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Abstract—A digital twin is the virtual replica of a physical
system. Digital twins are useful because they provide models and
data for design, production, operation, diagnostics, and autonomy
of machines and products. Hence, the digital twin has been
projected as the key enabler of the Visions of Industry 4.0.
The digital twin concept has become increasingly sophisticated
and capable over time, enabled by many technologies. In this
paper, we propose the cognitive digital twin as the next stage of
advancement of a digital twin that will help realize the vision
of Industry 4.0. Cognition, which is inspired by advancements
in cognitive science, machine learning, and artificial intelligence,
will enable a digital twin to achieve some critical elements of
cognition, e.g., attention (selective focusing), perception (forming
useful representations of data), memory (encoding and retrieval of
information and knowledge), etc. Our main thesis is that cognitive
digital twins will allow enterprises to creatively, effectively, and
efficiently exploit implicit knowledge drawn from the experience of
existing manufacturing systems and enable the transfer of higher
performance decisions and control and improve the performance
across the enterprise (at scale). Finally, we present open questions
and challenges to realize these capabilities in a digital twin.

Index Terms—Digital Twin, Manufacturing Systems, Cyber-
Physical Manufacturing Systems, Cognitive Systems, Industry 4.0.

I. FUTURE OF MANUFACTURING

Manufacturing has gone through three major transformations

in the past: the industrial revolution in the 18th and 19th

centuries, mass production in the first half of the 20th century,

and information technology-based automation of production

in the second half of the 20th century. We are now at the

early stages of the fourth major transformation. As such,

visions of the future of manufacturing are being developed

across the world under different labels: Industry 4.0, Smart

Manufacturing, connected industries (as part of Society 5.0

in Japan), Made in China 2025, etc. Most of these visions

aspire to bring together wireless (and wired) communications,

smart sensors, cyber-physical systems, internet-of-things [1]–

[3], advanced robotics [4], [5], additive manufacturing, simula-

tion and high-performance computing, advanced data analytics,

machine learning and artificial intelligence, cloud computing,

and cybersecurity [6]. The goal is to achieve personalized, af-

fordable, efficient, resilient, adaptive, and sustainable products

and production across distributed factories and supply chains.

This work was partially supported by the NSF under Grant ECCS-1839429
and CMMI-1739503. The views and conclusions contained in this paper are
those of the authors and should not be interpreted as necessarily representing
the official policies, either expressed or implied, of the funding agency. We
also acknowledge all the students and our collaborators who have contributed
on this paper related projects.

The digital twin technology is a crucial enabler of this

vision [7], [8]. Digital twins of products, processes, and sys-

tems of a manufacturing system have applications in design,

maintenance, planning, and optimization at various scales and

stages. Although the concept of the digital twin is not new,

sophisticated modeling and simulation capabilities, pervasive

deployment of IoT sensors, standards and interoperability

among digital technologies, tools and computing infrastructure,

and availability of large volumes of data from different stages

of the product lifecycle are being leveraged by the digital

twin technologies. These enabling technologies that constitute

increasingly sophisticated and powerful digital twins are illus-

trated in Figure 1.

It is projected that the digital twin concept will impact all

the stages in the product life cycle of a manufacturing system:

product design and optimization, testing, production system

design and operation, supply chain management and control,

prognostics, maintenance, aftermarket services, cybersecurity,

etc. The applications and usages of digital twins are rapidly

evolving and shaping the future of manufacturing. Gartner has

listed the digital twin as one of the top ten technology trends for

2019 and the years to come [9]. According to recent research,

the digital twins’ market size is projected to grow from US$3.1

billion in 2020 to reach US$48.2 billion in value by 2026 [10].

The aerospace and automotive industries are leading in the

use of digital twin technologies. Probably, other manufacturing

sectors will also leverage digital twins [10], [11].

In this paper, we present a new digital twin concept that

can pave the way for realizing the visions mentioned above. In

this spirit, we propose a novel conceptual framework called

cognitive digital twin inspired by the advances in cognitive

science, machine learning, and artificial intelligence in digital

twins and manufacturing. Cognitive digital twins’ develop-

ment is a major challenge that will require novel conceptual

frameworks and algorithmic breakthroughs. We highlight a

cognitive digital twin’s impact on the product design stage

among different product life cycle stages. Moreover, while

presenting several properties of the cognitive digital twin, we

leverage the idea of cyber-physical production systems (CPPS),

which integrate physical production devices and systems with

sensors, communications, and control systems.

