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ABSTRACT

Myocardial Infarction (MI) is a heart disease that damages the heart

muscle and requires immediate treatment. Its silent and recurrent

nature necessitates real-time continuous monitoring of patients.

Nowadays, wearable devices are smart enough to perform on-device

processing of heartbeat segments and report any irregularities in

them. However, the small form factor of wearable devices imposes

resource constraints and requires energy-efficient solutions to sat-

isfy them. In this paper, we propose a design methodology to auto-

mate the design space exploration of neural network architectures

for MI detection. This methodology incorporates Neural Architec-

ture Search (NAS) using Multi-Objective Bayesian Optimization

(MOBO) to render Pareto optimal architectural models. These mod-

els minimize both detection error and energy consumption on the

target device. The design space is inspired by Binary Convolutional

Neural Networks (BCNNs) suited for mobile health applications

with limited resources. The models’ performance is validated us-

ing the PTB diagnostic ECG database from PhysioNet. Moreover,

energy-related measurements are directly obtained from the tar-

get device in a typical hardware-in-the-loop fashion. Finally, we

benchmark our models against other related works. One model

exceeds state-of-the-art accuracy on wearable devices (reaching

91.22%), whereas others trade off some accuracy to reduce their

energy consumption (by a factor reaching 8.26×).

CCS CONCEPTS

• Computer systems organization→ Embedded and cyber-

physical systems.
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1 INTRODUCTION

Over the past decade, heart disease has been one of the leading 
causes of death in the United States of America. Heart disease causes
more than 600,000 deaths per year which represent 1 out of every 4
deaths [1]. Myocardial Infarction (MI), also known as a heart attack,
is one of the fatal forms of heart disease. It occurs when the heart 
muscle lacks enough supply of blood and essential nutrients due
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to blocked arteries. The more time that passes without adequate

treatment, the more damage that is done to the heart muscle. MI

is also characterized by a recurrent nature as 25% of Americans

suffering from heart attacks every year have already had a previous

one [1]. Furthermore, one out of every 5 heart attacks is silent. This

means that the victim is unaware of the attack [1].

All this justifies the necessity of continuous monitoring, espe-

cially for people who have already contracted MI. Electrocardio-

grams (ECGs) are capable of detecting heart problems and are used

to monitor the patient’s condition by recording the heart’s electrical

signals. Most of themonitoring takes place in a clinical environment

with heavy medical equipment. However, the need for immediate

treatment and the risks associated with silent heart attacks require

real-time continuous monitoring. Hence, the routine check at the

physician may not be enough to mitigate the consequences of MI

on the patient’s health. For this, medical wearable devices equipped

with ECGmonitoring capabilities are becoming the most prominent

option for real-time monitoring of fatal heart diseases like MI.

The traditional approach requires wearable devices to send raw

data to an intermediary (e.g., smartphone) via Bluetooth [13]. After

that, the data is relayed to a centralized cloud where it is processed

for physicians to keep track of the patient’s health. However, this is

not suitable for wearable devices as they spend a significant portion

of their limited energy on transmitting the raw data. Furthermore,

this data relaying scheme is prone to transmission delays. There-

fore, an alternative approach is to equip the wearable devices with

intelligence to facilitate on-device data processing. Then, only the

final classification label needs to be relayed further. This approach

can be referred to as Edge Computing.

To promote intelligence on wearable devices, machine learning

models have been implemented to classify the patients’ condition.

Yet, these models need to maintain decent performance while meet-

ing the tight energy and memory constraints of wearable devices. In

this regard, improving performance is associated with the increased

complexity of the models which, in turn, implies more memory

utilization and energy consumption. Thus, the problem becomes

how to design models that balance this trade-off, ensuring adequate

performance while operating within constrained devices.

Most of the machine learning models used in MI detection liter-

ature [16, 17] work on the extracted features from ECG segments.

This extra pre-processing stage can dramatically increase the execu-

tion time, and consequentially, energy consumption. In this regard,

Convolutional Neural Networks (CNNs) [11] are better alterna-

tives as they are fast and capable of extracting features through

their inherent convolution process. However, their large size and

working memory requirements may not be satisfied by the resource-

constrained wearable devices. To resolve this, authors in [14] have

designed a Binary Convolutional Neural Network (BCNN) [6] for
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Figure 1: The design flow process using MOBO. The actual function is unknown in reality. Instead, a Gaussian Process (GP)

model is constructed for each objective function and updated each iteration based on the information collected so far.

wearable devices. Their model design is characterized by having

all of the model parameters represented in binary, leading to a sig-

nificant reduction in the model’s memory requirements. Moreover,

they are energy efficient as they only perform binary operations

throughout the network.

