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Abstract

We study the geometry of domains in complete metric measure spaces equipped
with a doubling measure supporting a 1-Poincaré inequality. We propose a notion of
domain with boundary of positive mean curvature and prove that, for such domains,
there is always a solution to the Dirichlet problem for least gradients with continuous
boundary data. Here least gradient is defined as minimizing total variation (in the sense
of BV functions) and boundary conditions are satisfied in the sense that the boundary
trace of the solution exists and agrees with the given boundary data. This extends
the result of Sternberg, Williams and Ziemer [27] to the non-smooth setting. Via
counterexamples we also show that uniqueness of solutions and existence of continuous
solutions can fail, even in the weighted Euclidean setting with Lipschitz weights.

MSC classification (2010): 31E05, 30L99, 51F99, 26A45.

1 Introduction

The work of Giusti [12] showed a close connection between the curvature of the boundary
of a Euclidean domain Ω ⊂ Rn and the existence of a solution to the Dirichlet problem
related to the Plateau problem

div(∇u(1 + |∇u|2)1/2) = H(x, u(x)) for L n-a.e. x ∈ Ω,
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with the graph of u a minimal surface (under the constraint that it has prescribed mean
curvature) in Rn+1. The work of Barozzi and Massari [5] studied a related obstacle prob-
lem for BV energy minimizers, where the obstacle is required to have a certain curvature
condition analogous to that of [27]. While the conditions in [27] only considered domains
whose boundary is of non-negative (or positive) mean curvature, the paper [5] imposed a
more general mean curvature condition on the obstacle M , namely, that if g ∈ L1

loc(Ω) and
M ⊂ Ω, then M is of mean curvature at most g if

P (M,Ω′) ≤ P (F,Ω′) +

ˆ
M\F

g

whenever Ω′ b Ω and F 4M b Ω′. The notion of non-negative mean curvature of ∂Ω (for
Ω whose boundary need not be smooth), as given in [27] is not quite this condition, but is
similar. Following this, the work of [27] showed that the Dirichlet problem related to the
least gradient problem

div
∇u
|∇u|

= 0 in Ω, Tu = f on ∂Ω,

has a solution if and only if ∂Ω has non-negative mean curvature (with respect to the
domain Ω) and ∂Ω is nowhere locally area-minimizing. Here Tu is the trace of u to ∂Ω
(see the next section for its definition and discussion regarding its existence). More general
notions of Dirichlet problem such as minimizing the energy integral

I(u) = ‖Du‖(Ω)

and the energy functional

J(u) = ‖Du‖(Ω) +

ˆ
∂Ω
|Tu− f | dH (1.1)

over all BV functions u on Rn (with u = f on Rn\Ω for the energy I) were studied for more
general Euclidean domains, for example, in [8], see also the discussions in [13, 4, 27, 22].
Should we obtain a BV energy minimizer on Ω with the correct trace f on ∂Ω, then this
solution also minimizes I and J . Until the work of Sternberg, Williams, and Ziemer [27], not
much consideration was given to how the trace of the minimizers fit in with the boundary
data.

The recent development of first order analysis in the metric setting (see [17]) led to
the extension of the theory of BV functions and functions of least gradient in the metric
setting, see [23, 1, 2, 3, 18, 15] for a sample. The papers [15, 19] studied minimizers of the
energy functionals I and J in the metric setting. The goal of the present paper is to study
existence of the strongest possible solutions to the Dirichlet problem in the metric setting,
namely that the solution obtains the correct prescribed trace value on the boundary of the
domain of interest.
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In addition to Euclidean domains as mentioned above, curvature conditions for the
boundary of the domain also show up in the Heisenberg setting. Extending some of the
results regarding the Plateau problem from the Euclidean space (see for example [11, 13])
to the Heisenberg setting, the recent paper [24] studied a related minimization problem in
the Heisenberg setting, and there too it seems curvature of the boundary plays a role. More
specifically, in [24] it is shown that if Ω ⊂ R2n is a bounded Lipschitz domain and ϕ is
a Lipschitz function on ∂Ω that is affine on the parts of the boundary where the domain
is not positively curved, then there is a function u on Ω such that the subgraph of u in
R2n × R, equipped with the Heisenberg metric, is of minimal boundary surface with the
trace of u on ∂Ω equal to ϕ, and furthermore, u is Lipschitz continuous on Ω. The work
of [24] therefore is also concerned with the minimal graph problem rather than the least
gradient problem. Any discussion of the Dirichlet problem for least gradient functions on
domains in the Heisenberg group itself should be governed by curvature of the boundary
of the domain as well.

We propose an analog (Definition 4.1) of the notion of positive mean curvature from the
weak formulation of [27] to the metric setting where the measure is doubling and supports a
1-Poincaré inequality. The main theorem of this paper, Theorem 4.11, will demonstrate the
existence of such a strong solution to the least gradient problem for (globally) continuous
BV boundary data provided the boundary of the domain is of positive mean curvature in
the sense considered here. We will also show in the last section of this paper that outside of
the Euclidean setting, continuity (inside the domain) of the solution and uniqueness of the
solution can fail; indeed, the examples we provide can easily be modified to be a domain
in a Riemannian manifold. We point out that our definition of positive mean curvature of
the boundary is somewhat different from that of [27], see Remark 4.2 below.

The focus of [27] was Lipschitz boundary data; for such data, the authors prove that
the solutions obtained are also Lipschitz (up to the boundary). The examples we provide
here show that even with Lipschitz boundary data, Lipschitz continuity of the solution is
not guaranteed in the general setting (not even in the Riemannian setting). Therefore, we
broaden our scope to the wider class of all globally continuous BV functions as boundary
data. We also show that if Ω satisfies some additional conditions, then it suffices to know
that the boundary datum f is merely a continuous function on the boundary ∂Ω, see
Section 5.

The primary tool developed in the present paper, “stacking pancakes with minimal
boundary surface”, uses the idea that superlevel sets of functions of least gradient are of
minimal boundary surface (in the sense of [18]). In the Euclidean setting, this was first
proven by Bombieri, De Giorgi, and Giusti in [7], and was used in that spirit in the work [27],
which inspired our work presented here. In the metric setting this minimality of the layers,
or superlevel sets, was proven in [15]. While this method of “stacking pancakes” is similar
to the one in [27], the tools available to us in our setting are very limited. In particular, we
do not have the smoothness properties and tangent cones for boundaries of sets of minimal
boundary surfaces, and hence the construction of “pancakes” (superlevel sets) given in [27]
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is not permitted to us. Furthermore, in the Euclidean setting, it is shown in [27] that if two
sets E1, E2 of minimal boundary surface such that E1 ⊂ E2 have intersecting boundaries,
then the two boundaries coincide in a relatively open set, and hence it holds that E1 = E2.
This property is used to show that the function constructed from the “stack of pancakes”
is necessarily continuous, and thus issues of measurability of the constructed function does
not arise in the Euclidean setting of [27]. In the metric setting this property fails (see the
examples constructed in the final section of this paper). Consequently we had to modify
our construction of the solution function from the “stack of pancakes” by considering a
countable sub-stack of pancakes.

2 Notations and definitions in metric setting

We will assume throughout the paper that (X, d, µ) is a complete metric space endowed
with a doubling measure µ that satisfies a 1-Poincaré inequality defined below. We say that
the measure µ is doubling on X if there is a constant CD ≥ 1 such that

0 < µ(B(x, 2r)) ≤ CD µ(B(x, r)) <∞

whenever x ∈ X and r > 0. Here B(x, r) denotes the open ball with center x and radius r.
Given measurable sets E,F ⊂ X, the symbol E @ F will denote that µ(E \ F ) = 0 or, in
other words, χE ≤ χF µ-a.e.

A complete metric space with a doubling measure is proper, that is, closed and bounded
sets are compact. Since X is proper, given an open set Ω ⊂ X we define L1

loc(Ω) to be the
space of functions that are in L1(Ω′) for every Ω′ b Ω, that is, when the closure of Ω′ is a
compact subset of Ω. Other local spaces of functions are defined analogously.

Given a function u : X → R, we say that a non-negative Borel-measurable function g
is an upper gradient of u if

|u(y)− u(x)| ≤
ˆ
γ
g ds (2.1)

whenever γ is a non-constant compact rectifiable curve in X. The endpoints of γ are
denoted by x and y in the above inequality. The inequality should be interpreted to mean
that

´
γ g ds =∞ if at least one of u(x), u(y) is not finite.

We say that X supports a 1-Poincaré inequality if there are positive constants CP , λ
such that  

B
|u− uB| dµ ≤ CP r

 
λB
g dµ

whenever B = B(x, r) is a ball in X and g is an upper gradient of u. Here, uB :=
µ(B)−1

´
B u dµ =:

ffl
B u dµ is the average of u on the ball B, and λB := B(x, λr).

Throughout this paper C will denote a constant whose precise value is not of interest
here and depends solely on CD, CP , λ, and perhaps on the domain Ω. As C stands for
such a generic constant, its value could differ at each occurrence.
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Let Ñ1,1(X) be the class of all L1 functions on X for which there exists an upper
gradient in L1(X). For u ∈ Ñ1,1(X) we define

‖u‖
Ñ1,1(X)

= ‖u‖L1(X) + inf
g
‖g‖L1(X),

where the infimum is taken over all upper gradients g of u. Now, we define an equivalence
relation in Ñ1,1(X) by u ∼ v if and only if ‖u− v‖

Ñ1,1(X)
= 0.

The Newtonian space N1,1(X) is defined as the quotient Ñ1,1(X)/ ∼ and it is equipped
with the norm ‖u‖N1,1(X) = ‖u‖

Ñ1,1(X)
. One can define analogously N1,1(Ω) for an open

set Ω ⊂ X. For more on upper gradients and Newtonian spaces of functions on metric
measure spaces, see [17].

For u ∈ L1
loc(X) the total variation of u is defined by

‖Du‖(X) = inf

{
lim inf
i→∞

ˆ
X
gui dµ : N1,1

loc (X) 3 ui → u in L1
loc(X)

}
,

where gui are upper gradients of ui.
One can define analogously ‖Du‖(Ω) for an open set Ω ⊂ X. If A ⊂ X is an arbitrary

set we define
‖Du‖(A) = inf{‖Du‖(Ω) : Ω ⊃ A,Ω ⊂ X open}.

A function u ∈ L1(X) is in BV(X) (of bounded variation) if ‖Du‖(X) < ∞. For such u,
‖Du‖ is a Radon measure on X, see [23, Theorem 3.4]. A µ-measurable set E ⊂ X is of
finite perimeter if ‖DχE‖(X) <∞. The perimeter of E in Ω is

P (E,Ω) := ‖DχE‖(Ω).

BV energy on open sets is lower semicontinuous with respect to L1-convergence, i.e., if
uk → u in L1

loc(Ω) as k →∞, where Ω ⊂ X is open, then

‖Du‖(Ω) ≤ lim inf
k→∞

‖Duk‖(Ω) . (2.2)

The coarea formula in the metric setting [23, Proposition 4.2] says that if u ∈ L1
loc(Ω) for

an open set Ω, then

‖Du‖(Ω) =

ˆ ∞
−∞

P ({u > t},Ω) dt, (2.3)

If ‖Du‖(Ω) <∞, the above holds with Ω replaced by any Borel set A ⊂ Ω.
Given a set E ⊂ X, its Hausdorff measure of codimension 1 is defined by

H(E) = lim
r→0

inf

{ ∞∑
i=1

µ(B(xi, ri))

ri
: E ⊂

∞⋃
i=1

B(xi, ri), ri ≤ r

}
.
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It is known from [1, Theorem 5.3] and [3, Theorem 4.6] that if E ⊂ X is of finite perimeter,
then for Borel sets A ⊂ X,

1

C
H(A ∩ ∂mE) ≤ P (E,A) ≤ CH(A ∩ ∂mE),

where ∂mE is the measure-theoretic boundary of E, that is, the collection of all points
x ∈ X for which simultaneously

lim sup
r→0+

µ(B(x, r) ∩ E)

µ(B(x, r))
> 0 and lim sup

r→0+

µ(B(x, r) \ E)

µ(B(x, r))
> 0.

