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ABSTRACT
The deployment of Internet of Things (IoT) devices in cyber-physical
applications has introduced a new set of vulnerabilities. The new
security and reliability challenges require a holistic solution due to
the cross-domain, cross-layer, and interdisciplinary nature of IoT
systems. However, the majority of works presented in the literature
primarily focus on the cyber aspect, including the network and
application layers, and the physical layer is often overlooked.

In this paper, we utilize IoT sensors that capture the physical
properties of the system to ensure the integrity of IoT sensors data
and identify anomalous incidents in the environment. We propose
an adaptive context-aware anomaly detection method that is op-
timized to run on a fog computing platform. In this approach, we
devise a novel sensor association algorithm that generates finger-
prints of sensors, clusters them, and extracts the context of the
system. Based on the contextual information, our predictor model,
which comprises an Long-Short Term Memory (LSTM) neural net-
work and Gaussian estimator, detects anomalies, and a consensus
algorithm identifies the source of the anomaly. Furthermore, our
model updates itself to adapt to the variation in the environment
and system. The results demonstrate that our model detects the
anomaly with 92.0% precision in 532ms, which meets the real-time
constraint of the system under test.
CCS CONCEPTS
• Computer systems organization → Embedded and cyber-
physical systems.

KEYWORDS
Internet of Things, context, sensor association, anomaly detection,
recurrent neural networks, LSTM encoder-decoder
1 INTRODUCTION
Over the last decade, IoT has grabbed substantial attention due to
advancements in computation and communication, and it is utilized 
in many applications such as smart home, automotive, and medical
aid. The rapid growth of IoT has raised concerns about the security 
and reliability of these systems. There are a tremendous amount
of work in the literature that focuses on various aspects of IoT 
systems such as communication network [24, 38], hardware security
[5, 15, 21, 22] or software security [3, 34, 40, 41]. However, the
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Figure 1: Two categories of IoT systems; (a) Closed-loop con-
trol system, and (b) Monitoring system.

physical layer of IoT as a cyber-physical system (CPS) is overlooked.
To ensure the security of CPS systems, in addition to a bottom-up
security attitude, a holistic approach is required [8–10, 12].

The ultimate goal of an IoT system is to control the environment
andmaintain it in the desired state. In order to explain the important
role of sensors in fulfilling this goal, we categorize IoT systems
under two categories, as depicted in Figure 1: (i) a closed-loop control
system, and (ii) a monitoring system. On the one hand, a closed-loop
control system consists of three major components: (i) sensors; (ii)
controller; and (iii) actuators (see Figure 1(a)). The sensors monitor
the system and send the status to the controller, which processes the
sensor readings, decides how to react, and sends the control signals
to the actuators to maintain the state of system and environment.

On the other hand, monitoring systems mainly contain sensors
that measure numerous parameters in the system and provide the
user with information to take proper action (see Figure 1(b)). Al-
though a monitoring system cannot directly manipulate the envi-
ronment, it informs a supervising user of events that happen in
the system, and the user controls the system manually. Thus, a
monitoring system is eventually a part of a control loop.

In both categories, sensors are an essential component of the
control loop since sensor measurements determine the action that
is needed to maintain the system in the desired state. Malfunction
or manipulation of a sensor can break the control loop [4], and
consequently, disrupt the services offered by the IoT system. Fault
in a sensor device leads to the appearance of anomalous values in
its readings, whereas not all anomalies in sensor measurements
indicate sensor breakage because an unexpected event in the en-
vironment may cause an anomaly as well. Observing the possible
anomalies in an IoT system, we present a classification of anomalies
which facilitates identification of the anomaly’s source:

• Environmental Anomaly (EA): The environment is the
area that surrounds the sensor, and the sensor measures
its physical properties. Any anomaly in the environment
affects the measurements of the sensor and disrupts it. An
EAmay occur as a result ofmalicious activities or unexpected
incidents in the environment.
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Figure 2: (a) Schema of wastewater plant, and synthetic sensors’ signals in the (b) first scenario (EA), (c) second scenario (SDA).
• Sensing Device Anomaly (SDA): When the operation of
a sensor is corrupted, its measurements do not follow the
same pattern, and an SDA is observed. This corruption occurs
because of either security or reliability issues. For instance,
[1, 45] discuss some attacks on the physical layer.

Current anomaly detection methods model the normal behavior
of a device [7, 13, 31, 33] and label any deviation from expected
behavior as an anomaly. Most of the works concentrate on anomaly
detection in the network layer of IoT systems [20]. In spite of rea-
sonable performance in network intrusion detection, these methods
have a high rate of false alarms when used with sensor signals. They
misinterpret the environmental variation in the sensors measure-
ments as an SDA and disregard the potential information encoded
in the relation between the system and the physical world, known
as the context of the system (refer to Sec. 3.1 for the definition of
context). Conventionally, context-aware methods are applied to a
variety of applications [2], and recently, these methods are used to
secure the authentication of co-located devices [16, 35, 36, 42].

