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ABSTRACT

Myocardial Infarction (MI) is a heart disease that damages the heart
muscle and requires immediate treatment. Its silent and recurrent
nature necessitates real-time continuous monitoring of patients.
Nowadays, wearable devices are smart enough to perform on-device
processing of heartbeat segments and report any irregularities in
them. However, the small form factor of wearable devices imposes
resource constraints and requires energy-efficient solutions to sat-
isfy them. In this paper, we propose a design methodology to auto-
mate the design space exploration of neural network architectures
for MI detection. This methodology incorporates Neural Architec-
ture Search (NAS) using Multi-Objective Bayesian Optimization
(MOBO) to render Pareto optimal architectural models. These mod-
els minimize both detection error and energy consumption on the
target device. The design space is inspired by Binary Convolutional
Neural Networks (BCNNs) suited for mobile health applications
with limited resources. The models’ performance is validated us-
ing the PTB diagnostic ECG database from PhysioNet. Moreover,
energy-related measurements are directly obtained from the tar-
get device in a typical hardware-in-the-loop fashion. Finally, we
benchmark our models against other related works. One model
exceeds state-of-the-art accuracy on wearable devices (reaching
91.22%), whereas others trade off some accuracy to reduce their
energy consumption (by a factor reaching 8.26x).
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1 INTRODUCTION

Over the past decade, heart disease has been one of the leading
causes of death in the United States of America. Heart disease causes
more than 600,000 deaths per year which represent 1 out of every 4
deaths [1]. Myocardial Infarction (MI), also known as a heart attack,
is one of the fatal forms of heart disease. It occurs when the heart
muscle lacks enough supply of blood and essential nutrients due

This work is licensed under a Creative Commons Attribution International 4.0 License.

ASPDAC 21, January 18-21, 2021, Tokyo, Japan
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7999-1/21/01.
https://doi.org/10.1145/3394885.3431513

621

to blocked arteries. The more time that passes without adequate
treatment, the more damage that is done to the heart muscle. MI
is also characterized by a recurrent nature as 25% of Americans
suffering from heart attacks every year have already had a previous
one [1]. Furthermore, one out of every 5 heart attacks is silent. This
means that the victim is unaware of the attack [1].

All this justifies the necessity of continuous monitoring, espe-
cially for people who have already contracted MI. Electrocardio-
grams (ECGs) are capable of detecting heart problems and are used
to monitor the patient’s condition by recording the heart’s electrical
signals. Most of the monitoring takes place in a clinical environment
with heavy medical equipment. However, the need for immediate
treatment and the risks associated with silent heart attacks require
real-time continuous monitoring. Hence, the routine check at the
physician may not be enough to mitigate the consequences of MI
on the patient’s health. For this, medical wearable devices equipped
with ECG monitoring capabilities are becoming the most prominent
option for real-time monitoring of fatal heart diseases like MI.

The traditional approach requires wearable devices to send raw
data to an intermediary (e.g., smartphone) via Bluetooth [13]. After
that, the data is relayed to a centralized cloud where it is processed
for physicians to keep track of the patient’s health. However, this is
not suitable for wearable devices as they spend a significant portion
of their limited energy on transmitting the raw data. Furthermore,
this data relaying scheme is prone to transmission delays. There-
fore, an alternative approach is to equip the wearable devices with
intelligence to facilitate on-device data processing. Then, only the
final classification label needs to be relayed further. This approach
can be referred to as Edge Computing.

To promote intelligence on wearable devices, machine learning
models have been implemented to classify the patients’ condition.
Yet, these models need to maintain decent performance while meet-
ing the tight energy and memory constraints of wearable devices. In
this regard, improving performance is associated with the increased
complexity of the models which, in turn, implies more memory
utilization and energy consumption. Thus, the problem becomes
how to design models that balance this trade-off, ensuring adequate
performance while operating within constrained devices.