Given a bounded domain Ω ⊂ X and a function u ∈ BV(Ω), we say that u has a trace
at a point z ∈ ∂Ω if there is a number Tu(z) ∈ R such that

lim
r→0+

 
B(z,r)∩Ω

|u(x)− Tu(z)| dµ(x) = 0. (2.4)

We know from [20, Theorem 3.4, Theorem 5.5] and [21] that if Ω satisfies all of the following
geometric conditions, then every function in BV(Ω) has a trace H-a.e. on ∂Ω:

1. there is a constant C ≥ 1 such that

µ(B(z, r) ∩ Ω) ≥ µ(B(z, r))

C

whenever z ∈ Ω and 0 < r < 2 diam(Ω);

2. there is a constant C ≥ 1 such that

1

C

µ(B(z, r))

r
≤ H(B(z, r) ∩ ∂Ω) ≤ C µ(B(z, r))

r

whenever z ∈ ∂Ω and 0 < r < 2 diam(Ω);

3. Ω supports a 1-Poincaré inequality.

Furthermore, if Ω satisfies all the above conditions, then the trace class of BV(Ω) is
L1(∂Ω,H).

Definition 2.5. Let Ω ⊂ X be an open set, and let u ∈ BVloc(Ω). We say that u is of
least gradient in Ω if

‖Du‖(V ) ≤ ‖Dv‖(V )

whenever v ∈ BV(Ω) with {x ∈ Ω : u(x) 6= v(x)} ⊂ V b Ω. A set E ⊂ Ω is of minimal
boundary surface in Ω, if χE is of least gradient in Ω.
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Definition 2.6. Let Ω be a nonempty bounded domain in X with µ(X \ Ω) > 0, and let
f ∈ BVloc(X). We say that u ∈ BVloc(X) is a weak solution to the Dirichlet problem for
least gradients in Ω with boundary data f , or simply, weak solution to the Dirichlet problem
with boundary data f , if u = f on X \ Ω and

‖Du‖(Ω) ≤ ‖Dv‖(Ω)

whenever v ∈ BV(X) with v = f on X \ Ω.

Definition 2.7. Let Ω be a nonempty domain inX and f : ∂Ω→ R. We say that a function
u ∈ BV(Ω) is a solution to the Dirichlet problem for least gradients in Ω with boundary data
f , or simply, solution to the Dirichlet problem with boundary data f , if Tu = f H-a.e. on
∂Ω and whenever v ∈ BV(Ω) with Tv = f H-a.e. on ∂Ω we must have

‖Du‖(Ω) ≤ ‖Dv‖(Ω).

Note that solutions and weak solutions to Dirichlet problems on a domain Ω are neces-
sarily of least gradient in Ω.

Given a function u on X and x ∈ X, we define

u∨(x) = ap-lim sup
y→x

u(y) := inf

{
t ∈ R : lim

r→0+

µ(B(x, r) ∩ {u > t})
µ(B(x, r))

= 0

}
,

and
u∧(x) = ap-lim inf

y→x
u(y) := sup

{
t ∈ R : lim

r→0+

µ(B(x, r) ∩ {u < t})
µ(B(x, r))

= 0

}
.

Then, u∨(x) = u∧(x) for µ-a.e. x ∈ X by the Lebesgue differentiation theorem provided
that u ∈ L1

loc(X).
Points x for which u∨(x) = u∧(x) are said to be points of approximate continuity of u.

Let Su be the set of points x at which u is not approximately continuous. For u ∈ BV(X),
the set Su is of σ-finite codimension 1 Hausdorff measure, see [3, Proposition 5.2]. If in
addition u = χE for some E ⊂ X, then Su = ∂mE. By [3, Theorem 5.3], the Radon
measure ‖Du‖ associated with a function u ∈ BV(X) permits the following decomposition:

d‖Du‖ = g dµ+ d‖Dju‖+ d‖Dcu‖, (2.8)

where g dµ with g ∈ L1(X) gives the part of ‖Du‖ that is absolutely continuous with
respect to the underlying measure µ on X, and ‖Dju‖ is the so-called jump-part of u. This
latter measure lives inside Su, and is absolutely continuous with respect to HbSu . The third
measure, ‖Dcu‖, is called the Cantor part of ‖Du‖, and does not charge sets of σ-finite
codimension 1 Hausdorff measure. In the literature, the set Su is called the jump set of u,
see [1, 2, 3].

It was shown in [15] that functions of least gradient, after a modification on a set of
measure zero, are continuous everywhere outside their jump sets.
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3 Preliminary results related to weak solutions

Throughout the rest of this paper, we will assume that X is a complete metric space
equipped with a doubling measure µ supporting a 1-Poincaré inequality, and Ω ⊂ X is a
nonempty bounded domain such that µ(X \ Ω) > 0.

We will need the next lemma for functions of the form f = χF for sets F ⊂ X of finite
perimeter.

Lemma 3.1. For every f ∈ BVloc(X) such that ‖Df‖(X) < ∞ there is a function uf ∈
BVloc(X) that is a weak solution to the Dirichlet problem in Ω with boundary data f .

Proof. Let
I := inf{‖Du‖(Ω) : u ∈ BVloc(X) and u = f on X \ Ω}.

Observe that 0 ≤ I ≤ ‖Df‖(Ω) <∞. Let {uk}∞k=1 be a sequence of functions in BVloc(X)
with uk = f on X \Ω such that ‖Duk‖(Ω)→ I as k →∞. Let B ⊂ X be an open ball that
contains Ω. In particular, we can choose B so that µ(B \ Ω) > 0. Hence, the 1-Poincaré
inequality yields that

ˆ
B
|uk − f | dµ ≤ CB,Ω‖D(uk − f)‖(Ω) ≤ CB,Ω

(
‖Duk‖(Ω) + ‖Df‖(Ω)

)
≤ 3CB,Ω‖Df‖(Ω)

for sufficiently large k. Note that the above holds true without subtracting (uk − f)B
on the left-hand side because uk − f = 0 on B \ Ω, while µ(B \ Ω) is positive, see for
example [18, Lemma 2.2]. Thus, the sequence {uk−f}∞k=1 is bounded in BV(B), and hence
so is {uk}∞k=1. By the 1-Poincaré inequality and the doubling property of µ, the space
BV(B) is compactly embedded in Lq(B) for some q > 1, see for example [14, 17] and [23,
Theorem 3.7]. Therefore, there is a subsequence, also denoted uk, that converges in Lq(B)
and pointwise µ-a.e. in B to a function u0 ∈ BV(B). By the fact that each uk = f on
X \ Ω, we have that u0 = f on B \ Ω, and that the extension of u0 by f to X \B yields a
function in BVloc(X). We denote this extended function by uf .

Finally, note by the lower semicontinuity of BV energy that

‖Duf‖(Ω) + ‖Df‖(B \ Ω) = ‖Duf‖(B) ≤ lim inf
k→∞

‖Duk‖(B) = I + ‖Df‖(B \ Ω),

that is, ‖Duf‖(Ω) ≤ I. Since uf = f on X \ Ω and uf ∈ BVloc(X), it follows that
‖Duf‖(Ω) = I. This completes the proof of the lemma.

In the following lemma, we will see that the Dirichlet problem in Ω with boundary data
χF for some set F ⊂ X of finite perimeter has a weak solution given as a function χE for
some set E ⊂ Ω ∪ F . Such a set E will be called a weak solution set.

8



Lemma 3.2. Let F ⊂ X with P (F,X) <∞. Then, there is a set E ⊂ X with P (E,X) <
∞ such that χE is a weak solution to the Dirichlet problem in Ω with boundary data χF .

Moreover, if uχF is a weak solution to the Dirichlet problem with boundary data χF ,
then we can pick any t0 ∈ (0, 1] and choose E to be the set

Et0 = {x ∈ X : uχF (x) ≥ t0}.

Proof. By Lemma 3.1, there is a weak solution uχF . Note that 0 ≤ uχF ≤ 1 on X by the
maximum principle proven in [15, Theorem 5.1].

For t ∈ (0, 1], let
Et = {x ∈ X : uχF (x) ≥ t}.

We will first show that χEt is a weak solution to the Dirichlet problem in Ω with boundary
data χF for all t ∈ (0, 1] \N for some negligible set N . We will prove that N = ∅ later.

The coarea formula (2.3), together with the fact that P (F,X) <∞, gives that
ˆ 1

0
P (Et, X) dt =

ˆ ∞
−∞

P (Et, X) dt = ‖DuχF ‖(X) ≤ P (F,X) <∞,

whence P (Et, X) < ∞ for L 1-a.e. t ∈ (0, 1]. Moreover, χEt = χF on X \ Ω for every
t ∈ (0, 1]. Since uχF is a weak solution corresponding to the boundary data χF , we have
‖DuχF ‖(Ω) ≤ P (Et,Ω) for every t ∈ (0, 1].

Let N = {t ∈ (0, 1] : ‖DuχF ‖(Ω) < P (Et,Ω)}. Then by the coarea formula,

‖DuχF ‖(Ω) =

ˆ 1

0
P (Et,Ω) dt =

ˆ
(0,1]\N

‖DuχF ‖(Ω) dt+

ˆ
N
P (Et,Ω) dt

= (1−L 1(N))‖DuχF ‖(Ω) +

ˆ
N
P (Et,Ω) dt.

Hence, L 1(N)‖DuχF ‖(Ω) =
´
N P (Et,Ω) dt, which can hold true only if L 1(N) = 0.

We have shown that χEt = χF on X \ Ω and P (Et,Ω) = ‖DuχF ‖(Ω) for every t ∈
(0, 1] \N , where L 1(N) = 0. Therefore, for every t ∈ (0, 1] \N , the function χEt is a weak
solution with boundary data χF , and we may choose E to be the set Et.

Let us now show that N is in fact empty. Indeed, taking an arbitrary t ∈ (0, 1] and
a sequence tk ∈ (0, 1] \ N such that tk ↗ t, we obtain that Et =

⋂
k Etk and hence

|χEtk
− χEt | → 0 in L1(X) as k → ∞. The lower semicontinuity of the BV energy with

respect to the L1-convergence yields that

P (Et,Ω) + P (F,X \ Ω) = P (Et, X)

≤ lim inf
k→∞

P (Etk , X) = lim inf
k→∞

P (Etk ,Ω) + P (F,X \ Ω).

Hence, P (Et,Ω) ≤ ‖DuχF ‖(Ω). In other words, t /∈ N .
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Lemma 3.3. Let F1 ⊂ F2 ⊂ X be sets of finite perimeter in X. Suppose that E1, E2 ⊂ X
are chosen such that χE1 and χE2 are weak solutions to the Dirichlet problem in Ω with
boundary data χF1 and χF2, respectively. Then, χE1∩E2 is a weak solution corresponding to
χF1, while χE1∪E2 is a weak solution corresponding to χF2 .

Proof. From [23, Proposition 4.7(3)], together with the fact that the perimeter measure is
a Borel regular outer measure, we know that

P (E1 ∩ E2,Ω) + P (E1 ∪ E2,Ω) ≤ P (E1,Ω) + P (E2,Ω). (3.4)

If P (E1∩E2,Ω) > P (E1,Ω), then we would have P (E1∪E2,Ω) < P (E2,Ω). However, this
would violate the minimality of P (E2,Ω) among all BV functions that equal χF2 outside
Ω since (E1 ∪ E2) \ Ω = (F1 ∪ F2) \ Ω = F2 \ Ω. Hence, P (E1 ∩ E2,Ω) ≤ P (E1,Ω).
Furthermore, (E1 ∩ E2) \ Ω = (F1 ∩ F2) \ Ω = F1 \ Ω and hence χE1∩E2 is a weak solution
to the Dirichlet problem with boundary data χF1 .

By a similar argument, we can rule out the inequality P (E1 ∪ E2,Ω) > P (E2,Ω) as it
would violate the fact that χE1 is a weak solution for the boundary data χF1 . Therefore,
P (E1 ∪E2,Ω) ≤ P (E2,Ω) and we conclude that χE1∪E2 is a weak solution to the Dirichlet
problem with boundary data χF2 .

Remark 3.5. If F1 ⊂ F2 are as in Lemma 3.3 and if uχF1
and uχF2

are weak solutions
to the Dirichlet problem with boundary data χF1 and χF2 , respectively, then one can use
the coarea formula to prove that min{uχF1

, uχF2
} and max{uχF1

, uχF2
} are weak solutions

corresponding to boundary data χF1 and χF2 , respectively.

Definition 3.6. A (weak) solution χE to the Dirichlet problem with boundary data χF
is called a minimal (weak) solution to the said problem if every (weak) solution χ

Ẽ
corre-

sponding to the data χF satisfies E @ Ẽ, that is, µ(E \ Ẽ) = 0, or alternatively, χE ≤ χ
Ẽ

µ-a.e. in X.

