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ABSTRACT

Classroom sensing is an important and active area of research with
great potential to improve instruction. Complementing professional
observers — the current best practice — automated pedagogical pro-
fessional development systems can attend every class and capture
fine-grained details of all occupants. One particularly valuable facet
to capture is class gaze behavior. For students, certain gaze patterns
have been shown to correlate with interest in the material, while
for instructors, student-centered gaze patterns have been shown to
increase approachability and immediacy. Unfortunately, prior class-
room gaze-sensing systems have limited accuracy and often require
specialized external or worn sensors. In this work, we developed
a new computer-vision-driven system that powers a 3D “digital
twin” of the classroom and enables whole-class, 6DOF head gaze
vector estimation without instrumenting any of the occupants. We
describe our open source implementation, and results from both
controlled studies and real-world classroom deployments.
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1 INTRODUCTION

Over the past decades, learning science research has identified many
features of successful teacher-student interactions that lead to ben-
eficial outcomes for students such as greater learning, higher self-
efficacy, and increased student voice in the classroom. Yet changing
one’s classroom practice, even with awareness of this research, is
not straightforward. For instance, in universities where we situ-
ate our work, professors are hired and promoted for their domain
expertise, and they typically view themselves as domain experts
and not teaching experts [9]. University faculty typically receive
no training in instruction; instead, they learn how to teach on the
job, often without much support [28].

One solution to support such instructors’ growth is personal-
ized and regular professional development. Today, this is partially
achieved with professional observers, who attend one (or perhaps
a few) lectures to observe and subsequently provide formative feed-
back to instructors. This approach is impossible to scale to every
class and every instructor, and yet grounded, regular feedback on
ones’ current practice is an essential component of learning [14].
Teachers need to routinely reflect on how their practices (mis)align
with effective pedagogy in order to change [30]. In short, the in-
structional feedback loop currently occurs at such large intervals
as to have a negligible impact on the quality of higher education.

In response, researchers are investigating Al-augmented peda-
gogical professional development [3, 21]. Used together with profes-
sionals, such systems could support every instructor, attend every
class, help instructors observe and reflect on trends across semesters,
and capture fine-grained details for all occupants that would be
impossible even with a team of in-situ human observers. There are
several innovations and components required to achieve this vision,
from low-level sensing and secure data storage, all the way to end-
user interfaces providing instructors with actionable feedback, e.g.,
reflection opportunities following class [17, 20, 42, 44]. In this paper,
we put forward the idea of a classroom “digital twin” — a concept
borrowed from the Internet of Things (IoT) research (sometimes
called mirror models or mirror worlds) [19, 25, 32] - which we be-
lieve can serve as an important contextual container for classroom
sensor data, on top of which future end-user applications can be
built.

More formally, digital twins are a dynamic virtual representations
of a physical system, using real-time data to enable understanding,
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Figure 1: Left: Our web-based capture interface that detects ArUco markers and builds an inventory of important items (walls,
whiteboards, etc.). Right: Example digital twin output, also a web-based application. Once a classroom is created, processed

gaze data can be loaded into the scene and replayed.

learning and reasoning [35]. This representation can include every-
thing from the precise dimensions of the space, the temperature of a
room, the speed of the elevators in a building - essentially anything
that can be measured about a physical location and digitized. The
concept is akin to a simulation, but employs authentic sensed data
from actual physical environments. Importantly, it allows this mea-
sured data to be better contextualized in a rich, three-dimensional
scene that can be viewed and manipulated in space and time.

A classroom is a great exemplar of such a complex physical envi-
ronment, which contains objects of various functions (whiteboards,
projection screens, podiums, seats, tables) and occupants in at least
two different roles. There are strong contextual and spatial relation-
ships between these physical elements that can be (re)played out
and analyzed in a digital twin that rows in a database or lines on a
chart cannot so easily provide.

In this work, we digitize classrooms and the people and objects
within them (Figure 1). Then, as a specific proof-of-concept data
source for investigation, we digitize classroom gaze within this
room: a feature made richer by being contextualized in a dynamic
3D scene. Gaze from a particular actor in the scene emanates from
a source location and lands on a target. It changes rapidly over
time and moves dynamically in space. Apart from providing a rich
data source for modeling, gaze also provides psychological signals
of great importance for both studying and improving classroom
teaching.

