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A B S T R A C T

Various strategies are proposed for enforcing stress-free boundary conditions on deformed domains using a
weak-form-based discretization in a Cartesian frame of reference. Due to the irregularity of the computational
domain and the particular type of boundary condition, a coupling between the Cartesian velocity components is
introduced. As such, a different computational kernel is required for the numerical solution of the associated
vector Helmholtz equation, as contrasted to what is used for the scalar unknowns of the equations. Three
approaches are presented, aimed towards the exact or approximate implementation of zero tangential stress
(traction) at the deformed boundary while ensuring a decoupling of the velocity components in the solution
of the vector Helmholtz equation. Two of these strategies, those which approximate the free slip boundary
condition, are applied to the propagation of an internal solitary wave (ISW) of depression over a deformed
bathymetry. The spatial structure and amplitude of the resultant pseudo-traction, which is accurately predicted
by a simple scaling estimate, are explored as a function of the ISW-based Reynolds number, 𝑅𝑒. For the 𝑅𝑒

values considered, the pseudo-traction is negligible with respect to the corresponding no-slip tangential shear
stress. The pseudo-traction-induced, time-integrated loss of ISW energy is found to be significantly weaker
than the associated viscous dissipation in the interior water column. Although, at laboratory-scale or oceanic
𝑅𝑒, an approximate free-slip boundary condition is found to yield negligible pseudo-traction, this might not
be the case when an elevated eddy viscosity is used in this context as a surrogate for no-slip turbulent bottom
boundary layer dynamics.
1. Introduction

The incompressible Navier–Stokes (INS) equations under the Boussi-
nesq approximation are a commonly used mathematical model of
choice to simulate highly non-linear, non-hydrostatic phenomena, with
characteristic scales of (1 km) or less, in the stratified ocean (Winters
t al., 2004; Winters and de la Fuente, 2012; Fringer et al., 2006;
Durran, 2013). Typical examples of such geophysical flow phenomena
are highly non-linear internal waves and the resulting turbulence
formation within the wave core (Rivera-Rosario et al., 2020), tidally-
driven stratified boundary layers over a bathymetric slope (Winters,
2015) and flows over ocean ridges (Perfect et al., 2018). Critical to the
obust simulation of such phenomena is the prescription of physically
elevant boundary conditions, namely over the deformed bathymetry.
ntimately connected to the enforcement of such boundary conditions

∗ Correspondence to: School of Civil and Environmental Engineering, 220 Hollister Hall, Cornell University, Ithaca, NY, 14853, USA.

is the operator splitting approach used in the time-advancement of the

INS equations.

In the context of such splitting schemes, the lack of a prognostic

equation for the pressure, associated with a non-hydrostatic flow, in

the INS equations is commonly dealt with by decoupling the pressure

from the velocity field by implicitly enforcing, via a projection to a

divergence-free space, the incompressibility constraint. The resulting

equations are elliptic in nature both for the pressure and the viscous-

diffusive terms of the velocity and density field, in the presence of

stratification, respectively after the splitting/time discretization (see

Eq. (5)). Specifically, using a popular velocity projection scheme (Kar-

niadakis et al., 1991) the three elliptic equations, a pressure Poisson

equation, a vector Helmholtz equation for the velocity field and a

scalar Helmholtz equation for the density, have to be consecutively

solved for the time-advancement of the flow field. Therefore, from
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an implementation standpoint, the preferred strategy is to utilize one
single computational kernel, which solves numerically the scalar ellip-
tic equations, either Poisson or Helmholtz, for all field variables both
scalars and vectors. Ideally, each of the components of the velocity field
can be computed separately by treating the vector Helmholtz equation
in the same way as its scalar counterpart. Nevertheless, the geometry
of the computational domain and the type of boundary conditions for
the velocity field, prescribed both by the physics of the problem as well
as for stability of the numerical simulation, effectively dictate whether
each velocity component can be solved independently or not.

For the simulation of highly non-linear, non-hydrostatic internal
waves propagating over a bathymetry, a vast range of scales is present
within the wave as determined by a wave-based Reynolds number of
(108) (Lien et al., 2014) defined using the water column depth and the
ropagation speed of the internal wave. Resolving such a very broad
ange of scales in its entirety is unrealistic in terms of computational
ost. One path towards enabling the feasibility of these type of sim-
lations is to bypass the resolution of the fine-scale, no-slip-driven,
ave-induced bottom boundary layer (BBL), therefore facilitating the

esolution of areas of interest e.g. regions of shear and convective insta-
ility within the wave (Lien et al., 2012; Boegman and Stastna, 2019).
o this end, traction boundary conditions allow one to circumvent the
esolution of the BBL by either emulating bulk BBL effects via the
mposition of a predefined bottom-stress or by specifying a frictionless
ottom boundary, i.e., a free-slip condition. Consequently, assuming
hat the no-slip-driven fine-scale BBL physics are not of interest (Boeg-
an and Stastna, 2019; Sakai et al., 2020a,b). Any challenges linked

o the under-resolution of the no slip BBL which may compromise the
umerical experiment, are circumvented.

The enforcement of a traction boundary condition on a deformed
oundary, as in the case of an actual oceanic bathymetry, introduces a
oupling between the Cartesian velocity components through the defi-
ition of the stress tensor (Kundu and Cohen, 2008). Accordingly, the
ector Helmholtz equation for the Cartesian components of the velocity
ield has to be solved under the constraint of the associated coupling
f all the velocity components. A series of approaches may then be
ollowed for the exact imposition of a stress-type boundary condition
epending on the numerical method of choice. A point-wise rotation
nd the subsequent coupling of the Cartesian momentum equations on
he deformed boundary was first introduced by Engelman et al. (1982)
nd is extensively used in various applications when a Galerkin-based
umerical method is adopted (Behr, 2004; Ford et al., 2004; Cerquaglia
t al., 2017). For discretizations based on the strong-form of the equa-
ions (Winters et al., 2000), a terrain-following coordinate system is
ommonly utilized. Nevertheless, a simplification of the transformed
quations enabled by a strictly diagonal metric tensor, is necessary
nd is usually achieved by virtue of an orthogonal grid (Winters et al.,
000). While these strategies are designed to impose exactly any type of
tress boundary condition on general geometries, the resulting coupling
etween the Cartesian velocity components leads to an increase of
omputational complexity. On the other hand, a series of assumptions
an be made to simplify the equations and decouple the velocity field
omponents, which give rise to a number of physical inconsistencies
Limache et al., 2007).

A potential solution for the above problems, has been introduced
y Epifanio (2007) for a finite difference discretization, i.e., a strong-
orm-based numerical method, where a decoupled system of equations
or the velocity field results through a series of conditions. More
pecifically, a system of equations for the boundary values of the
elocity field is derived from the stress boundary condition and the
mpermeability of the boundary. A subsequent solve of the discretized
oundary conditions is then performed in each time-step to specify the
oundary values of the velocity field.

To our best understanding, there is a limited discussion in the
iterature in the context of the INS and the implementation of stress-

ree boundary conditions using a weak-form-based numerical method. c

2

n this work, the discretization of the INS equations is performed
sing the hp nodal version of the finite element method namely, the
pectral Element Method (SEM) (Patera, 1984). More specifically, the
mposition of a stress-free boundary condition on a deformed boundary
n two-dimensions is examined for the weak form of the INS equations
nder the Boussinesq approximation which leads to a decoupled vector
elmholtz equation for the velocity field.