Remark 3.7. It follows from Lemma 3.2 that if uχF is a weak solution and χE is the
minimal weak solution to the Dirichlet problem with boundary data χF , then uχF ≥ 1 a.e.
on E.

Proposition 3.8. Let F ⊂ X be a set of finite perimeter in X. Then, there exists a unique
minimal weak solution χE to the Dirichlet problem in Ω with boundary data χF .

Here, by uniqueness we mean that two minimal weak solutions agree µ-almost every-
where in X.

Proof. Let α = infE µ(E ∩Ω), where the infimum is taken over all sets E such that χE is a
weak solution to the Dirichlet problem. Note that there is at least one such weak solution
by Lemma 3.2. Moreover, α <∞ since µ(Ω) <∞.
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Figure 1: Two weak solutions χE to the Dirichlet problem in Ω with boundary data χF ,
where F is the (closed) region filled with light red color. The figure on the right
shows the minimal weak solution. Each of the arcs of ∂Ω∩∂F and ∂Ω\∂F covers
the angle of π/2. Note also that the restriction χE

∣∣
Ω
is a solution / the minimal

solution.

Let {Ek}∞k=1 be a sequence of sets such that χEk
solves the Dirichlet problem and

µ(Ek ∩ Ω) → α as k → ∞. Let Ẽ1 = E1 and Ẽk+1 = Ek+1 ∩ Ẽk, k = 1, 2, . . .. By
Lemma 3.3, each of the sets Ẽk gives a weak solution with the same boundary data χF .
Moreover, Ẽk+1 ⊂ Ẽk for all k = 1, 2, . . . and µ(Ẽk ∩ Ω)→ α.

Let E =
⋂
k Ẽk. Then, E\Ω =

⋂
k(Ẽk\Ω) = F \Ω. AsX\Ω is open and χE = χF = χ

Ẽk

in X \ Ω, we have

P (E,X \ Ω) = P (F,X \ Ω) = P (Ẽk, X \ Ω) for every k = 1, 2, . . . .

Since |χ
Ẽk
−χE | → 0 in L1(X), the lower semicontinuity of the BV energy (2.2) yields that

P (E,X) <∞ and then also

P (E,Ω) = P (E,X)− P (F,X \ Ω) ≤ lim inf
k→∞

P (Ẽk, X)− P (F,X \ Ω)

= lim inf
k→∞

P (Ẽk,Ω) = inf{‖Du‖(Ω): u = χF in X \ Ω}.

Thus, χE is a weak solution to the Dirichlet problem. If E′ is another weak solution, then,
by Lemma 3.3, so is E ∩ E′, and hence α ≤ µ(E ∩ E′ ∩ Ω) ≤ µ(E ∩ Ω) = α. Therefore,
µ(E \E′) = 0, that is, E is a minimal weak solution. The uniqueness now follows from the
above argument, which yields that µ(E 4 E′) = 0 whenever E′ is another minimal weak
solution.

Lemma 3.9. Let F1 @ F2 ⊂ X be sets of finite perimeter in X. Then, the minimal
weak solutions χE1 and χE2 to the Dirichlet problem in Ω with boundary data χF1 and χF2,
respectively, satisfy E1 @ E2.
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Proof. By replacing F2 with F2 ∪ F1 if necessary (and in doing so, we only modify F2

on a set of measure zero), we may assume that F1 ⊂ F2. Let E1 and E2 be as in the
statement of the lemma. By Lemma 3.3, E1 ∩ E2 gives a weak solution to the Dirichlet
problem with boundary data χF1 . Uniqueness of the minimal weak solutions implies that
µ(E1 \ E2) = µ(E1 \ (E1 ∩ E2)) = 0.

We will see in Proposition 4.9 that for domains with boundary of positive mean cur-
vature, there is no need to distinguish between solutions and weak solutions for boundary
data χF . Hence, in such domains, there exists a unique minimal solution, and furthermore,
the minimal solutions exhibit the same nesting property for nested boundary data as in
Lemma 3.9.

It is, in fact, also possible to define a maximal (weak) solution χE to the Dirichlet
problem in Ω with boundary data χF by requiring that µ(Ẽ \E) = 0 for every other (weak)
solution χ

Ẽ
of the said problem. For instance, the set E on the left in Figure 1 gives the

maximal (weak) solution.

4 Domains in metric spaces with boundary of positive mean
curvature

In this section we propose a notion of positive mean curvature of the boundary of a domain
Ω in the metric measure space X, and study the Dirichlet problem for such domains. As
explained in the introduction, solutions to Dirichlet problem in the sense of Definition 2.7
might not always exist. Given an open set F ⊂ X that intersects ∂Ω, let uχF denote a
generic weak solution to the Dirichlet problem with boundary data χF . It is not necessarily
true that TuχF = χF H-a.e. on ∂Ω. The classic example is that of a square. If Ω =
[0, 1]× [0, 1] ⊂ R2, and if F is the disk centered at (1/2, 0) with radius 1/10, then there is
no function u of least gradient in Ω with trace χF on ∂Ω. Notice that the boundary of the
square does not have positive mean curvature.

In the definition of positive mean curvature below (Definition 4.1), we tacitly require
that for each z ∈ ∂Ω and almost all 0 < r < r0, the function uχB(z,r)

exists. This is not
an onerous assumption, as seen from Lemma 3.1 and the fact that given x ∈ X, the ball
B(x, r) has finite perimeter in X for almost every r > 0. This latter fact follows from the
coarea formula (2.3).

The main question addressed in this paper is the following.

Question. If Ω has a boundary ∂Ω with positive mean curvature (in the sense of Defini-
tion 4.1 below), is it true that for every Lipschitz function f : ∂Ω → R, there exists an
extension of least gradient u : Ω→ R such that f is the trace of u, that is,

lim
r→0

 
B(z,r)∩Ω

|u− f(z)|dµ = 0
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for H-almost every z ∈ ∂Ω? In other words, does there exist a solution to the Dirichlet
problem in the sense of Definition 2.7 with boundary data f? If such solutions exist, can
we guarantee that they will be continuous and unique?

We will show that indeed solutions do exist, and by counterexamples we give a negative
answer to the continuity and uniqueness questions.

The hypothesis of positive mean curvature of the boundary seems appropriate in view
of the results of [27] in the Euclidean setting, where existence, continuity and uniqueness
of solutions was proven for bounded Lipschitz domains Ω ⊂ Rn provided that:

(1) ∂Ω has non-negative mean curvature (in a weak sense),
(2) ∂Ω is not locally area-minimizing.

Moreover, if ∂Ω is smooth, then these two conditions together are equivalent to the fact
that the mean curvature of ∂Ω is positive on a dense subset of ∂Ω.

To talk about traces of solutions as referred to above, we need to know that such traces
exist. It is not difficult to construct Euclidean domains and BV functions on the Euclidean
domains that fail to have a trace on the boundary of the domain. In the metric setting
(which also includes the Euclidean setting), it was shown in [20] that there exist traces
of BV functions, as defined in (2.4), on the boundary of bounded domains satisfying the
conditions listed on page 6 of the present paper. In this paper, we do not need to know
that every BV function on the domain of interest has a trace on the boundary. We are only
interested in knowing whether the weak solutions we construct have the correct trace.

Definition 4.1. Given a domain Ω ⊂ X, we say that the boundary ∂Ω has positive mean
curvature if there exists a non-decreasing function ϕ : (0,∞) → (0,∞) and a constant
r0 > 0 such that for all z ∈ ∂Ω and all 0 < r < r0 with P (B(z, r), X) < ∞ we have that
u∨χB(z,r)

≥ 1 everywhere on B(z, ϕ(r)). Since the weak solution uχB(z,r)
need not be unique,

the above condition is required to hold for all such solutions.

Note that the requirement on all weak solutions uχB(z,r))
in the definition above can be

equivalently expressed as the condition that B(z, ϕ(r)) @ EB(z,r), where EB(z,r) ⊂ X gives
the minimal weak solution to the Dirichlet problem with boundary data χB(z,r) as given by
Proposition 3.8.

Remark 4.2. Our definition of ∂Ω being of positive mean curvature is different from that
of [27]. In [27], it is required that

• for each x ∈ ∂Ω there is some ε0 > 0 such that whenever A b B(x, ε0) with
P (A,Rn) <∞, we must have P (Ω,Rn) ≤ P (Ω ∪A,Rn), and

• for each x ∈ ∂Ω there is some ε1 > 0 such that whenever 0 < ε < ε1, there is some
Aε b B(x, ε) such that P (Aε,Rn) is finite and P (Ω \Aε,Rn) < P (Ω,Rn).

In the case of ∂Ω being a smooth manifold, the two definitions coincide.
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Figure 2: The (Euclidean) domain on the left has boundary of positive mean curvature,
unlike the domain on the right. The regions shaded light red in color are weak
solution sets of the respective Dirichlet problems.

Euclidean balls of radii R > 0 satisfy the above condition, with ϕ(r) = r2

2R , as can be seen
via a simple computation. On the other hand, the square region Ω = (0, 1) × (0, 1) ⊂ R2

does not satisfy the criterion of positive mean curvature of the boundary. Indeed, for
z = (1/2, 0) and 0 < r < 1/2, the weak solution is uχB(z,r)

= χB(z,r)\Ω. For the same reason
the domain obtained by removing a slice from the disk also does not satisfy the criterion
for positive mean curvature of the boundary, see Figure 2.

Example 4.3. Consider Ω = B(0, 1) ⊂ R2 with the weighted measure dµ = w dL 2. Define
the following distance

d̂(x, y) = inf
γ

ˆ
γ
w1/2 ds,

where the infimum is taken over all the curves γ connecting x and y.
If Ω is the disk with the Euclidean metric and weighted measure, then the boundary

will have positive mean curvature in the sense of Riemannian geometry but might not be
of positive mean curvature in our sense.

If we consider (Ω, d̂), then ∂Ω might not have positive mean curvature in the Riemannian
geometric sense either. Indeed, it will fail to be of positive mean curvature if the weight
function decreases rapidly towards the boundary of the disk.

If Ω is the “flattened disk” as in Figure 2 and the weight function increases rapidly
towards the flattened part of the boundary of that domain, then even though this boundary
is not of positive mean curvature in the Riemannian sense, it would be of positive mean
curvature in our sense. Thus the notion of curvature is intimately connected with the
interaction between the metric and the measure.
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Example 4.4. Assume that X is the unit sphere S2, equipped with the spherical metric
and the 2-dimensional Hausdorff measure. Let x0 ∈ X, and consider ΩR = B(x0, R) for
0 < R < π. We show that ΩR has boundary of positive mean curvature (in our sense)
precisely when 0 < R < π/2.

Let z ∈ ∂ΩR and 0 < r < diam ΩR. Then weak solutions uχB(z,r)
of the Dirichlet

problem in ΩR with boundary data χB(z,r) have superlevel sets Et = {x : uχB(z,r)
(x) > t}

of minimal boundary surface. For any 0 < t < 1, ∂Et consists of the shortest path in ΩR

which connects the two points in ∂B(z, r) ∩ ∂ΩR.
Suppose that R < π/2. Then the shortest path γ in ΩR connecting the two components

(points) of ∂B(z, r)∩ ∂ΩR is part of a great circle. It is clear from the geometry that there
exists a positive function ϕ(r), independent of z, such that B(z, ϕ(r))∩ΩR ∩ γ = ∅. Hence
Et ⊃ B(z, ϕ(r)) for any 0 < t < 1, which implies uχB(z,r)

≥ 1 on B(z, ϕ(r)). This shows
that the boundary of ΩR has positive mean curvature.

If instead R ≥ π/2, then the shortest path in ΩR connecting the two components of
∂B(z, r) ∩ ∂ΩR lies entirely in ∂ΩR. Hence Et ∩ ΩR = ∅ for any 0 < t < 1. This implies
that the weak solution uχB(z,r)

is exactly χB(z,r)\ΩR
. Hence there is no positive function

ϕ(r) as in Definition 4.1, so ΩR is not of positive mean curvature.
Observe that, for R ≥ π/2, the weak solution u = χB(z,r)\ΩR

is not a solution. Indeed,
Tu ≡ 0 6= χB(z,r) on ∂ΩR. In fact, there is no solution for such a boundary data since
inf{‖Du‖(ΩR) : Tu = χB(z,r) on ∂ΩR} = H(B(z, r)∩ ∂ΩR) is not attained by any function
u ∈ BV(ΩR).

To prove the main result of this paper, Theorem 4.11, we need the following tools.