We are not the first to consider classroom gaze and its utility as a
part of professional development for improving instructor-student
interactions has been well motivated in prior work (discussed in
the next section). However, we are the first to embody it in a 3D
classroom digital twin, and furthermore, our six-degree-of-freedom
(6-DOF) gaze tracking pipeline outperforms prior systems that track
classroom gaze, cutting angular error by roughly half. Together,
these dual advances form the technical contribution of our paper, to
which we add two evaluations: a controlled study and results from
a large-scale deployment in real-world classrooms. We conclude
with avenues for future work, as this is very much an early step
in a much larger trajectory of supporting instructor professional
development via classroom sensing systems.

2 RELATED WORK

We first provide some additional background on digital twins. We
then summarize key work that underscores the pedagogical value
of gaze sensing in classrooms and review other systems that have
captured classroom gaze patterns through a variety of alternative
sensing means.

2.1 Digital Twins

Digital twins are generally considered to have emerged in the early
2000s, in parallel with complementary advances in wireless con-
nectivity and the Internet of Things (IoT) [36, 39]. However, the
concept has much earlier roots, going back at least to the 1960s,
with NASA “twinning” physical systems at ground level to match
those in space. This proved invaluable during the Apollo 13 crisis
where ground-level twins were used to simulate various on-board
events and conditions. Using this, engineers were able to identify
problems, replay events, and gain comprehension of complex in-
terdependencies, all of which informed real-world decisions with
significant consequences.

Since then, digital twins have been proposed for use in many
other complex environments, including factory floors [46], military
vehicles [26] and wildlife sanctuaries [33]. As sensor networks and
ambitions have grown, there are now efforts to twin whole buildings
(e.g. as an approach to increase sustainability), and even countries
to serve a variety of purposes [1]. Information that is proposed to
be twinned includes spatial layouts of objects in the environment,
electrical and other infrastructural maps, sound levels, and features
of occupants in spaces. To the best of our knowledge, this concept
has not yet been applied to classroom environments. However,
other sensing systems, such as using video cameras to capture a
2D classroom scene, have long been a part of teacher professional
development approaches such as video-stimulated recall [24].

2.2 Pedagogical Value of Sensing Gaze

As noted above, we test our concept using the particular classroom
feature of gaze. For decades, education researchers have understood
and investigated the importance of gaze and eye contact in teaching
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(also called the visual focus of attention (VFoA) in the literature [49]).
For example, direct eye contact can increase closeness and rapport
between teachers and students, reducing the psychological distance
that the authority structures of the classroom can impose [4, 6].
Teachers who look at their students are perceived as more interested
and more approachable [34]. The absence of gaze is just as telling,
making the warmest teachers seem cold and distant [5]. A teacher
who rarely looks at a student when talking creates the perception
that she or he is not very interested in that student [13]. Breed et al.
[13] also found that the absence of eye contact between teachers
and university students produces negative feelings about the class.
Thus, the gaze is an important component in the development of
immediacy, a construct that captures this positive sense of warmth
and belonging between interlocutors [7]. In addition to immediacy,
eye contact permits teachers to monitor and regulate their classes
while student gaze can provide a strong signal of attentiveness on
their part to the learning material [5].

Beyond self-reported perceptions, teacher gaze also has a direct
impact on subsequent student behavior. High levels of gaze cause
students to be more attentive to the teacher [13]. Students in high
eye contact availability conditions are more likely to participate
in class than those in low eye contact availability conditions. In a
series of controlled studies, gaze has also been found to increase
recall; students were better able to answer questions from verbal
presentations of information when the speaker looked at them [43].

Importantly, teachers’ abilities in employing effective classroom
behaviors such as gaze are not fixed, but can be changed through
intervention. For instance, receiving visual warnings alerting them
to students not receiving enough eye gaze enabled teachers to
spread their attention more equally among students than teachers
without augmented perception [10].

Taken together, this extensive literature motivates the impor-
tance of gaze in the classroom, from both a research standpoint
as well as motivating the need for professional development ap-
proaches to improve instructors’ pedagogical skills. This provides
a basis for its use as an initial feature of our digital classroom twin.
Further applications are discussed in the Future Work section.