Most of the machine learning models used in MI detection liter-
ature [16, 17] work on the extracted features from ECG segments.
This extra pre-processing stage can dramatically increase the execu-
tion time, and consequentially, energy consumption. In this regard,
Convolutional Neural Networks (CNNs) [11] are better alterna-
tives as they are fast and capable of extracting features through
their inherent convolution process. However, their large size and
working memory requirements may not be satisfied by the resource-
constrained wearable devices. To resolve this, authors in [14] have
designed a Binary Convolutional Neural Network (BCNN) [6] for
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Figure 1: The design flow process using MOBO. The actual function is unknown in reality. Instead, a Gaussian Process (GP)
model is constructed for each objective function and updated each iteration based on the information collected so far.

wearable devices. Their model design is characterized by having
all of the model parameters represented in binary, leading to a sig-
nificant reduction in the model’s memory requirements. Moreover,
they are energy efficient as they only perform binary operations
throughout the network.

In this paper, we propose a methodology to incorporate Neural
Architecture Search (NAS) [7] to co-optimize the design of BC-
NNs for MI detection with regard to accuracy and energy using
Multi-Objective Bayesian Optimization (MOBO). Figure 1 shows
the generalized design flow using our methodology where MOBO
performs a systematic design space exploration of a BCNN-inspired
search space to sample the most efficient models satisfying both
objectives. Each sampled model is trained to estimate its accuracy
before being deployed on the target device to retrieve the related
energy measurements. The Bayesian models are updated each iter-
ation with new data in order to improve the search strategy. Finally,
our methodology renders a set of Pareto optimal neural architec-
tures that represent the most suitable models for deployment on
the target wearable devices. The main contributions of this paper
are summarized as follows:

o A methodology is proposed to automate the design of BCNNs
for MI detection on wearable devices through co-optimizing
both accuracy and energy using real-hardware target device
measurements.

o To the best of our knowledge, we are the first to propose a
NAS-based design methodology working with time-series
ECG signals.

e The performance of our methodology is validated using PTB
diagnostic ECG database [4] from PhysioNet [9].

e In comparison with the state-of-the-art works for wearable
devices, one of our explored models achieves the highest
accuracy of 91.22% while others achieve up to 8.26x more
energy efficiency.

2 RELATED WORK
2.1 Single Lead Wearable MI Detection

Many studies have been conducted aiming to achieve high per-
formance on MI detection. However, most of them are targeting
clinical setups or use multiple ECG leads, which are not suited for
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wearable devices. Here, we target studies that used only a single
lead ECG signal for MI detection on wearable devices. The authors
in [16] provided a wearable device solution using a Support Vector
Machine (SVM). Their methodology incorporated a two-level clas-
sifier; the first-level classifier was computationally efficient while
the more complex second-level classifier is only invoked when the
first-level one fails to meet the classification confidence threshold.
Features were extracted from the lead 11 ECG signal, and their SVM
classifier achieved a 90% accuracy. In addition, the same authors
proposed in [17] a hierarchical Random Forest (RF) classifier with
multiple levels to achieve even more energy efficiency at the lower
levels. Their 4-level full implementation achieves 83.26% accuracy,
87.95% sensitivity, and 78.82% specificity.

Those works rely heavily on the time-consuming and computa-
tionally expensive feature extraction process from the raw data. To
overcome this, the authors in [3] implemented a 1-D CNN which di-
rectly classifies MI segments. They achieved an accuracy of 93.53%
using lead 2 ECG data. However, their CNN architecture comprised
11 layers requiring a lot of intermediate calculations which would
not suit the working memory limitations of most wearable devices.
The authors in [14] addressed this issue by designing a BCNN
which can operate under strict memory constraints. Their approach
achieved a 90.29% accuracy while maintaining the energy and mem-
ory efficiencies. To the best of our knowledge, their work achieved
the state-of-the-art result for MI detection on low-power wearable
devices. Therefore, this work in [14] will represent the basis for our
proposed methodology’s design space.

2.2 Neural Architecture Search

Recently, NAS has been gaining significant attention as a systematic
approach that can automate the design of neural networks. It aims
to find optimal architectural designs that can outperform the hand-
crafted ones with respect to the design optimization objectives.
In this regard, NAS incorporates a closed-loop cycle of selecting
a single neural architecture each iteration for evaluation. Then
based on these evaluations, the search strategy is updated to find
more suitable neural architectures in the following iterations. NAS
can be attained through various methods including reinforcement
learning, evolutionary algorithms, gradient-based algorithms, or
Bayesian optimization [7].
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Figure 2: Our proposed energy-aware design methodology of
neural architectures for MI detection on wearable devices.