First, by following a similar methodology as in Epifanio (2007), a
eries of decoupled boundary conditions are derived for each of the ve-
ocity components for the variational formulation of the viscous terms.
eviating from the approach followed in Epifanio (2007), the resulting
oundary condition is imposed weakly in the form of a natural bound-
ry condition which will effectively modify the variational formulation
f the viscous terms. Therefore, the same computational kernel is used
or all the elliptic equations in combination with the imposition of the
tress-free boundary condition in a physically consistent way. Second, a
eries of assumptions which lead to a decoupled system for the velocity
ield and avoids the intricacies of modifying the variational formulation
s investigated.

The efficacy of these various strategies is demonstrated for the prop-
gation of an internal solitary wave (ISW) of depression over a Gaussian
ump at three different values of wave-based Reynolds number. In par-
icular, the structure and amplitude of the resultant spuriously-induced
ottom tangential traction, i.e., pseudo-traction, and the predictive
ccuracy of a scaling estimate for the latter are explored. Under the
ssumptions of a decoupled velocity field, the pseudo-traction exerted
n the fluid is compared to the wall shear stress for a no-slip boundary.
urthermore, the energy lost due to the pseudo-traction as the ISW
rosses the Gaussian bump is computed and is found to constitute a neg-
igible portion of the viscous dissipation of the flow in the water-column
nterior.

. Equations of motion

The equations of motion of an incompressible fluid under the
oussinesq approximation are typically written as
𝜕𝐮
𝜕𝑡

= −𝐮 ⋅ ∇𝐮 −
𝑔
𝜌0

𝜌′𝐤 − 1
𝜌0

∇𝑝′ + 𝜈∇2𝐮 (1)

𝜕𝜌′

𝜕𝑡
= −𝐮 ⋅ ∇𝜌′ + 𝜅∇2𝝆′ (2)

⋅ 𝐮 = 0 . (3)

estricting the presentation to a two-dimensional flow field, 𝐮 is the
elocity vector field with components (𝑢𝑥, 𝑢𝑧) in the (𝑥, 𝑧) directions re-
pectively, 𝜌0 is the reference density, 𝑔 is the gravitational acceleration
nd 𝐤 is the unit vector in the upward (positive) direction. Additionally,
′ is the density perturbation which originates from the decomposition
Kundu and Cohen, 2008)

= 𝜌0 + 𝜌̄(𝑧) + 𝜌′(𝑥, 𝑧, 𝑡) with 𝜌′ ≪ 𝜌̄ ≪ 𝜌0 . (4)

ere 𝑝′ is the pressure perturbation-deviation from the hydrostatic
ressure when 𝜌′ = 0 and 𝜈, 𝜅 are the molecular diffusivities which
re assumed to be constant. Note that the representation of the viscous
erms, i.e., vector Laplacian, in Eq. (1) is a direct result of incompress-
bility. Alternatively, the viscous terms can be expressed with respect to
he deviatoric stress tensor as will be further described in Section 4.1,
s such a representation is of critical importance in the context of
eak-form-based numerical method, and the imposition of a stress-free
ottom boundary condition, per the scope of this paper.

. Time-discretization

The semi-discrete equations which arise from the velocity projection
cheme (Karniadakis et al., 1991; Subich et al., 2013) are comprised
f three fractional steps; the advective (non-linear) term, the pressure,
hich entails the implicit solve of a Poisson equation, and the viscous

erm are treated separately, in succession. Here, the viscous term
s shown in detail, since it is during this step where any boundary
onditions for the velocity field are imposed.
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3.1. Viscous equation: Laplacian formulation

The evaluation of the velocity field at the next time-step is computed
implicitly via a vector Helmholtz equation. Notice that as written in
Eq. (1), the viscous term of the incompressible Navier–Stokes equations
is usually expressed in the form of a vector Laplacian, under the
assumption of a uniform kinematic viscosity

− 𝛼∇2𝐮 + 𝐮 = 𝐟 . (5)

Here 𝛼 = 𝜈𝛥𝑡∕𝛾0 with 𝛾0 a positive non-zero coefficient which depends
on the time discretization order (Karniadakis et al., 1991), 𝛥𝑡 is the
time-step and 𝐟 the right-hand side. Note that the pressure Poisson
equation (PPE) carries a very similar structure to Eq. (5), though
without the second term on the left-hand-side. Hence, as indicated in
the introduction, any machinery/computational kernel developed for
the PPE, which is more computationally demanding, would be ideally
applied to the solution of Eq. (5).

3.2. Density equation

The advection–diffusion equation for the density perturbation Eq.
(2) follows the same temporal discretization. More specifically, the
splitting scheme is broken down into two successive steps: a) the
explicit advancement of the advective part and b) the implicit solve
of the diffusive term, i.e., a scalar Helmholtz equation.

3.3. Weak form of the viscous equation: Laplacian formulation

In the subsequent sections, an emphasis is placed on the Helmholtz
equation for the viscous term, Eq. (5), since at this step any stress-type
boundary conditions are enforced. As required by the weak formula-
tion, Eq. (5) is multiplied by a vector test function 𝐯 ∈  , with  ⊂
𝐻1(𝛺) an appropriate functional space (Deville et al., 2002)

− 𝛼 ∫𝛺
𝐯 ⋅ (∇ ⋅ (∇𝐮)) 𝑑𝛺 + ∫𝛺

𝐯 ⋅ 𝐮𝑑𝛺 = ∫𝛺
𝐯 ⋅ 𝐟𝑑𝛺 ⇒ (6)

𝛼 ∫𝛺
∇𝐮 ∶ (∇𝐯)𝑇 𝑑𝛺 + ∫𝛺

𝐯 ⋅ 𝐮𝑑𝛺 = ∫𝛺
𝐯 ⋅ 𝐟𝑑𝛺 + 𝛼 ∮𝜕𝛺

(𝐧 ⋅ ∇𝐮) ⋅ 𝐯𝑑𝑆 .

(7)

After performing an integration by parts, the boundary integral term
which emerges in Eq. (7) corresponds to what is known in the finite
element literature (Strang and Fix, 1973) as the natural boundary con-
dition. Any Neumann or Robin type boundary conditions are enforced
weakly via this boundary integral term. Dirichlet boundary conditions
can be imposed strongly by lifting the known solution (Karniadakis and
Sherwin, 2013). Subtleties in the prescription of this boundary integral
term are critical in determining whether the free-slip condition is truly
satisfied, since the integrand does not always correspond to the actual
tangential stress. As such, in the next section, this boundary integral
term is described in terms of its physical underpinnings along with its
connection to the enforcement of the free-slip boundary condition.

4. The free-slip boundary condition

The correct specification of boundary shear stress requires that
one revisits the definition of the viscous force. Following the parlance
of Gresho and Sani (2000), the viscous force per unit area on any given
boundary can be expressed as a function of the viscous component of
the stress tensor 𝝉 and the normal vector to the boundary 𝐧 as

𝐅 = 𝐧 ⋅ 𝝉 . (8)

Note that, 𝝉 is the deviatoric stress tensor (Kundu and Cohen, 2008)

𝝉 = 2𝜇𝐒 , (9)

where 𝐒 = 1
2
(

∇𝐮 + (∇𝐮)𝑇
)

is the strain rate tensor and 𝜇 = 𝜌0𝜈,
is the dynamic viscosity. The static component of the stress related
3

Fig. 1. A schematic of the viscous force per unit area exerted on a fluid at a
deformed boundary. For a free-slip boundary condition, the tangential component of the
viscous force 𝐹𝑡 has to be zero. The viscous stress tensor 𝝉 is responsible for coupling
the velocity components. The vectors 𝒊, 𝒌 are the associated horizontal and vertical
nit vectors and 𝒕, 𝒏 are the tangential and normal unit vectors on the boundary,
espectively.

o the pressure is omitted, since the calculation of the pressure is
ecoupled from the viscous component of the incompressible Navier–
tokes, following the time-splitting scheme described in Section 3.
lthough, 𝐅 is formally a force per unit area, i.e., a stress, for the sake
f compactness and further adhering to the terminology of Gresho and
ani (2000), we will refer to it as a ‘‘force’’, hereafter.