In this paper, we propose a methodology to incorporate Neural

Architecture Search (NAS) [7] to co-optimize the design of BC-

NNs for MI detection with regard to accuracy and energy using

Multi-Objective Bayesian Optimization (MOBO). Figure 1 shows

the generalized design flow using our methodology where MOBO

performs a systematic design space exploration of a BCNN-inspired

search space to sample the most efficient models satisfying both

objectives. Each sampled model is trained to estimate its accuracy

before being deployed on the target device to retrieve the related

energy measurements. The Bayesian models are updated each iter-

ation with new data in order to improve the search strategy. Finally,

our methodology renders a set of Pareto optimal neural architec-

tures that represent the most suitable models for deployment on

the target wearable devices. The main contributions of this paper

are summarized as follows:

• Amethodology is proposed to automate the design of BCNNs

for MI detection on wearable devices through co-optimizing

both accuracy and energy using real-hardware target device

measurements.

• To the best of our knowledge, we are the first to propose a

NAS-based design methodology working with time-series

ECG signals.

• The performance of our methodology is validated using PTB

diagnostic ECG database [4] from PhysioNet [9].

• In comparison with the state-of-the-art works for wearable

devices, one of our explored models achieves the highest

accuracy of 91.22% while others achieve up to 8.26× more

energy efficiency.

2 RELATEDWORK

2.1 Single Lead Wearable MI Detection

Many studies have been conducted aiming to achieve high per-

formance on MI detection. However, most of them are targeting

clinical setups or use multiple ECG leads, which are not suited for

wearable devices. Here, we target studies that used only a single

lead ECG signal for MI detection on wearable devices. The authors

in [16] provided a wearable device solution using a Support Vector

Machine (SVM). Their methodology incorporated a two-level clas-

sifier; the first-level classifier was computationally efficient while

the more complex second-level classifier is only invoked when the

first-level one fails to meet the classification confidence threshold.

Features were extracted from the lead 11 ECG signal, and their SVM

classifier achieved a 90% accuracy. In addition, the same authors

proposed in [17] a hierarchical Random Forest (RF) classifier with

multiple levels to achieve even more energy efficiency at the lower

levels. Their 4-level full implementation achieves 83.26% accuracy,

87.95% sensitivity, and 78.82% specificity.

Those works rely heavily on the time-consuming and computa-

tionally expensive feature extraction process from the raw data. To

overcome this, the authors in [3] implemented a 1-D CNN which di-

rectly classifies MI segments. They achieved an accuracy of 93.53%

using lead 2 ECG data. However, their CNN architecture comprised

11 layers requiring a lot of intermediate calculations which would

not suit the working memory limitations of most wearable devices.

The authors in [14] addressed this issue by designing a BCNN

which can operate under strict memory constraints. Their approach

achieved a 90.29% accuracy while maintaining the energy and mem-

ory efficiencies. To the best of our knowledge, their work achieved

the state-of-the-art result for MI detection on low-power wearable

devices. Therefore, this work in [14] will represent the basis for our

proposed methodology’s design space.

2.2 Neural Architecture Search

Recently, NAS has been gaining significant attention as a systematic

approach that can automate the design of neural networks. It aims

to find optimal architectural designs that can outperform the hand-

crafted ones with respect to the design optimization objectives.

In this regard, NAS incorporates a closed-loop cycle of selecting

a single neural architecture each iteration for evaluation. Then

based on these evaluations, the search strategy is updated to find

more suitable neural architectures in the following iterations. NAS

can be attained through various methods including reinforcement

learning, evolutionary algorithms, gradient-based algorithms, or

Bayesian optimization [7].

622



Energy-Aware Design Methodology for Myocardial Infarction Detection on Low-Power Wearable Devices ASPDAC ’21, January 18–21, 2021, Tokyo, Japan

Figure 2: Our proposed energy-aware designmethodology of

neural architectures for MI detection on wearable devices.