In this work, we propose an adaptive data-driven model
for unsupervised anomaly detection in IoT systems based on
the sensor measurements. The model monitors the system
to detect anomalies, identifies the type of anomaly (SDA or
EA), and locates them. To this end, we develop an algorithm to
extract the patterns in sensor signals and generate the context of
system. Then, we associate the sensors from different modalities
based on the context and cluster the sensors with similar behavior.
We develop our customized Recurrent Neural Network (RNN), fol-
lowed by a consensus algorithm to detect and localize anomalies.
The consensus algorithm checks the consistency between sensors
in each cluster and determines the type of anomaly. An IoT system
has a dynamic structure that is open to changes, such as adding
new nodes, removing the existing ones, or updating the framework
and protocols. In order to address the variation in IoT systems over
time, our model is designed to be adaptive and update itself.
1.1 Motivational Example
As a real-world IoT system, we study the environmental training
center wastewater plant in Riccione [14]. The primary purposes of
wastewater treatment is the elimination of nitrate. Nitrate contam-
ination is a severe environmental problem because it can exhibit
toxicity toward aquatic life, present a public health hazard, and
affect the suitability of wastewater. In the treatment process, the
wastewater is pumped to the tanks, which are equipped with sen-
sors to monitor the concentration of oxygen, ammonia, and nitrate

in the water. The actuators, such as blowers and valves, are con-
trolled by a Programmable Logic Controller to adjust the level of
chemicals (Figure 2(a)). Given the importance of the nitrate level,
anomaly detection is applied to detect abnormal changes. Consider
two scenarios with anomalous rise in nitrate level; In the first sce-
nario, environmental changes alter the water temperature, which
affects the chemical reactions in the water tank (Figure 2(b), an
example of EA). In the second scenario, the nitrate sensor is broken
or manipulated by an attacker. (Figure 2(c), an example of SDA). The
current anomaly detection methods rely solely on nitrate sensor
data, whereas the validity of its data is questionable. Thus, they can
not find the source of anomaly and discriminate EA and SDA.

A recent study [14] analyzes the sensors of this wastewater plant
and reveals the correlation between ammonia, oxygen, and nitrate
sensor data. More specifically, when the rise in oxygen density
reaches a certain threshold, the ammonia concentration decreases,
and the nitrate concentration increases. Further investigation re-
veals the scientific rationale for this correlation; oxygen triggers
the chemical reaction, which affects the ammonia and nitrate con-
centration. By considering this relationship, it is possible to validate
sensor signals. In the first scenario, the incident affects all sensors.
Despite irregularities in the sensor signals, they are consistent with
each other. Thus, we can conclude that the integrity of the sensors’
data is not compromised. In the second scenario, the anomaly in
the nitrate sensor data is inconsistent with the patterns of other
sensor signals. It indicates that the cause of the abnormality is fault
or attack. This type of relationship between sensors in not limited
to this wastewater plant and it is observed in many IoT systems
due to the availability of many heterogeneous sensors.
1.2 Threat Model
The proposedmethodology aims to detect SDA and EA, which occur
due to an unexpected incident in the environment, reliability issue,
or security breakage. Accidental damage, degradation, and defects
are examples of plausible reliability problems that cause unintended
device malfunctions. In contrast, the security breakage scenario
involves an attacker who intentionally exploits the vulnerabilities
in the system. In this threat model, the adversary has access to the
sensor device and fiddles with it to inject fault, alter functionality,
or deny its service. As another possible scenario, the attacker can
control the communication channel and send faulty signal to the
controller as sensor measurements. The model can detect anomalies
in a standalone sensor, but to distinguish between SDA and EA in
a sensor, it should be associated with at least two other sensors. To



deceive this method, the attacker should be able to discover how
sensors are clustered, learn the correlations and patterns in the
sensors’ signals, and manipulate them in a way that imitates the
same correlation as before. It means that in addition to sensors, the
attacker should have full access to the clustering layout of sensors
and the trained anomaly detection model. It is assumed that the
attacker does not have these privileges.
1.3 Research Challenges
Anomaly detection in the IoT sensors is challenging due to the
following reasons [11]:

• The IoT data are multi-variant time-series data that are col-
lected from a heterogeneous network of sensors with differ-
ent modalities, data dimensions, sampling rates, specifica-
tions, and locations.

• Low cost and resource-constrained sensors are usually sensi-
tive to noise, and deployment of them in IoT systems affects
the quality of data.

• Due to lack of prior knowledge about possible anomalies and
scarcity of anomalous observations, there is not enough la-
beled anomalous data available, and conventional supervised
machine learning technique are not applicable.

• IoT systems have dynamic characteristics that may be al-
tered over time because of environmental changes, human
interaction, mobility of devices, and updating firmware or
software. Consequently, a static model fails to imitate the
system in the long-term.

