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Abstract—If machine failures can be detected preemp-
tively, then maintenance and repairs can be performed
more efficiently, reducing production costs. Many machine
learning techniques for performing early failure detection
using vibration data have been proposed; however, these
methods are often power and data-hungry, susceptible to
noise, and require large amounts of data preprocessing.
Also, training is usually only performed once before infer-
ence, so they do not learn and adapt as the machine ages.
In this article, we propose a method of performing online,
real-time anomaly detection for predictive maintenance us-
ing hierarchical temporal memory (HTM). Inspired by the
human neocortex, HTMs learn and adapt continuously and
are robust to noise. Using the Numenta Anomaly Bench-
mark, we empirically demonstrate that our approach out-
performs state-of-the-art algorithms at preemptively detect-
ing real-world cases of bearing failures and simulated 3-D
printer failures. Our approach achieves an average score of
64.71, surpassing state-of-the-art deep-learning (49.38) and
statistical (61.06) methods.

Index Terms—Anomaly detection, hierarchical temporal
memory (HTM), predictive maintenance (PM), prognostics.

I. INTRODUCTION

PREDICTIVE maintenance (PM) is an emerging new
paradigm in manufacturing where symptoms of machine

degradation are detected before failures occur. It is a major
part of the Industry 4.0 and smart manufacturing vision. Us-
ing sensor readings, process parameters, and other operational
characteristics, PM can help maximize tool life by reducing the
number of unnecessary repairs performed while also reducing
the likelihood of unexpected failures [1]. In the United States
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alone, improper maintenance and the resulting outages cost more
than 60 billion dollars per year [2]. Thus, smart data-driven
paradigms such as PM have the potential to reduce industrial
production costs significantly.

Recently, many statistical, machine learning (ML), and deep
learning (DL) techniques for PM have been proposed. However,
these methods are not without their shortcomings: Statistical
methods require extensive domain knowledge and often do not
generalize well to more complex use cases, while DL and ML
techniques often require large amounts of training data and
are susceptible to increased error as machines age over time.
Furthermore, ML and DL algorithms are highly susceptible to
noise, making them insufficiently robust for industrial settings
without data preprocessing. Due to the high noise level and di-
versity among industrial systems, PM models that do not require
significant preprocessing or domain knowledge are considered
more practical [3].

To overcome these issues, we propose the use of a learning
algorithm inspired by neuroscience called hierarchical tempo-
ral memory (HTM), pioneered by Hawkins and Blakeslee [4].
Using binary sparse distributed representations (SDRs) to rep-
resent data and an architecture incorporating feed-forward, lat-
eral, and feedback connections, HTMs emulate the interactions
between pyramidal neurons in the neocortex. HTMs are online
learning algorithms that require less application-specific tuning,
are robust to noise, and adapt to variations in the data as they
continuously learn. In practice, this means HTMs can efficiently
learn from a single training pass over small training datasets
with little to no hyperparameter tuning. These characteristics
also enable HTMs to learn in near real-time. For these reasons,
they are suitable for practical applications such as detecting early
symptoms of failure in manufacturing equipment. In this work,
we demonstrate the effectiveness of an HTM-based anomaly
detection methodology at detecting these symptoms in roller-
element bearings and 3-D printers.

A. Related Work

We focus on the specific task of PM on roller-element bearings
due to their broad application and utility in manufacturing. We
also evaluate additive manufacturing (AM) as it is a modern
technique that presents unique challenges due to the dynamics
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of 3-D printers. Here, we briefly discuss works related to PM
for roller bearings and additive manufacturing.

Many PM methods use statistical models due to their simplic-
ity and explainability. These approaches rely on extracted time
and frequency domain features. For example, the energy entropy
mean and root mean squared (rms) values of wavelets were used
to diagnose ball bearing faults in [5]. In another example, the
spectral kurtosis (SK) of vibration and current signals was used
to detect and classify the surface roughness of ball bearings
in [6]. Using a particle filter method, Zhang et al. [7] performed
fault detection on bearings similar to those found in helicopter
oil cooler fans.

In addition to statistical methods, ML techniques have been
applied to a wide array of industrial prognosis tasks. One such
method: AutoRegressive integrated moving average (ARIMA),
is one of the most popular techniques for time-series forecasting
and was used to predict failures and identify quality defects in
a slitting machine in [8]. In another approach, Tobon-Mejia et
al. [9] used a mixture of Gaussians HMMs and wavelet packet
decomposition to estimate the remaining useful life (RUL) of
roller-element bearings.

DL methods such as long short-term memory (LSTM) net-
works and convolutional neural networks (CNNs) have also been
used extensively for PM. In one example, Feng et al. [10] used
an LSTM for detecting anomalies in industrial control systems.
Additionally, an RNN-LSTM was used to perform PM on an air
booster compressor motor used in oil and gas equipment in [11].