Lemma 4.5. Assume that ∂Ω has positive mean curvature. Let F ⊂ X be a set of finite
perimeter in X. Suppose that x ∈ ∂Ω and 0 < r < r0 such that B(x, r) \ Ω ⊂ F with
P (B(x, r), X) < ∞. Assume that uχF is a weak solution to the Dirichlet problem in Ω
with boundary data χF . Then, B(x, ϕ(r)) ⊂ {u∨χF

≥ 1}, where ϕ : (0,∞) → (0,∞) is the
function of the condition of positive mean curvature from Definition 4.1.

Proof. By Lemma 3.2, there is a set G ⊂ X of finite perimeter such that χG is a weak
solution to the Dirichlet problem with boundary data χB(x,r). Furthermore, Lemma 3.2
yields that E1 := {x ∈ X : uχF ≥ 1} is a weak solution set corresponding to boundary data
χF .

By Lemma 3.3, χE1∩G is a weak solution corresponding to boundary data χB(x,r).
Then, B(x, ϕ(r)) @ E1 ∩ G by the definition of positive mean curvature. In particular,
B(x, ϕ(r)) @ E1. Therefore, u∨χF

≥ 1 everywhere on B(x, ϕ(r)).

Combining Lemma 3.2 with the lemma above tells us that there is at least one weak
solution set to the Dirichlet problem with boundary data χF and that every weak solution
set to this boundary data contains the ball B(x, ϕ(r)) whenever x ∈ ∂Ω and 0 < r < r0

such that B(x, r) \ Ω ⊂ F .
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Corollary 4.6. Suppose that ∂Ω is of positive mean curvature, and let F ⊂ X be open with
P (F,X) < ∞ and H(∂Ω ∩ ∂F ) = 0. Suppose that uχF is a weak solution to the Dirichlet
problem with boundary data χF . Then, TuχF = χF H-a.e. on ∂Ω.

Proof. By the maximum principle [15, Theorem 5.1], we know that 0 ≤ uχF ≤ 1. For
every x ∈ ∂Ω ∩ F , there is rx > 0 such that B(x, rx) \ Ω ⊂ F \ Ω. Thus, we can apply
Lemma 4.5 to find a ball B(x, ϕ(rx)) such that u∨χF

≥ 1 everywhere on B(x, ϕ(rx)). Hence,
TuχF (x) = 1.

Note that 1 − uχF is a weak solution to the Dirichlet problem with boundary data
χX\F . Hence, for every x ∈ ∂Ω \ F , Lemma 4.5 provides us with a ball B(x, ϕ(rx)) such
that 1− u∧χF

≥ 1, i.e., u∧χF
≤ 0 everywhere on B(x, ϕ(rx)). Hence, TuχF (x) = 0.

Finally, even though we lack any control of TuχF on ∂Ω ∩ ∂F , the proof is complete
since we assumed that H(∂Ω ∩ ∂F ) = 0.

Lemma 4.7. Suppose that H(∂Ω) <∞. Let F ⊂ X be an open set such that H(∂Ω∩∂F ) =
0 and P (F,X) < ∞. If v ∈ BV(Ω) with 0 ≤ v ≤ 1 and Tv = χF H-a.e. in ∂Ω, then the
extension of v to X \ Ω obtained by defining v = χF in X \ Ω lies in BVloc(X) and
‖Dv‖(∂Ω) = 0.

Proof. Let v be extended to X \Ω by setting it to be equal to χF there. A priori, we know
only that v ∈ BV(Ω), and so we need to show that the extended function, also denoted v,
belongs to BV(X). To this end, we employ the coarea formula. Recall that 0 ≤ v ≤ 1. For
0 < t < 1, let Et = {x ∈ X : v(x) > t}. Then

Et = (Et ∩ Ω) ∪ (F \ Ω).

Observe that χF\Ω = χFχX\Ω, and hence P (F \ Ω, X) < ∞ by the assumptions that
H(∂Ω) <∞ (which implies that P (Ω, X) <∞) and P (F,X) <∞. Thus, in order to gain
control over P (Et, X), we only need to control P (Et∩Ω, X). For every ε > 0, we can cover
the compact set ∂Ω by finitely many balls Bi, i = 1, · · · , k, with radii ri < ε such that

(1) P (Bi, X) ≤ 2CD
µ(Bi)
ri

for each i,

(2)
∑

i
µ(Bi)
ri
≤ CD(1 + ε)H(∂Ω).

We now show how to find such a cover.
An application of the coarea formula applied to the function u(x) = d(z, x) for some

fixed z ∈ X gives that if r > 0, then

µ(B(z, 2r)) ≥ ‖Du‖(B(z, 2r)) =

ˆ 2r

0
P ({u > t}, B(z, 2r)) dt

≥
ˆ 2r

r
P (B(z, t), X) dt ≥ r P (B(z, r0), X) (4.8)
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for some r0 ∈ [r, 2r]. In order to find balls Bi of the desired properties, we cover ∂Ω by
finitely many balls B(zi, Ri) with radius Ri < ε/2 so that∑

i

µ(B(zi, Ri))

Ri
< (1 + ε)H(∂Ω).

By (4.8), there is ri ∈ [Ri, 2Ri] such that

P (B(zi, ri), X) ≤ µ(B(zi, 2Ri))

Ri
≤ 2CDµ(B(zi, ri))

ri
.

Setting Bi = B(zi, ri) yields that
∑

i
µ(Bi)
ri
≤
∑

i
µ(B(zi,2Ri))

Ri
≤ CD(1 + ε)H(∂Ω).

We now set Uε,t = (Et ∩ Ω) \
⋃k
i=1Bi. Note that as ri < ε,

µ

(⋃
i

Bi

)
≤
∑
i

µ(Bi) ≤ ε
∑
i

µ(Bi)

ri
≤ εCD(1 + ε)H(∂Ω)→ 0 as ε→ 0+.

Therefore χUε,t → χEt in L1(X) as ε→ 0+. Since Uε,t is compactly contained in Ω, we can
estimate

P (Uε,t, X) = P (Uε,t,Ω) ≤ P (Et,Ω) +
k∑
i=1

P (Bi, X)

≤ P (Et,Ω) + C

k∑
i=1

µ(Bi)

ri
≤ P (Et,Ω) + C(1 + ε)H(∂Ω).

The lower semicontinuity of the BV energy with respect to L1-convergence gives that

P (Et ∩ Ω, X) ≤ lim inf
ε→0+

P (Uε,t, X) ≤ P (Et,Ω) + CH(∂Ω).

Thus by the coarea formula,

‖Dv‖(X) =

ˆ 1

0
P (Et, X) dt ≤

ˆ 1

0
[P (Et ∩ Ω, X) + P (F \ Ω, X)] dt

≤
ˆ 1

0
[P (Et,Ω) + CH(∂Ω) + P (F \ Ω, X)] dt

≤ ‖Dv‖(Ω) + CH(∂Ω) + P (F \ Ω, X) <∞.

Hence v ∈ BV(X).
Finally, since Tv = χF H-a.e. on ∂Ω, the jump set Sv of v satisfies H(∂Ω ∩ Sv \ ∂F ) =

0 and hence H(Sv ∩ ∂Ω) ≤ H(∂F ∩ ∂Ω) = 0. Therefore, ‖Dv‖(∂Ω) = 0, recall the
decomposition (2.8) and the discussion after it.
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Now we compare weak solutions and solutions for bounded domains whose boundary
has positive mean curvature.

Proposition 4.9. Suppose that ∂Ω is of positive mean curvature and that H(∂Ω) is finite.
Let F ⊂ X be open with P (F,X) <∞ and H(∂F ∩ ∂Ω) = 0. Then, all weak solutions uχF

are also solutions, so that if v ∈ BV(Ω) with Tv = χF H-a.e. on ∂Ω, then

‖DuχF ‖(Ω) ≤ ‖Dv‖(Ω).

Note that if f is a continuous BV function on X, then for almost every t ∈ R, the set
F = {x ∈ X : f(x) > t} satisfies the hypotheses of the above proposition. This follows
from the coarea formula and the fact that H(∂Ω) <∞.

Proof. For the sake of ease of notation, set u = uχF . Note that as ∂Ω is of positive
mean curvature, TuχF = χF H-a.e. in ∂Ω by Corollary 4.6. Moreover, by the maximum
principle [15, Theorem 5.1], we know that 0 ≤ u ≤ 1. Hence by Lemma 4.7 we have
u ∈ BVloc(X) (which comes for free as u is a weak solution) with ‖Du‖(∂Ω) = 0.

If v ∈ BV(Ω) with Tv = χF H-a.e. in ∂Ω, then we can assume that 0 ≤ v ≤ 1, since
truncations do not increase BV energy and the truncation min{1,max{0, v}} also has the
correct trace χF on ∂Ω. By Lemma 4.7 again we know that the extension of v to X \Ω by
χF gives a function in BVloc(X) with ‖Dv‖(∂Ω) = 0. Now,

‖Du‖(Ω) ≤ ‖Dv‖(Ω)

by the fact that u is a weak solution to the Dirichlet problem on Ω with boundary data
χF . Then,

‖Du‖(Ω) = ‖Du‖(Ω)− ‖Du‖(∂Ω) ≤ ‖Dv‖(Ω)− ‖Du‖(∂Ω)

= ‖Dv‖(Ω)− ‖Dv‖(∂Ω) = ‖Dv‖(Ω).

The previous proposition tells us that in using weak solutions we do obtain (strong)
solutions. The next proposition completes the picture regarding the relationship between
the notions of solutions and weak solutions to the Dirichlet problem, by showing that the
only way to obtain (strong) solutions is through weak solutions.

Proposition 4.10. Suppose that H(∂Ω) < ∞. Let F ⊂ X be an open set such that
H(∂Ω ∩ ∂F ) = 0 and P (F,X) < ∞. If v ∈ BV(Ω) is a solution to the Dirichlet problem
with boundary data χF , then the extension of v by χF outside Ω is a weak solution to the
said Dirichlet problem.

Proof. Let v ∈ BV(Ω) be a solution to the Dirichlet problem with boundary data χF .
Then Tv = χF H-a.e. in ∂Ω, and so by Lemma 4.7, the extension of v by χF to X \Ω, also
denoted v, lies in BVloc(X) with ‖Dv‖(∂Ω) = 0. In particular, ‖Dv‖(Ω) = ‖Dv‖(Ω).
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Let E ⊂ X be a weak solution set for the boundary data χF . The existence of such a
set is guaranteed by Lemma 3.2. Then, TχE = χF H-a.e. in ∂Ω by Corollary 4.6. Since v
is a solution to the Dirichlet problem on Ω with boundary data χF , it follows that

‖Dv‖(Ω) = ‖Dv‖(Ω) ≤ ‖DχE‖(Ω) ≤ ‖DχE‖(Ω).

The fact that χE is a weak solution to the Dirichlet problem on Ω with boundary data χF
tells us that v is also a weak solution, since ‖Dv‖(Ω) ≤ ‖DχE‖(Ω) ≤ ‖Dw‖(Ω) whenever
w ∈ BVloc(X) with w = χF on X \ Ω.

If Ω ⊂ X is a bounded domain such that H(∂Ω) < ∞ and with ∂Ω of positive mean
curvature, then Propositions 4.9 and 4.10 together tell us that weak solutions to the Dirichlet
problem with boundary data χF are solutions to the said Dirichlet problem and vice versa,
provided that F ⊂ X is an open set of finite perimeter in X such that H(∂Ω ∩ ∂F ) = 0.
Hence, there is no need to distinguish between weak solutions and solutions for such type
of Dirichlet boundary data.

Now we are ready to prove the main theorem of this paper, the existence of solutions
for continuous boundary data. While [27] focuses on Lipschitz boundary data, we consider
the larger class, BVloc(X) ∩ C(X), of boundary data. The reason why [27] focused on
Lipschitz data was because for such data, in the Euclidean setting, it was also possible to
show that there is a globally Lipschitz solution as well. We will show in the final section
of this paper that even in the most innocuous setting of weighted Euclidean spaces, such
Lipschitz continuity fails; therefore, there is no reason for us to restrict ourselves to the
study of Lipschitz boundary data.

Theorem 4.11. Suppose that H(∂Ω) < ∞ and that ∂Ω has positive mean curvature. Let
f ∈ BVloc(X) ∩ C(X). Then, there is a solution u ∈ BVloc(X) to the Dirichlet problem in
Ω. Furthermore,

lim
Ω3y→x

u(y) = f(x)

whenever x ∈ ∂Ω. Moreover, u is a weak solution to the given Dirichlet problem.