In addition, hardware-aware optimization has been gaining in-

terest over the past years. Authors in [18] use power and memory

prediction models in their search process to prevent selecting model

architectures that violate a predefined set of hardware constraints.

Another work in [5] adopts MOBO-based NAS to co-optimize ac-

curacy and energy using direct measurements from the target plat-

forms. While our work is closely related to the one in [5], their

approach does not address the same level of constrained wearable

devices suited for mobile health applications.

The authors in [8] also utilized NAS for the same level of con-

strained devices. They proposed a framework combining NAS and

network pruning to render architectures that can be deployed on

an Arduino Uno (16 MHz clock, 32 KB flash and 2 KB RAM). To

achieve this, their approach involved applying MOBO over a search

space of various architectural parameters with the objective of min-

imizing error, working memory, and the model size for various

image classification tasks. Our methodology is unique not only in

the application context but also in the sense that MOBO is directed

towards minimizing error and energy consumption. Furthermore,

binarized models inspired by [6, 14] are utilized to satisfy the mem-

ory limitations of the target wearable devices.

3 OUR METHODOLOGY

3.1 Overview

The multi-objective optimization problem can be formulated as

𝒎𝒊𝒏𝒙∈𝑿 (𝒆𝒓𝒓𝒐𝒓 (𝒙), 𝒆𝒏𝒆𝒓𝒈𝒚(𝒙)), in which the goal is to find a net-
work architecture parameterized by 𝒙 from the search space 𝑿
that minimizes two objective functions: MI detection error and

energy consumption on the target device. As shown in Figure 2,

our methodology does not assume direct closed-form models for

both functions with respect to the neural architectural parameters.

Instead, the problem is treated as a black box optimization one.

This requires that for each sampled architecture, the accuracy loss

and energy consumption should be evaluated to understand better

how they relate to the architectural search parameters 𝒙 . While
the classification loss is estimated computationally, energy is ob-

tained through measuring power and execution time directly from

the target device. However, as the two objectives are conflicting

in nature, improving on one objective will negatively impact the

other. Therefore, the outcome of this problem would have to be a

set of Pareto optimal architectures 𝑿★ which dominate all other

explored architectures but not each other. Formally in a minimiza-

tion context, a point 𝒙 is said to dominate 𝒙 ′ if for every objective
function 𝒇𝒌 , 𝒇𝒌 (𝒙) ≤ 𝒇𝒌 (𝒙 ′)∀𝒌 and at least one inequality is strict.
To solve this problem, we exploit MOBO [15] for our black-box

optimization problem. Bayesian optimization methods provide effi-

cient design space exploration in order to sample the most promis-

ing candidates that meet the minimization requirements of the

objective functions. This is extremely useful when the search space

is large and when evaluating an objective function is costly (like

computing the loss function in our case). In this problem, once an ar-

chitecture is sampled from the search space, the objective functions

are evaluated to determine whether this candidate architecture

should belong to the optimal set or not. Also, with each evaluation,

the search strategy is updated to find better architectures in the

following iterations.

3.2 Binary Convolutional Neural Network

Our search space is inspired by the BCNN architecture proposed

in [14]. Their aim was to design an efficient CNN that can fit into

wearable devices with limited memory while conserving energy

resources. To achieve this, the model weights are limited only to

+1 or -1. Moreover, only a binary activation function is used to

clamp the inputs to either +1 or -1 as introduced in the binarized

neural networks [6]. This binary representation of weights achieves

32× memory efficiency compared to the standard floating-point
representation. Although the weights are in binary, temporaries

generated between convolutional layers are still represented in

floating-point. They require a lot of working memory resources

which can still present an issue for wearable devices. To handle this,

the computation order of inference in a binarized neural network

has been modified following the work in [12]. Unlike in the tradi-

tional order, the resulting temporaries after the convolution layer

are not stored in memory. Alternatively, they are directly passed

to the pooling layer followed by batch normalization and binary

activation layers. This makes the models not only memory efficient

but also energy efficient because of the faster and less complex bi-

nary operations. Figure 3 shows the modified order of computation

in one BCNN block for processing heartbeat segments.