Due to the increased complexity and relatively late adoption
of AM systems, PM techniques for AM have not been studied
in great detail. Proposed approaches often draw from research
in related applications, such as PM for bearings. For example,
Yoon et al. [12] evaluated the feasibility of AM equipment fault
diagnosis using a piezoelectric strain sensor and an acoustic
sensor. In this article, features such as rms value, kurtosis,
skewness, and crest factor were used to detect faults. DL has also
been used for AM anomaly detection, such as in [13] where a
neural network was used to classify faults in 3-D printer vibration
data.

Despite the proliferation of statistical, ML, and DL ap-
proaches to PM for manufacturing, to the best of our knowledge,
no HTM-based solutions have been proposed. However, the
structural and temporal properties of HTM algorithms allow
them to excel at cross-domain tasks that apply to manufacturing,
such as anomaly detection [14]. Since the core objective of PM
in manufacturing is detecting early symptoms of part failure,
HTMs are a natural candidate for this task. HTMs were shown
to match or surpass neural networks at detecting and classifying
foreign materials on a conveyor belt in a cigarette manufacturing
plant [15]. HTMs have also proven effective at detecting anoma-
lies in crowd movements [16], traffic patterns [17], human vital
signs [18], electrical grids [19], and computer hardware [20].

B. Research Challenges

Overall, PM for manufacturing presents the following key
research challenges:

1) Identifying time-series anomalies in near real-time de-
spite ambient noise.

2) Learning efficiently from small training datasets to im-
prove applicability to practical use cases.

3) Developing a solution that can be generalized to many
heterogeneous manufacturing systems without requiring
extensive domain-specific tuning.

4) Adapting to changes in data statistics (i.e., machine
aging).

Despite the successes achieved by existing methods in the
aforementioned applications, industrial manufacturing systems
are diverse and complex, making it difficult to find solutions
that generalize across applications. Consequently, PM systems
require specialization, which necessitates specialized knowl-
edge and cross-domain skills. This is especially true in the
case of bearing-failure prognosis, as bearing design and life-
time management lies squarely in the mechanical and materials
engineering domains.

It is difficult for any single technique to address all these
research challenges effectively. For example, statistical methods
such as thresholding based on kurtosis or spectral analysis are
highly efficient and real-time capable but require explicitly
defined health indicators and thresholds, which are machine- and
application-specific. Also, stationary methods including rms,
kurtosis, and crest factor are only effective for stationary signals
(signals with time-invariant statistical properties), but bearing
vibration signals are generally cyclostationary (statistical prop-
erties vary cyclically) or nonstationary (statistical properties
change depending on speed and load conditions) [21]. Spectral
kurtosis is applicable to nonstationary and nonperiodic signals
but is sensitive to noise and outliers [22].

Classical ML algorithms such as AR models, support vector
machines, hidden Markov models (HMM), random forests, and
k-Nearest neighbors have been demonstrated for PM in exist-
ing work, but require the extraction of explicit health indica-
tors (features) from data [23]. These algorithms also require
application-specific hyperparameter tuning, data preprocessing
as they have poor noise robustness [3], and regular updates of
model settings as they do not adapt to account for machine ag-
ing [23]. Moreover, both HMM and AR methods are ineffective
on nonstationary signals [21].

In DL algorithms such as neural networks and LSTMs, health
indicators can be learned implicitly by the network. However, a
network trained for one machine cannot generalize to a new
machine without retraining with a large amount of data for
hundreds or thousands of epochs. Larger models may be able
to generalize better, but the complexity of training and opti-
mizing these models increases drastically with size [23]. This
domain-specific training and tuning process can be expensive,
time-consuming, and impractical for real-world use cases. Like
the ML methods, DL algorithms also have poor noise robust-
ness [24] and require high-quality data, or else performance can
suffer significantly [3]. To address this, significant preprocessing
steps are often needed to generate clean data for these models [3].

As stated in Section I-A, HTM-based anomaly detection
methods have demonstrated success in several distinct fields.
However, to the best of our knowledge, no prior work has
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Fig. 1. How Neocortical structures are modeled by HTM. The neocortex is composed of a large number of interconnected pyramidal neurons,
each with proximal (feed-forward), apical (feedback), and distal (lateral) dendrites to connect to other neurons. These relations are modeled in HTM
neurons as feed-forward, feedback, and lateral connections.

comprehensively explored HTM’s ability to model vibration
data or demonstrated its practical value for PM. Overall, all
of these existing methods fall short of addressing one or more
research challenges.

C. Our Novel Contributions

To address these key research challenges and improve on the
PM performance demonstrated by previous works, our article
presents the following contributions:

1) We demonstrate the ability of HTM-based anomaly detec-
tors to detect early symptoms of bearing failure in several
months’ worth of real-world vibration data. We show that
HTM’s can efficiently learn with only a single training
pass.