Proof. Recall from our standing assumptions, listed at the beginning of Section 3, that Ω
is bounded. Hence, we can find a ball B ⊂ X such that Ω ⊂ B, and we can find a Lipschitz
function ϕ : X → [0, 1] such that ϕ = 1 on B and ϕ = 0 on X \ 2B. Replacing f with
fϕ in the above theorem will not change the class of solutions inside Ω. Therefore, we will
assume without loss of generality that f is compactly supported and hence bounded, and
f ∈ BV(X) ∩ C(X).

For t ∈ R, define Ft = {x ∈ X : f(x) > t}. Then, Ft is open by continuity of f .
Moreover, Ft = ∅ for sufficiently large t, while Ft = X for sufficiently small t.

As f ∈ BV(X), the coarea formula (2.3) yields that P (Ft, X) <∞ for a.e. t ∈ R. Since
∂Ft ∩ ∂Fs = ∅ whenever s 6= t, the finiteness of H(∂Ω) implies that H(∂Ω ∩ ∂Ft) = 0 for
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all but (at most) countably many t ∈ R. Let

J = {t ∈ R : P (Ft, X) <∞ and H(∂Ω ∩ ∂Ft) = 0}.

For every t ∈ J , we can apply Proposition 3.8 to find a set Ẽt ⊂ X that is the minimal
weak solution set to the Dirichlet problem on Ω with boundary data χFt . We set Et = {x ∈
X : χ∨

Ẽt
(x) > 0}. Then, χEt is also a minimal solution.

By Lemma 3.9, the family of sets {Et : t ∈ J} is nested in the sense that Es ⊂ Et
whenever s, t ∈ J with s > t, since Fs ⊂ Ft. As L 1(R \ J) = 0, we can pick a countable
set I ⊂ J so that I is dense in R. Now, we can define u : X → R by

u(x) = sup{s ∈ I : x ∈ Es}, x ∈ X,

and show that it satisfies the conclusion of the theorem. Observe that u is measurable
because

{x ∈ X : u(x) ≥ t} =
⋂

I3σ<t
Eσ, t ∈ R,

i.e., all superlevel sets can be expressed as countable intersections of measurable sets.
For t ∈ J , i.e., for a.e. t ∈ R, we have

Kt := {x ∈ X : u(x) > t} =
⋃

I3s>t
Es ⊂ Et ⊂ {x ∈ X : u(x) ≥ t} =

⋂
I3σ<t

Eσ. (4.12)

Since µ is σ-finite on X, we have µ
(
{x ∈ X : u(x) = t}

)
= 0 for all but (at most) countably

many t ∈ R. In particular, µ(Kt 4 Et) = 0 for a.e. t ∈ J , whence for such t, the set Kt

is a weak solution set for the Dirichlet problem with boundary data χFt . Considering the
fact that χFt is one of the competitors in the definition of a solution to a Dirichlet problem
with boundary data χFt , the coarea formula yields that

‖Du‖(X) =

ˆ
R
P ({u > t}, X) dt =

ˆ
R
P (Kt, X) dt

≤
ˆ
R
P (Ft, X) dt = ‖Df‖(X) <∞.

Since u = f in X \ Ω, it follows that u ∈ BV(X). Note that up to this point, we did not
need the positive mean curvature property of ∂Ω.

Next, we show that limΩ3y→z u(y) = f(z) for z ∈ ∂Ω and that Tu = f on ∂Ω. To
this end, note that if z ∈ ∂Ω and t ∈ I with t > f(z), then there is some rz,t > 0 such
that B(z, rz,t) ⊂ X \ Ft. Then, B(z, ϕ(rz,t)) ∩ Ω ⊂ Ω \ Et similarly as in the proof of
Corollary 4.6. Thus, u ≤ t on B(z, ϕ(rz,t)) ∩ Ω for each I 3 t > f(z). Hence,

lim sup
Ω3y→z

u(y) ≤ f(z).
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Also, for every t ∈ I, t < f(z), there is ρz,t > 0 such that B(z, ρz,t) ⊂ Ft. Hence,
B(z, ϕ(ρz,t)) ∩ Ω ⊂ Et for such t. Consequently, u ≥ t on B(z, ϕ(ρz,t)) ∩ Ω. Thus,

lim inf
Ω3y→z

u(y) ≥ f(z).

Considering that limΩ3y→z u(y) = f(z), we can conclude that Tu(z) = f(z) directly from
the definition of the trace, see (2.4).

Next, we show that u is a solution to the Dirichlet problem in Ω with boundary data f .
We have already proven that Tu = f on ∂Ω. Let v ∈ BV(Ω) such that Tv = f H-a.e. on
∂Ω. Then, Tχ{v>t} = χFt H-a.e. on ∂Ω for almost every t ∈ R. Since Kt is a solution to
the Dirichlet problem with boundary data χFt for a.e. t ∈ J , for such t we can estimate
P (Kt,Ω) ≤ P ({v > t},Ω). By the coarea formula, we obtain that

‖Du‖(Ω) =

ˆ
R
P (Kt,Ω) dt ≤

ˆ
R
P ({v > t},Ω) dt = ‖Dv‖(Ω).

Thus, u is a solution to the Dirichlet problem in Ω with boundary data f .
Finally, we show that u is a weak solution. This part also does not need the positive

mean curvature assumption of ∂Ω. Note that by construction of u and by the continuity
of f , we have u = f on X \ Ω. Assume that w ∈ BVloc(X) satisfies w = f in X \ Ω. In
order to prove that u is a weak solution to the Dirichlet problem, we need to verify that
‖Du‖(Ω) ≤ ‖Dw‖(Ω). Recall that for almost every t ∈ R, the set Kt gives a weak solution
set for the Dirichlet problem with boundary data χFt , see the discussion following (4.12).
In particular, P (Kt,Ω) ≤ P ({w > t},Ω). The coarea formula then yields that

‖Du‖(Ω) =

ˆ
R
P (Kt,Ω) dt ≤

ˆ
R
P ({w > t},Ω) dt = ‖Dw‖(Ω) ,

which concludes the proof that u is a weak solution to the Dirichlet problem with boundary
data f .

It might seem at a first casual glance at the proof above that it suffices to assume that
the boundary data f is semicontinuous. The reader should note that this is not the case; our
proof does not work for non-continuous but semicontinuous f , for we need openness of both
{f > t} and {f < t} for all t ∈ R. This will fail for non-continuous semicontinuous functions.
It might be that the theorem holds also for semicontinuous functions, but our method of
proof will not work for them. The paper of [26] also shows that even in the simple setting
of the Euclidean plane, there are functions f ∈ BV(R2) for which the (strong) solution to
the Dirichlet problem for least gradient in the Euclidean disk with boundary data f does
not exist. Thus, it is reasonable to restrict our attention to continuous boundary data.

Remark 4.13. A study of the proof of Theorem 4.11 gives the following generalization of
this theorem to a wider class of domains. Given a bounded domain Ω ⊂ X with µ(X\Ω) > 0
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and a point z ∈ ∂Ω, we say that ∂Ω has positive mean curvature at z if there is a non-
decreasing function ϕz : (0,∞) → (0,∞) and rz > 0 such that u∨χB(z,r)

≥ 1 on B(z, ϕz(r))

for every r ∈ (0, rz) with P (B(z, r), X) <∞.
Now, suppose that H(∂Ω) < ∞, I ⊂ ∂Ω, and that ∂Ω has positive mean curvature

at each z ∈ I, and suppose that f ∈ BVloc(X) ∩ C(X). Then, there is a weak solution
u ∈ BVloc(X) to the Dirichlet problem in Ω with boundary data f such that for all z ∈ I,

lim
Ω3y→z

u(y) = f(z).

Note that the planar domain

Ω = {(x, y) ∈ R2 : x2 + y2 < 1, and |y| > x2 when x > 0}

has the property that ∂Ω has positive mean curvature at every z ∈ ∂Ω \ {(0, 0)}. Hence,
even though ∂Ω does not have positive mean curvature, the conclusion of Theorem 4.11
applies to each point in ∂Ω \ {(0, 0)}. On the other hand, if ∂Ω is not of positive mean
curvature at some z ∈ ∂Ω, then it is possible to find a Lipschitz function f on X and a weak
solution u to the Dirichlet problem on Ω with boundary data f such that limΩ3y→z u

∧(y)
either does not exist or is different from f(z). Thus, positive mean curvature of ∂Ω at a
point z ∈ ∂Ω determines whether that point is a regular point or not.

Remark 4.14. Given a Lipschitz function f defined on ∂Ω, we can apply the McShane
extension theorem and then use Theorem 4.11 to obtain a solution to the Dirichlet problem
in Ω with boundary data f .

It is in fact possible to further relax the assumptions on the boundary data provided
that Ω satisfies some further geometric conditions. For such domains, we will show in the
next section that given f ∈ C(∂Ω), one can apply the results of [21] to construct a bounded
continuous BV extension of f to X so that Theorem 4.11 may be used.

Proposition 4.15. Under the assumptions of Theorem 4.11, every weak solution to the
Dirichlet problem in Ω with boundary data f is a solution to the said problem, and con-
versely, every solution, when extended by f outside Ω, is a weak solution.

Proof. Let Ft, Kt, and u be as in the proof of Theorem 4.11.
Let w be a weak solution to the Dirichlet problem in Ω with boundary data f . Then,

‖Dw‖(Ω) = ‖Du‖(Ω). Define Gt = {x ∈ X : w(x) > t} for t ∈ R. Then, χGt = χFt

in X \ Ω for every t ∈ R. In particular, P (Kt,Ω) ≤ P (Gt,Ω) for a.e. t ∈ R since Kt is
a minimal weak solution set for the boundary data χFt for a.e. t ∈ R, as seen from the
discussion following (4.12). By the coarea formula, we have

ˆ
R
P (Gt,Ω) dt = ‖Dw‖(Ω) = ‖Du‖(Ω) =

ˆ
R
P (Kt,Ω) dt.

22



Consequently, P (Gt,Ω) = P (Kt,Ω) for a.e. t ∈ R. Hence, Gt is a weak solution set for the
boundary data χFt for all such t ∈ R. Observe also that

P (Gt,Ω) = P (Gt,Ω) = P (Kt,Ω) = P (Kt,Ω)

for a.e. t ∈ R by Proposition 4.9 together with Lemma 4.7. In particular, invoking the
coarea formula yields that ‖Dw‖(Ω) = ‖Du‖(Ω).

Next, for x ∈ ∂Ω, if t ∈ R such that f(x) > t, then there is some r > 0 such that
B(x, r) ⊂ Ft. Then, B(x, ϕ(r)) ∩ Ω @ Gt by Lemma 4.5, which allows us to conclude that
Tw(x) ≥ t. It follows that Tw ≥ f on ∂Ω and in fact,

lim inf
Ω3y→x

w∧(y) ≥ f(x)

for every x ∈ ∂Ω. Reverse inequality follows in a similar manner. Therefore, w is a
solution to the Dirichlet problem for boundary data f since Tw = Tu = f in ∂Ω and
‖Dw‖(Ω) = ‖Du‖(Ω) as shown above, while u is a solution to the said problem.

Finally, let v ∈ BV(Ω) be a solution to the Dirichlet problem in Ω with boundary data
f . Let ṽ be defined as the extension of v to X by setting it equal to f outside Ω. By
Lemma 4.7, we see that P ({ṽ > t},Ω) = P ({v > t},Ω) for a.e. t ∈ R. The coarea formula
then yields that ṽ ∈ BVloc(X) and

‖Dṽ‖(Ω) =

ˆ
R
P ({ṽ > t},Ω) =

ˆ
R
P ({v > t},Ω) dt = ‖Dv‖(Ω).

Since u is a solution to the Dirichlet problem with boundary data f , we obtain that

‖Dṽ‖(Ω) = ‖Dv‖(Ω) = ‖Du‖(Ω) ≤ ‖Du‖(Ω).

As u is also a weak solution to the Dirichlet problem with boundary data f , it follows that
so is ṽ.