3.3 Multi-Objective Bayesian Optimization

Given previous evaluations for each of the 𝒌 objective functions
𝒇𝒌 (𝒙), the goal is to find samples that provide more information
about the Pareto optimal set 𝑿★. MOBO serves this purpose by

performing a sequential design space exploration where each ob-

jective function is replaced by a surrogate, cheaper to evaluate,

probabilistic Gaussian Process (GP) model. Let 𝑫𝒏 = {(𝒙 𝒊, 𝒀𝒊)}𝒏𝒊=1
represent the set of all the queried points up to iteration 𝒏; where
for each step 𝒊, 𝒙 𝒊 represents the sampled architecture at iteration
𝒊 and 𝒀𝒊 represents its corresponding vector of 𝒌 real evaluated
values from the 𝒌 objective functions. It is assumed that for each
function 𝒇𝒌 (𝒙), evaluations fk := 𝒀1:𝒏[𝒌] are jointly Gaussian with
mean 𝒎 and co-variance 𝑲 , i.e., fk |𝒙1:𝒏 ∼ 𝑵 (𝒎, 𝑲). This means
each GP model at iteration 𝒏 represents a distribution over all the
possible functions of 𝒇𝒌 (𝒙) based on the data collected so far. This
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Table 1: Ranges of the Architectural Search Parameters.

Parameter Search Parameters Ranges

# BCNN blocks [1-3]

# filters [2-5], [2-5], [2-5]

Conv. layer kernel length [10-120], [10-70], [5-20]

Conv. layer kernel stride [1-2], [1-2], [1-2]

Pool. layer kernel length [2-3], [2-3], [2-3]

distribution is known as the posterior, and it represents the current

belief about the shape of functions that most likely fit 𝑫𝒏 .

The next sample from the search space is selected using an ac-

quisition function 𝝑 (𝒙). The merit in using 𝝑 (𝒙) is that, unlike
the 𝒌 objective functions, it is analytically available, making it
much cheaper to evaluate than any 𝒇𝒌 (𝒙). Hence for each iteration
𝒏, 𝝑𝒏 (𝒙) is constructed using one of the 𝒌 GP models to iden-
tify which point should be queried next. The GP model selected

to construct 𝝑𝒏 (𝒙) is chosen based on the improvement poten-
tial with regard to that specific objective function. Once the GP

model is chosen, 𝝑𝒏 (𝒙) is formulated to yield high values where
the uncertainty of the probabilistic model is high (exploration), and

around where the GP has had the best evaluations (exploitation).

Then, the sample that maximizes 𝝑𝒏 (𝒙) is selected to be the next
query point 𝒙𝒏+1. In the following iteration 𝒏 + 1, the objective
functions are evaluated yielding 𝒀𝒏+1. Given this new data pair
and the previous ones, the GP models are updated using the new

dataset 𝑫𝒏+1 = 𝑫𝒏 ∪ (𝒙𝒏+1, 𝒀𝒏+1). MOBO proceeds with this
select-evaluate-update loop until the final iteration 𝑵 is reached,
and the Pareto set at that iteration is rendered as the final solution.

Figure 3: Processing heartbeat segments through the layers

of the BCNN block and the final result is stored in binary.

4 EXPERIMENTAL SETUP

The multi-objective Bayesian optimization is built on top of Drag-

onfly [10]. We use Thompson sampling [? ] for our acquisition

function. Wrapper scripts are implemented around the objective

functions to automate the selected models’ generation, training,

and deployment onto the target board. The details are provided

below:

4.1 Training Process

Lead 11 ECG dataset from PTB diagnostic ECG database [4] is used

for training and testing the models during and after the search pro-

cess. It contains data for 200 subjects where 148 subjects suffer from

MI, and the remaining 52 are normal. Out of the obtained heartbeat

segments, 44214 segments are classified as MI while 6157 are nor-

mal. Since the number of MI segments are 7× the number of normal
ones, we ensure proper training by dividing the segments into 7

groups. Each group will always contain all the normal segments

combined with around 6316 MI segments. Then for each group, a

10 fold cross-validation is performed. In this scheme, each group

is divided into 10 folds where for each fold, a unique 10% of that

group’s segments are used for testing while the remaining 90% are

for training and validation. Each model selected during the search

process is trained for 20 epochs with Adam optimizer, a learning

rate of 0.007, and softmax cross-entropy as the loss function. For

each group, the model’s performance is averaged across all folds.

Finally, the model’s overall performance is estimated as the average

across the entire 10 fold cross-validations in all groups.