The viscous force on a boundary can be decomposed accordingly
nto its normal 𝐹𝑛 = 𝐧 ⋅ 𝐅 and tangential 𝐹𝑡 = 𝐭 ⋅ 𝐅 components, as
chematically shown in Fig. 1. A free-slip boundary condition requires
hat 𝐹𝑡 = 0. In particular, for an undeformed rectangular domain, where
he 𝐭 and 𝐧 vectors are parallel with the Cartesian axes, and for an
mpermeable boundary, the free-slip boundary condition is effectively
mposed by simply requiring that (𝐧 ⋅ ∇𝐮)𝑗 = 𝑛𝑖

𝜕𝑢𝑗
𝜕𝑥𝑖

= 0. Therefore,
in this particular configuration, by using the Laplacian formulation
(Eq. (5)) for the viscous terms, the free-slip boundary condition can be
conveniently and exactly enforced through the boundary integral term
of the variational formulation in Eq. (7).

Nevertheless, for a deformed boundary, where the Cartesian veloc-
ity components do not correspond to those of the tangential and normal
velocity, the free-slip boundary condition cannot be enforced as simply
as in the rectangular domain case. One can easily show that 𝐧 ⋅∇𝐮 = 0
is not a sufficient condition for 𝐹𝑡 = 0 because

𝐹𝑡 = 𝜇
(

����⁓ 0
𝐧 ⋅ ∇𝐮 ⋅ 𝐭 + 𝐧 ⋅ (∇𝐮)𝑇 ⋅ 𝐭

)

≠ 0 . (10)

Consequently, if one adheres to the Laplacian formulation (Eq. (5)), the
esulting natural boundary integral term in the variational formulation
Eq. (7)), used for the weak-enforcement of boundary conditions, does
ot necessarily correspond to the physical force (Gresho and Sani,
000) as the second term in Eq. (10) may actually still be non-zero.
ow, irrespective of the formulation of the boundary condition for

he Laplacian formulation, a spurious tangential force 𝐹𝑝, the pseudo-
raction, will develop at the free-slip boundary. More specifically, this
seudo-traction, for an impermeable boundary, is directly associated
ith the boundary’s curvature namely (Kelliher, 2006)

𝑝 ≈ 𝜇
(

𝐧 ⋅ (∇𝐮)𝑇 ⋅ 𝐭
)

≈ 𝜇𝜅 (𝐭 ⋅ 𝐮) , (11)

where 𝜅 = 𝐭 ⋅ 𝜕𝐧∕𝜕𝑠 is the curvature and 𝑠, the arc length parameteri-
ation of the boundary respectively. For a particular formulation of the
ree-slip condition (see Table 1), the pseudo-traction 𝐹𝑝 may deviate
rom 𝜇

(

𝐧 ⋅ (∇𝐮)𝑇 ⋅ 𝐭
)

since the first term of Eq. (10) may not always be
et exactly to zero for all of the velocity components. Therefore, the
seudo-traction 𝐹𝑝 scales with the dynamic viscosity 𝜇, the tangential
elocity on the boundary 𝐭 ⋅𝐮 and its curvature 𝜅. Note that as expected,
or a rectilinear boundary where 𝜅 = 0, when using the Laplacian
ormulation the free-slip boundary condition can be imposed exactly
s noted in Limache et al. (2008). In contrast, when the boundary is
eformed, the homogeneous Neumann boundary conditions associated
ith the Laplacian formulation can be interpreted as a specific type of
avier boundary condition (Kelliher, 2006).
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Table 1
Summary of the velocity boundary conditions for the different strategies of enforcing a free-slip boundary. For the IP case,
the boundary conditions for each velocity component are of the homogeneous Neumann type with a subsequent velocity
correction shown in Eq. (21).
Index Type of boundary condition Boundary condition

IF Implicit formulation 𝐧 ⋅∇𝑢𝑥 = −

(

𝑛𝑥

(

𝜕𝜁
𝜕𝑥

)2

+ 𝑛𝑧
𝜕𝜁
𝜕𝑥

+ 3𝑛𝑥

)

𝜕𝑢𝑥
𝜕𝑥

−
𝜕𝑢𝑥
𝜕𝑧

𝑛𝑥
𝜕𝜁
𝜕𝑥

− 𝑢𝑥
𝜕2𝜁
𝜕𝑥2

(

𝑛𝑥
𝜕𝜁
𝜕𝑥

+ 𝑛𝑧

)

𝑢𝑧 = 𝑢𝑥
𝜕𝜁
𝜕𝑥

SA Small angle approximation 𝐧 ⋅ ∇𝑢𝑥 = 0

𝑢𝑧 = 𝑢𝑥
𝜕𝜁
𝜕𝑥

IP Inviscid/pseudo-traction 𝐧 ⋅ ∇𝐮 = 0
s
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4.1. Stress tensor formulation of the viscous equations

In light of the previous discussion, the use of a homogeneous Neu-
mann boundary condition, as imposed through the boundary integral
term of Eq. (7), in the context of prescribing a free-slip condition
effectively ignores some important physics and produces a spurious
viscous force at the boundary. The goal of this section is to present
a variational formulation of the viscous terms in which the boundary
integral term will correspond to the actual viscous force. Therefore, a
traction boundary condition can be consistently enforced, introducing
however some practical considerations that need to be taken into
account, as discussed below.

4.1.1. The consistent natural boundary conditions
Formally, the viscous term of the INS (Eq. (1)) can be written in the

ore general stress-tensor-based representation
1
𝜌0

∇ ⋅ 𝝉 = 1
𝜌0

∇ ⋅ (2𝜇𝐒) = 1
𝜌0

∇ ⋅
(

𝜇
(

∇𝐮 + (∇𝐮)𝑇
))

. (12)

Notice that for an incompressible fluid the following vector identity
holds

∇ ⋅ (∇𝐮)𝑇 = ∇(∇ ⋅ 𝐮) = 0 . (13)

Therefore, for a constant viscosity 𝜇 and for a Cartesian coordinate
system, the stress-tensor-based representation of the viscous term is
identical to the commonly used vector Laplacian formulation of Eq. (5).

Now, the goal is to rewrite the natural boundary condition of the
weak form of the viscous equation in such a way that the actual viscous
force may be imposed weakly through the corresponding boundary
integral term. Essential to this regard is that the viscous term in Eq. (5)
be recast as a function of the stress tensor 𝝉, shown above in Eq. (12)
which leads to a modified weak form representation

−𝛽 ∫𝛺
𝐯 ⋅ (∇ ⋅ 𝝉) 𝑑𝛺 + ∫𝛺

𝐯 ⋅ 𝐮𝑑𝛺 = ∫𝛺
𝐯 ⋅ 𝐟𝑑𝛺 . (14)

Applying integration by parts, one obtains

𝛽 ∫𝛺
𝝉 ∶ (∇𝐯)𝑇 𝑑𝛺 + ∫𝛺

𝐯 ⋅ 𝐮𝑑𝛺 = ∫𝛺
𝐯 ⋅ 𝐟𝑑𝛺 + 𝛽 ∮𝜕𝛺

(𝐧 ⋅ 𝝉) ⋅ 𝐯𝑑𝑆

= ∫𝛺
𝐯 ⋅ 𝐟𝑑𝛺 + 𝛽 ∮𝜕𝛺

𝐅 ⋅ 𝐯𝑑𝑆 ,
(15)

where 𝛽 = 𝛥𝑡∕(𝜌0𝛾0) = 𝛼∕𝜇 and 𝐟 = ̂̂𝐮∕𝛾0.
To allow a closer comparison of this modified weak form with