Remark 4.16. In [19], the following modified minimization problem was studied. Given
a Lipschitz function f with a compact support in X, the goal there was to find a function
u ∈ BV(Ω) such that

J+(u) := ‖Du‖(Ω) +

ˆ
∂Ω
|Tu− f | dP+(Ω, ·) ≤ J+(v)

for all v ∈ BV(Ω). If the domain Ω has finite perimeter and satisfies an exterior measure
density condition (that is, lim supr→0+ µ(B(x, r)\Ω)/µ(B(x, r)) > 0 for H-a.e. x ∈ ∂Ω), as
well as all three conditions required for existence of a bounded trace operator as listed on
page 6, then the desired function u ∈ BV(Ω) can be constructed by solving the Dirichlet
problem for p-energy minimizers on Ω and then letting p → 1+, see [19, Theorem 7.7]. In
fact, the solution obtained this way belongs to the global class BV(X) with u = f on X \Ω.
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The functional J+ is related to the functional J defined in (1.1), but unlike there, the Radon
measure P+ associated with J+ is the internal perimeter measure of Ω. It was shown in
[19, Theorem 6.9] that P (Ω, ·) ≤ P+(Ω, ·) ≤ CP (Ω, ·) for some C ≥ 1. If, in addition to
the above conditions on Ω, the boundary ∂Ω has positive mean curvature, then we can use
Theorem 4.11 to find a weak solution u to the Dirichlet problem in Ω with boundary data
f . Then, by [19, Proposition 7.5],

‖Du‖(Ω) = ‖Du‖(Ω) +

ˆ
∂Ω
|Tu− f | dP (Ω, ·) ≤ J+(u) ≤ J+(u) = ‖Du‖(Ω)

= ‖Du‖(Ω).

It follows that u is a weak solution to the Dirichlet problem in Ω with boundary data
f . Subsequently, by Proposition 4.15, u is a (strong) solution as well, that is, Tu = f .
Therefore,

J+(u) = ‖Du‖(Ω) = ‖Du‖(Ω) = J+(u),

and so it follows that a (strong) solution to the Dirichlet problem in Ω with boundary data
f is also a minimizer of the functional J+.

In conclusion, the class of weak solutions, the class of strong solutions, and the class
of minimizers of the functional J+ coincide for domains Ω that satisfy all the hypotheses
given above.

5 General continuous boundary data

The main theorem of the paper, Theorem 4.11, assumes that the boundary data is given
as a restriction of a globally continuous BV(X) function to ∂Ω. In this section, we will
prove that under certain circumstances, every f ∈ C(∂Ω) can be extended to a globally
continuous BV function in the whole space X, and hence Theorem 4.11 applies in such a
case as well.

To this end, we will slightly modify a construction from [21] to find a BV extension.
Further assumptions on Ω: In order to obtain a bound on the total variation of the
extended function, one needs to assume that H(∂Ω) < ∞, Hb∂Ω is doubling on ∂Ω, and
that the codimension 1 Hausdorff measure on ∂Ω is lower codimension 1 Ahlfors regular,
i.e., there is C > 0 such that

H(B(x, r) ∩ ∂Ω) ≥ C µ(B(x, r))

r
(5.1)

for every x ∈ ∂Ω and 0 < r < 2 diam(∂Ω). On the other hand, apart from the last theorem
of this section, we do not need the assumption µ(X \ Ω) > 0 from the list of standing
assumptions given at the beginning of Section 3.

The paper [21] further assumes that a localized converse of (5.1) holds true and that µ
satisfies a local measure density property, i.e., µ(B ∩ Ω) ≥ Cµ(B) whenever B has center
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in Ω. These two properties are however used only to prove that the trace of the extended
function coincides with the given boundary data. Since we only deal with continuous
functions f , we will prove directly that the extended function is continuous in X, and so
we can get by without these additional assumptions.

Given a set Z ⊂ X and a (locally) Lipschitz function f : Z → R, we define

LIP(f, Z) = sup
x,y∈Z : x 6=y

|f(y)− f(x)|
d(y, x)

.

When x is a point in the interior of Z ⊂ X, we set

Lip f(x) = lim sup
y→x

|f(y)− f(x)|
d(y, x)

.

Note that if f is a (locally) Lipschitz function on X, then Lip f is an upper gradient of f ;
see for example [16]. In particular, ‖Df‖(X) ≤ ‖Lip f‖L1(X).

By [17, Proposition 4.1.15], there is a countable collection W = {B(pj,i, rj,i)} of balls
in X \ ∂Ω so that

•
⋃
j,iBj,i = X \ ∂Ω,

•
∑

j,i χ2Bj,i ≤ C,
• 2j−1 < rj,i ≤ 2j for all i, and
• rj,i = 1

8 dist(pj,i, ∂Ω),

where the constant C depends solely on the doubling constant of µ.
By [17, Theorem 4.1.21], there is a Lipschitz partition of unity subordinate to the

Whitney decomposition W, that is,
∑

j,i φj,i = χX\∂Ω, 0 ≤ φj,i ≤ χ2Bj,i , and φj,i is C/rj,i-
Lipschitz continuous.

Let f : ∂Ω→ R be a Lipschitz continuous function. Given the center of a Whitney ball
pj,i ∈ X \ ∂Ω, we choose a closest point qj,i ∈ ∂Ω and define Uj,i = B(qj,i, rj,i)∩ ∂Ω. Then,
we define a linear extension Ef by setting

Ef(x) =
∑
j,i

( 
Uj,i

f(y) dH(y)

)
φj,i(x), x ∈ X \ ∂Ω.

We can now proceed as in [21, Section 4] and build up a (non-linear) extension for
general continuous boundary data.

Since f ∈ C(∂Ω), there is a sequence of Lipschitz continuous functions {fk}∞k=1 such
that ‖fk− f‖L∞(∂Ω) < 2−k for k > 1 (by the Stone–Weierstrass theorem as ∂Ω is compact)
and ‖fk+1− fk‖L1(∂Ω) ≤ 22−k‖f‖L1(∂Ω). For technical reasons, we choose f1 ≡ 0. Then, we
pick a decreasing sequence of real numbers {ρk}∞k=1 such that:

• ρ1 < diam(Ω)/2,
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• 0 < ρk+1 ≤ ρk/2, and
•
∑

k ρk LIP(fk+1, ∂Ω) ≤ C‖f‖L1(∂Ω).

This sequence of numbers can be used to define layers in X \ ∂Ω. Let

ψk(x) = max

{
0,min

{
1,
ρk − dist(x, ∂Ω)

ρk − ρk+1

}}
, x ∈ X \ ∂Ω.

Then, we define

Ext f(x) =

{∑∞
k=2

(
ψk−1(x)− ψk(x)

)
Efk(x) when x ∈ X \ ∂Ω,

f(x) when x ∈ ∂Ω.

Note that supt(ψk−1 − ψk) = {x ∈ X : ρk+1 ≤ dist(x, ∂Ω) ≤ ρk−1}, and

n∑
k=2

(
ψk−1(x)− ψk(x)

)
= ψ1(x)− ψn(x)→ ψ1(x)

for every x ∈ X \ ∂Ω as n→∞.

Lemma 5.2. Let f ∈ C(∂Ω) and z ∈ ∂Ω. Then,

lim
X\∂Ω3x→z

Ext f(x) = f(z).

Proof. Fix z ∈ ∂Ω and ε > 0. For m ∈ N with m ≥ 2 and x ∈ X \Ω with dist(x, ∂Ω) < ρm,
we see that

|Ext f(x)− f(z)| ≤
∣∣∣∣ ∞∑
k=m

(
ψk−1(x)− ψk(x)

)(
Efk(x)− f(z)

)∣∣∣∣
≤
∞∑
k=m

(
ψk−1(x)− ψk(x)

)∣∣Efk(x)− f(z)
∣∣ .

Suppose that x ∈ 2Bj,i for some ball Bj,i = B(pj,i, rj,i) ∈ W with qj,i being a closest
point to pj,i in ∂Ω. Then,

8rj,i = d(pj,i, qj,i) = dist(pj,i, ∂Ω) ≤ d(pj,i, z) ≤ d(pj,i, x) + d(x, z) < 2rj,i + d(x, z).

Hence rj,i < 1
6d(x, z). Thus,

d(z, qj,i) ≤ d(z, x) + d(x, pj,i) + d(pj,i, qj,i) < d(z, x) + 2rj,i + 8rj,i <
8

3
d(z, x).

Consequently, every y ∈ Uj,i = B(qj,i, rj,i) ∩ ∂Ω satisfies d(z, y) ≤ 17
6 d(z, x).
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As f is continuous, there is δ > 0 such that |f(y) − f(z)| < ε whenever y ∈ ∂Ω with
d(z, y) < δ. In particular, if x ∈ 2Bj,i and d(z, x) < 6

17δ, then |f(y) − f(z)| < ε whenever
y ∈ Uj,i. Hence, we obtain for every x ∈ B(z, 6

17δ) \ ∂Ω that

|Efk(x)− f(z)| ≤
∑
j,i

 
Uj,i

|fk(y)− f(z)| dH(y)φj,i(x)

≤
∑
j,i

 
Uj,i

(
|fk(y)− f(y)|+ |f(y)− f(z)|

)
dH(y)φj,i(x)

≤
∑
j,i

(
‖fk − f‖L∞(∂Ω) + ε

)
φj,i(x)

= ‖fk − f‖L∞(∂Ω) + ε.

Therefore, if d(x, z) < min{ρm, 6
17δ}, we have that

|Ext f(x)− f(z)| ≤
∞∑
k=m

(
ψk−1(x)− ψk(x)

)(
‖fk − f‖L∞(∂Ω) + ε

)
≤ sup

j≥m

(
‖fj − f‖L∞(∂Ω) + ε

) ∞∑
k=m

(
ψk−1(x)− ψk(x)

)
≤ sup

j≥m
‖fj − f‖L∞(∂Ω) + ε .

Choosing m > 1 such that 2−m < ε then yields for x ∈ B(z,min{ρm, 6
17δ}) \ ∂Ω that

|Ext f(x)− f(z)| ≤ sup
j≥m
‖fj − f‖L∞(∂Ω) + ε < 2−m + ε < 2ε,

which completes the proof.

Proposition 5.3. For f ∈ C(∂Ω), we have Ext f ∈ C(X) ∩ BV(X). Moreover, Ext f is
compactly supported and

‖Ext f‖L∞(X) ≤ ‖f‖L∞(∂Ω) + 1 and

‖DExt f‖(X) ≤ C
(
1 +H(∂Ω)

)(
‖f‖L1(∂Ω) + ‖f‖L∞(∂Ω) + 1

)
.

Proof. Ext f is locally Lipschitz in X \∂Ω by its construction. Lemma 5.2 shows that Ext f
is continuous on X. The fact that Ext f is compactly supported follows from supt Ext f ⊂
suptψ1, which is bounded and hence compact. The estimate ‖Ext f‖L∞(X) ≤ ‖f‖L∞(∂Ω)+1
follows directly from the definition of Ext f together with the requirements on the functions
fk that went into its definition.

It follows from [21, Proposition 4.2] that Ext f ∈ BV(X \ ∂Ω) with the estimate

‖Lip(Ext f)‖L1(X\∂Ω) ≤ C
(
1 +H(∂Ω)

)
‖f‖L1(∂Ω). (5.4)
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Fix n ∈ N. We can cover ∂Ω by finitely many balls {D` : ` = 1, 2, . . .} of radii ρ` < 1
n so

that ∑
`

µ(D`)

ρ`
< H(∂Ω) +

1

n
.

Let
ηn(x) = min

{
1,

dist(x,D`)

ρ`
: ` = 1, 2, . . .

}
, x ∈ X.

Then,

Lip ηn ≤
∑
`

1

ρ`
χ2D`\D`

.

Set Fn = ηn Ext f . Since Fn = 0 in a neighborhood of ∂Ω, it follows that Fn is Lipschitz
continuous. The Leibniz rule for (locally) Lipschitz functions yields that

LipFn ≤ ηn Lip(Ext f) + |Ext f |Lip ηn

≤ χX\⋃`D`
Lip(Ext f) + (‖f‖L∞(∂Ω) + 1)

∑
`

χ2D`\D`

ρ`
.

Thus

‖DFn‖(X) ≤
ˆ
X

LipFn dµ

≤ ‖Lip(Ext f)‖L1(X\∂Ω) + (‖f‖L∞(∂Ω) + 1)
∑
`

µ(2D` \D`)

ρ`

≤ C
(
1 +H(∂Ω)

)
‖f‖L1(∂Ω) + C2

D(‖f‖L∞(∂Ω) + 1)

(
H(∂Ω) +

1

n

)
by (5.4).

Direct computation shows that Fn → Ext f in L1(X) as n→∞. The lower semiconti-
nuity of BV energy as in (2.2) then implies that

‖D(Ext f)‖(X) ≤ lim inf
n→∞

‖DFn‖(X) ≤ C
(
1 +H(∂Ω)

)
(‖f‖L1(∂Ω) + ‖f‖L∞(∂Ω) + 1).