4.2 Target Device

Our proposed designmethodology targets low-power medical wear-

able devices like SmartCardia INYU [19]. This device was used by

the related works in [16, 17]. It is equipped with an ultra-low-power

Microcontroller STM32L151 running on an ARM Cortex-M3 with a

maximum clock frequency of 32 MHz. The device also has a 48 KB

RAM, 384 KB of Flash memory, and 710 mAh battery. The device

also possess an ECG sensor to retrieve ECG signals through a single

lead. For our experiments, we utilize both a desktop machine with

a GeForce RTX 2070 SUPER and an EFM32 Leopard Gecko [2] as

the low-power target device. The Bayesian search and the accu-

racy estimation procedures are performed on the desktop machine.

Then to retrieve the relative hardware measurements, the model

is converted into its corresponding C code implementation and

automatically flashed onto the EFM32 board.

The EFM32 Leopard Gecko development board has been chosen

for our experiments as it runs on the same ARM Cortex-M3 as

SmartCardia INYU and has similar specifications. Estimating the

energy consumption from hardware measurements can be detailed

as follows: First, the execution time for a single inference of an

ECG segment is calculated once the cycle count per inference is

retrieved. After that, the target device is reset. Then, the average

power over the calculated execution time for a single inference is

measured. Finally, the energy consumption per inference can be

computed directly by multiplying both the average power and the

execution time.

5 RESULTS AND DISCUSSION

5.1 Experiments

We have performed multiple experiments to assess the effective-

ness of MOBO within this problem context, as shown in Figure

4. The first experiment incorporated conducting MOBO over a

BCNN-inspired search space. The chosen architectural search pa-

rameters are defined in Table 1, and their ranges are shown.Multiple

ranges indicate the respective range of values for each consecu-

tive BCNN block in an architecture. For convenience, this exper-

iment was divided into 3 child experiments where for each one,

the number of blocks was fixed as either one, two, or three to

manage the dependency of the search parameters on the number

of blocks. The search spaces for each child experiment accounted

for 1.78 × 10
3, 1.73 × 10

6, and 4.44 × 10
8 possible architectures,

respectively. Each child experiment was run for 200 iterations, and
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(a) (b) (c) (d)

Figure 4: Results from our experiments. Sub-figures (a) and (b) show MOBO and normalized-MOBO over 3 reference architec-

tures, respectively.While (c) and (d) compareMOBO and random sampling, respectively, over one block reference architecture.

Figure 5: Analysis of Bitwise MAC Operations Count, En-

ergy Consumption and Error for the Binary Based Models.

their combined results are shown in Figure 4a. The evolution of

the combined Pareto frontier over 50, 100 and 200 iterations from

each child experiment is shown. Two observations can be made

here. The first is that MOBO tends to explore more around models

that minimize energy consumption because the potential for im-

provement with respect to energy is greater than that with respect

to error. The second observation is about how the single block ar-

chitecture models dominate those from the other two architectures

with respect to both objective functions.

Based on the first observation, the second experiment is de-

signed to allow biasing the search in favor of one objective func-

tion over the other. Hence, rather than just directly using the real

function evaluations, we add the option to normalize those evalua-

tions in the Bayesian search process. This required modifying each

function evaluation at every iteration 𝒏 from 𝒇𝒌𝒏 (𝒙) := 𝒀𝒏[𝒌] to
𝒇𝒌𝒏 (𝒙) := 𝜶𝒌× 𝒀𝒏[𝒌]−𝒎𝒊𝒏𝒌

𝒎𝒂𝒙𝒌−𝒎𝒊𝒏𝒌
, where 𝜶𝒌 , 𝒎𝒊𝒏𝒌 , and 𝒎𝒂𝒙𝒌 are the

bias constant, minimum, and maximum values of the 𝒌𝒕𝒉 objective
function, respectively. Since the first experiment was more biased

towards energy, we set 𝜶k for all objectives to 1 and use the min

and max values from the previous experiment and re-run it. Figure

Table 2: Models’ Architectural Parameters

Model # filters Conv. len. Conv. str. Pool. len.

BCNN [14] 3 100 2 3

a 4 117 1 2

b 3 55 2 2

c 4 13 2 2

d 2 11 2 2

4b shows that the sampled architectures are more spread out than

those in Figure 4a, indicating that MOBO has become more neutral

in its search with respect to both objective functions.