Eq. (7), one follows the methodology of Limache et al. (2007), and
substitutes Eq. (9) into Eq. (15). Eq. (14) is equivalently written as

𝛼 ∫𝛺
∇𝐮 ∶ (∇𝐯)𝑇 𝑑𝛺 + ∫𝛺

𝐯 ⋅ 𝐮𝑑𝛺 + 𝛼 ∮𝜕𝛺
𝐧 ⋅ (∇𝐮)𝑇 ⋅ 𝐯𝑑𝑆

= ∫𝛺
𝐯 ⋅ 𝐟𝑑𝛺 + 𝛽 ∮𝜕𝛺

𝐅 ⋅ 𝐯𝑑𝑆 ,
(16)

where it is now apparent that the boundary integral term of the left
and side causes a coupling across the equations for each velocity
omponent (Limache et al., 2007). An immediate consequence of this
ntegral term is that the vector Helmholtz equation now has to be
4

olved at once for the whole velocity field. As a result, the numerical
mplementation of the viscous solve becomes more elaborate since
dditional computational complexity and memory demands need to
e considered. Most importantly, the computational tool used for the
umerical calculation of the scalar quantities, i.e., the density per-
urbation 𝜌′ and the temporal mean of the pressure perturbation 𝑝,
annot be directly adapted for the computation of the coupled velocity
omponents.

Now, note that although boundary integral terms are commonly
sed for imposing weakly a boundary condition, in this case, the
ntegrand of the boundary term in the left hand side of Eq. (16) involves

unknown quantities and cannot be prescribed a priori. Nonetheless,
the boundary integral term in the right hand side is now the natural
boundary condition, i.e., the physical viscous force exerted on the
fluid and thus the physically consistent boundary condition of the
Navier–Stokes equations (Gresho and Sani, 2000).

4.2. Decoupling the velocity components in the Laplacian formulation

Now that the consistent variational formulation has been defined,
with its associated computational complexities, i.e., coupling of the
Cartesian velocity components, it will serve as a platform for the
development of a series of, either exact or approximate, approaches
for the enforcement of the free-slip boundary condition in the frame-
work of the Laplacian formulation of the viscous terms (Eq. (7)) which
are now discussed. First, the consistent non-homogeneous Neumann
boundary condition which satisfies the impermeability of the boundary,
and guarantees a traction-free boundary, will be presented when the
viscous terms are expressed in the form of a vector Laplacian (Eq. (7)).
However, the resulting exact imposition of the free-slip boundary con-
dition, as it will be subsequently described, leads to a more complex
variational formulation which poses various questions on its numerical
stability from an implementation standpoint. Two different assump-
tions will be then presented which, although do not guarantee an exact
free-slip boundary, simplify the resulting variational formulations. Note
that the common objective of these approaches for imposing the free-
slip condition is to allow the independent computation of each velocity
component by circumventing the coupling discussed in Section 4.1.1 .

.2.1. Implicit formulation
The implicit formulation is constructed following the methodology

f Robertson et al. (2004), for an impermeable and twice differentiable
ottom boundary. The derivation of the boundary conditions for the
wo velocity components is discussed in more detail in Appendix A.

non-homogeneous Neumann boundary condition is derived for the
orizontal velocity component 𝑢𝑥 by rewriting the free-slip boundary
ondition 𝐹𝑡 = 0 as

𝐧 ⋅ ∇𝑢𝑥 = −

(

𝑛𝑥

(

𝜕𝜁
𝜕𝑥

)2
+ 𝑛𝑧

𝜕𝜁
𝜕𝑥

+ 3𝑛𝑥

)

𝜕𝑢𝑥
𝜕𝑥

−
𝜕𝑢𝑥
𝜕𝑧

𝑛𝑥
𝜕𝜁
𝜕𝑥

− 𝑢𝑥
𝜕2𝜁

(

𝑛𝑥
𝜕𝜁

+ 𝑛𝑧

)

,

(17)
𝜕𝑥2 𝜕𝑥
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where 𝐧 = [𝑛𝑥, 𝑛𝑧] are the components of the boundary normal vector
and 𝜕𝜁∕𝜕𝑥 is the boundary slope (Robertson et al., 2004). Subsequently,
n the framework of the weak form of the Laplacian formulation of the
iscous terms in Eq. (7), once the horizontal velocity component 𝑢𝑥

is computed with the above boundary condition, the vertical velocity
component 𝑢𝑧 can be independently computed by enforcing the imper-
meability of the boundary (Eq. (18)) as a non-homogeneous Dirichlet
boundary condition

𝐧 ⋅ 𝐮 = 0 ⇒ 𝑢𝑧 = 𝑢𝑥
𝜕𝜁
𝜕𝑥

. (18)

Nonetheless, the use of the boundary condition of Eq. (17) will augment
the left hand side of the weak form of the viscous operator in the
form of additional boundary integral terms which may compromise the
stability of the numerical method since it may constitute a ‘‘variational
crime’’ (Brenner and Scott, 2007). The proof of stability of this more
complex variational formulation is out of the scope of this study.
Furthermore, from a numerical standpoint, the inclusion of terms as-
sociated with products of first or second derivatives of the bathymetry
function, 𝜁 (𝑥), and quadratic expressions thereof, may contribute to
aliasing effects even when higher-order polynomial approximations
are used in the spectral-element discretization of the governing equa-
tions (Kirby and Karniadakis, 2003) along with what is apparently
sufficient grid resolution of any bathymetric features at hand. This
aliasing effect is particularly true in the benchmark case considered in
Section 5.1 where 𝜁 (𝑥) is an exact Gaussian, since the representation
of the bathymetry depends solely on the grid resolution. It may also
be present when any in-situ sampled bathymetry is used based on
lower-order, cubic-spline interpolations (Rivera-Rosario et al., 2020).
Therefore in the subsequent sections, an emphasis will be given on
enforcing approximately the free-slip boundary condition in a simpli-
fied variational setting, while ensuring a decoupling of the velocity
components.

4.2.2. Small boundary slope approximation
The complexity in the variational formulation that is introduced

via the boundary condition of Eq. (17), in the form of additional
boundary integral terms, can be mitigated under the assumption of
a sufficiently small boundary slope, i.e., a weak departure from the
rectilinear domain, where 𝜕𝜁∕𝜕𝑥 ≈ 0. Thus, Eq. (17) may be written
as

𝐧 ⋅ ∇𝑢𝑥 ≈ 0 . (19)

Note that the impermeability of the bottom boundary needs to be
satisfied exactly since it is associated with the divergence of the velocity
field within the closed computational domain

∫𝛺
∇ ⋅ 𝐮𝑑𝛺 = ∮𝜕𝛺

𝐧 ⋅ 𝐮𝑑𝑆 = 0 . (20)

In the case where Eq. (20) is not satisfied up to machine precision, a
spurious non-zero divergence may be formed which can compromise
the stability of the numerical simulation. Therefore, the boundary
condition for the vertical velocity component 𝑢𝑧 is the one in Eq. (18).