Recall that we assume Ω andX to satisfy all the standing assumptions listed in Section 3
and the further assumptions listed at the beginning of the current section.

Theorem 5.5. Suppose that ∂Ω has positive mean curvature. Let f ∈ C(∂Ω). Then, there
is a function u ∈ BV(Ω) that is a solution to the Dirichlet problem in Ω with boundary data
f . Furthermore,

lim
Ω3x→z

u(x) = f(z)

whenever z ∈ ∂Ω.

Proof. By Proposition 5.3, there is a bounded function Ext f ∈ C(X) ∩ BV(X) such that
f = (Ext f)

∣∣
∂Ω

. Hence, we can apply Theorem 4.11 to the boundary data Ext f .
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6 Counterexamples

Unlike in [27], solutions to the Dirichlet problem may fail to be continuous even if the
boundary data are Lipschitz continuous. Moreover, uniqueness of the solutions cannot be
guaranteed either. In this section we illustrate these issues with a series of examples in
the plane with a weighted Lebesgue measure dµ = w dL 2 on a domain Ω ⊂ R2. The
two principal examples are Example 6.6 and Example 6.9 with continuous weights w, the
first demonstrating the failure of continuity of the solution all the way up to the boundary,
and the second demonstrating non-uniqueness. To make these two examples easier to
visualize, we also provide preliminary examples with piecewise constant weights, giving
simpler illustrations of discontinuity and non-uniqueness.

In the settings considered in this section, sets whose characteristic functions are of least
gradient have boundaries which are shortest paths with respect to a weighted distance.
Hence we first investigate shortest paths. This is the aim of the next subsection. Once this
is done, we continue on in the subsequent subsection to describe the examples.

6.1 Minimal perimeter of sets in weighted Euclidean setting, and length
with respect to weights

Suppose w > 0 is a continuous weight on R2 for which dµ = w dL 2 is doubling and satisfies
a 1-Poincaré inequality. According to Corollary 2.2.2 and Theorem 3.2.3 of [9], if E ⊂ Ω is
measurable, then

Pw(E,Ω) =

ˆ
Ω∩∂mE

w dH1,

where Pw indicates perimeter with respect to µ and ∂mE is the measure theoretic boundary
with respect to dL 2. While some of the weights considered in this section are not contin-
uous, they are piecewise continuous, and the discontinuity set is contained in a piecewise
smooth 1-dimensional set, where the weight will be lower semicontinuous. Hence, a simple
argument shows that the above-stated conclusion of [9] holds here as well.

For a weight w on R2 and a Lipschitz path φ : [0, 1]→ R2, the weighted length of φ is

I(φ,w) :=

ˆ 1

0
|φ′(t)|w(φ(t)) dt.

By the discussion above, this weighted length is the perimeter measure of the set whose
boundary is given by the trajectory of φ; note that such φ is injective L 1-a.e. in [0, 1]. In
this setting, the shortest path is one that minimizes weighted length.

For every open set G ⊂ Ω where the weight function w is constant and each set E
of minimal boundary surface, the connected components of ∂mE ∩ G are straight line
segments. This follows because the shortest paths (with respect to weighted length) inside
G are Euclidean geodesics.

We next consider a simple weight.
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Example 6.1 (Ibn Sahl–Snell’s law). x
0

y

–y1

w1L1

w2L2

θ2

θ1

–y2 (x ,–y )2 2

(x,–y )1

First suppose w1, w2 > 0 and 0 < y1 < y2. Let w
be a weight function with w(x, y) = w1 if −y1 ≤
y < 0 while w(x, y) = w2 if −y2 < y < −y1. We
seek the shortest path with respect to µ joining (0, 0)
to a point (x2,−y2). Since the weight is piecewise
constant, the shortest path is the concatenation of
line segments L1 and L2 in the regions −y1 < y < 0
and−y2 < y < y1 respectively. If these lines meet the
line y = −y1 at a point (x,−y1), then the weighted
length is

d(x) = w1

√
x2 + y2

1 + w2

√(
x− x2

)2
+
(
y2 − y1

)2
.

The derivative of this length is then

d′(x) =
w1x√
x2 + y2

1

+
w2(x− x2)√

(x− x2)2 + (y2 − y1)2
.

Let θ1 and θ2 be the acute angles L1 and L2 make with the vertical at (x,−y1). Let
A1 and A2 be the Euclidean lengths of L1 and L2, that is, A1 =

√
x2 + y2

1 and A2 =√
(x− x2)2 + (y2 − y1)2. Then the equation d′(x) = 0 gives

w1A1 sin(θ1)

A1
− w2A2 sin(θ2)

A2
= 0.

Either θ1 = θ2 = 0 or rearranging gives the Ibn Sahl–Snell Law [25]:

w1

w2
=

sin(θ2)

sin(θ1)
.

Now suppose 0 < y1 < y2 < · · · < yn and w is a weight with w(x, y) = wk if −yk < y ≤
−yk−1. We seek the shortest path joining (0, 0) to a point (xn,−yn). This is a concatenation
of lines L1, . . . , Ln, where Lk is the segment in the region −yk < y < −yk−1. Let θk be the
acute angle the line Lk makes with the vertical. Applying the previous case gives

sin(θk)

sin(θk−1)
=
wk−1

wk
for 2 ≤ k ≤ n.

Hence,

sin(θn)

sin(θ1)
=

sin(θn)

sin(θn−1)
· sin(θn−1)

sin(θn−2)
· · · sin(θ2)

sin(θ1)
=
wn−1

wn
· wn−2

wn−1
· · · w1

w2
=
w1

wn
.

The situation is similar for weights which linearly interpolate between two values.
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Example 6.2 (Ibn Sahl–Snell’s law for continuous weights). Let us suppose that
0 < z1 < z2 < z3 and w is a weight with w(x, y) = w1 for −z1 < y < 0, w(x, y) = w2 for
−z3 < y < −z2, and

w(x, y) = w1

(
y + z2

z2 − z1

)
− w2

(
y + z1

z2 − z1

)
for −z2 < y < −z1. We seek the path γ which minimizes the weighted length I(φ,w), over
Lipschitz paths φ with φ(0) = 0 and φ(1) = (x3,−z3) for a fixed point x3.

One can choose a natural family of weights wn of the type considered in Example 6.1,
agreeing with w for y > −z1 and y < −z2, with wn → w uniformly. Choose Lipschitz
curves fn : [0, 1] → R2 which minimize I(φ,wn) among Lipschitz curves φ with φ(0) = 0
and φ(1) = (x3,−z3). Then I(fn, wn) ≤ I(φ,wn) for any competitor φ. The curves fn
converge to a Lipschitz curve f joining the desired points and I(f, w) ≤ I(φ,w) for any
competitor φ, so f minimizes the weighted length with respect to w.

Since w and wn agree and are constant for y > −z1 and y < −z2, the path f consists
of straight lines L1 and L2 in those regions. Applying Example 6.1 to each wn and letting
n→∞, we see that if θ1 and θ2 are the acute angles made between the vertical and L1, L2

respectively, then
sin(θ2)

sin(θ1)
=
w1

w2
,

regardless of what happens in the region −z2 < y < −z1.

6.2 Examples of discontinuity and nonuniqueness

We now illustrate the failure of continuity and uniqueness of solutions. In a series of
examples we consider the domain Ω = B(0, 1) in the Euclidean plane R2 endowed with
various weighted Lebesgue measures of the form dµ = w dL 2.

In Examples 6.3–6.9, Dirichlet boundary data are defined as f(x, y) = y + 1, i.e. the
vertical distance from the lowest point of ∂Ω.

We applied the main idea of the proof of Theorem 4.11 to construct a function u :
Ω→ [0, 2] that is a solution to the Dirichlet problem in Ω with boundary data f . For each
t ∈ [0, 2], we constructed a set Et of minimal boundary surface in Ω so that TχEt = χ{f>t}
on ∂Ω. Moreover, we ensured that the sets Et are nested so that Et ⊂ Es whenever s < t.
In the proof of Theorem 4.11, the desired nesting of the sets Et was achieved by choosing
minimal weak solution sets for χ{f>t}. However, that need not be the only way to obtain
the nesting to be able to construct a solution (cf. commentary on maximal weak solution
sets at the end of Section 3).

The principal part of the work in these examples is to identify ∂Et, as Et is the connected
component of Ω lying above ∂Et. Since Et is of minimal boundary surface, ∂Et is the
shortest path that connects the points of ∂{z ∈ ∂Ω: f(z) > t}, which turns out to be
the points of ∂Ω with y-coordinate equal to t − 1. For piecewise constant weights w, the
superlevel set (which is of minimal boundary surface) has as its boundary a concatenation
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of straight line segments in Ω. The weighted length of this concatenated path is the shortest
amongst all paths in Ω with the same endpoints. This follows from the Ibn Sahl–Snell law
described above.

Discontinuous solutions for the least gradient problem: the Eye of Horus

Example 6.3. Having fixed a constant α > 1, let the weight be given by

w(x, y) =

{
α if |x|+ |y| < 1

2 ,

1 otherwise.

For the sake of brevity, let K = {(x, y) ∈ Ω: |x|+ |y| < 1
2}.

(a) First, we consider the case when α ≥ 3/
√

5.
We start by finding the superlevel set E1 of the solution, which corresponds to the value

of the boundary data f(x, y) = y + 1 at (−1, 0) (or equivalently at (1, 0)). The boundary
of this superlevel set is a path obtained as a concatenation of line segments in Ω. If the
line segment from (−1, 0) intersects the left-hand side of the boundary of K at the point
(t − 1/2, t) for some 0 < t < 1/2, then the path continues inside K. By considerations of
symmetry, it is clear that the part of the path inside K is then parallel to the x-axis, and
then exits K at the point (1/2 − t, t) to continue on to the point (1, 0). In this case, the
weighted length of this path, and hence the perimeter measure of the superlevel set, is

g(t) = 2

√
t2 +

(
t+

1

2

)2

+ α(1− 2t).

Note that
g′(t) =

4t+ 1√
t2 +

(
t+ 1

2

)2 − 2α,

and if α ≥ 3/
√

5, then g′(t) < 0 for all t ∈ (0, 1/2). Thus, one reduces weighted length
by moving the point where the path intersects K up to (0, 1/2). Similarly, if the path
intersects the boundary of K at (−t − 1/2, t) for some t < 0, then the weighted length is
reduced by moving the point where the path intersects K down to (0,−1/2).

Hence the boundary of the superlevel set E1 of the solution is given by two paths.
Each path is a concatenation of two line segments, one connecting (−1, 0) to (0,±1/2) and
the other connecting (0,±1/2) to (1, 0). This identifies ∂E1. Clearly ∂E1/2 and ∂E3/2

respectively are the pieces of the line segments y = −1/2 and y = 1/2 inside Ω. Analysis
similar to the above enables us to identify all the superlevel sets of the solution to the
Dirichlet problem with boundary data f .

Having identified ∂Et, we can construct the solution by stacking the sets Et as in
Theorem 4.11. See the figure below. The exact value of α ≥ 3/

√
5 plays no role here.
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Figure 3: Level sets ∂Et for t ∈ (0, 2) in Example 6.3 (a) are shown on the left. Graph of u
is shown on the right.

(b) Consider the case 1 < α < 3/
√

5. The boundary of the superlevel set with endpoints
(−1, 0) and (1, 0) still consists of two shortest paths, each a concatenation of line segments
in Ω. Suppose the upper shortest path first meets the diamond at a point (t − 1/2, t) for
some 0 ≤ t ≤ 1/2. Since α < 3/

√
5, the function g′ above is no longer always decreasing,

so the shortest path actually enters the diamond (i.e. t < 1/2). The angle under which
the shortest path enters the diamond is determined by the Ibn Sahl–Snell law, i.e., by the
relation sin θ/ sin π

4 = α, where θ is the angle of incidence on the contour of the diamond.
Since α > 1, it follows θ > π/4 and hence t > 0. By symmetry with respect to the x-axis,
the lower shortest path meets the diamond at a point (−1/2 − t, t) with t < 0. Hence,
the boundary of the superlevel set E1 consists of two paths, one in the upper half-disk and
the other in the lower half-disk, both passing parallel to the x-axis while moving through
the central diamond region. These paths form an oblique hexagonal region in which the
solution function is constant. The solution is continuous in this region, but again exhibits
a jump at the top and bottom tips of the central diamond region, see the figure below.
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Figure 4: Level sets ∂Et for t ∈ (0, 2) in Example 6.3 (b), with α =
√

3/2, are on the left.
Graph of u is on the right. Displacement of level sets from center depends on α.