2) We demonstrate the ability of HTMs to generalize across
applications without much fine-tuning and their ability to
continuously learn and adapt by evaluating their anomaly
detection performance on a second, highly dynamic ap-
plication: 3-D printer vibration data. These characteristics
of HTMs make them more practical for real-world use
cases.

3) We compare the performance of HTM anomaly detec-
tion methods against state-of-the-art anomaly detection
techniques and traditional machine prognosis methods
such as condition-based maintenance. Specifically, we
evaluate each algorithm’s anomaly detection accuracy
and robustness to noise.

4) We demonstrate the efficiency and real-time capability of
HTM-based prognosis by comparing its execution time
with that of the other techniques.

II. BACKGROUND THEORY

A. Hierarchical Temporal Memory

HTM is a sequence learning framework modeled after the
structure of the neocortex in the human brain [4].

The basic unit of HTM is a neuron modeled after those present
in the neocortex [Fig. 1(b)]. These neurons are stacked on top
of one another to form a column like the “cortical column” of
the neocortex. The final HTM is a composition of many such
columns. A single HTM neuron [Fig. 1(c)], is connected to
two types of segments: 1) proximal segments (aggregation of

feed-forward connections from the input) and 2) distal segments
(aggregation of lateral connections from neurons of the other
columns). Each HTM neuron can be in three states: 1) inactive
(the default state), 2) predictive, and 3) active. The predictive
state of a neuron is determined by the activity of the distal
segments, which in turn is determined by the activation state
of the other neurons. A neuron becomes active at any time only
if it was in the predictive state at the previous instant, with an
exception that will be described in Section III-A. When the
sequences of activations are viewed temporally, it is easy to
see that the distal segments provide the temporal context for
activation and thus capture the temporal relations. The column
structure augments this capability of HTM by enabling them
to store multiple such overlapping temporal sequences. Further
details on the HTM-based anomaly detection methodology are
discussed in Section III-A.

B. PM of Roller-Element Bearings

Roller-element bearings perform the critical task of reducing
friction between rotating parts in machinery. Generally, catas-
trophic bearing failures present warning signs such as anoma-
lous vibrations and/or noise. These anomalies can occur due to
environmental factors (moisture or debris entering the bearing)
as well as installation errors (misalignment, excessive loads, or
poor/improper lubrication) [25]. Recently, sensor-based tech-
niques that leverage vibration and temperature data to monitor
bearing health have been proposed. For example, the NASA
Bearing Dataset and the Pronostia Bearing Dataset contain
vibration and temperature data for several bearings which were
run until failure [26], [27]. In both datasets, anomalies in the
vibration and temperature signals increase in size and frequency
as the bearings approach failure, showing a strong correlation
between the sensors’ readings and system state.

C. PM of 3-D Printers

3-D printing is a manufacturing process where a physical ob-
ject is constructed from layers of material in an iterative process.
Fused deposition modeling (FDM) is a standard technique where
melted thermoplastic is extruded through a moving print head
nozzle to build each layer. To ensure precision, stepper motors
control the extrusion rate of the nozzle as well as the X, Y, and
Z-axis movement of the print head. Since the motors, bearings,
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Fig. 2. HTM anomaly detection framework. The time-series input X(t) is encoded into an SDR. This information is passed through a spatial
pooler and a temporal pooler before outputting a prediction Π(tn+1) for the next set of column activations. The prediction error between Π(tn) and
A(tn) and the historical distribution of anomaly scores are used to determine the anomaly likelihood L(tn).

and belts are moving parts, they are prone to wear and must be
regularly maintained to prevent component failures. As shown
in [28], these components leak vibration information that can
be used by PM systems. However, this leaked information is
nonstationary since 3-D printers move on multiple axes and
change direction and speed often, presenting a challenge for
conventional PM methods.

III. METHODOLOGY

A. Anomaly Detection Using Hierarchical Temporal
Memory

The end-to-end framework for the HTM-based detector is
shown in Fig. 2. Our methodology for anomaly detection con-
sists of the following steps. First, the time-series vibration data
X(t) is taken as input and encoded into a sparse distributed
representation (SDR). Next, the SDR is passed through the
spatial pooler. The spatial pooler’s output is fed into the temporal
pooler, which then outputs a prediction for the next activation
Π(tn+1). Simultaneously, the prediction from the previous time
stepΠ(tn) is compared with the column activations in the current
time step A(tn) to give a prediction error value: A high error
value indicates that this activation was not expected and may be
anomalous. Finally, the anomaly detector uses the historical dis-
tribution of anomaly scores to calculate the anomaly likelihood
L(tn) for the current data point based on the prediction error
value; if L(tn) exceeds a set threshold, then X(tn) is flagged as
an anomaly. In the following paragraphs, we describe each of
these components in detail.