4.2.3. The inviscid and pseudo-traction assumptions
Starting from the consistent viscous formulation of Eq. (16) two

assumptions are made which lead to a decoupling of the velocity
components. First, we assume that the viscous force exerted on the
fluid at the boundary is 𝐅 = 𝟎, i.e., what is regarded as an ‘‘inviscid’’
boundary (Limache et al., 2007). Second, the boundary integral term
on the left hand side of Eq. (16) associated with the coupling of the
velocity components 𝐧 ⋅ (∇𝐮)𝑇 and consequently the pseudo-traction
𝐹𝑝 (Eq. (11)) is neglected. Therefore, the component of the strain rate
responsible for the pseudo-traction is assumed to be zero. Thus, taking
the inviscid and pseudo-traction assumptions into consideration the
equation to be solved for the velocity field is identically the same

as the Laplacian formulation of Eq. (7) with homogeneous Neumann o

5

boundary conditions, i.e., 𝐧 ⋅∇𝐮 = 0 which may then also be employed
in this case.

Once the velocity field is computed, a velocity correction takes place
to enforce the impermeability of the boundary by projecting out the
normal component of the velocity field

𝐮̃ = 𝐮 − (𝐧 ⋅ 𝐮)𝐧 , (21)

where 𝐮̃ is tangent to the bottom boundary.

5. Results

5.1. Benchmark problem configuration

The robustness of the different approaches in the enforcement of the
free-slip boundary condition discussed so far is now examined through
simulating the propagation of an internal solitary wave (ISW) over
a Gaussian hill in a lab-scale flume with purely free-slip boundaries.
In terms of the scope of the work under consideration, the particular
benchmark is attractive as the ISW employed (see below) is an exact
solution of the incompressible stratified Euler equations under the
Boussinesq approximation (Dunphy et al., 2011). As such, it serves as
a non-trivially demanding test for the accuracy and robustness of an
incompressible flow solver when run in inviscid mode: in a uniform
depth channel, the ISW should propagate at a constant, theoretically
prescribed, speed while maintaining its initial waveform and having
its total energy (sum of kinetic and available potential energy) re-
main unchanged. When viscous/diffusive terms are incorporated in the
governing equation, in a uniform-depth free-slip channel, the ISW’s
propagation speed, waveform and energy content will undergo a weak
adjustment due to viscous and diffusive effects in the wave interior,
as determined by the values of the wave-scale Reynolds numbers (see
Eq. (23)) and Schmidt numbers, 𝑆𝑐 = 𝜈∕𝜅. Neglecting the above
viscous/diffusive effects, if a gentle, i.e., small slope, bathymetric fea-
ture, such as the Gaussian bump considered here, is now inserted
the numerically simulated wave should propagate over it without any
significant structural changes and should recover its original waveform
a short downstream distance from the bump. Nonetheless, per Section 4
nd when an approximate free-slip boundary condition is used, the
inite curvature of the bump will produce a pseudo-traction which will
erve as an additional form of ISW energy loss focused at the bottom
oundary.

When a higher order spatial discretization is used, as is the case
ere, a more accurate quantification of the pseudo-traction and its
mpact as an energy sink is possible. On one hand, the numerical dissi-
ation at the smallest resolved scales, in the wave interior and bottom
oundary, is minimal. On the other, so is the numerical dispersion
hich will not spuriously interfere with any subtle physical dispersion
ffects of the ISW as it propagates over the bump. Furthermore, through
he particular high order discretization and the isoparametric approx-
mation of the bottom boundary via curvilinear elements (Kopriva,
009), any spurious separation documented for analogous problems
hen linearly mapped elements are used (Steinmoeller et al., 2016),

s not observed. Hence, any contributions to the pseudo-traction will
riginate from assumptions in the formulation of the approximate
ree-slip boundary condition.

The initial conditions of the ISW are generated via the solution of
he Dubreil–Jacotin–Long (DJL) equation (Dunphy et al., 2011) for a
ontinuous two-layer stratification given by

𝜌
𝜌0

= 1 −
𝛥𝜌
2𝜌0

tanh
(

𝑧 + ℎ1
𝛿

)

, (22)

where 𝜌0 = 1000 kgm−3 is the reference density, 𝛥𝜌 = 40 kgm−3

s the difference between the lower and upper densities, ℎ1 = 3 cm
s the upper layer depth and 𝛿 = 0.5 cm is the interface thickness.
he ISW is generated for an initial available potential energy (APE)
f 𝐴𝑃𝐸 = 5×10−5 m4s−2 with an initial wavelength 𝐿 ≈ 0.69 m and a
𝑤
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Fig. 2. The domain geometry used for the simulation of the propagation of an internal solitary wave (ISW) in a continuous two-layer stratification over a Gaussian bump. In
ach element, 16 × 16 Gauss–Lobatto–Legendre grid points are used. The solid coloured contour lines are the full density contours equispaced from the reference density. The
ightward-propagating ISW originates at 𝑥∕𝐿𝑤 = 1.5, as shown. The simulation stops once the wave trough has arrived at 𝑥∕𝐿𝑤 = 4 where it has nearly recovered its original

waveform, after any transient structural adjustments during the propagation of the wave over the localized bump.
propagation speed 𝑐 ≈ 0.114 ms−1. The domain dimensions are, 𝐻 = 15
cm the domain height and 𝐿 = 7×𝐿𝑤 = 4.83 m the domain length. The
centre of the Gaussian hill is placed in the middle of the computational
domain with a height of ℎ𝑔 = 0.03 ×𝐻 and width 𝐿𝑔 = 3 × 𝐿𝑤∕4. The
problem configuration is shown in Fig. 2. The simulation is stopped
when the ISW arrives at a along-bed position, which is symmetric to the
wave’s starting position with respect to the centre of Gaussian bump.

The benchmark ISW is intentionally chosen to be moderate in am-
plitude, as measured by the ratio of wave-induced maximum isopycnal
displacement to water column depth, which is equal to approximately
24%. Such a moderate-amplitude ISW will operate well below the
convective or shear instability limits (Lamb, 2003) both in uniform
depth water but also while propagating over the Gaussian bump. Such
instabilities would drive elevated dissipation in the wave interior which
would complicate any comparison thereof with the energy lost purely
due to pseudo-traction (see Section 5.5). Finally, the choice of ampli-
tude of Gaussian bump elevation is motivated by similar arguments,
as a steeper bump would enhance the likelihood of the above flow
instabilities. The maximum slope of the bump at hand is 3%, which
is less than the maximum bathymetric slope found in recent obser-
vational and modelling studies of ISWs shoaling in the South China
Sea (Rivera-Rosario et al., 2020; Lien et al., 2012; Lamb and Warn
Varnas, 2015).

In regards to spatial discretization, the nodal version of the Spectral
Element Method (SEM) (Patera, 1984) is used with 𝑚𝑥 = 20 and 𝑚𝑧 = 13
of quadrilateral elements in the 𝑥 and 𝑧 directions respectively, for a
polynomial order per element per dimension 𝑝 = 15 which corresponds
to 𝑁𝑥×𝑁𝑧 = 301×196 grid points. The high polynomial order is chosen
to minimize any numerical dissipation and dispersion, as discussed
above. A grid stretching technique applied to element height is used
with 𝛥𝑧𝑖−1 = 0.75𝛥𝑧𝑖 where 𝛥𝑧𝑖 is the height of the ith element.

A qualitative and quantitative assessment of the exact and approxi-
mate implementations of the free-slip boundary condition is performed
for three different values of wave-based Reynolds number, 𝑅𝑒

𝑅𝑒 = 𝑐𝐻∕𝜈 . (23)

Specifically, values of 𝑅𝑒 = 2.5 × 104, 105 and 4 × 105 are chosen, with
the middle value representative of an ISW propagating in a typical
laboratory flume (Carr et al., 2008). Each test case is denoted as
𝑅𝑒𝑋𝑋𝑋𝑌 𝑌 : XXX can be 025, 100 or 400, depending on the value of
𝑅𝑒, whereas YY can be SA and IP which correspond to the small angle
approximation and inviscid/pseudo-traction approach, respectively, as
elaborated in Sections 4.2.2 and 4.2.3 . An additional test case, with
a no-slip bottom boundary condition is also considered, using the
shorthand notation NS, at each 𝑅𝑒 to compare free-slip pseudo-traction
to no-slip bottom shear stresses. For all the test-cases, the resolution
along with the time-step was kept constant and dictated by the no-
slip run of the highest 𝑅𝑒 number (𝑅𝑒 = 4 × 105) to allow comparison
6

across different implementations and 𝑅𝑒 numbers. The time-step 𝑑𝑡 =
6.6 × 10−3 s, is chosen such that the initial 𝐶𝐹𝐿 number in the vertical
direction is equal to 0.33.