In addition, hardware-aware optimization has been gaining in-
terest over the past years. Authors in [18] use power and memory
prediction models in their search process to prevent selecting model
architectures that violate a predefined set of hardware constraints.
Another work in [5] adopts MOBO-based NAS to co-optimize ac-
curacy and energy using direct measurements from the target plat-
forms. While our work is closely related to the one in [5], their
approach does not address the same level of constrained wearable
devices suited for mobile health applications.

The authors in [8] also utilized NAS for the same level of con-
strained devices. They proposed a framework combining NAS and
network pruning to render architectures that can be deployed on
an Arduino Uno (16 MHz clock, 32 KB flash and 2 KB RAM). To
achieve this, their approach involved applying MOBO over a search
space of various architectural parameters with the objective of min-
imizing error, working memory, and the model size for various
image classification tasks. Our methodology is unique not only in
the application context but also in the sense that MOBO is directed
towards minimizing error and energy consumption. Furthermore,
binarized models inspired by [6, 14] are utilized to satisfy the mem-
ory limitations of the target wearable devices.

3 OUR METHODOLOGY

3.1 Overview

The multi-objective optimization problem can be formulated as
minyex (error(x), energy(x)), in which the goal is to find a net-
work architecture parameterized by x from the search space X
that minimizes two objective functions: MI detection error and
energy consumption on the target device. As shown in Figure 2,
our methodology does not assume direct closed-form models for
both functions with respect to the neural architectural parameters.
Instead, the problem is treated as a black box optimization one.
This requires that for each sampled architecture, the accuracy loss
and energy consumption should be evaluated to understand better
how they relate to the architectural search parameters x. While
the classification loss is estimated computationally, energy is ob-
tained through measuring power and execution time directly from
the target device. However, as the two objectives are conflicting
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in nature, improving on one objective will negatively impact the
other. Therefore, the outcome of this problem would have to be a
set of Pareto optimal architectures X* which dominate all other
explored architectures but not each other. Formally in a minimiza-
tion context, a point x is said to dominate x” if for every objective
function f, fi(x) < fr(x’)Vk and at least one inequality is strict.

To solve this problem, we exploit MOBO [15] for our black-box
optimization problem. Bayesian optimization methods provide effi-
cient design space exploration in order to sample the most promis-
ing candidates that meet the minimization requirements of the
objective functions. This is extremely useful when the search space
is large and when evaluating an objective function is costly (like
computing the loss function in our case). In this problem, once an ar-
chitecture is sampled from the search space, the objective functions
are evaluated to determine whether this candidate architecture
should belong to the optimal set or not. Also, with each evaluation,
the search strategy is updated to find better architectures in the
following iterations.

3.2 Binary Convolutional Neural Network

Our search space is inspired by the BCNN architecture proposed
in [14]. Their aim was to design an efficient CNN that can fit into
wearable devices with limited memory while conserving energy
resources. To achieve this, the model weights are limited only to
+1 or -1. Moreover, only a binary activation function is used to
clamp the inputs to either +1 or -1 as introduced in the binarized
neural networks [6]. This binary representation of weights achieves
32x memory efficiency compared to the standard floating-point
representation. Although the weights are in binary, temporaries
generated between convolutional layers are still represented in
floating-point. They require a lot of working memory resources
which can still present an issue for wearable devices. To handle this,
the computation order of inference in a binarized neural network
has been modified following the work in [12]. Unlike in the tradi-
tional order, the resulting temporaries after the convolution layer
are not stored in memory. Alternatively, they are directly passed
to the pooling layer followed by batch normalization and binary
activation layers. This makes the models not only memory efficient
but also energy efficient because of the faster and less complex bi-
nary operations. Figure 3 shows the modified order of computation
in one BCNN block for processing heartbeat segments.