1.4 Our Contributions
To the best of our knowledge, this is the first context-aware anom-
aly detection method for IoT systems. Our novel contributions to
address the aforementioned challenges are summarized below:

• Context-aware sensor association algorithm:We develop
a multi-modality clustering method to associate sensors that
experience similar contextual variation.

• Consensus-based strategy for unsupervised anomaly
detection: We design a methodology to pinpoint the anom-
alies without reliance on prior knowledge about possible
anomalies.

• Adaptive data-driven model: Our proposed anomaly de-
tection model is periodically updated at run-time to adapt
itself to new states caused by variations in the system.

2 RELATED WORKS
General anomaly detection algorithms can be classified into the
following main categories [14]:

Statistical or Probabilistic Methods: These methods create
a statistical or probabilistic model based on history data, which
represents normal behavior [17, 39]. Upcoming observation is then
compared with this model, and it is marked as an anomaly if it is
statistically unlikely, or the probability of such observation is low.

Proximity Methods: These methods compute distances be-
tween data points to differentiate between anomalous and normal
data. Two well-known techniques that fall in this category are the
Local Outlier Factor [6] and clustering [18] methods.

Predictive Methods: In these methods, the anomaly detection
problem is converted to obtaining an accurate sequence prediction
algorithm that captures the recent and long-term trends in data
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Figure 3: The architecture of our methodology in the train-
ing and inference stage.
sequences and reproduces them to predict future measurements.
Afterward, the predictions are compared with the new observations
to spot deviations from expected normal behavior. Recurrent Neural
Networks (RNN) are capable of capturing the relationship between
measurements over time because the feedback loops in the hidden
layer of RNN can imitate memory.

Long-Short Term Memory (LSTM) layer was introduced in 1997
by [19] to overcome the shortcomings of RNN. It has gained a lot of
attention lately because of its high accuracy in sequence prediction
[7, 31, 33]. Conv-LSTM encoder-decoder is one of the neural net-
work architectures that is used in the literature to enhance sequence
prediction performance [23, 25, 27, 43, 44]. It contains convolutional
layers to extract the essential features of input sequences and LSTM
layers to perform the sequence prediction based on the features.
Then, the anomaly is identified based on the reconstruction error
of the model. LSTM-LSTM encoder-decoder [32, 37, 46] is another
popular architecture which follows a similar strategy but it utilize
LSTM layers instead of convolutional layers for feature extraction.

Our methodology inherent the advantages of both probabilistic
and predictive methods. We implement and compare the Conv-
LSTM and LSTM-LSTM encoder-decoder as our predictive models.
Then, the reconstruction error, derived from the difference between
real and predicted values, is modeled by a Multivariate Gaussian
Estimators to detect the anomaly.

3 ANOMALY DETECTION METHODOLOGY
Our proposed methodology (see Figure 3) detects SDA and EA in an
IoT system to ensure sensing devices operate as they are expected.
3.1 Context Generation
The context of a system is defined as an abstraction formed by ex-
tracting features from system circumstances and individual element
constructs[26]. It describes the condition in which the system is
operating and affects the outcome of the system. The first step
for obtaining our context-aware data-driven model is to generate
the context of the system by encoding its physical properties. Un-
derstanding and transforming this information such that it can be
mathematically described is called context generation. Following
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Figure 4: Extracting the fingerprint of a temperature sensor.

the strategy presented by Sadeghi et al. in [35], we convert all sen-
sor signals to binary fingerprints regardless of their modality. The
procedure of fingerprint generation has the following steps:

Step1: Each sensor continuously monitors the environment
by taking a measurement each 𝑧 seconds. The value 𝑧 depends
on the sampling rate of sensor and may vary for different sen-
sors. In a time window of 𝑞 seconds from timestamp 𝑡 , the sensor
records 𝑣 = [𝑞/𝑧] measurements and forms a snapshot vector
𝑆𝑡 = (𝑠𝑡 , 𝑠𝑡+𝑧 , . . . , 𝑠𝑡+𝑧 (𝑣−1) ).

Step2: The 𝜖𝑟𝑒𝑙 is a pre-defined threshold that controls the
amount of variation that is said to conform a change. The val-
ues obtained in a snapshot are averaged and the variation bit 𝑏 (𝑡)
is calculated as follows:

𝑆𝑡 =
1
𝑣

∑
𝑠∈𝑆𝑡

𝑠, 𝑏 (𝑡) =

1, if

����𝑆𝑡+𝑧−𝑆𝑡𝑆𝑡

���� > 𝜖𝑟𝑒𝑙

0, o.w.