1) Encoder: The first stage in processing the input dataX(t)
is the encoder. The encoder converts the incoming data point
X(t) into a SDR. This representation is a vector of binary
values, and it is sparse because only 2% of the bits are activated
for any input. This contrasts with DL methods that store and
learn a dense, distributed representation. Later, we shall describe
the advantages of using a sparse representation. We denote the
output of the encoder by x, a 1 × n vector.

2) Spatial Pooling: The second stage is spatial pooling. The
spatial pooler identifies spatial relations between different re-
gions of the encoder’s output through the proximal connections.
Spatial poolers can also be stacked to identify more complex
relations. The proximal segment of each neuron in a column
is initialized such that each neuron, where the neurons of the
same column share the same proximal segment, is connected

to a large fraction of the inputs (50%). The output of this stage
is also an SDR representing the columns of the HTM that will
be activated in the final output. We denote the spatial pooling
operation mathematically by Ik(.), where the input is the list of
columns ordered in decreasing order of their proximal segment
values, and k indicates the number of columns to be picked for
activation from the top of this list. The number k is typically the
top 2%, so the output representation is sparse. Let yc denote the
activation of the columns andP denote the proximal connections
where P is a binary matrix of size n×N . Then

yc = Ik(xP ). (1)

3) Prediction: The next stage is prediction. The prediction
for the next time step is the predictive state of the HTM at the end
of the current time step. Let the weights of the lateral connections
of the dth distal segment of the ith neuron of jth column beDd

i,j .
We note that only those weights of connections that are above a
certain threshold are considered to be established and the rest are
set to zero. A neuron (i, j) enters the predictive state provided the
sum of activations of at least one of the distal segments exceeds
a certain threshold, θd. Denote the predictive state of a neuron
at time tn by πi,j(tn). We denote the current activation state of
all neurons at time tn by A(tn). We denote the total predictive
state by the matrix Π(t), whose elements are therefore πi,j(tn).
Mathematically, πi,j(tn) is given by

πi,j(tn) =

{
1; if ∃ d s.t. ||Dd

i,j �A(tn)||1 > θd
0; otherwise

(2)

where � denotes the element-wise multiplication operation.
4) Temporal Pooling: The final stage is temporal pooling.

Temporal pooling computes the activation state A(tn) (an
M ×N matrix where M is the number of neurons per mini-
column and N is the number of mini-columns in the layer) of
the HTM, which is also the output of HTM based on a temporal
context. A neuron i is activated provided its column is activated,
i.e., yc(j) = 1, and provided it is in the predictive state, i.e.,
πi,j(tn−1) = 1. The other neurons in this column are inhibited. If
none of the neurons in a column that is active are in the predictive
state, then all the neurons of this column are activated. Here, the
predictive state πi,j(tn−1) from the previous time step is the
temporal context. This temporal context is updated at the end
of this time step as described in the prediction step above. Let
ai,j(t) be the i, jth element ofA(tn) denoting the activation state
of neuron i in column j. Then, the temporal pooling operation

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on September 05,2021 at 17:57:04 UTC from IEEE Xplore.  Restrictions apply. 



7984 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 17, NO. 12, DECEMBER 2021

can be mathematically described as

ai,j(t) =

⎧⎨
⎩

1; if yc(j) = 1 and πi,j(tn−1) = 1
1; yc(j) = 1 and

∑
i πi,j(tn−1) = 0

0; otherwise
. (3)

Fig. 2 shows the different stages of HTM processing in the
context of anomaly detection. After activation, the prediction er-
ror between the prediction from the previous time stepΠ(tn) and
the current activation state A(tn) is computed and passed to the
anomaly likelihood block, which uses the historical distribution
of anomaly scores to determine if X(tn) is a true anomaly.

5) Learning: HTMs use a Hebbian-type learning algorithm
that reinforces the connection weights of the segments that
correctly predict the activation at the next time-step. Each time
step, the weights are re-evaluated as follows. The connection
weights of an activated neuron’s segments that originated from
previously active neurons are increased. The connection weights
from neurons that were not active in the previous time-step are
decreased. Additionally, weights of connections that are wrongly
predicted are also decreased but at a lesser rate, i.e., forgetting
happens at a slower rate than updating. It is this type of learning
that allows HTMs to learn continuously and adapt to changes
over a long term. The learning algorithm is discussed in much
greater detail in [29].

6) On Capacity, Robustness, and Efficiency: Here, we illus-
trate why HTMs are efficient and robust to noise. Let us consider
an HTM with a largen, wheren denotes the size of the encoder’s
output, x, a binary vector. Denote by w the maximum number
of bits that can be one. Typically, w is small relative to n. Given
this, lets define: α := w/n. Here, α is a measure of sparsity and
denotes the fraction of the bits that can be active in the SDR
of size n. An example would be, n = 2048 and w = 4 and so
α ≈ 0.002.