3.3 Multi-Objective Bayesian Optimization

Given previous evaluations for each of the k objective functions
fr(x), the goal is to find samples that provide more information
about the Pareto optimal set X*. MOBO serves this purpose by
performing a sequential design space exploration where each ob-
jective function is replaced by a surrogate, cheaper to evaluate,
probabilistic Gaussian Process (GP) model. Let Dy, = { (x4, Yi)} 1L,
represent the set of all the queried points up to iteration n; where
for each step i, x; represents the sampled architecture at iteration
i and Y; represents its corresponding vector of k real evaluated
values from the k objective functions. It is assumed that for each
function fi (x), evaluations fi, := Y7.,[k] are jointly Gaussian with
mean m and co-variance K, ie., fi|x1.n ~ N(m, K). This means
each GP model at iteration n represents a distribution over all the
possible functions of fi (x) based on the data collected so far. This
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Table 1: Ranges of the Architectural Search Parameters.

l Parameter [ Search Parameters Ranges ‘
# BCNN blocks [1-3]
# filters [2-5], [2-5], [2-5]

[10-120], [10-70], [5-20]
[1-2], [1-2], [1-2]
[2-3], [2-3], [2-3]

Conv. layer kernel length

Conv. layer kernel stride
Pool. layer kernel length

distribution is known as the posterior, and it represents the current
belief about the shape of functions that most likely fit Dy,.

The next sample from the search space is selected using an ac-
quisition function &(x). The merit in using $(x) is that, unlike
the k objective functions, it is analytically available, making it
much cheaper to evaluate than any f}. (x). Hence for each iteration
n, $,(x) is constructed using one of the k GP models to iden-
tify which point should be queried next. The GP model selected
to construct 3, (x) is chosen based on the improvement poten-
tial with regard to that specific objective function. Once the GP
model is chosen, 3, (x) is formulated to yield high values where
the uncertainty of the probabilistic model is high (exploration), and
around where the GP has had the best evaluations (exploitation).
Then, the sample that maximizes &, (x) is selected to be the next
query point x,41. In the following iteration n + 1, the objective
functions are evaluated yielding Y,41. Given this new data pair
and the previous ones, the GP models are updated using the new
dataset Dy+1 = Dp U (xp+1, Yne1). MOBO proceeds with this
select-evaluate-update loop until the final iteration N is reached,
and the Pareto set at that iteration is rendered as the final solution.

~——— BCNN Block
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Segment § . H Mer:or
[ -0.0047870707 3w . % Y
%E; -0.0019705263 2= i = +1/-1
- ; 5|8 2%
5 ----- . 2 Gl 2 Stored in
¥ 0.051342 Binary

Figure 3: Processing heartbeat segments through the layers
of the BCNN block and the final result is stored in binary.

4 EXPERIMENTAL SETUP

The multi-objective Bayesian optimization is built on top of Drag-
onfly [10]. We use Thompson sampling [? ] for our acquisition
function. Wrapper scripts are implemented around the objective
functions to automate the selected models’ generation, training,
and deployment onto the target board. The details are provided
below:

4.1 Training Process

Lead 11 ECG dataset from PTB diagnostic ECG database [4] is used
for training and testing the models during and after the search pro-
cess. It contains data for 200 subjects where 148 subjects suffer from
MI, and the remaining 52 are normal. Out of the obtained heartbeat
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segments, 44214 segments are classified as MI while 6157 are nor-
mal. Since the number of MI segments are 7% the number of normal
ones, we ensure proper training by dividing the segments into 7
groups. Each group will always contain all the normal segments
combined with around 6316 MI segments. Then for each group, a
10 fold cross-validation is performed. In this scheme, each group
is divided into 10 folds where for each fold, a unique 10% of that
group’s segments are used for testing while the remaining 90% are
for training and validation. Each model selected during the search
process is trained for 20 epochs with Adam optimizer, a learning
rate of 0.007, and softmax cross-entropy as the loss function. For
each group, the model’s performance is averaged across all folds.
Finally, the model’s overall performance is estimated as the average
across the entire 10 fold cross-validations in all groups.