Step3: Finally, a sequence of𝑘+1 consecutive snapshots 𝑠𝑒𝑞(𝑡, 𝑡+
𝑘𝑧) = (𝑆𝑡 , 𝑆𝑡+𝑧 , . . . , 𝑆𝑡+𝑘𝑧), has an associated fingerprint 𝐹 (𝑠𝑒𝑞(𝑡, 𝑡+
𝑘𝑧)) = (𝑏 (𝑡), 𝑏 (𝑡 +𝑧), . . . , 𝑏 (𝑡 + (𝑘 −1)𝑧)). The fingerprints of all the
sensors with different sampling rates have the same length because
each snapshot is the average of sensor measurements in a particular
time interval. Figure 4 illustrates the process of generating the
fingerprint of a temperature sensor.

3.2 Sensor Association
Although each sensor’s measurements differ based on its modality
and physical location, the sensors that are affected by the same
event follow similar patterns in their fingerprints. Based on this ob-
servation, we develop a sensor association algorithm that comprises
two primary steps: I) pattern extraction and II) sensor clustering.

In the first step, we split each fingerprint into smaller sub-sequences,
and cluster the sub-sequences of different sensors that have a similar
binary pattern. For simplicity, assume that 𝐹𝑖 = 𝐹 (𝑠𝑒𝑞(𝑡, 𝑡 + 𝑧𝑘)𝑖 )
represents the fingerprint of the sensor 𝑖 , which is split into 𝑑

smaller sub-sequences 𝑓𝑖 𝑗 as follows:

𝐹𝑖 −→ (𝑓𝑖1, 𝑓𝑖2, . . . , 𝑓𝑖𝑑 ), 𝑑 =
𝑘 − 𝑜

𝑙 − 𝑜

where 𝑙 and 𝑜 are the hyper parameters that determine the sub-
sequences length and their overlap accordingly. Afterward, our
clustering algorithm is performed on the sub-sequences of index 𝑗

( 𝑗 ∈ [1, 𝑑]) of all sensors (𝐹1 𝑗 , 𝐹2 𝑗 , . . . , 𝐹𝑛 𝑗 ) to group the ones with
similar binary patterns. Hence, it assign a pattern number 𝑝 𝑗

𝑖
∈

{0, 1, ..., 𝑝 𝑗𝑚𝑎𝑥 } to 𝑓𝑖
𝑗 . Next, the clustering is repeated for index 𝑗 + 1

and after 𝑑 iterations, all sub-sequences are clustered. Notice that
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Figure 5: The procedure of extracting the patterns in sensor
signals and clustering them.

𝑝
𝑗
𝑚𝑎𝑥 which represents the number of clusters for index 𝑗 may vary
for different index values. Eventually, for each sensor the pattern
numbers form a pattern history vector 𝑃𝑖 = (𝑝𝑖1, 𝑝𝑖2, . . . , 𝑝𝑖𝑑 ).

In the second step, one final clustering is performed on the given
set of sensors pattern history 𝑃𝑖 to determine the sensors cluster
layout 𝐶 = 𝑐1, 𝑐2, ...𝑐𝑔 where 𝑐𝑖 represents a clusters and 𝑔 is the
number of sensor clusters. The sensors with similar contextual
variations exhibit the same patterns in many sub-sequences and
we cluster them together. An example of the sensor association
procedure is demonstrated in Figure 5. In this example, the final
clustering group the first and third sensors are grouped together.

All the mentioned clustering processes are done using our cus-
tomized clustering algorithm which minimizes the distance be-
tween data points in the same cluster, the intra-cluster distance
(𝐼𝐶), and maximizes the distance among data point of one cluster
from other cluster data points, the inter-cluster distance (𝑂𝐶). The
distance matrics are defined as follows:

𝐼𝐶 = 𝐼𝐶𝑖 , 𝐼𝐶𝑖 =
1
|𝑐𝑖 |

∑
𝑚,𝑘∈𝑐𝑖

𝐻𝑎𝑚𝑚𝑖𝑛𝑔(𝑃𝑚, 𝑃𝑘 )

𝑂𝐶 = 𝑂𝐶𝑖, 𝑗 , 𝑂𝐶𝑖, 𝑗 = min
𝑚∈𝑐𝑖 ,𝑘∈𝑐 𝑗

{𝐻𝑎𝑚𝑚𝑖𝑛𝑔(𝑃𝑚, 𝑃𝑘 )}

Where 𝑐𝑖 and 𝑃𝑚 represents a cluster and the pattern history of
sensor 𝑚 respectively. Algorithm 1 is a Pseudo-code that elabo-
rates on our clustering algorithm. Our clustering has the following
properties:

• It can be applied to data with string type because the distance
matrics are based on the Hamming distance function, which
calculates the number of non-matching bits.

• The number of clusters is automatically tuned. Initially, clus-
tering is performed with an upper bound of the number of
clusters. Afterward, the algorithm automatically removes the
nodes which are not close to any cluster and eliminates clus-
ters with two nodes to reach optimum value for the number
of clusters.