The number of possible unique encodings, Ne that can be
stored in vector x, given n and w, is given by

Ne =

(
n
w

)
=

n!

w!(n− w)!
. (4)

For example, ifn = 2048 andw = 20 thenNe = 1047. Given
Ne, the probability that one SDR x will match another SDR y,
which is randomly picked, is trivially computable

P(x = y) = 1/Ne. (5)

Thus, the probability of a false match is, for all practical pur-
poses, zero. This shows that SDRs can store and recall reliably an
astronomically large number of vectors. Consequently, it follows
that HTMs can store and recall reliably an astronomically large
number of sequences.

We can now relax the requirement and say that two SDRs
are equivalent if θ(< w) or more bits match. In this case, the
matching is allowed an error of up to w − θ bits. Denote by
Ωx(b) the set of sparse vectors (of size n and sparsity α) that
have an overlap of b bits with x. Then, the probability that a false

match will be generated, Pfm, is given by

Pfm =

∑
b≥θ Ωx(b)

Ne
, where Ωx(b) =

(
w
b

)
×
(
n− w
w − b

)
.

(6)
Clearly, the probability of a false match has increased by

allowing an error of up to w − θ. In the same example as above,
if θ = 10, thenw − θ = 10, that is an error up to 50% is allowed.
We find that the probability of a false match is still 1/1013, which
for all practical purposes is zero. This is what gives SDRs and
thereby HTMs robustness to noise.

The sparsity of x allows for sparse computation, which makes
computations with SDRs very efficient. For a representation x of
size n and sparsity α, one does not need to store information on
all the bits. Instead, one can just store the address of the locations
of bits of value one. Then, for an operation like matching, one
just needs to check the value of the bits of the vector y at its
corresponding locations; this is doable almost in constant time.
We can trivially extend this argument to show that the spatial
pooling, prediction, and temporal pooling operations described
above can also be performed very efficiently in HTMs, thus
giving HTMs their computational efficiency. Next, we discuss
our experimental setup for demonstrating the performance of
the HTM-based anomaly detector.

B. Experimental Setup

We evaluate our proposed methodology on real-world bearing
failure and simulated 3-D printer failure datasets. Here, we
discuss details about these datasets and the scoring system used
for evaluation.

1) Bearing Dataset: We used the NASA bearing dataset and
the pronostia bearing dataset [26], [27]. The NASA bearing
dataset contains three tests of bearings run to failure. The pronos-
tia bearing dataset contains vibration snapshots recorded with
three different radial load and rpm settings. The accelerometer
data for Test 2 of the NASA dataset is shown in Fig. 3. In total,
our testing set consists of 40 vibration data files and 191 labeled
anomalies.

2) 3-D Printer Dataset: Our experimental testbed for collect-
ing vibration data from a 3-D printer is shown in Fig. 4. The 3-D
printer uses one stepper motor to control each movement axis
(X, Y, and Z). We placed one accelerometer directly behind each
stepper motor to capture vibration data from prints of various
3-D objects. To the best of our knowledge, no publicly available
3-D printer component-failure datasets exist, and generating
real-world failures would risk damaging our equipment. Thus,
we instead opted to generate synthetic anomalies in the 3-D
printer vibration data.

3-D printer vibration signals are inherently nonstationary,
meaning that their statistical properties vary with time. However,
since printers contain bearings and rotating components with
similar dynamics, they share the same time-series and frequency
domain features as those correlated with bearing health, such as
power spectral density (PSD) [21], [22]. For example, in Fig. 3
it is clear that the overall power of the vibration signal increases
as the bearing nears failure. Intuitively, this same phenomenon
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Fig. 3. Accelerometer data from Test 2 of the NASA dataset [26]. Symptoms of bearing failure can be seen on 2/17 and 2/18 before the bearing’s
outer race failed on 2/19.

Fig. 4. Experimental testbed used to collect vibration data from our
3-D printer. Three accelerometers were placed on the printer in total;
one sensor was placed directly behind each of the printer’s three stepper
motors.

will occur in a 3-D printer as components wear out. Thus,
we synthesized anomalies in the 3-D printer vibration data by
mapping the PSD from our bearing failure data to the 3-D printer
data. This composition enabled us to simulate the magnitude
changes characteristic of bearing and component failures in the
3-D printer while preserving the frequency components unique
to the 3-D printer.