5.2. Tangential bottom shear stress structure

Fig. 4 shows the spatial structure of the tangential force (traction),
𝐹𝑡, as a function of along-bed position and time over the time interval
during which ISW propagates over the Gaussian bump. The contour
values of 𝐹𝑡 are scaled by the free-stream dynamic pressure (a measure
of form drag) computed based on the maximum wave-induced hori-
zontal velocity (at the wave trough). Fig. 4 is restricted to results for
𝑅𝑒 = 2.5×104: for a particular boundary condition implementation, the
structure of 𝐹𝑡 is found to be independent of 𝑅𝑒, whereas its magnitude
scales linearly with 1∕𝑅𝑒 as it is directly proportional to the dynamic
viscosity of the fluid.

For the no-slip case, the tangential traction structure assumes values
which are in direct response to bottom boundary layer formation under
the wave and the resulting flow separation due to the ISW-induced
adverse pressure gradient in the rear half of the wave (Boegman and
Stastna, 2019). This particular structure of the tangential traction has
been established prior to the arrival of the wave at the Gaussian bump
and subsequently tracks the propagating wave, remaining relatively un-
changed, over the Gaussian bump. Because of the moderate amplitude
of the wave and steepness of the bathymetric bump, no phenomena
of enhanced bottom boundary layer separation are observed, such as
those reported by Harnanan et al. (2015) due to the adverse pressure
gradient associated with the bathymetric bump itself. Finally, for the
lowest 𝑅𝑒 considered, the magnitude of the local tangential traction
can be as high as 3% of the bump-induced form drag.

In contrast, the structure of any non-zero tangential traction for
the case of an approximate free-slip boundary is concentrated within a
fixed region along the bottom boundary, centred around the Gaussian
hill, suggesting that the geometry of the bump and, in particular, its
curvature is the primary driver (Fig. 3). As such, the peak positive
tangential traction develops on the top of the hill. For the lower 𝑅𝑒
considered, this peak tangential traction is no greater than 2 × 10−5
of the bump-induced form drag, a distinctly small value. The negative
contour values that the tangential traction assumes for the two ap-
proximations are attributed to the overall change of sign of curvature,
i.e., convex at the beginning/end of the Gaussian bump (Fig. 3). As
noted in Section 4.1.1, any results of the implicit formulation are not
shown due to the formation of spurious high-amplitude grid-scale os-
cillations in the tangential traction which may be attributed to aliasing
errors. These errors result from the high order derivative terms of the
bathymetry function, 𝜁 (𝑥) (Eq. (17)), chosen to be an exact Gaussian
in our case, as well as inconsistencies potentially introduced due to
the modification of the variational formulation through the boundary
integral terms associated with the updated natural boundary condition
for the horizontal velocity component.
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Fig. 3. Normalized bathymetric profile 𝜁∗(𝑥) and curvature 𝜅∗(𝑥) as a function of
long-bed position.

.3. Pseudo-traction as a function of curvature

The prediction of the pseudo-traction, per the scaling of Eq. (11),
s compared to the corresponding magnitude of the tangential free-
lip traction, computed from the simulation results, in Fig. 5(a)–(c).
he comparison is restricted to the trough of the propagating ISW
here the tangential wave-induced velocity is the largest, noting that
ery similar trends occur along the entire Gaussian bump. For all 𝑅𝑒
 b

7

examined, the magnitude of the simulated tangential traction appears
to scale linearly with the boundary curvature 𝜅, with a slope very
close to the theoretically predicted 𝜇 (𝐭 ⋅ 𝐮). Consequently, this a priori
estimate of the pseudo-traction by virtue of its scaling, can be a useful
assessment tool of the significance of the pseudo-traction based on the
flow’s characteristic velocity and boundary’s curvature.

5.4. Free-slip to no-slip traction ratio

Fig. 4, and its higher 𝑅𝑒 counterparts (not shown here), indi-
cate that the tangential traction computed from the different free-
slip-implementation simulations is at least three orders of magnitude
smaller than the corresponding bottom tangential stress for the no-slip
case. A simple predictive scaling for the ratio of pseudo-traction 𝐹𝑝 to
no-slip traction 𝐹𝑤, leveraging the scaling of Eq. (11), as a function of
either bump or ISW-based non-dimensional parameters is

𝐹𝑝

𝐹𝑤
=
√

𝐻
𝑅

1
√

𝑅𝑒
. (24)

Details regarding the derivation are provided in Appendix B. Eq. (24)
effectively indicates that the relative effect of pseudo-traction is en-
hanced when the radius of curvature of a bathymetric feature 𝑅 is
onsiderably smaller than the water column depth 𝐻 . The practical
mplications of this dependence, in the context of bathymetry resolu-
ion, are further discussed in Section 6. The predicted 𝑅𝑒−1∕2 scaling
or 𝐹𝑝∕𝐹𝑤 is verified for our benchmark problem simulations in Fig. 6,
hown on a log–log plot since the ratio 𝐹𝑝∕𝐹𝑤 follows the expected
ower-law behaviour (see Eq. (24)). Consistent with the scaling analysis
bove, the pseudo-traction and the wall shear stress are computed at
he trough of the wave at the highest point of curvature of the bottom

oundary, i.e., top of the Gaussian bump. Oceanically-relevant values
Fig. 4. Time evolution of the normalized tangential traction with the dynamic pressure at the trough of the wave 𝐹𝑡∕(𝜌0𝑢2∕2) at the bottom boundary as the ISW goes over the
Gaussian hill for 𝑅𝑒 = 2.5 × 104. The vertical dashed line on graphs (b & c) corresponds to the location of highest curvature.
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Fig. 5. (a–c) Comparison of the tangential traction 𝐹𝑡 (data points) to the theoretical estimate of the pseudo-traction 𝐹𝑝 (solid line) as a function of bottom boundary’s curvature
with respect to the three 𝑅𝑒 examined. Results are shown for locations with a curvature larger than the mean curvature of the bottom boundary. The reported tangential traction
corresponds to the trough of the wave as it propagates over the Gaussian hill. The slight mismatch between the IP and SA values on panel (b) is a result of sampling the data
points on different locations, to mitigate any interpolation error introduced during the computation of the ISW-induced velocity at the wave trough which does not always coincide
with a grid point.
of 𝑅𝑒 can be two to three orders of magnitude larger than the ones
considered here. Adhering to the potentially limiting assumptions of
laminar flow and constant viscosity near the bed, pseudo-traction may
be regarded practically negligible at such 𝑅𝑒. Section 6 addresses one
cenario where such a claim might need to be reconsidered.