The rest of the paper is organized as follows: Section II

introduces digital twin and its role in Industry 4.0; Section

III introduces the concept of a cognitive digital twin; Section

IV highlights some of the impacts of cognitive digital twin

at the design stage of the product lifecycle and the need for

440978-3-9819263-5-4/DATE21/ c©2021 EDAA

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on September 05,2021 at 17:49:50 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 1. Digital Twin in the context of cyber-physical production systems

algorithms and methodologies; Section V highlights several

research challenges to accomplish the vision of cognitive digital

twin; finally, the paper is concluded in Section VI.

II. DIGITAL TWINS AND MANUFACTURING

The term Digital Twin was first used by John Vickers of

the National Aeronautics and Space Administration (NASA) in

2002. It also gave the first formal definition of the digital twin

in 2010 for air vehicles as “an integrated multi-physics, multi-

scale, probabilistic simulation of an as-built vehicle or system

that uses the best available physical models, sensor updates,

fleet history, etc., to mirror the life of its corresponding flying

twin” [12]. The most basic and simplest definition of a digital

twin can be stated as in [13]: “A digital twin has a digital or a

virtual part, a physical part and a connection between them.”

Since its inception, the digital twin concept has evolved and

expanded to various products, processes, and domains. The

digital twins have been proposed for many applications or use

cases such as predicting real-time behavior, monitoring, de-

cision support, planning, production optimization, and control

[14]–[16].

Figure 1 illustrates the digital twin in the context of a

CPPS and the overarching use cases (or functions). The top

part of the figure illustrates the digital twin ecosystem: (i)

major building blocks and constituents of digital twins, namely,

data, models, and algorithms; (ii) capabilities digital twins can

enable, namely, visibility, transparency, predictive capacity and

adaptability; and (iii) the various use cases ranging from design

to autonomy and cooperation and the bottom part of the figure

shows the key enabling technologies. The top-right side of

the figure shows the physical manufacturing system. CPPS

related data (e.g., operational data and maintenance data) are

collected in real-time and provided to the digital twins. Digital

twins send real-time feedback (e.g., decision and control) to the

physical manufacturing system. Therefore, real-time two-way

seamless communication is established between the physical

manufacturing system and the corresponding digital twin.

The use cases of digital twins span the entire life cycle of

a product: product design and optimization, testing, produc-

tion system design and operation, supply chain management

and control, prognostics, maintenance, aftermarket services,

cybersecurity (Fig. 1). For example, the digital twin of a

component or a product can be used to simplify and streamline

the design process by enabling virtual testing of the specifi-

cations to ensure that the product meets the standards (verify)

and the performance requirements (validate) [15]. The digital

twin of a product can be used to detect the early onset of

faults (predictive maintenance), help diagnose the fault, and

provide customized solutions for performance optimization,

maintenance, and compliance [15]. A manufacturing company

can offer new services based on digital twins for optimizing

the performance of the product during operation. Thus, digital

twins provide organizations with opportunities for offering

new products and services. The digital twin of a production

system can be used to optimize the system for throughput

(performance), reduce waste (efficiency), improve quality [15].

Digital twins can also enable processes involved in CPPS to be

adaptable and responsive to disruptive events [17].

Fig. 2. Pathway to Industry 4.0

Let us consider the stages in the Industry 4.0 development

path as proposed in [18]: visibility (what is happening), trans-

parency (why is it happening), predictive capacity (what will

happen), and adaptability (how can an autonomous response

be achieved) (see Fig. 2, which is an adaptation of Fig. 3 in

[18]). These stages are key for realizing the visions of Industry

4.0. For example, visibility is key for assessing the shop floor

changes and operating conditions and so adaptability and re-

sponsiveness. This will impact every decision in the production

pipeline. With this ability, the overall system can adapt quickly

and effectively, reducing downtime and costs. Transparency
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Fig. 3. Standard digital twin and cognitive digital twin

and predictive capacity are essential for understanding and

inferring how to respond and directly affect the performance

under changing circumstances. Finally, adaptability enables the

system to respond to a changing situation by itself instead of

a human-in-the-loop making the decisions and self-correcting

its decisions based on feedback. When this happens across

interacting physical processes, the system can achieve seamless

cooperation in how it responds. Digital twins can and will play

a huge role in each of these successive stages in progress in

Industry 4.0.