Our PSD mapping algorithm, shown in Algorithm 1, operates
on a sliding window over one bearing vibration file and one 3-D
printer vibration file. For each window t, the following steps are
performed: First, the fast fourier transform (FFT) Xb[t] of the
bearing time-series data b[n] is calculated for a preset frequency
bin-size. Next, the power in each frequency bin is calculated.
Then, we calculate the ratio C between the previous window’s
power value and the current power value in each bin. This ratio is
used to scale the corresponding frequency bin in the FFT of the
3-D printer data FFT (p[t]), yielding an FFT with synthesized
anomalies Xs[t]. Finally, the inverse FFT (IFFT) of Xs[t] is
taken and added to the output at location s[t].

The result after all iterations is a 3-D printer vibration signal
with synthesized anomalies s[n]. Using this mapping algorithm,
we produced a simulated 3-D printer failure dataset containing
15 test cases and 57 hand-labeled anomalies.

3) Anomaly Detectors: To evaluate the performance of
HTMs at PM, we use the following two HTM-based anomaly
detectors in our approach with slightly different temporal mem-
ory implementations, which we denote as HTM [14] and TM-
HTM [30]. To explore the effectiveness of anomaly likelihood
for HTM-based detectors, we evaluated HTM and TM-HTM
with three different anomaly likelihood configurations.

1) No anomaly likelihood: The prediction error of the HTM
was directly used as the anomaly score.

2) Historical distribution (HD): The implementation is de-
scribed in Section III-A.

3) LSTM-based predictor (LP): The HD anomaly likelihood
block was replaced with a 2-layer LSTM predictor trained
to predict normal HTM prediction error values in order
to filter out false positives/noise. The prediction error of
the LSTM was used as the final anomaly score.

We also evaluated baseline and state-of-the-art anomaly de-
tectors including an RNN-based detector configured to use
LSTM cells (denoted as LSTM) [31] (similar to [10], [11]), Win-
dowed Gaussian (based on the tail probability of the distribution
over a sliding window), a threshold-based detector (similar to
condition-based maintenance and [5]), EXPoSE [32], contex-
tual anomaly detector (CAD-OSE) [33], relative entropy [34],
etsy kkyline [35], KNN conformal anomaly detector (KNN-
CAD) [36], bayesian changepoint (BC) [37], random (random
anomaly score), and null (constant anomaly score). All of the
listed algorithms except LSTM were exposed to the training
data once before testing and updated their models as they were
exposed to unseen test data. LSTM was trained for over 1000
epochs on the training data and was tested with the model
settings that resulted in the lowest validation loss. LSTM was
tested offline, meaning that it did not update its model weights
during testing. The LP anomaly likelihood configuration was
also trained in this manner but used the HTM output as its input
data instead.

4) Scoring: To score each algorithm fairly, we rely on the
numenta anomaly benchmark (NAB) [14]. NAB was designed
to fairly benchmark anomaly detection algorithms against one
another. It contains a built-in anomaly scoring algorithm, nor-
malization, and three threshold optimization settings: Standard,
low false positives (Low FP), and low false negatives (Low FN).
NAB takes in datasets with labeled anomalies and produces
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Fig. 5. NAB scoring functionality: Detection scores are assigned ac-
cording to the scoring function. The anomaly detected in this example is
given a score of 0.65.

anomaly windows. These are used to score anomaly detectors on
how precisely they can pinpoint anomalies; early/on-time detec-
tions are rewarded, and very early/late detections are penalized.

The NAB scoring function is as follows: Given an application
profileA = [ATP , AFP , ATN , AFN ] specifying the weights for
each kind of detection, and the position y of the detection relative
to the anomaly window, the scoring function for each detection
is

σA(y) = (ATP −AFP )

(
1

(1 + e5y)
− 1

)
. (7)

These scores are summed up for all the detections in a file;
the following weighted penalty is deducted for every missed
detection (fd): AFNfd. The summed score is then normalized
to a 0–100 scale where 0 represents equivalent (or worse)
performance to the Null detector, and 100 represents a perfect
anomaly detector. An example of the scoring functionality is
shown in Fig. 5. To provide ground-truth values of anomaly
locations in the dataset, we followed the NAB official anomaly
labeling guide and manually labeled anomalies in each dataset.
The first 15% of each vibration data file was used for training
with the remaining 85% used for testing and scoring.

IV. RESULTS

A. Roller Bearing Anomaly Detection

Table I shows the NAB results for the selected algorithms on
the labeled bearing failure dataset as well as the total running
time of each algorithm. The runtime was recorded over the
complete dataset using a PC with an Intel Core i7-7700 k
processor. As shown in Table I, TM-HTM+HD achieved the
highest anomaly detection score for the Standard and Low FN
profiles while HTM+LP achieved the highest score for the Low
FP profile. TM-HTM+HD scored 67.05, 73.33, and 56.57 for
the Standard, Low FN, and Low FP profiles, respectively. The
approach that scored closest to HTM was Windowed Gaussian,
which achieved scores of 64.70, 70.50, and 57.35 for the same
profiles, respectively. HTM and HTM+LP performed better than
TM-HTM TM-HTM+LP, indicating that TM-HTM’s imple-
mentation only works well with the HD anomaly likelihood
block.