.5. Energy lost due to pseudo-traction

So far, we have established an understanding of the spatial structure
f the free-slip-induced pseudo-traction and its dependence on bathy-
etric curvature, with a focus on the ISW trough which carries the
aximum horizontal wave-induced velocity. We now turn to investi-

ating the associated cumulative energy losses along the entire wave
ootprint and over the full time required for the ISW to propagate over
he Gaussian bump. In particular, a control-volume (CV) analysis is
sed. The boundaries of the CV coincide with those of the computa-
ional domain. At any instance during which the ISW propagates over
he bottom Gaussian bump, the rate of change of kinetic energy in the
ixed CV can be calculated as (Rowe et al., 2020)
𝑑
𝑑𝑡

= −∮𝜕𝛺
{𝐮𝐸 + 𝑝′𝐮 − 2𝜈𝐮 ⋅ 𝐒} ⋅ 𝐧𝑑𝑆 + ∫𝛺

(

𝜌′𝑔𝑤 + 2𝜈𝐒 ∶ 𝐒
)

𝑑𝛺 , (25)

here,  and 𝐸 = 𝜌0‖𝐮‖2∕2 are the total kinetic energy and kinetic en-
rgy per unit volume, respectively, 𝐒 is the strain-rate tensor and 𝐧 the
utward wall normal vector. Notice that for impermeable boundaries
⋅ 𝐮 = 0, the boundary integral of Eq. (25) is equal to

𝜈 ∮𝜕𝛺
𝐮 ⋅ 𝐒 ⋅ 𝐧𝑑𝑆 , (26)

hich corresponds to the kinetic energy loss due to viscous stresses
n the boundaries of the control-volume/computational-domain. Note,
8

Fig. 6. Log–log plot of the ratio of the tangential traction 𝐹𝑡 when an approximated
free-slip boundary is enforced over the tangential traction for a no-slip boundary
condition as a function of 𝑅𝑒 number. The solid line corresponds to a slope of −1∕2.

that all the boundaries of the computational domain except the bottom
one (Fig. 2) are non-deformed impermeable boundaries where the free-
slip boundary condition is exactly enforced. Thus, any loss of kinetic
energy due to physical, or spurious, viscous stresses will originate from
the bottom boundary. In the case of a no-slip boundary, this integral
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Fig. 7. Time-integrated ratio, 𝑟, of the energy lost due to viscous stresses over
iscous dissipation, as a function of 𝑅𝑒. Time-integration has been performed over
he time-interval during which the ISW propagates over the Gaussian bump.

erm is equal to zero since the velocity field assumes a zero value on
he no-slip boundary. If, instead, an approximate free-slip boundary
ondition is used, pseudo-traction is expected to drive the above loss
f kinetic energy. In that case, for an impermeable bottom boundary,
ith a tangential-only velocity component, the surface integral term

Eq. (26)), in combination with Eq. (10) becomes

𝜈 ∮𝜕𝛺
𝐮 ⋅ 𝐒 ⋅ 𝐧𝑑𝑆 = 2𝜈 ∮𝜕𝛺

𝑢𝐭 ⋅ 𝐒 ⋅ 𝐧𝑑𝑆 = 1
𝜌0 ∮𝜕𝛺

𝑢𝐹𝑡𝑑𝑆 . (27)

One may now consider the relative importance of the time-
integrated energy lost to pseudo-traction, due to the approximate
enforcement of the free-slip condition, with respect to that lost due
to viscous dissipation in the domain interior. In this regard, one may
ignore the buoyancy flux term, i.e., the first of the two terms in the
volume integral of the right-hand-side of Eq. (25). The time-integrated
ratio of energy lost due to pseudo-traction and viscous dissipation may
now be written as

𝑟 =
∫𝑡
(

2𝜈 ∮𝜕𝛺 𝐮 ⋅ 𝐒 ⋅ 𝐧𝑑𝑆
)

𝑑𝑡

∫𝑡
(

2𝜈 ∫𝛺 (𝐒 ∶ 𝐒) 𝑑𝛺
)

𝑑𝑡
. (28)

Fig. 7 shows the dependence of 𝑟 on 𝑅𝑒 for the three Reynolds num-
ers examined, where time-integration is applied over the time interval
equired for the ISW to propagate over the bottom Gaussian bump.
ote the particularly small values, O(10−4), 𝑟 assumes irrespective of

𝑅𝑒. Moreover, the ratio value 𝑟 appears to asymptotically assume a
onstant value as 𝑅𝑒 increases and approaches its oceanic counterpart.
hereas the analysis here considers two-dimensional laminar flow in

he wave interior, the presence of turbulence and elevated viscous
issipation in the wave-interior, originating from shear or convective
nstabilities (Lien et al., 2012, 2014; Moum et al., 2003), would reduce

the value of 𝑟 even further, at least in the context of a single topographic
feature as considered here.

6. Discussion

The relative magnitude of the pseudo-traction on a deformed do-
main with respect to the equivalent bed stress of a no-slip bottom
boundary, under the constraint of assuming two-dimensional laminar
flow at the bottom boundary, has been examined for the benchmark
of an ISW propagating over a Gaussian bump at three different 𝑅𝑒
representative of the laboratory scale or somewhat larger in value

(Fig. 6). The relative magnitude of the pseudo-traction decreases with

9

increasing 𝑅𝑒 with a 1∕2 power law as predicted by the scaling analysis
of Section 5.4. Consequently, at oceanically relevant 𝑅𝑒, of 𝑂(108−109),
the relative strength of the pseudo-traction is expected to be reduced
by as much as a factor of 100 as compared to what is shown in Fig. 6.
However, in practice, near-bed flows at such high 𝑅𝑒 will be inevitably
three-dimensional and turbulent (Sakai et al., 2020a; Zulberti et al.,
2020). As discussed in the introduction, a simulation of such complex
three-dimensional flows is practically not feasible due to the associated
high computational cost inextricably linked to the resolution required
to resolve the broad range of scales, even in a partial manner. In such a
case, a commonly used alternative is the use of an eddy viscosity which
is often localized near the bottom (Lamb and Warn Varnas, 2015) or
is set equal to a constant background value at the boundary when it
changes dynamically (Klymak et al., 2010; Klymak and Legg, 2010). A
commonly used value of the eddy viscosity can be up to 4 to 6 orders
of magnitude larger than its molecular counterpart (Lamb and Warn
Varnas, 2015; Özgökmen et al., 2004). As elaborated by Özgökmen
et al. (2004), such high values will apply to both horizontal and vertical
components of eddy viscosity for near-boundary flows, unlike what
is the case in stratified mid-water where the vertical component can
be much weaker. Therefore, when combined with the approximated
free-slip boundary, use of an eddy viscosity is likely to drastically
intensify the contribution of the resulting pseudo-traction to the overall
flow energetics. Nevertheless, in the context of a Large Eddy Simula-
tion (LES) subgrid scale model (Sagaut et al., 2013), additional terms
related to the model, e.g., subgrid stress tensor, will be introduced
in the momentum equations and thus affect the overall coupling of
the velocity components. Therefore, their contribution to the overall
pseudo-traction needs to be carefully studied. Nonetheless, any further
investigation in the context of LES subgrid scale modelling is out of the
scope of the paper.

Another possible increase of the pseudo-traction contribution, could
be due to elevated curvature, i.e., reduced radius of curvature, of the
bottom bathymetry (see Eq. (24)). Nevertheless, in this scenario, a
practical consideration needs to be taken into account: High curvature
boundaries are naturally very small in scale; accurately representing
them would require very high resolution, which is prohibitive from an
implementation standpoint.

Furthermore, the relative energy loss due to pseudo-traction nor-
malized by the viscous dissipation in the domain interior is shown as
a function of 𝑅𝑒 number in Fig. 7. Note, that this ratio appears to
plateau as 𝑅𝑒 is increased; the energy lost due to pseudo-traction, over
the time required for the wave to propagate over the Gaussian bump,
is only 0.01% of the energy lost due to viscous dissipation over the
same time interval. Therefore, one can safely propose, in the context
of the benchmark at hand and the assumption of laminar flow within
the water column, that the effect of approximating the free-slip bottom
boundary condition to the overall flow energetics is also negligible in
a time-integrated sense. Such a claim would hold even more strongly if
highly dissipative turbulence due to shear and convective instabilities
were to be present in the ISW interior, under the restriction that
the near-bed flow is assumed to be laminar. However, in the case
of an elevated near-bed eddy viscosity discussed above, any claim
of negligible time-integrated energetic significance of pseudo-traction
may have to be reconsidered.