2.3 Prior Classroom Gaze Systems

There has been a plethora of research in the graphics and computer
vision community on gaze estimation. Two main approaches have
been explored. The first is to instrument the wearer with a mobile
eye tracking headset [16, 42, 45]. These devices are very accurate,
but are more invasive (socially, ergonomically and aesthetically)
and require many expensive headsets to track all participants. The
second approach is to instrument the environment with sensors
such as depth cameras [11] and RGB cameras [3, 47]. These ap-
proaches are significantly less accurate compared to their wearable
counterparts (1 vs. 25 degrees of gaze angular error) but offer a
cheap and scalable 6-DOF gaze tracking (3 degrees of freedom of
head rotation - yaw, pitch and roll - and 3 degrees of translation
with respect to the classroom - X, Y and Z). See [15, 27] for an
in-depth survey of gaze estimation systems.

Prior classroom sensing systems have also recognized the utility
of gaze in tracking instructor-student interactions [37, 48], behav-
ior analysis [13] and attention tracking [11] to name a few. As
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they make use of approaches from the gaze literature itself, they
can broadly be categorized based on the sensors’ placement, type,
and fidelity. We compare this prior work in Table 1. Very related
to our approach is Bidwell et al. [11], which makes use of 9 cam-
eras placed across the classroom to capture students’ gaze and
model their attention. However, this system does not track the in-
structor and the hardware setup is comparatively heavyweight. In
contrast, EduSense [3] provides a comparatively lightweight setup
(2 off-the-shelf cameras), but does not capture the 3D classroom
and only captures the 3-DOF gaze (head rotation) of the students
and instructor. Our approach combines the best of both worlds,
providing 6-DOF gaze capture of students and instructors, while
also capturing the 3D scene, all the while making use of only two
cameras.

3 IMPLEMENTATION

Our system is built upon key developments in computer vision
and image processing that we utilize to provide a holistic sensing
system. We now describe the main components of our approach.

3.1 Hardware

In order to run our system, classrooms must be outfitted with two
cameras: one at the front of the room looking towards the students
and another looking at the instructor. While more cameras can
increase the field of view and sensing fidelity, we settled on two
cameras, finding this to be a good balance between deployment
practicality (hardware cost, available Ethernet ports, time to deploy,
etc.) and classroom coverage. We make use of off-the-shelf Lorex
LNE8950AB cameras that have a 112° field of view and cost ~$150
in single-unit retail prices. These use Power over Ethernet (POE)
for power and connectivity, making installation simple and clean.
These cameras are configured in software to transmit data 4K video
at 5 FPS. Our processing backend is an Intel Core 19-7920X CPU
running at 2.90GHz with a GeForce GTX 1080 Ti GPU.

3.2 Digital Twin Capture

First, we have to establish our camera’s intrinsic parameters (e.g.,
focal length, distortion coefficients) using a checkboard pattern
[29]. For this, we use OpenCV’s camera calibration routines [12].
Once calibrated, the intrinsics can be used for all cameras of the
same model. These parameters are later used to correct distortions
like fish-eye and to estimate 3D distances in real-world units.

Our next step is to detect the location of various objects related
to pedagogy in the classroom, which include items such as white-
boards used by the instructor, overhead projection screens, and the
podium. The physical size of the classroom is also important, and
so we also need to get the reference of the walls and floor of the
classroom. To detect these, users place two ArUco [23] markers for
each item on diagonal corners to establish their 6-DOF plane (3D
position and rotation). We provide a library of pre-defined ArUco
markers for different objects, allowing our pipeline to not only
localize walls/objects in space, but also know the category. This
one-time process takes only a few minutes per classroom. Note that
items that have an irregular shape (such as a podium) are approxi-
mated as a rectangular plane (and captured using a single ArUco
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Table 1: Comparison of our system vs. prior work on classroom gaze sensing.

Sensor 3D Classroom 6-DOF Instructor Student Deployed Mean Gaze

Type Capture Gaze Gaze Gaze at scale Error
Thomas et al.[47] RGB Camera X v X v X not reported
Cutumisu et al.[16] Student-Worn Eye Tracker X X X v X 0.5°
Sumer et al. [45] Instructor-Worn Eye Tracker X X v X X not reported
Raca et al. [42] Student-Worn Eye Tracker X X X v X not reported
Bidwell et al. [11] 5 RGB + 4 Depth Cameras v v X v X not reported
Aung et al. [8] Dataset of Youtube Videos X X v v X 38.3°
Ahuja et al. [3] 2 RGB cameras X X v v v 34.6°
Our approach 2 RGB cameras v v v v v 21.3°

marker). We use OpenCV’s [12] ArUco marker detection API to
provide us with each marker’s 3D pose.