4.2 Target Device

Our proposed design methodology targets low-power medical wear-
able devices like SmartCardia INYU [19]. This device was used by
the related works in [16, 17]. It is equipped with an ultra-low-power
Microcontroller STM32L151 running on an ARM Cortex-M3 with a
maximum clock frequency of 32 MHz. The device also has a 48 KB
RAM, 384 KB of Flash memory, and 710 mAh battery. The device
also possess an ECG sensor to retrieve ECG signals through a single
lead. For our experiments, we utilize both a desktop machine with
a GeForce RTX 2070 SUPER and an EFM32 Leopard Gecko [2] as
the low-power target device. The Bayesian search and the accu-
racy estimation procedures are performed on the desktop machine.
Then to retrieve the relative hardware measurements, the model
is converted into its corresponding C code implementation and
automatically flashed onto the EFM32 board.

The EFM32 Leopard Gecko development board has been chosen
for our experiments as it runs on the same ARM Cortex-M3 as
SmartCardia INYU and has similar specifications. Estimating the
energy consumption from hardware measurements can be detailed
as follows: First, the execution time for a single inference of an
ECG segment is calculated once the cycle count per inference is
retrieved. After that, the target device is reset. Then, the average
power over the calculated execution time for a single inference is
measured. Finally, the energy consumption per inference can be
computed directly by multiplying both the average power and the
execution time.

5 RESULTS AND DISCUSSION
5.1 Experiments

We have performed multiple experiments to assess the effective-
ness of MOBO within this problem context, as shown in Figure
4. The first experiment incorporated conducting MOBO over a
BCNN-inspired search space. The chosen architectural search pa-
rameters are defined in Table 1, and their ranges are shown. Multiple
ranges indicate the respective range of values for each consecu-
tive BCNN block in an architecture. For convenience, this exper-
iment was divided into 3 child experiments where for each one,
the number of blocks was fixed as either one, two, or three to
manage the dependency of the search parameters on the number
of blocks. The search spaces for each child experiment accounted
for 1.78 x 103,1.73 % 10°, and 4.44 x 108 possible architectures,
respectively. Each child experiment was run for 200 iterations, and
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Figure 4: Results from our experiments. Sub-figures (a) and (b) show MOBO and normalized-MOBO over 3 reference architec-
tures, respectively. While (c) and (d) compare MOBO and random sampling, respectively, over one block reference architecture.
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Figure 5: Analysis of Bitwise MAC Operations Count, En-
ergy Consumption and Error for the Binary Based Models.

their combined results are shown in Figure 4a. The evolution of
the combined Pareto frontier over 50, 100 and 200 iterations from
each child experiment is shown. Two observations can be made
here. The first is that MOBO tends to explore more around models
that minimize energy consumption because the potential for im-
provement with respect to energy is greater than that with respect
to error. The second observation is about how the single block ar-
chitecture models dominate those from the other two architectures
with respect to both objective functions.

Based on the first observation, the second experiment is de-
signed to allow biasing the search in favor of one objective func-
tion over the other. Hence, rather than just directly using the real
function evaluations, we add the option to normalize those evalua-
tions in the Bayesian search process. This required modifying each
function evaluation at every iteration n from fi,(x) := Yu[k] to
fien(%) = arx gl

maxp—ming
bias constant, minimum, and maximum values of the k*? objective
function, respectively. Since the first experiment was more biased
towards energy, we set o for all objectives to 1 and use the min
and max values from the previous experiment and re-run it. Figure

, where ., miny, and maxj, are the
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Table 2: Models’ Architectural Parameters

l Model [ # filters | Conv. len. | Conv. str. | Pool. len.
BCNN [14] 3 100 2 3
a 4 117 1 2
b 3 55 2 2
c 4 13 2 2
d 2 11 2 2

4b shows that the sampled architectures are more spread out than
those in Figure 4a, indicating that MOBO has become more neutral
in its search with respect to both objective functions.