After sensor association, we evaluate the system to ensure that
there is no standalone sensor which is not clustered. A standalone
sensor is vulnerable because it is not related to any group of sensors
that can verify its proper operation. In this case, the anomaly detec-
tion still can be applied to the independent sensor individually, but
the SDA and EA are indistinguishable. The user is warned about
this vulnerability in sensors and can resolve the issue by adding
more sensors to the system.
Algorithm 1: Customized clustering algorithm for extract-
ing patterns in sensor fingerprints and sensor association.

Input: Fingerprints: 𝐹 ∈ 𝐼𝑅𝑛×𝑘 , number of sensors: 𝑛,
sub-sequence length: 𝑙 , overlap: 𝑜

Output: Cluster layout 𝐶 = {𝑐1, 𝑐2, . . . , 𝑐𝑔 }
Initialize 𝑑 = 𝑘−𝑜

𝑙−𝑜
Initialize 𝑝𝑚𝑎𝑥 = max # of patterns in sub-sequence
Initialize 𝑖𝑡𝑒𝑟𝑚𝑎𝑥 = max # of iterations
Initialize the center of clusters randomly
foreach 𝑗 ∈ {1, 2, . . . , 𝑑} do

foreach 𝑖 ∈ {1, 2, . . . , 𝑛} do
Split fingerprint 𝐹𝑖 to obtain sub-sequences 𝑓𝑖 𝑗 ;

Clustering:
foreach 𝑖𝑡𝑒𝑟 ∈ {1, 2, . . . , 𝑖𝑡𝑒𝑟𝑚𝑎𝑥 } do

foreach 𝑖 ∈ {1, 2, . . . , 𝑛} do
𝑝
𝑗
𝑖
= 𝐴𝑟𝑔𝑚𝑖𝑛𝑥 ∈𝐶𝐻𝑎𝑚𝑚𝑖𝑛𝑔(𝑓 𝑗

𝑖
, 𝑐𝑒𝑛𝑡𝑒𝑟 (𝑥));

foreach 𝑥 ∈ {1, 2, . . . , 𝑝𝑚𝑎𝑥 } do
𝑐𝑒𝑛𝑡𝑒𝑟 (𝑥) =𝑚𝑒𝑎𝑛({𝑓 𝑗

𝑖
|𝑝 𝑗
𝑖
= 𝑥});

if no changes in 𝑐𝑒𝑛𝑡𝑒𝑟 (𝑥) then
break;

foreach 𝑥 ∈ {1, 2, . . . , 𝑝𝑚𝑎𝑥 } do
Calculate inter-cluster (𝑂𝐶) metrics;
if 𝐻𝑎𝑚𝑚𝑖𝑛𝑔(𝐹 𝑗

𝑖
, 𝑐𝑒𝑛𝑡𝑒𝑟 (𝑝 𝑗

𝑖
) > 𝑂𝐶 then

Remove 𝐹 𝑗
𝑖
from cluster 𝑝 𝑗

𝑖
;

Add 𝐹
𝑗
𝑖
in unclustered nodes;

Update 𝑝 𝑗𝑚𝑎𝑥 ;
if |𝑐𝑖 | < 3 then

Remove cluster 𝑥 ;
Update 𝑝 𝑗𝑚𝑎𝑥 ;

Add clusters to pattern histories 𝑃𝑖 ;

Perform the clustering again on pattern histories 𝑃𝑖 ,
𝑖 ∈ [1, 𝑛] to associate sensors;
return Sensors Cluster layout 𝐶 = {𝑐1, . . . , 𝑐𝑔 }

3.3 Predictive Model
The next module of our methodology is the predictive model that
predicts the future measurements of sensors according to the clus-
tering layout and history of measurements. We construct a Re-
current Neural Networks (RNN) for each cluster of sensors as the
predictive model. As it is depicted in 6, our RNN comprises LSTM
encoder-decoder and dense layers, which encode the features of in-
put sequences of length 𝑙𝑖 and predict the future sequences of length
𝑙𝑜 based on the encoded features. Sequences of data are derived from
the input time-series signals using the sliding window technique.
Afterward, the sequences are scaled through aMin-Max Scaler be-
fore being treated by the encoder because input signals come from
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Figure 6: The architecture of RNN used as predictive model.

multi-modality sensors with different signal ranges. Eventually, we
have a set of predictive models 𝐷𝑇 = {𝑀1, 𝑀2, . . . , 𝑀𝑔 } where 𝑔 is
the number of clusters in the system and𝑀𝑖 represents the model
for cluster 𝑐𝑖 . Given cluster 𝑐𝑖 that contains 𝑛𝑖 nodes, the model
𝑀𝑖 takes as input a matrix 𝑋𝑖 ∈ R𝑙𝑖×𝑛𝑖 to predict another matrix
𝑌𝑖 ∈ R𝑛𝑖×𝑙𝑜 . On top of predictive models, Multivariate Gaussian
Estimators are trained to learn the probability of finding a par-
ticular error vector. This probability is used to ascertain whether
the errors between predictions and real measurements correspond
to the system’s normal behavior, or an anomaly has occurred. A
multivariate Gaussian distributor 𝐺𝑖 = N(𝜇𝑖 , 𝜎𝑖 ) is fitted on the
reconstruction error matrix 𝐸𝑖 , which is the difference between
the real values and predicted values. The parameters 𝜇𝑖 and 𝜎𝑖 are
computed using Maximum Likelihood Estimation.