We use the marker placed in the center of the classroom floor as
a common origin. Both cameras use this marker to set their own 6-
DOF position. Then, in turn, all other markers seen by the cameras
can be appropriately located and oriented in space, creating a 3D
classroom with walls and objects.

3.3 6-DOF Head Pose Estimation

To infer the direction of gaze, we need to estimate the head pose of
each student and the instructor in the class using the two camera
views. We start by first detecting all of the faces in the scene using
RetinaFace [18], which outputs face bounding boxes. We then run
3DDFA [50] to extract facial landmarks (68 points) that correspond
to features like eyes, nose, mouth, jawline, etc. The output of 3DDFA
is 2D coordinates in the image space of the classroom and 3D
coordinates of landmarks in the object space.

To convert the landmarks from the object coordinate space to
the classroom world space, we need to solve for this translation
and rotation with respect to our classroom origin. We make use
of SolvePnP [22] to find the world position of the 3D face points
by solving for its correspondences to the 2D points. At the end of
this step, we have the 6-DOF head pose - encoding the 3D rotation
(yaw, pitch, and roll) and 3D position - of all the people in the scene.
This gives us a head gaze vector with an origin at the center of each
head. Figure 4 offers an example scene with head gaze plotted as a
3D frustum.

The next step is to distinguish between the instructor and the
students in the scene. We make the assumption that the instructor
is the person that is closest to the podium, whiteboard(s), and/or
projection screen(s). In the future, more advanced techniques might
be employed, including who is standing vs. sitting, who is talking,
and facial recognition. Once we identify the instructor, we then
track them across frames using a standard centroid-based Euclidean-
distance tracker [38].

It is important to reiterate that we estimate the head pose rather
than the eye gaze of students and instructors in the classroom. This
is because even with 4K cameras, there is insufficient resolution
to estimate true eye-gaze even with state-of-the-art techniques at
several meters range. Fortunately, prior research [3, 40, 41] has
shown that head orientation is a good proxy for gaze attention in
classrooms.

3.4 FociEstimation & Heatmaps

To provide semantically useful information about where the stu-
dents and the instructions are actually looking, in the final step we
combine the 3D gaze with the locations of the walls, floor, and the
different objects (projector screen, whiteboard) in the unified 3D
classroom. For the students, we find their point of gaze by finding
the point of intersection between the gaze direction vector and the
3D planes (such as whiteboard, podiums, etc.) in the digital twin.
Upon aggregating these points of gaze over time, we can create a
semantically meaningful gaze dwell map for different objects. Lack
of dwell on items is also a useful metric. By tracking dwell over
time, we can compute percentages of attention (Figure 2, left) and
even derive detailed heatmaps (Figure 2, center).

For instructors, there often does not exist a single plane of focus.
Instructors move around and look at different areas of the class-
room and at different students. We thus find the intersection of
the instructor’s gaze with different student planes (based on the
students’ 3D facial bounding boxes). Note that since the instructor
gaze can intersect with multiple planes (e.g. students sitting behind
one another) it is challenging to positively identify the instructor’s
true gaze target. Instead, we record all possible intersections along
the gaze ray as possible targets and them project this information
down onto a 2D heatmap (accumulated over time), which we render
on the floor of the classroom (Figure 2 right). In the future, we could
rely on cues such as hand gaze or triangulation of active speakers
using microphone arrays to held resolve this 3D ambiguity.

3.5 User Interface

We created two proof-of-concept user interfaces to synthesize and
explore classroom digital twins, and render gaze data that we pro-
cessed (see Figure 1). This was a web app created in javascript using
the three.js [2] library for 3D rendering. In addition to connecting
via a desktop or mobile web browser, we also allow users to enter
classroom digital twins via a VR headset. This allows for highly
embodied exploration of the 3D space and experience different per-
spectives (see Video Figure and Figures 2 and 3). We believe this
new modality could drive new and interesting opportunities for
reflecting on pedagogical practice — an area we hope to explore
in future work. We note that the current instantiation of these in-
terfaces is not yet intended for direct use by instructors (i.e., the
pedagogical value is currently low), and is chiefly meant for illustra-
tive purposes and to aid us with debugging. Our current research is


https://three.js

Classroom Digital Twins with Instrumentation-Free Gaze Tracking

CHI 21, May 8-13, 2021, Yokohama, Japan

Figure 2: Left: Percentage of student gaze across various classroom foci (whiteboards, projector screens, lectern) at the end of a
class session. Center: Heatmaps of students gaze across the same foci. Right: Heatmap of the instructor gaze aggregated across

a class session.

meant as a vehicle and important technical stepping stone to future
applications, which we discuss in Future Work.