The final experiment was to assess the effectiveness of the Bayesian
search in terms of design space exploration. Based on the second ob-
servation from the first experiment, we re-run that non-normalized
experiment twice but only for the one-block architecture. Bayesian
search is used for the first run while the second employs random
sampling. Figures 4c and 4d show their respective results. It can
be observed that the Bayesian approach is much more systematic
in its search to minimize the objective functions. This is evident
through the rapid convergence of the Pareto frontier in the Bayesian
experiment, as it is almost the same after 100 and 200 iterations.

5.2 Final Benchmarking

The four models pointed out in Figures 4b and 4c are the ones we use
for our final benchmarking. Their architectural search parameters
values are presented in Table 2. Regarding their memory footprint,
our models a, b, ¢, and d use up around 19.33, 19.12, 19.17, and
19.05 KB of flash and 3.69, 3.54, 3.63, and 3.52 KB of RAM, respec-
tively. This indicates that models from our design space comply
with the low memory requirements of medical wearable devices
like SmartCardia INYU. Next, we re-train those models to the full
100 epochs and compare them against the BCNN implementation
in [14]. As shown in Figure 5, as the complexity of the model grows,
so does the number of bitwise Multiply and Accumulate (MAC)
operations. This, in turn, leads to increased energy consumption.
However, as complexity is reduced, the energy savings are signifi-
cant in comparison to the loss in accuracy. For instance, our model
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Table 3: Comparison between Our Models and Previous Works with regard to Performance and Energy Metrics

Accuracy (%) | Sensitivity (%) | Specificity (%) | Avg. Power (mW) | Exec. Time (ms) Energy (m])

[ Model 14MHz | 48 MHz | 14 MHz | 48 MHz | 14 MHz | 48 MHz
SVM [16] 90 - - 14.24 46.92 | 13049.14 | 430328 | 185.82 | 201.91
RF [17] 83.26 87.95 78.82 14.34 46.98 13278.69 | 4378.69 | 190.42 205.71
BCNN [14] 90.29 90.41 90.16 14.52 46.71 893.14 279.86 12.97 13.07
Model a 91.22 91.57 90.86 14.47 47.07 2477.77 | 846.39 35.85 39.84
Model b 89.63 90.01 89.24 14.63 46.97 553.68 176.74 8.10 8.30
Model ¢ 88.26 87.27 89.27 15.30 47.08 235.2 80.54 3.60 3.79
Model d 86.92 85.91 87.96 15.31 47.14 104.30 36.23 1.57 1.71

d incurs 1.04X more detection error than the BCNN, yet it is 8.26X REFERENCES

more energy efficient.

Finally, we benchmark our retrained models against the SVM
[16], RF [17], and BCNN [14] works. We compare their performance
in terms of accuracy, sensitivity, and specificity metrics. Addition-
ally, we also re-implement these works on the EFM32 board to
ensure consistency of the energy consumption estimation across
them all. However, it should be noted that although we report the
best performance values for the SVM and RF, we only implement
their first level classifiers for the energy-related evaluations. This
is justifiable since the first level classifiers are the most efficient in
terms of the execution time and energy consumption. The energy-
related readings are measured at 14 MHz (default) and 48 MHz
(maximum) operating frequencies of the EFM32 board for valida-
tion. Table 3 shows all measurements across all performance and
energy metrics. Our Model a achieves the highest scores across
the 3 performance metrics, whereas our remaining models are the
most energy-efficient at the cost of some performance drop.

6 CONCLUSION

Adding intelligence to low-power wearable devices presents a de-
sign conundrum regarding the trade-off between high performance
and energy efficiency. To address this, our proposed methodology
provides a systematic automated design space exploration of effi-
cient neural networks for MI detection on wearable devices. Our
MOBO-based methodology allows for co-optimizing both detec-
tion error and energy consumption on the target device to render
a Pareto optimal set of binarized models, allowing designers to
choose their most suitable architectural design. Also, designers
would be able to bias the search in the design process towards one
objective or the other based on their preferences. To adhere to the
memory limitations, our methodology explores the design space
of variants of the BCNN architecture suitable for deployment on
wearable devices. Experimental evaluation shows that one of our
explored models achieves an accuracy of 91.22%, outperforming
the MI detection state-of-the-art performance on wearable devices.
Other explored models trade off some accuracy to conserve more
energy (as high as 8.26x).
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