III. COGNITIVE DIGITAL TWIN

The definition of cognitive digital twin is inspired by major

advances in cognitive science and machine learning and artifi-

cial intelligence. Neisser’s classic definition of cognition [19]

includes “... ... all the processes by which the sensory input

is transformed, reduced, elaborated, stored, recovered and

used ... ...”. Fundamental aspects of cognition include at-

tention (selective focus), perception (forming useful precepts

from raw sensory data), memory (encoding and retrieval of

knowledge), reasoning (drawing inferences from observations,

beliefs, and models), learning (from experiences, observations,

and teachers), problem-solving (achieving goals), knowledge

representation, etc.

The standard view of the digital twin and the conceptual

framework of the cognitive digital twin we propose are depicted

in Fig. 3. The digital twin showed on the left of Fig. 3 is the

standard digital twin, which has a digital part, a corresponding

physical part, and a connection between them. This version of

the digital twin has the ability to learn. The digital twin we

propose is shown on the right of Fig. 3, which in addition

to having the ability to learn, is endowed with the other

elements of cognition such as perception, attention, memory,

reasoning, problem-solving, etc. In the following, we describe

these capabilities in the context of a digital twin.

A. Cognitive Capabilities

1) Perception: in cognitive psychology could be defined as

the organization, identification, and interpretation of sensation

to form a mental representation [20]. We extend this definition

to define perception in cognitive digital twin as the process of

forming useful representations of data related to the physical

twin and its physical environment for further processing. It

is well established that machine learning techniques are less

effective in learning representations of high dimensional and

large data volume [21]. Since CPPS (and IoT) generate multi-

modal, high-dimensional, large volumes of data, we posit that

perception is a key cognitive capability to form useful precepts

upon which further cognitive processing can occur in a digital

twin. Perception in a digital twin will enable visibility in

manufacturing systems.
2) Attention: can be viewed as the allocation of limited

resources or a selection mechanism [22]–[24]. We adopt the

latter view and define attention in a cognitive digital twin as

the process of focusing selectively on a task or a goal or certain

sensory information either by intent or driven by environmental

signals and circumstances. Attention can be perceptual or non-

perceptual and controlled or otherwise (see [22] for a detailed

taxonomy of attention). Attention enables focus on the essential

information from the raw sensor data and memory. So it can

simplify and improve the process of perception and decision

making in a cognitive digital twin. Attention will help monitor

or select a task to focus on, paving the way for autonomy in

manufacturing systems.
3) Memory: we define memory in a cognitive digital twin

adopting the view of memory provided in [25]: is a single

process that reflects a number of different abilities: holding

information briefly while working with it (working memory),

remembering episodes of the physical twin’s life (episodic

memory), and knowledge of facts of the environment and its

interaction with the physical twin (semantic memory), where

remembering includes the steps: encoding information (learn-

ing it, by perceiving it and relating it to past knowledge),

storing it (maintaining it over time), and then retrieving it

(accessing the information when needed). Thus, memory, both

working memory, and the remembered episodes and knowledge

are an essential ingredient for the algorithms complementing

the digital twin to autonomously control the physical processes

related to the various stages of a physical twin because memory

allows the algorithm to remember the context and additionally

allows the digital twin to leverage past knowledge.
4) Reasoning: in cognitive psychology can be broadly de-

fined as the ‘process of drawing meaningful conclusions for in-

forming problem-solving or decision making’ [26]. Reasoning

can be broadly classified under deduction, induction, and proba-

bilistic reasoning [27]. Thinking and reasoning are cornerstones

of human intelligence and so have been extensively studied

in cognitive psychology [26], [28]–[30]. We define reasoning

in cognitive digital twins adopting the definition proposed in

[31]: drawing conclusions consistent with a starting point —

a perception of the physical twin and its environment, a set of

assertions, a memory, or some mixture of them. Thus, reasoning

directly impacts understanding (transparency) and is central to

decision making (autonomy).
5) Problem-solving: we define problem-solving in cognitive

digital twin as the process of finding a solution for a given

problem or achieving a given goal from a starting point. Thus,

problem-solving is central to decision making and autonomy.
6) Learning: we define learning in cognitive digital twin as

the process of transforming experience of the physical twin into

reusable knowledge for a new experience. Hence, learning is

essential for adaptability (or autonomy) and responsiveness of

the physical system that the digital twin represents and becomes

a key ingredient for intelligence in digital twins.
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Fig. 4. Aspects of human cognition and its exemplary realization to the proposed enabling components in Digital Twins

IV. IMPACT OF COGNITIVE DIGITAL TWIN IN THE

PRODUCT DESIGN STAGE

Cognition in digital twins will have a major impact and help

advance the visions of Industry 4.0 [32]–[34]. Due to space

constraints and for ensuring a concrete and sharp focus, we will

now describe how the cognitive digital twin concept can impact

the product design stage. Specifically, we discuss three critical

operations in the design stage which cognition will enable and

enhance: (i) search; (ii) share; and (iii) scale.