3.6 Privacy Preservation

Even though our study was reviewed and approved by our uni-
versity’s IRB, any system that captures images and video from
classrooms naturally evokes potential privacy concerns. Images
and videos of students in classrooms, if stored, can lead to con-
cerns for both students and instructors about being tracked. Left
unaddressed, these concerns could lead to such systems not being
widely adopted by universities. We took these privacy challenges
head-on. In particular, similar to the EduSense system [3], we ad-
dress these privacy challenges by only storing processed data (e.g.
facial landmarks/keypoints, facial bounding boxes, location of walls,
floors, and objects) and discarding the raw video frames immedi-
ately after being processed by our pipeline (in our Video Figure,
we include reference footage for illustration). We believe most of
the concerns around privacy in classrooms pertain to raw data
(audio, images, video) and much less so around processed facial
keypoints (which are not tied to any person). Notably, once we pro-
cess the summarized views, such as the heatmaps of the students
and instructor gaze, we can even discard facial keypoints to further
alleviate privacy concerns.

Figure 3: In additional to conventional web browsers, users
can enter classroom digital twins via a VR headset, and then
move around to replay data from different perspectives, of-
fering an interesting new modality for reflecting on peda-
gogical practice.

4 OPEN SOURCE MODEL AND DATA

To enable other researchers and practitioners to build upon our
system, we have open-sourced the code for our 6-DOF gaze track-
ing module at https://github.com/edusense/edusense. The code
and a sample demo for a classroom digital twin can be found at
https://github.com/edusense/ClassroomDigitial Twins.

5 CONTROLLED STUDY

To assess the geometric accuracy of our classroom digital twins
and the angular accuracy of our gaze tracking pipeline, we devised
a controlled study, which used a series of known targets. This eval-
uation naturally complements our uncontrolled, in-the-wild study
(i-e., real classrooms) discussed later. The latter is more ecologi-
cally valid, but because ground-truth gaze angles are unknown,
it precludes assessing fine-grained metrics such as angular error.
However, taken together, the two studies provide a holistic assess-
ment of our system’s feasibility.

5.1 Procedure

We ran the controlled study in an exemplary classroom to test the
spatial accuracy of our 6-DOF gaze detection modules. To estimate
the gaze accuracy of students we placed 17 AruCo markers in total
across the classroom including 4 markers each on two two writing
boards and two projectors, and one AruCo marker on the podium.
This setup can be seen in Figure 1. We recruited 8 participants (2
female) with a mean age of 26.8 years. We conducted the study
across 6 rounds. In each round, each participant chose one of the
21 different seating locations available in the classroom and then
looked at each of the 17 markers one by one. This resulted in a
total of 6 rounds X 8 participants x 17 gaze targets = 816 trails.
For the instructor study, we recruited 5 participants (1 female)
with a mean age of 24.8 years. 10 AruCo markers were placed to
simulate the position of students in the classrooms. Each participant
changed their position 5 times to simulate different positions for
the instructors resulting in a total of 5 participants X 5 positions 10
gaze targets = 250 trials.

All participants gave written consent to their data and video
being recorded. For each trial, we captured a random representative
video frame and ran our analysis on that. Using this corpus of data
we were able to calculate our angular gaze accuracy for students
and instructors respectively.
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Figure 4: Sample scene from our controlled study with 3D
gaze frustums overlaid in green.

5.2 Results

Given the known 3D locations of the gaze targets (captured via the
AruCo markers), our pipeline can estimate the 6-DOF gaze for each
user and therefore calculate the gaze accuracy in an automated
manner. We found that our gaze estimation module has an average
yaw error of 21.7° (S.D. = 2.6°) and an average pitch error of 20.9°
(S.D. = 5.1°). For students, our yaw and pitch errors were 20.7° and
17.6° respectively. For instructors, our yaw and pitch errors were
24.8° and 31.7° respectively. The larger instructor gaze errors can
be attributed to the fact that the instructors were standing, while
the students were seated. Hence, this resulted in a more oblique
viewpoint and a larger pitch error for this particular classroom.