7. Conclusions

The exact enforcement of the free-slip boundary condition on a
deformed boundary introduces a coupling between the Cartesian ve-
locity components. Consequently, solving for the velocity field un-
der a free-slip boundary condition adds a computational complexity
which can be mitigated by approximating the free-slip boundary to
achieve an independent solve per each velocity component. Various
free-slip approximations have been proposed for a continuous high-
order Galerkin numerical discretization with a possible extension to



T. Diamantopoulos, P.J. Diamessis and M. Stastna Ocean Modelling 165 (2021) 101834

b

𝐹

N

a

t
v

other weak-form-based and strong-form-based discretizations. Since the
two proposed approximations are comprised of Dirichlet and Neumann
type of boundary conditions, these boundary conditions can be easily
enforced strongly when a strong-form-based numerical discretization is
used, e.g., a finite difference method. Thus, when these approximations
are adopted, the overall pseudo-traction is expected to behave in a
similar manner for the same type of flow, irrespective of the numerical
discretization.

The extension of these approximations to three dimensions fol-
lows naturally from its two-dimensional counterpart. Now the pseudo-
traction will be a vector with two components, the tangential and
binormal to the bottom boundary, with each component proportional
to its respective curvature and thus to the tangent/bi-normal boundary
velocity component. Therefore each component of the pseudo-traction
is expected to adhere to the scaling analyses presented in Sections 4
and 5.4 .

The propagation of an internal solitary wave over a Gaussian hill
has been used as a benchmark to quantify the exerted traction on the
fluid due an approximate free-slip boundary condition. The tangential
traction, i.e., pseudo-traction associated with the approximated free-
slip boundary depends mainly on the magnitude of the tangential
velocity component as well as the curvature of the deformed boundary.
The energy loss attributed to the pseudo-traction compared to the total
viscous dissipation, accounts to a negligible percentage, i.e., much less
than 1%.

Overall, for oceanic flow modelling, the effect of the pseudo-traction
seems to be negligible, alleviating the modeller from the computa-
tional intricacies of solving a coupled vector equation for the velocity
field. However, the significance of the pseudo-traction to the overall
flow energetics may possibly change in the case of an elevated near-
bottom eddy-viscosity which poses an open question worthy of future
investigation.
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Appendix A. Details on the derivation of the implicit formulation

If 𝐧 = [𝑛𝑥, 𝑛𝑧] and 𝐭 = [𝑛𝑧,−𝑛𝑥] are the components of the boundary
normal and tangential vectors, (Fig. 1) and we write the velocity vector
with respect to its Cartesian components 𝐮 = [𝑢𝑥, 𝑢𝑧], the free-slip
oundary condition

= 0 ⇔ 𝜇
(

𝐧 ⋅ ∇𝐮 ⋅ 𝐭 + 𝐧 ⋅ ∇𝐮 𝑇 ⋅ 𝐭
)

= 0 , (A.1)
𝑡 ( )

10
can be rewritten, following Robertson et al. (2004), as

𝑛𝑧

(

𝜕𝑢𝑥
𝜕𝑥

𝑛𝑥 +
𝜕𝑢𝑥
𝜕𝑧

𝑛𝑧

)

+
𝜕𝑢𝑧
𝜕𝑥

𝑛𝑧𝑛𝑧 +
𝜕𝑢𝑥
𝜕𝑥

𝑛𝑥𝑛𝑧

−
𝜕𝑢𝑥
𝜕𝑧

𝑛𝑥𝑛𝑥 −
𝜕𝑢𝑧
𝜕𝑥

𝑛𝑥𝑛𝑥 − 2
𝜕𝑢𝑧
𝜕𝑧

𝑛𝑧𝑛𝑥 = 0 .
(A.2)

otice that, with some rearranging and dividing through with 𝑛𝑧,
that the first term in brackets above effectively furnishes the natural
boundary condition for 𝑢𝑥 in Eq. (6), i.e., the Laplacian formulation

𝐧 ⋅ ∇𝑢𝑥 = −
𝜕𝑢𝑥
𝜕𝑥

𝑛𝑥 −
𝜕𝑢𝑥
𝜕𝑧

𝑛𝑥
𝜕𝜁
𝜕𝑥

−
𝜕𝑢𝑧
𝜕𝑥

(

𝑛𝑥
𝜕𝜁
𝜕𝑥

+ 𝑛𝑧

)

+ 2
𝜕𝑢𝑧
𝜕𝑧

𝑛𝑥 , (A.3)

where 𝜁 = 𝜁 (𝑥) is the vertical position of the bottom deformed boundary
written as a function of 𝑥 and 𝜕𝜁∕𝜕𝑥 = −𝑛𝑥∕𝑛𝑧 is the boundary slope
as in Robertson et al. (2004). As is evident, the above boundary con-
dition still produces a coupling between the two velocity components
through the third and fourth terms in the right hand side of Eq. (A.3).
Nevertheless, using the incompressibility condition

∇ ⋅ 𝐮 =
𝜕𝑢𝑥
𝜕𝑥

+
𝜕𝑢𝑧
𝜕𝑧

= 0 ⇒
𝜕𝑢𝑧
𝜕𝑧

= −
𝜕𝑢𝑥
𝜕𝑥

, (A.4)

nd by assuming an impermeable boundary (see Eq. (18)) whose
bathymetric height function is twice continuously differentiable
𝜕𝑢𝑧
𝜕𝑥

=
𝜕𝑢𝑥
𝜕𝑥

𝜕𝜁
𝜕𝑥

+ 𝑢𝑥
𝜕2𝜁
𝜕𝑥2

, (A.5)

he natural boundary condition in Eq. (A.3) is made independent of the
ertical velocity component 𝑢𝑧 and thus, Eq. (17) is derived.

Appendix B. Scaling of pseudo-traction to bottom shear stress
ratio

To this end, one focuses on the ISW trough which carries an induced
horizontal current 𝑈 . In the no-slip bottom case, at this location under
the wave, one may assume that the development of the bottom bound-
ary layer is driven purely by viscous diffusion and is not impacted by
boundary layer separation. Under the propagating wave, the boundary
layer thickness may then be approximated as 𝛿 ≈

√

𝜈𝑡. If the bump’s
maximum radius of curvature, which occurs at its centre, is 𝑅 = 1∕𝜅,
the time it takes for the wave to propagate up to this location is
approximately 𝑡 ≈ 𝑅∕𝑐. Consequently, if one further assumes that the
near-bed velocity profile is close to linear over a distance 𝛿, the wall
shear stress for the no-slip boundary for a purely tangential velocity
𝐮 = 𝑢𝐭, can be approximated as

𝐹𝑤 = 𝜇 𝜕𝑢𝐭
𝜕𝐧

≈ 𝜇𝑈
𝛿

= 𝜇𝑈𝜅
√

𝑅𝑐
𝜈

= 𝐹𝑝

√

𝑅𝑐
𝜈

, (B.1)

where 𝐹𝑝 = 𝜇𝑈𝜅 is the pseudo-traction due to an approximated free-
slip boundary, per Eq. (11). The ratio of the pseudo-traction to the
bottom shear stress may then be written as a function of the ISW-based
Reynolds number as in Eq. (24).
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