Search operation in a cognitive digital twin may be defined as

the process of identifying the appropriate digital twin models of

a manufacturing system by searching over the Internet, just like

the way Google’s search engine works. Share operation may be

defined as passing relevant information gained during the life

cycle of the digital twin of a manufacturing system to a new

digital twin in its early design, development stage, and usage.

Finally, scale operation may be defined as sharing knowledge

across non-overlapping domains. Thus, these operations can

greatly enhance the design stage.

We briefly discuss how cognition will impact these oper-

ations. The search operation cannot function without mem-

ory because memory is the process by which information is

encoded, stored, and retrieved. Perception and attention will

allow the search operation to selectively focus on a set of

appropriate models, which depends on the design requirements.

Problem-solving can further improve the search operation by

enabling it to identify the most suitable digital twin model.

Learning directly influences the share operation of a cognitive

digital twin because it enables transforming the experience

into knowledge reusable by a new digital twin. Reasoning

allows digital twins to conclude existing and new contexts

enabling knowledge sharing at scale (across domain not seen

before). Therefore, reasoning will enhance the scale operation.

Moreover, successful problem-solving in one domain can be

transferred to solve problems in another domain. Figure 4

presents a conceptual mapping of cognitive capabilities pre-

sented in Section III-A to the proposed operations of a cognitive

digital twin.

While humans are naturally capable at searching, sharing,

and scaling, enabling these operations in a cognitive digital

twin is far from trivial. In this paper, we highlight the need

for algorithms and methodologies to convert these abstract

concepts of operations within a cognitive digital twin into

mathematical representations and frameworks that are suitable

for computational processing without giving any particular

solution.

We discuss the state-of-the-art research related to our pre-

sented concept and underlying research challenges to realize

these cognitive operations in a digital twin (search, share, scale)

in the following subsections.

A. Search Operation in a Cognitive Digital Twin

There is a vast amount of information related to manufac-

turing products, processes, and the system available on the

internet. Without search engines like Google, which ranks the

pages (based on more than 200 metrics), it would be impossible

to find the internet’s relevant information. Just like the web

pages, in the future, there may also be a large number of

products digital twins (such as open-source CAD models in the

maker space), and system digital twins (such as aging model)

available on the internet or in the enterprise intranet within a

company or across companies.

Currently, researchers and engineers spend a large amount

of time building a new product, process, or system without

leveraging the knowledge that already exists for a similar or

somewhat closer product, process, or system [35], [36]. For

example, there are resources such as GrabCad [37], which

contains CAD models of many engineering systems, that can

be used as a base design for creating new models. These

CAD models are part of the digital twin of the product that

goes through the manufacturing process to be converted into

the physical twin. Various methods have been proposed for

exploring 3D models (a partial digital twin model defining

the physical twin geometry and manufacturing information).

For example, authors in [38] created a 3D search engine

that utilizes the spherical harmonics descriptor for acquiring

the signature vector and use the Euclidean distance among

these vectors to find a similar polygon model. Authors in [39]

utilized the shape similarity metric on 3D PDF to enable the

discovery of parts and assemblies existing in the company’s

database. Authors in [40] utilized a similarity measure based on

various attributes (such as name, description, etc.) to calculate
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a score for discovering CAD models in repositories. Google

has a search engine [41] dedicated to finding the 3D models

for augmented and virtual reality applications. Although all

these research efforts have been focused on searching and

discovering 3D models, the digital twin models comprise more

than geometry information of the physical twins. We anticipate

new methodologies to search and discover digital twins of

systems, processes, and parts in the future.

B. Share Operation in a Cognitive Digital Twin

Current research in modeling the digital twin is focused on

utilizing the large velocity and resolution of data in creating a

model of the physical system that can perform advanced ana-

lytics and represent the physical twin throughout its lifecycle.

However, most manufacturing systems operate with the human

in the loop and require human inputs constantly for various

purposes (such as quality control, machine maintenance, etc.).

Therefore, human knowledge and experience as input are

potentially valuable to the digital twin model.

The digital twin model built using the sensor system and

architecture may be applicable in another digital twin model.