𝜇𝑖 =
1
𝑚

𝑚∑
𝑘=1

𝑒𝑘𝑖 𝑗 = 𝑒𝑖 𝑗 , 𝜎𝑖 =
1
𝑚

𝑚∑
𝑘=1

(𝑒𝑘𝑗 − 𝜇 𝑗 ) (𝑒𝑘𝑗 − 𝜇 𝑗 )𝑇

3.4 Anomaly Detection
In the training stage, the predictive models and estimator modules
are periodically used at run-time to infer anomalies. The frequency
in which anomaly detection is performed can vary depending on
the system specifications. At the run-time, an input measurement
𝑥𝑡 is compared with model prediction 𝑦𝑡 , and the reconstruction
error 𝑒𝑡 is calculated. Then, 𝑥𝑡 classified as anomalous if 𝑝𝑡 < 𝛼 ,
where 𝑝𝑡 is the probability of obtaining the error vector given by
the Gaussian estimator 𝐺 . 𝛼 is a predefined threshold value, and it
is tuned to maximize the F-score of the model.

When anomalous data is discovered, we utilize our consensus
algorithm to differentiate between EA and SDA. EA occurs as a
result of an incident in the environment. If the EA causes an anom-
aly in a sensor signal, the correlated sensors are affected by the
event and show abnormal changes in their signals. In contrast, SDA
influences the sensors individually and results in an anomaly in one
or some of the sensors in a cluster. For each cluster, the consensus
algorithm inspects the consistency of the sensor behaviors. It uses
a voting mechanism to check if all sensors in a cluster agree on the
occurrence of an environmental incident. To account for inertia
in the physics of the system, we check the consensus in the time
intervals instead of data points.

3.5 Model Adaptation
Due to the high variation in the IoT system and environment, we
add the property of aliveness to our method, which means the
model automatically gets updated to adapt to the system alteration
and make more accurate predictions. As Figure 3 demonstrates, the
sensor association, predictive model, and estimator modules are
trainable. There are two levels of updating the model; i)complete



update, which retrains all trainable modules in order, and ii) partial
update, which only retrains the predictor model. These update
processes are triggered under three circumstances:

• Change in the number of sensors in the system (either added
or removed) triggers complete update.

• Each time the sensors send data, the anomaly detection
model first validates the new data. Afterward, partial up-
date is triggered using the new anomaly-free data.

• If complete update is not provoked during a fixed interval
of time 𝑡𝑟𝑒𝑡𝑟𝑎𝑖𝑛 , it is triggered automatically. This way, the
model accounts for changes in the environment, location,
and placement. This parameter 𝑡𝑟𝑒𝑡𝑟𝑎𝑖𝑛 can be tuned by the
user, depending on how frequently the system layout is
changed.

4 RESULTS AND EVALUATION
4.1 Fog Computing Architecture
Cloud servers are the common and potent available computation
resource in IoT systems. However, the bandwidth of network and
data transmission become a bottleneck due to Rapid expansion of
IoT nodes and the quantity of data. As a result, fog computing has
emerged, which provides storage, computation, and application
services closer to end-user with dense geographical distribution
[29]. In the fog architecture (Figure 7), the bottom layer comprises a
heterogeneous network of edge nodes with limited resources. The
fog nodes in the middle layer collect and process the data from edge
devices and communicate to the cloud via the internet.

Our methodology is fog-empowered, and the developed model
for our target IoT system is implemented on a fog node. For the
IoT systems with a high density of devices and a massive volume
of data, our method is scalable, and it still supports fog computing.
Basically, the LSTM encoder-decoder networks are responsible for
most of the computation in our method. Thus, instead of training an
extensive network for the whole system, we construct a small net-
work for each cluster of associated sensors that can be distributed
between fog nodes. Furthermore, we perform several optimizations
to meet resource constraints. In the sensor association, we use the
binary fingerprint instead of time-series signals, which lowers stor-
age usage and complicity. The sliding window technique in LSTM
network contributes to reducing storage usage as well.
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Figure 7: Fog computing hierarchy in IoT systems.

Figure 8: The scaled-down version of experimental setup.