As expected, the statistical methods (windowed Gaussian,
threshold-based, relative entropy) processed the dataset faster

TABLE I
NORMALIZED NAB SCORES FOR ANOMALY DETECTION ON THE BEARING

FAILURE DATASET

TABLE II
NORMALIZED NAB SCORES FOR ANOMALY DETECTION ON THE 3-D

PRINTER DATASET

than the DL, ML, and HTM-based methods, albeit with lower
performance. The HTMs using HD were 1.41x slower than
the HTMs with no anomaly likelihood and 3.76x faster than
the HTMs using LP on average. TM-HTM+HD processed the
dataset 8.3x faster than LSTM.

To evaluate the qualitative performance of each anomaly
detector, we plotted the anomaly scores over time for each
detector for Test 1 of the pronostia bearing dataset and compared
them to the labeled ground truth anomaly windows in Fig. 6.

B. 3-D Printer Anomaly Detection

Table II shows our experimental results for the 3-D printer
dataset. HTM+HD achieved the highest score on the Low FN
profile while LSTM achieved the highest score on the Standard
and Low FP profiles. HTM+HD achieved scores of 63.03, 73.18,
and 42.23 for the Standard, Low FN, and Low FP scoring
profiles, respectively. LSTM scored 64.76, 71.43, and 51.34 at
the same profiles, respectively. On both applications the HTM,
TM-HTM, and TM-HTM+LP detectors performed worse than
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Fig. 6. Anomaly scores for each detector in comparison to the ground
truth anomaly windows for Test 1 of the pronostia bearing dataset.

the HTM+HD, HTM+LP, and TM-HTM+HD detectors. Over-
all, the use of HD anomaly likelihood yielded the best HTM
performance across applications. Each algorithm’s execution
time is consistent with the results shown in Table I.

V. DISCUSSION

A. Overall Performance and Adaptability

Interestingly, algorithms that performed well on the bearing
dataset, such as EXPoSE and Etsy Skyline performed worse on
the 3-D printer dataset. Additionally, algorithms that performed
worse on the bearing dataset, such as LSTM and BC performed
much better on the 3-D printer dataset. Our HTM-based method-
ology using HD anomaly likelihood achieved consistently high
performance on both applications without any hyperparameter
tuning, demonstrating that this configuration can generalize and
adapt to different applications without domain-specific tuning.
This result also suggests that HTMs significantly benefit from
the inclusion of an HD anomaly likelihood block.

Also, HTM+LP was the best performing model on the Low
FP profile for the bearing dataset. However, this performance
was not replicated in the 3-D printer dataset. Similarly, LSTM
beat HTM on the Standard and Low FP profile for the 3-D
printer dataset while performing worse than HTM on the bear-
ing dataset. Hence, our results suggest that LSTMs are highly
data-dependent and need to be re-tuned for every machine and/or
application. Thus, the LSTM approach is time-consuming, ex-
pensive, and impractical for real-world applications.

The benefits of HTM’s continuous learning capability are
clearly shown in Fig. 6: After identifying earlier anomalies, the
HTM-based approaches learn the new baseline for the signal
and can pinpoint the future anomalies despite higher signal
amplitudes. CAD-OSE also appears to learn continuously, but
not as well as the HTMs.

B. Real-Time Detection Capability

In addition to detection accuracy and precision, an optimal PM
system should be able to detect failure symptoms in real-time to
allow adequate time for repairs to be scheduled and performed.

However, part failures are infrequent and generally present
progressive symptoms before failure, so a hard real-time require-
ment for processing raw sensor data may unnecessarily limit
the complexity (and subsequently the performance) of anomaly
detection methods. Thus, we evaluate the anomaly detectors
in the context of “soft real-time,” where we determine if each
detector can process a subsampled data segment before the next
subsampled data segment arrives. For example, 1 s of data can
be recorded each minute as a data segment to reduce data size
while still ensuring that a wide range of vibration frequencies
are captured at frequent intervals.

Both HTM+HD and TM-HTM+HD were able to process the
complete bearing failure dataset in under 100 min; since the
bearing dataset contains several months’ worth of vibration data
and minimal data preprocessing was performed (subsampling
and timestamping), this demonstrates that HTMs can accurately
detect failure symptoms in real-time, meaning that machine op-
erators can be notified of degradation promptly. Other complex
algorithms such as CAD-OSE, KNN-CAD, and EXPoSE had
execution time on the same order of magnitude as HTMs and
are thus also capable of real-time anomaly detection. Although
HTM+LP, TM-HTM+LP, and LSTM took longer to process the
dataset than HTM+HD and TM-HTM+HD, they can still be
considered real-time due to the aforementioned dataset charac-
teristics. However, the significant training time associated with
the LSTM (over 12 hours on our hardware platform) and the
need for application-specific hyperparameter tuning put LSTM
at a disadvantage in terms of applicability to practical use
cases.

