we observe that all approaches produce similar perfor-
mance improvements. We note that the EG approach produces an
edge combination with the lowest increase in the trace. It is also
worth noticing that for NS = 16 and NS = 19, RSEG obtains an
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TABLE 2: Performance comparison of edge modification algorithms
with logdet of the Gramian as objective function. Here, both RSO and
RSEG only reason over 5.6% of the set of all possible edges, whereas
EG reasons over all 100% of them.

Property RSO RSEG EG

Edges
Edge 1 1 → 9 1 → 9 1 → 9
Edge 2 5 → 10 9 → 10 3 → 5
Edge 3 1 → 6 5 → 10 9 → 10

Weights
w1 0.25 0.25 0.25
w2 0.25 0.25 0.25
w3 0.10 0.10 0.10

Initial logdet(WA) −12.37 −12.37 −12.37
Final logdet(WA) −4.76 −3.9 −3.25

Percentage increase 61.5% 68.5% 73.7%
Initial λmin(WA) 0.00030 0.00030 0.00030
Final λmin(WA) 0.00050 0.00060 0.035
Initial tr(WA) 9.27 9.27 9.27
Final tr(WA) 22.8 24.2 13.2

1

2

3

4

5

6

7

89

10

Fig. 4: The result of the proposed edge modification algorithms on
the network of Example 1 with trace of the Gramian as objective
(cf. Table 1). Nodes with red arrows (4, 5, 6, 8) represent the
actuator locations, while solid and dashed edges represent original
and modified edges, respectively. All three approaches result in the
same edge selections but with different weight assignments.

TABLE 3: Performance comparison RSO and RSEG combined with
different notions of edge centrality. Here, NS = 5.

f In
iti

al

SE
+R

SO

SE
+R

SE
G

T
E

C
+R

SO

T
E

C
+R

SE
G

E
T

E
C

+R
SO

E
T

E
C

+R
SE

G

tr 9.27 11.9 11.6 26.9 26 36.4 32.8
logdet −12.37 −8.45 −10.8 −10.1 −8.9 −4.7 −3.9

optimal objective function value of −3.07 and −2.88, respectively,
which is better than EG.

We also compare the RSO and RSEG edge modification
algorithms based on the ETEC measure against the following two
benchmark procedures: (i) strengthening existing edges (SE) by
using RSO and RSEG and (ii) using topological edge centrality
(TEC), cf. [22] in combination with RSO and RSEG. Table 3 shows
the comparison. One can observe that the best result is obtained
with the ETEC-based implementation, which reinforces our claim
that, along with the network topology, the consideration of the
dynamical effects in the network (i.e., energy exchange effects)

is important for enhancing controllability. In Tables 1 and 2, we
have omitted the values of (tr(W −1

A ))−1, which are approximately
equal to λmin(WA).

5.4.2 Random Erdős-Rényi Networks

In this example, we implement the proposed edge modification
procedures on 103 random Erdős-Rényi networks [47] without
self-loops. We consider networks having n = 25 nodes, 8 input
nodes, and edge probability of 0.2. We modify a maximum number
of Nmax = 3 edges with budget constraint wmax = 1 on the added
weight, and the maximum weight to be added to each edge
is wub = 0.4. The time horizon is T = 2n. We then apply the
algorithm RSO with NS = 15 and the algorithm RSEG with NS
equal to 3% of n2−n (i.e., 18). For each network, we compute the
percentage of increase in controllability and show the histogram of
the resulting values in Figure 5. The mean percentage increase in
the performance is about 105%, showing the utility of the proposed
edge centrality measure and edge modification algorithms.

Fig. 5: The histogram of log10(% increase in tr(WA)) for 103 Erdős-
Rényi random networks following the proposed edge modification
algorithm.

To illustrate the impact of the reduction of the search space in
finding the best locations for edge addition, Figure 6 shows, for
the same 103 Erdős-Rényi random networks, the histogram of the
minimum size of the set ES, i.e., minimum NS for the algorithm
RSEG, that is required to match or improve tr(WA) relative to
EG. The histogram shows that in ≃ 95% cases, no more than the
top 1% of the edges selected using the proposed edge centrality
measure are needed for the RSEG algorithm to reach the result of
the corresponding EG. In our simulations, executing RSEG took
on an average 25% less time (in CPU seconds) than executing EG.
This time difference will grow as n increases. This is a remarkable
enhancement in computational cost which illustrates the utility of
the proposed edge centrality measure.

For the same 103 Erdős-Rényi random networks, Figure 7
shows the result of using the RSEG algorithm with NS = 30 (5% of
total edges) and logdet(WA) as objective function. Finally, Figure
8 shows the histogram of the minimum size of the set ES, i.e.,
minimum NS for the algorithm RSEG required to match or improve
logdet(WA) relative to EG. Unlike the case of using tr(WA) in
Figure 6, the histogram in Figure 8 is almost evenly spread from
NS = 5%−90% of total edges. This is due to the fact that ETEC is
always positive while the gradient of logdet(WA) may be negative.
Nonetheless, we see from Figure 8 that even though less than the
corresponding improvement in tr(WA), we still obtain an average
objective function increase of ≃ 22% in logdet(WA). It should
also be noted that in the latter case when we used logdet(WA) as
objective, RSO along with the use of OPTI TOOLBOX produced
infeasible results.
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Fig. 6: The histogram of minimum NS required for RSEG to match or
better the corresponding EG value of the trace of the Gramian for 103

Erdős-Rényi random networks.

Fig. 7: The histogram of %-increase in logdet(WA) for 103 Erdős-
Rényi random networks following the proposed RSEG edge modifica-
tion algorithm.

6 CONCLUSIONS

We have studied the optimization problem that seeks to optimally
modify the location and weights of edges to improve network con-
trollability. To address the increasing computational intractability
with the size of the network of the non-convex mixed-integer pro-
gram, we have proposed reducing the search space by restricting
the optimization to a subset of all possible edges. To select this
restricted set, we have introduced the novel notion of energy-
based edge centrality and characterized its relationship with the
gradient of the trace, the logdet and the inverse of trace inverse
of the network’s controllability Gramian. We have also showed
that the optimal solution of the edge modification algorithm lies
on the boundary of the feasible region, in general for the trace
and in particular in the case of systems with diagonal Gramian for
logdet and the inverse of the trace inverse of Gramian. Building on
these results, we have proposed the Restricted-Set Optimization

Fig. 8: The histogram of minimum NS required for RSEG to match or
better the corresponding EG value of the logdet of the Gramian for
103 Erdős-Rényi random networks.

and the Restricted-Set Exhaustive Greedy algorithms, which are
computationally efficient edge modification procedures that yield
approximate solutions to the original optimization problem. We
have illustrated their performance on numerical simulations in a
10-node network and on random Erdős-Rényi 25-node networks.
Future work will explore networks with negative edge weights,
the analytical characterization of the sub-optimality gap of the
proposed edge modification algorithms, method to select the
size of the restricted feasible set, the consideration of stability
constraints, the relationship between ETEC, network diameter,
and the nonnormality of the adjacency matrix, the extension of
the results on logdet and inverse of the trace inverse of Gramian
to general network systems and the study of network resiliency
in strategic scenarios with edge attacks. We also plan to apply
our proposed notions to real-world networks to solve problems
such as optimal rewiring of networks and optimal information
transmission in communication networks.
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