For example, the digital twin, modeled for a manufacturing

system to predict the built 3D objects’ surface quality, may

be applicable in predicting the geometry variation. A truly

cognitive system should utilize the knowledge gained while

performing one task (such as vibration mode prediction) in an-

other task (for example, failure prediction). Knowledge transfer

among the digital twins is limited to similar, or related domains

[42]. There is a large research gap in flexibility and scalability

of transferring knowledge from one digital twin model to an-

other. In this context, transfer learning concepts may be utilized,

which is not new and has been explored in the machine learning

literature [43]. There have been various approaches explored

(for instance, transfer, feature representation transfer, etc.) to

perform inductively (labeled data available in target domain),

transductive (labeled data available only in source domain), and

unsupervised (labeled data not unavailable in either source or

target domain) transfer learning [44]. These approaches have

been heavily utilized in computer vision models [45] and re-

enforcement learning [46]. An effective transfer learning theory

for cognitive digital twins in the manufacturing system will

break new ground and enable much greater knowledge sharing

and transfer.

C. Scale across Domains in a Cognitive Digital Twin

Recently, there has been a spike in research in the computer

science community for transferring knowledge across domains

[47], [48]. However, transfer learning’s scalability while build-

ing the digital twin models for smart manufacturing systems

is still in infancy. The digital twin research community is in-

terested in knowing how knowledge transfer can be performed

across multiple domains (such as manufacturing systems with

different technology)? The development of effective knowledge

transfer theory across domains in cognitive digital twins in

the manufacturing system will enable very new and exciting

capabilities, e.g., a digital twin model developed to predict

failure may be utilized to model digital twins responsible for

quality maintenance.

V. OPEN RESEARCH CHALLENGES

We presented a few operations searching, sharing, and scal-

ing in Section IV to concretize the abstract and generic concept

of cognition in the digital twin for the design stage of the

manufacturing system. However, these operations are far from

a comprehensive approach to achieving the full potential of

benefits from cognitive digital twins. The research community

has immense opportunities in new contributions on mathemat-

ical representations, algorithms, tools, and methodologies for

developing and using cognitive digital twins. In this context,

we formulate and pose several research questions.

- What are the appropriate mathematical representations

of digital twins that can enable the incorporation of cogni-

tive capabilities? Examples here include differential equations,

discrete-event dynamic systems, logic-based models, graph

models, connectionist network models, etc. How can such

models be used for simulations, state estimation, and control

and decision making?

- How can high-performance computing and numerical sim-

ulation tools be leveraged to enable cognitive capabilities in

digital twins? For example, can numerical simulations (along

with experimental data) create large memory banks that can

be used for interpreting and acting on real-time streaming data

from IoT sensors? Can they be used for real-time response to

changes in the manufacturing system environment?

- How to enable searchability of the digital twin models?

More specifically, how to embed metadata in complex digital

twin models (parts, processes, and systems) so that they can

easily be searched over the internet during the design phase?

- How to enable knowledge sharing capability in digital

twins? This question demands us to rethink the fundamental

design principles for modeling the digital twins leading to a

reformulation: “how do we model manufacturing domain digital

twins (such as for systems, process, and products) so that we

can enable knowledge transfer?” The knowledge transfer in

digital twins will involve passing information gained while

estimating and maintaining the digital twin over its lifetime

to other digital twins in its early development or use stage.

- How do we make the knowledge sharing scalable in digital

twin models? Scaling may fall under the scope of generalizing

knowledge sharing across multiple domains. Scalability is non-

trivial and is a challenge of its own due to the complexity

of cross-domain knowledge sharing. However, the digital twin

models may be capable of sharing knowledge across non-

overlapping domains (for example, across manufacturing sys-

tems utilizing different technologies, between the aging model

and quality prediction model, etc.).

VI. CONCLUSION

We present a novel conceptual framework of a cognitive

digital twin, which is inspired by the advances in cognitive

science, machine learning, and artificial intelligence in the

context of digital twins and Industry 4.0. We envision cognitive

digital twins will impact all the stages of the manufacturing

systems. In the paper, we have particularly highlighted the
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impact of the cognitive digital twin in the product design stage.

We presented three operations (search, share, and scale), where

cognitive capabilities may be incorporated. We believe that

multiple research communities need to collaborate on issues

such as leveraging domain expertise, simulations, algorithms,

methodologies, engineering automation tools, security and pri-

vacy, standards and practices, and business models for sharing

across organizational boundaries and supply chains to fully

realize the potential of cognitive digital twins.
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