On average, across all trials and occupants, our system had an
angular gaze error of 21.3°. This compares favorably to prior sys-
tems in Table 1. Aung et al. [8] reports an angular error of 38.3°;
EduSense [3] uses the same number of cameras as our system, and
demonstrates a gaze error of 34.6°. Prior work also did not calcu-
late higher-level semantics, such as dwell times across objects of
interest. The higher accuracy afforded by our system enables us to
explore these fine-grained uses and provides a robust platform for
future researchers to build upon (Figure 2).

6 IN-THE-WILD EVALUATION

In addition to our controlled study, we also ran our system in five
real classrooms (see Figure 1, right and Figure 5), capturing data for
one semester. These classrooms varied in physical size and shape,
as did the number of enrolled students (and thus occupant density).
We used this deployment to not only test our system’s stability
and performance, but also capture data for a real-world evaluation.
Before any video recordings were made, a researcher visited the
class to explain the research project and the types of data collected.
All instructors and all students had to consent to take part in the
research, or the class was dropped from the study.

6.1 Procedure

To generate images for annotations, we first pulled 2400 frames at
random for students and instructors each. We only took frames that
contained at least one person’s face in them for both the student
and instructor views. These images were then annotated for three
tasks, namely: 1) the number of false positive faces detected, 2) the
number of missed faces, and 3) testing the accuracy of our gaze
pipeline for the faces that were correctly detected.

Ahuja, et al.

All images were annotated by a team of privately-hired crowd-
workers who were experienced in body bounding box and face
annotation tasks. All data remained on university-controlled ma-
chines and encrypted over HTTPS. Additionally, all images were
water-marked with overlays and machine annotations to signifi-
cantly deteriorate value to third parties.

For the first task, the workers were asked to mark all the bound-
ing boxes of faces that did not contain a face. These included incor-
rect "ghost” bounding boxes, boxes on the neck and hands of people.
These annotations were used to calculate the false positive rate of
our face detection module in a classroom setting. The next task was
to annotate all the faces that were missed by our model. For this,
the annotators were asked to label all the faces that were visible
(even partially), but missed by our face detection system. The last
task was to help compute the gaze error of our system. Here, the
annotators were shown a face bounding box with a gaze vector
superimposed. For all the faces that were detected correctly, they
were asked to evaluate whether the prediction was correct or not.
An incorrect prediction meant a gaze arrow that was off by more
than 15° in either yaw or pitch. Workers were provided exemplary
images of correct and incorrect gaze detections to calibrate. Work-
ers were also provided a detailed document containing edge cases.
Workers were encouraged to mark images with the T'm not sure’
tag to discourage guessing. Each image was labelled independently
by two crowdworkers.

6.2 Results

We now break down the results for our face detection and gaze
estimation modules across all three tasks listed above. Across our
experiments, our inter-reviewer reliability was 92.54%. In general,
our face detection model had a false positive rate (faces that were
detected incorrectly) of 4.37% (4.04% for students and 4.74% for
instructors respectively). The low discrepancy between student and
instructor frames is due to the common errors occurring in both
cases - such as incorrect detections on chairs or hands. As such
errors are agnostic to student or instructor viewpoints, we see a
common rate of errors for both conditions.

On average, our face detection module missed 4.5% of students
faces and 0.83% of instructor faces. The lower miss rate for instruc-
tors can be chiefly attributed to rare occlusion of the instructor’s
face (in contrast to students, who look down, partially cover their
face with their hands, faces blocked by students in other rows, etc.).

Of the faces that were correctly detected by our model, our gaze
estimation accuracy did not vary much across students and instruc-
tors, having an accuracy of 90.03% and 91.09% respectively. This
suggests that once a face is detected reliably, our gaze estimation
module is reasonably robust to viewpoints and partial faces.