The final experimentwas to assess the effectiveness of the Bayesian

search in terms of design space exploration. Based on the second ob-

servation from the first experiment, we re-run that non-normalized

experiment twice but only for the one-block architecture. Bayesian

search is used for the first run while the second employs random

sampling. Figures 4c and 4d show their respective results. It can

be observed that the Bayesian approach is much more systematic

in its search to minimize the objective functions. This is evident

through the rapid convergence of the Pareto frontier in the Bayesian

experiment, as it is almost the same after 100 and 200 iterations.

5.2 Final Benchmarking

The fourmodels pointed out in Figures 4b and 4c are the ones we use

for our final benchmarking. Their architectural search parameters

values are presented in Table 2. Regarding their memory footprint,

ourmodels a, b, c, and d use up around 19.33, 19.12, 19.17, and

19.05 KB of flash and 3.69, 3.54, 3.63, and 3.52 KB of RAM, respec-

tively. This indicates that models from our design space comply

with the low memory requirements of medical wearable devices

like SmartCardia INYU. Next, we re-train those models to the full

100 epochs and compare them against the BCNN implementation

in [14]. As shown in Figure 5, as the complexity of the model grows,

so does the number of bitwise Multiply and Accumulate (MAC)

operations. This, in turn, leads to increased energy consumption.

However, as complexity is reduced, the energy savings are signifi-

cant in comparison to the loss in accuracy. For instance, our model
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Table 3: Comparison between Our Models and Previous Works with regard to Performance and Energy Metrics

Accuracy (%) Sensitivity (%) Specificity (%) Avg. Power (mW) Exec. Time (ms) Energy (mJ)

Model 14 MHz 48 MHz 14 MHz 48 MHz 14 MHz 48 MHz

SVM [16] 90 - - 14.24 46.92 13049.14 4303.28 185.82 201.91

RF [17] 83.26 87.95 78.82 14.34 46.98 13278.69 4378.69 190.42 205.71

BCNN [14] 90.29 90.41 90.16 14.52 46.71 893.14 279.86 12.97 13.07

Model a 91.22 91.57 90.86 14.47 47.07 2477.77 846.39 35.85 39.84

Model b 89.63 90.01 89.24 14.63 46.97 553.68 176.74 8.10 8.30

Model c 88.26 87.27 89.27 15.30 47.08 235.2 80.54 3.60 3.79

Model d 86.92 85.91 87.96 15.31 47.14 104.30 36.23 1.57 1.71

d incurs 1.04×more detection error than the BCNN, yet it is 8.26×
more energy efficient.

Finally, we benchmark our retrained models against the SVM

[16], RF [17], and BCNN [14] works. We compare their performance

in terms of accuracy, sensitivity, and specificity metrics. Addition-

ally, we also re-implement these works on the EFM32 board to

ensure consistency of the energy consumption estimation across

them all. However, it should be noted that although we report the

best performance values for the SVM and RF, we only implement

their first level classifiers for the energy-related evaluations. This

is justifiable since the first level classifiers are the most efficient in

terms of the execution time and energy consumption. The energy-

related readings are measured at 14 MHz (default) and 48 MHz

(maximum) operating frequencies of the EFM32 board for valida-

tion. Table 3 shows all measurements across all performance and

energy metrics. Our Model a achieves the highest scores across

the 3 performance metrics, whereas our remaining models are the

most energy-efficient at the cost of some performance drop.

6 CONCLUSION

Adding intelligence to low-power wearable devices presents a de-

sign conundrum regarding the trade-off between high performance

and energy efficiency. To address this, our proposed methodology

provides a systematic automated design space exploration of effi-

cient neural networks for MI detection on wearable devices. Our

MOBO-based methodology allows for co-optimizing both detec-

tion error and energy consumption on the target device to render

a Pareto optimal set of binarized models, allowing designers to

choose their most suitable architectural design. Also, designers

would be able to bias the search in the design process towards one

objective or the other based on their preferences. To adhere to the

memory limitations, our methodology explores the design space

of variants of the BCNN architecture suitable for deployment on

wearable devices. Experimental evaluation shows that one of our

explored models achieves an accuracy of 91.22%, outperforming

the MI detection state-of-the-art performance on wearable devices.

Other explored models trade off some accuracy to conserve more

energy (as high as 8.26×).
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