C. Tunability, and Robustness to Noise

Fig. 6 clearly shows HTM’s ability to pinpoint anomalies
while remaining robust to noise in the input. This is likely due
to HTMs use of sparse encodings, making it unlikely that bit
errors in the input due to noise will affect the bits corresponding
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to the input pattern, making them robust to noise. From the
figure, it is also clear that the HTM implementations using
anomaly likelihood blocks were more robust to noise outside of
the anomaly windows than the HTM or TM-HTM alone. This
is likely because the anomaly likelihood components filter out
smaller detections to isolate only the most plausible anomalies.
The HTM+HD and TM-HTM+HD detected anomalies earlier
than the other configurations, albeit with slightly more false posi-
tives. The outputs of the different HTMs starkly contrast with the
highly variable anomaly score outputs of Windowed Gaussian,
EXPoSE, KNN-CAD, and BC, among others. These detectors
record high anomaly scores even when there is relatively low
noise in the input, meaning that they will likely suffer from false
positives at higher noise levels.

A detector’s threshold can be tuned to account for higher
noise levels; however, for detectors such as windowed gaus-
sian, which used the maximum detection threshold of 1.0, the
threshold cannot be increased further to reduce its sensitivity. In
contrast, TM-HTM+HD used a threshold of 0.5497 on the stan-
dard profile. Thus, although windowed gaussian outperformed
TM-HTM+HD on the Low FP scoring profile, it lacks tunability
and will likely perform much worse than this HTM configuration
in more noisy environments.

LSTM appears to have good robustness to noise, as shown in
Fig. 6. However, it is clear from the figure that it missed some of
the earlier anomaly windows completely. In the context of PM,
this can mean that an observer will only be warned of degradation
later and will not have much time to organize repairs. Overall, our
methodology demonstrates significant noise-robustness, better
tunability, and the ability to detect early anomalies as well as
larger, late-stage anomalies.

D. Limitations and Future Work

Another related PM problem is RUL estimation. In many
cases, RUL and anomaly detection go hand in hand as part of
a comprehensive PM system. Although we did not evaluate the
performance of HTM at RUL estimation, the core architecture
of HTM is good at sequence prediction and could likely be used
to solve this problem. We leave this for future work.

Another limitation of our work is the use of synthesized 3-D
printer anomalies instead of real-world examples of 3-D printer
failures. Due to resource constraints, we opted not to perform
these experiments and used synthetic failure data instead. The
question of whether HTM’s performance on synthetic anomalies
translates to real-world PM remains an open research problem.

E. Feasibility

The idea of predicting machine failures in advance is not
brand new; many variants of PM systems have already been im-
plemented in real-world manufacturing applications. However,
based on our results, we believe that HTM is a better solution
than current state-of-the-art methods. Our results demonstrate
that HTMs are efficient enough to run on consumer-grade pro-
cessors while learning and adapting continuously. Additionally,
HTMs can be easily installed on existing PM systems as they
only require time-series sensor inputs, which likely already exist

in the system. As shown by our results, the industry-standard
LSTM requires a significant amount of time for training (over
1000 epochs) as well as application-specific tuning. In contrast,
HTMs do not require any application-specific parameter tuning
and are essentially plug-and-play since they only need to be
trained with a single pass on normal sensor data. These character-
istics make HTMs an extremely viable, out-of-the-box solution
for industrial PM.

VI. CONCLUSION

Existing methods for predicting machine failures from sensor
data are limited in their practicality due to shortcomings, in-
cluding poor noise resistance, efficiency, and adaptability. Our
experiments demonstrated that our methodology outperforms
state-of-the-art approaches at detecting anomalies in both bear-
ing and 3-D printer failure data with minimal to no preprocessing
or application-specific tuning. On the Standard scoring profile,
our methodology using HD anomaly likelihood achieved an
average NAB score of 64.71. In comparison, the other top
algorithms: LSTM and Windowed Gaussian, achieved average
scores of 49.38 and 61.06, respectively. Furthermore, our qual-
itative results showed that our methodology was significantly
more noise-resistant than the Windowed Gaussian, KNN-CAD,
EXPoSE, and BC detectors, which we attribute to the use of
SDRs and an anomaly likelihood component. We also demon-
strated that our methodology was real-time capable, with an
execution time on the same order of magnitude as state-of-the-art
methods. Consequently, we conclude that HTM-based anomaly
detection is a novel, practical solution for a wide range of
industrial PM applications.
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