7 LIMITATIONS

While the results of our system look promising, there are several
technical limitations that should be addressed. First is that our
model does not track eye gaze directly, but rather makes use of
head pose as a proxy for gaze. Furthermore, estimating point of
gaze from the gaze vector still has some ambiguity in our system.
A single gaze vector can intersect with multiple planes or objects,
thus having multiple candidate focal points. In such cases, a cone
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Figure 5: Exemplary digital twins (bottom row) of 4 classrooms created from combining the Instructor (top row) and Student

(middle row) views.

of gaze, rather than a point of gaze may make more semantic sense.
Lastly, our algorithm can suffer from occlusion and lack of field of
view for bigger classrooms. As we only make use of two cameras
to digitize whole classrooms, there are some cases wherein the
students do not lie within the field of view of the camera or are
occluded by other students seated in front of them.

Beyond gaze-specific concerns, the concept of digital classroom
twins as an approach to education research and professional de-
velopment also has limitations. For instance, simple capturing of
sensor data is unlikely to suffice in order to make the data of use to
instructors, as noted in our User Interface section. Instead, further
processing likely has to be done. This means such a concept will
need an ecosystem of applications that analyze or format the data
in interpretable ways to make it useful to teachers or researchers,
an area we hope to explore in future work.

8 DISCUSSION AND FUTURE WORK

The work in this paper contributes to a long line of research into
technology to support professional development through replay.
For instance, prior work has used video recall as a stimulus for
teacher professional development (see e.g., [24]), allowing teachers
to watch and reflect on a 2D version of their own practice. Another
promising new approach for professional development that has
been explored recently is the idea of virtual classroom simulations
(see e.g., [31]). Similar to medical or aviation simulations, such
simulations allow participants to test out difficult, rare, or risky
behaviors without taking action in the real world. In this approach
a virtual classroom environment is created with simulated students.
Then, student behaviors, dialog, and other types of interactions can

be programmed into the simulation. Classroom simulations have
been explored particularly with novice or pre-service instructors
who have had little experience in the classroom, allowing them to
practice before they stand in front of a room of skeptical students.

The digital twin approach holds the possibility to combine the
power of these two approaches. The twinned room could be re-
played over time, allowing it to act as a video recall, but in three
dimensions and providing the opportunity to move around in the
space and take alternate perspectives — such as in a virtual reality
interface like that described above. A teacher could therefore really
experience the class from any students’ perspective with greater
immersion than a video can provide. On the other hand, it could
also take on characteristics of a classroom simulation, improved by
seeding that simulation with one’s own data in a model of one’s
very own classroom. This could allow teachers to reflect on and
make new choices stimulated by a moment of their own teaching
rather than hypothetical or invented situations. This approach has
the potential to be much more powerful with greater relevance to
even expert teachers.

The work described in this paper therefore can help to open a
new avenue for the future of professional development systems
using digital twins. While we specifically focus on gaze as a feature
of interest, such a system could enable instructor professional de-
velopment across a range of classroom features. For instance, other
contributing components of teacher immediacy include movement
around the classroom, open and welcoming posture, facial expres-
sions, and more. Introducing audio features of the classroom would
allow for exploration of student and teacher dialog situated in time
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and space (e.g., are the students participating only in the front row
of the class?).

Beyond professional development, this concept is also one that
holds potential for researchers. The ability to automatically detect
a broad range of classroom features like gaze that are now situated
more richly in their 3D context could facilitate the study of many
open questions in the learning sciences.

In our own work, we expect to next develop a teacher-facing
interface for use as a professional development tool as described
above. This will introduce a number of interesting challenges re-
garding the presentation of the digital twin environment, as well
as its integration with other professional development supports
such as trained human observers. We also intend to explore addi-
tional features beyond gaze in our digital twin environment, some
of which are described above.

9 CONCLUSION

In this paper, we introduced the concept of a classroom “digital twin”
to aid in both research and professional development. We describe
our generalizable approach to capturing the physical environment
needed for such a twin, and the sensing of a particular feature of in-
terest: instructor and student gaze. With this sensing approach, we
ran two studies that have demonstrated the accuracy of our system.
The first, a controlled study using known targets, demonstrates
that this system can reduce the error of prior non-worn classroom
gaze systems by roughly half. The second, an in-the-wild study
conducted in multiple and varied classrooms over the course of a
semester, demonstrates the ecological validity of our approach. This
work advances the literature on classroom gaze systems while si-
multaneously opening up new avenues for classroom research and
professional development through digital twins, i.e., high-fidelity
simulation environments that employ real data streams.
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