4.2 Experimental Setup
To build and evaluate our methodology, we implement an IoT
testbed in our laboratory. Our experimental setup consists of an
Ad-Hoc network of multi-modality IoT sensors, a Software-Defined
Radio (SDR) connected to an edge computing device, a gateway,
and a laptop as fog node . For this particular research, we have used
62 sensors which measure 13 different physical parameters (see
Table 1). The acoustic sensor is a wide range microphone with two
right and left channels that captures the sound of the space and its
output is amplified and recorded by the handy recorder ZOOM-H6.
The raspberry pi board, which is directly connected to ZOOM-H6,
collects its data and transmits it over the Internet and this part of
the system simulates devices such as Google Home or Alexa. The
other sensors are on the low-power embedded boards operated by
TinyOS which are equipped with a wireless communication module
based on IEEE 802.15.4 standard. We have implemented the IEEE
802.15.4 standard in the SDR device (USRP-B210) and created a

Table 1: List of sensors in our experimental setup.
Sensor Sensor board # of sensors
Temperature MTS-CM5000 12
Humidity MTS-CM5000 12
Visible light MTS-CM5000 12
Infrared light MTS-CM5000 12
Force and load MTS-CO1000 2
Tilt MTS-CO1000 2
Accelerometer MTS-CO1000 2
Presence detector MTS-SE1000 2
Magnetic MTS-SE1000 1
CO_2 MTS-AR1000 1
CO MTS-AR1000 1
Dust MTS-SH3000 1
Acoustic ZOOM-H6 2



wireless network of sensors in which SDR collects the sensor’s data
and send commands to them. SDR is connected to an edge comput-
ing device, a raspberry pi board, which works as a base station and
gathers all data. The base station contains a Wi-Fi module and links
the local network of IoT devices to the Internet through a router.
It provides the system with the capability to be monitored in any
device which is connected to the internet by looking up the base
station and logging using the password. The algorithms and anom-
aly detection model are implemented on a Laptop with 8Gb DDR4
RAM, and the Intel(R)Core(TM) i5-6300HQ 2.3GHz processor which
receives the data from base station and do the computations as a
fog node in the IoT system. A powerful router such as Qotom Mini
PC Q500G6 has similar capabilities and is capable of running the
model at the gateway level. Figure 8 demonstrates the components
of our experimental setup and their connections.

4.3 Evaluation
We evaluate our methodology using the data collected by the sensor
layout of Section 4.2.

4.3.1 Sensor Association Evaluation. One of the contributions
of our clustering algorithm is the capability to automatically tune
the number of clusters and remove the ones which lack a sufficient
number of sensors or have sensors that are far apart regarding the
hamming distance between their fingerprints. Initially, we set the
number of clusters to 20 in our system under test, and the algo-
rithm reduces the number to 6. In order to assess the performance of
sensor association method, Inter-cluster and Intra-cluster distances
are calculated for all clusters and plotted in Figure 9. The notable
difference between inter-cluster distance and the intra-cluster dis-
tance indicates that related sensors are clustered together, and the
clusters are well separated from each other.

Another validation method used is physical intuition, which
explains the relationships among the associated sensors. For ex-
ample, co-located sensors experience a similar context. Therefore,
they are expected to be associated with each other. This intuition
supports the result of our algorithm in which co-located humidity,
temperature, and light sensors are clustered together, as it is shown
in Figure 11. Another intuition behind the fact is that any physical
process may have multi-modality emissions, and the sensors which
capture the emission of one incident should be clustered together.
It explains the clustering of PIR, vibration sensor (accelerometer
and force), magnetic door switch, and acoustic sensor since they all
capture the event of entrance through the door. These observations
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Figure 9: The inter-cluster and intra-cluster distances of sen-
sor clusters.

Table 2: Comparison with the state-of-art methods

Method Base
Model

Context
Aware Precision Recall 𝐹0.5

score
𝐹1

score
IoT-CAD LSTM Yes %92 %56 %81 %70

[31] LSTM No %64 %44 %58 %52
[28] Conv LSTM No %51 %95 %56 %66
[30] One Class SVM No %89 %25 %60 %39

indicate that this strategy is capable of finding relations between
sensors with similar contextual variations, further confirmed by
the anomaly detection results in the next section.

4.3.2 Anomaly Detection Evaluation. The anomaly detection
model is unsupervised and it is trained only on the normal data
and evaluated using a validation dataset with synthetic anomalies.
To analyze the results, True Positives (TP), False Positives (FP),
and False Negatives (FN ) are counted in the results to compute the
validation scores. Although themost intuitive performancemeasure
is accuracy, which is the ratio of correctly predicted observation
to the observations, it is not appropriate for unbalanced datasets
such as anomaly detection where one category representing the
overwhelming majority of the data points. Therefore, we use the
Precision(P), Recall(R) and 𝐹𝛽 𝑠𝑐𝑜𝑟𝑒 as performance metrics.

𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
, 𝑅 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
, 𝐹𝛽𝑠𝑐𝑜𝑟𝑒 =

𝑃 × 𝑅 × (1 + 𝛽2)
𝛽2 × 𝑃 + 𝑅

Recall expresses the ability to find all anomalous observation in a
dataset while precision expresses the proportion of the observations
our model labels as anomaly, actually is anomalous. 𝐹𝛽 𝑠𝑐𝑜𝑟𝑒 is
the weighted average of precision and recall which provides a
better intuition toward both key important capability of model. We
implement the current state-of-art methods for anomaly detection
in time-series data. Due to importance of precision, 𝐹0.5 𝑠𝑐𝑜𝑟𝑒 which
favors precision over recall is calculated for evaluation in addition
to 𝐹1 𝑠𝑐𝑜𝑟𝑒 . According to the results in Table 2, our methodology
has the best performance with highest 𝐹 𝑠𝑐𝑜𝑟𝑒𝑠 and precision.
4.4 Robustness
We evaluate the robustness of our methodology by adding three
different types -pink, Gaussian, and uniform- of noise signals to the
sensor measurements and observing the performance of the model.
As Figure 10 indicates, although the precision of anomaly detection
is decreased as the noise power increases in all models, our model
is more resilient to noise and maintains the high precision.
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Figure 10: Evaluating the resilience of different models to
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Figure 11: The real and predicted values of three correlated
sensors; light, humidity, and temperature sensors.

4.5 Case Study
As a case study, we analyze a cluster of associated sensors, which
includes three humidity, temperature, and light sensors located in
close proximity. As shown in Figure 11, the predicted values are
very close to the real measurements that indicates the competency
of our method to learn the normal behavior of sensors and predict
the future measurements precisely. Furthermore, we observe that
the pattern of changes in the sensor signals is similar. As the marked
areas of Figure 11 highlight, any drop in the trend of humidity sensor
comes with an increase in the trend of other sensors. It confirms the
correlation among the sensors as the sensor association algorithm
suggests. We simulate a fire incident in the environment as an EA,
and the measurements from all sensors show an anomaly.
4.6 Timing Analysis
The timing of method depends on the number of sensors, length
of time-series signals, and computing platform which is used to
implement the model. We implement our methodology on a fog
computing platform and train it on data collected from 62 heteroge-
neous sensors for 8 days (roughly, 2.3 million data measurements).
The training stage starts with the fingerprint generation process,
which is repeated for all sensors (62 times). The sensor association
process involves 604 times performing clustering to cluster the
patterns and then sensors. Eventually, the clustering layout and
sensor measurements are used for training the predictive model in
an iterative process until the convergence of the model. Although
the initial training is time-consuming, it occurs once, and the pro-
cess of anomaly detection on the new measurements using the
trained model only takes 0.532 seconds, which means it is real-time
in our system under test. As mentioned in Section3.5, the retraining
process is triggered under some conditions, but it is faster than
initial training since it is limited to new data and does not interrupt
the anomaly detection (Refer to Table 3).

Table 3: Timing results.
Process Recurrence Time (seconds)

Fingerprint generation 62 2.98
Training sensor association 604 10.54
Training predictive model 1 2472.20
Anomaly detection periodic 0.532
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61.70%
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0% - Model fails to run due to mismatch between model and system.

0% - Model fails to run due to mismatch between model and system.

Figure 12: Analysis of effect of partial and complete update
on preserving the performance of model.

4.7 Aliveness Assessment
To assess whether updating the model is beneficial for maintaining
the model’s performance over time, we test it in three scenarios.
The first and second scenarios simulate the effect of system degra-
dation or environmental variation over time. In this regard, the
measurements of temperature sensors are increased 5𝑜C in case 1,
and 15𝑜C in case 2 for a day. The third scenario simulates changes
in the layout of the IoT system by eliminating a sensor.

The model is initially trained on the original data before the
occurrence of scenarios and tested with synthesized data from the
cases. In the tests, we examine the effect of the partial update, com-
plete update, and no update on the precision of the model, refer
to Figure 12. According to results, the variation in case 1 and 2
lead to a significant drop in the precision of the model without
updating while updating the model, effectively preserve the high
performance because of retraining the predictive model. The third
case highlights the advantage of the complete update. Any alter-
ation (add or remove) in the number of sensors in the IoT system
changes the input layer dimension of the neural network. Thus,
the model cannot perform anomaly detection in case 3 unless the
sensor association is retrained to update the layout of sensors, and
the model is reconstructed on the new layout. Results confirm that
the complete update is successful in maintaining the performance
despite removing a sensor. Based on this experiment, it can be
concluded that being adaptive is crucial for the models used for IoT.

5 CONCLUSION
This paper presents a novel context-aware adaptive data-driven
model for anomaly detection in IoT systems. It generates context
information by encoding the relations among the IoT sensors and
clusters the correlated sensors based upon similar patterns, and con-
textual variation. According to the extracted context, a predictive
model detects the anomalies, and a consensus-based algorithm de-
termines the type of detected anomalies and pinpoints their source.
Our proposed methodology can identify the anomalies with a 92%
precision in real-time on a fog computing platform. Compared with
other methods, it has higher performance and the capability to up-
date itself to account for variations in the system and environment.
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