In the example above, the set of points of discontinuity for the solution consisted of two
points, so had Hausdorff dimension 0. The following example gives a weight for which the
set of points of discontinuity has Hausdorff dimension 1.

Example 6.4. Having fixed a constant α ≥ π/2, let the weight be given by

w(x, y) =

{
α if |x|2 + |y|2 ≤ 1

4 ,

1 otherwise.

For the sake of brevity, let K = {(x, y) ∈ Ω: |x|2 + |y|2 ≤ 1
4}.

Observe that the choice of α guarantees that the shortest path that connects two points
on ∂K is an arc lying entirely in ∂K. Indeed, let z1, z2 ∈ ∂K ⊂ C and θ = | arg z1

z2
|.

Then, the line segment going straight through K that connects these two points has length
2α sin θ

2 whereas the shorter arc in ∂K has length θ ≤ 2α sin θ
2 and the inequality is strict

unless θ = 0 (i.e., z1 = z2) or θ = π (i.e., z1 = −z2) and α = π
2 .

If |t− 1| ≥ 1
2 , then the shortest path connecting the two points of {z ∈ ∂Ω: f(z) = t} is

a horizontal straight line segment. If |t− 1| < 1
2 , then the shortest path connecting the two

points of {z ∈ ∂Ω: f(z) = t} reaches ∂K tangentially, then follows ∂K to the highest/lowest
point of ∂K and then continues symmetrically with respect to the axis x = 0.
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Figure 5: Level sets ∂Et for various values of t ∈ (0, 2) in Example 6.4, with α = 2 > π/2,
are shown on the left. A graph of the solution u constructed by stacking the sets
Et is shown on the right.

A natural question is whether the discontinuity of solutions could perhaps be caused by
the discontinuity of the weight function. The next example shows that that is not the case.
The following example serves a second purpose as well. Note that the above examples are
of domains where the space is positively curved (for example, in the sense of Alexandrov)
inside the domain. In the next example, the space is negatively curved inside the domain.

Example 6.5. Having fixed a constant α ∈ (0, 1), let the weight be given by

w(x, y) =


α if |x|+ |y| ≤ 0.5,

α+ 1−α
0.05 (|x|+ |y| − 0.5) if 0.5 < |x|+ |y| ≤ 0.55,

1 otherwise.

We now check that for t with t − 1 > 0 sufficiently small, the t-level sets Et intersect on
the central horizontal line of the inner diamond. This will result in discontinuity of the
corresponding solution on this horizontal segment. Towards this end, suppose γ is the level
set for some t > 1. Then γ is a minimizing curve (with respect to the length induced by
w) joining the two points on ∂Ω with y-coordinate t− 1 > 0. By symmetry, the portion of
γ in the inner diamond is a horizontal line. We now consider two cases.

If γ meets the line y = 0 then, by symmetry, this first occurs at a point (x, 0) with
x ≤ −0.5. It then stays horizontal and follows the central horizontal line of the inner
diamond until the point (−x, 0), after which γ increases linearly to meet the unit circle at
y-coordinate t− 1.
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Suppose γ does not meet the line y = 0. The curve γ in the region x ≤ 0, y ≥ 0 consists
of three pieces: a line L1 outside the outer diamond |x| + |y| > 0.55, a line L2 inside the
inner diamond |x| + |y| ≤ 0.5, and a third piece inside the annulus 0.5 < |x| + |y| ≤ 0.55.
In the region x ≤ 0, y ≥ 0, the weight w is a rotated copy of a weight w0 from Example
6.2. The curve γ is also minimal with respect to the length induced by w0. Let θ be the
acute angle L1 makes with the direction (−1, 1). Since L2 is horizontal, we know L2 makes
acute angle π/4 with the direction (−1, 1). The discussion of Example 6.2 implies that

sin(θ)

sin(π/4)
= α.

Hence sin(θ) = α/
√

2. If α < 1 then θ is bounded away from π/4. Hence L1 intersects ∂Ω
at a point whose y-coordinate is bounded away from 0, so t − 1 is bounded away from 0
(with a bound depending only on α).

Hence if t−1 > 0 is sufficiently small, the first case applies and γ must follow the central
horizontal line of the inner diamond.
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Figure 6: Level sets ∂Et for values of t ∈ (0, 2) in Example 6.5, with α = 1/2, are on the
left. A heightmap of the solution u constructed by stacking the sets Et is on the
right, where the grayscale intensity represents the solution’s function value.
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Figure 7: Graph of the solution u of the Dirichlet problem in Example 6.5, depicted as a
surface z = u(x, y).

In all the examples above, the solutions are discontinuous inside the domain away from
the boundary. One might therefore ask whether solutions to the Dirichlet problem are
continuous at the boundary. The following example shows the set of points of discontinuity
can, in fact, reach all the way to the boundary.

Example 6.6. Having fixed a constant α ∈ (0, 1), let the weight be given by

w(x, y) =

{
α+ (1− α)(|x|+ |y|) if |x|+ |y| < 1,

1 otherwise.

It is not difficult to see that as the weight w decreases as one moves into the disk, this
weighted domain has boundary of positive mean curvature. Assume α = 1/2 to simplify
the calculations, and fix a discretization scale n ∈ N. For 1 ≤ k ≤ n, define

Ak = {(x, y) : (k − 1)/n ≤ |x|+ |y| < k/n} .

We consider the approximating weight

wn(x, y) =

{
1
2(1 + k

n) if (x, y) ∈ Ak for some 1 ≤ k ≤ n,
1 otherwise.

Suppose γ is the boundary of a superlevel set for a solution to the Dirichlet problem with
weight wn. Then γ is distance minimizing with respect to the length distance induced by
wn. Suppose γ leaves the x-axis at (k0/n, 0) and intersects the set {(x, y) : |x| + |y| = 1}
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at a point above the x-axis. Then the trajectory of γ between these points is governed by
Snell’s law, as discussed in Example 6.1. Let

w0 =
1

2

(
1 +

k0

n

)
, wk =

1

2

(
1 +

k

n

)
, θ0 =

π

4
,

and θk be the angle γ makes with the line y = x in Ak. Then,
sin(θk)
sin(θ0) = w0

wk
and so

sin(θk) =
1√
2

(
n+ k0

n+ k

)
. (6.7)

The length of the line y = x inside Ak is 1/(n
√

2). Hence the length ak of γ in Ak satisfies
ak cos(θk) = 1/(n

√
2). It follows that hk, the increase in the y-coordinate of γ in Ak, is

given by

hk = ak sin
(π

4
− θk

)
=

1− tan(θk)

2n
.

Using (6.7), this gives

hk =
1

2n

(
1− (n+ k0)√

2(n+ k)2 − (n+ k0)2

)
.

Adding these contributions, the total gain in height by γ before it leaves the region |x|+|y| ≤
1 is

n∑
k=k0+1

1

2n

1−
(1 + k0

n )√
2(1 + k

n)2 − (1 + k0
n )2

 .

Given 0 < t0 < 1, we may choose k0 for each n so that k0/n → t0. Then the above sum
converges to

H(t0) =
1

2

ˆ 1

t0

1− 1 + t0√
2(1 + t)2 − (1 + t0)2

dt.

Since the integrand is strictly positive for t > t0, we have H(t0) > 0 whenever t0 < 1. The
number H(t0) gives the y-coordinate of the intersection of the set {(x, y) : |x| + |y| = 1}
with the curve that is length minimizing with respect to w and leaves the x-axis at (t0, 0),
moving upwards. Such curves correspond to boundaries of superlevel sets of solutions to
the Dirichlet problem with respect to w, for levels greater than H(t0). By symmetry,
the y-coordinate of the intersection point if the curve leaves the x-axis at (t0, 0) and goes
downwards is −H(t0). These correspond to boundaries of superlevel sets of solutions to the
same Dirichlet problem, for levels less than −H(t0).

If we approach (t0, 0) from above then the values of the solution are greater than H(t0),
while if we approach (t0, 0) from below the values of the solution are less than −H(t0).
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This implies that the solution is discontinuous at (t0, 0), for any 0 < t0 < 1. Hence the set
of points of discontinuity reach all the way to the boundary.
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Figure 8: Level sets ∂Et for various values of t ∈ (0, 2) in Example 6.6, with α = 1/2, are
shown on the left. A heightmap of the solution u constructed by stacking the
sets Et is shown on the right.
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Figure 9: Graph of the solution u of the Dirichlet problem in Example 6.6, depicted as
a surface z = u(x, y). Observe that the jump-set of the solution lies upon the
x-axis, i.e., Su = {(x, y) ∈ Ω : y = 0}.
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Non-uniqueness of solutions: Third Eye

The final two examples demonstrate that solutions may fail to be unique. In the first of
these two examples, the space is positively curved in some points inside the domain, and
flat at other points in the domain. However, the weight is not a continuous function. The
last example of this paper gives a continuous weight; in this example, the space is negatively
curved at some points (for example, inKann), positively curved at some points (for example,
in Kin), and flat at some points (for example, in Kout).

Example 6.8. Having fixed a constant α ≥
√

2, let the weight be given by

w(x, y) =

{
α if min

{∣∣x− 1
2

∣∣, ∣∣x+ 1
2

∣∣}+ |y| ≤ 1
4 or |x|+

∣∣y − 1
4

∣∣ ≤ 1
8 ,

1 otherwise.

Following an analogous argument as in Example 6.3 (a), we can easily describe the shortest
paths connecting the points of {z ∈ ∂Ω: f(z) = t} for t ∈ (0, 2):

• If t ≤ 3
4 or t ≥ 11

8 , then ∂Et is a horizontal line segment.

• If 3
4 < t ≤ t0, where t0 ≈ 1.017, then the shortest path is a piecewise affine line that

passes through the bottom tips of the large diamonds. The value of t0 is found by
equating the length of the piecewise affine line that starts from a point on ∂Ω whose
y-value equals t0 − 1 and passes through the bottom tips of the large diamonds and
the length of the piecewise affine line that begins from the same point in ∂Ω and
passes through the top tips of all three diamonds.

• If t0 < t ≤ t1, where t1 ≈ 1.127, then the shortest path is a piecewise affine line
that begins from a point in ∂Ω whose y-value is t1 − 1, and passes through the top
tips of the large diamonds and either the top or the bottom tip of the small diamond
in the middle. Such a possibility of choice of the tip for the small diamond is the
cause of non-uniqueness of the solution. The value of t1 is determined by finding the
intersection of ∂Ω with the ray connecting the top tip of the small diamond in the
middle and the top tip of one of the large diamonds.

• If t1 < t < 11
8 , then the shortest path is a piecewise affine line that passes through

the top tip of the small diamond in the middle.
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Figure 10: Level sets ∂Et for various values of t ∈ (0, 2) in Example 6.8. In the left figure,
the shortest path for t0 < t ≤ t1 passes through the upper tip of the small
diamond, and passes through the lower tip in the right figure. Similarly as in
Example 6.3 (a), the precise value of α ≥

√
2 plays no role.
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Figure 11: Graphs of the two distinct solutions in Example 6.8 whose level sets have been
depicted in Figure 10.

Observe also that any convex combination of the solutions shown in Figures 10 and 11 is
also a solution to the Dirichlet problem.

Finally, the following example shows that the non-uniqueness of solutions is in general
not caused by discontinuity of the weight function.
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Example 6.9. Let the weight be given by

w(x, y) =


0.75− 0.5(|x|+ |y|) if 0 ≤ |x|+ |y| < 0.5,

|x|+ |y| if 0.5 < |x|+ |y| ≤ 1,

1 otherwise.

Let the three regions of Ω listed above be denoted by Kin, Kann, and Kout respectively.
Here again one can see that the boundary has positive mean curvature.

Suppose t ≥ 1 and η(x) = (x, g(x)) is a curve that forms the boundary of Et (travelling
from left to right). In A := Kann ∩{x < 0}∩ {y > 0}, by Ibn Sahl–Snell law, we know that
w sin(θ) = κ for some constant κ, where θ is the oriented angle between the normal to the
iso-line for the weight w and the tangent vector to the curve η. Observe that this normal
has slope −1. The value of κ might change from curve to curve, but for a given curve it
is constant. Since η moves from left to right, it follows that θ ∈ (−π/4, 3π/4), considering
that θ(η(x)) = arctan(g′(x)) + π/4. In particular, θ(η(x)) is monotone increasing (resp.
decreasing) if and only if g′(x) is monotone increasing (resp. decreasing). Moreover, the
function x 7→ θ(η(x)) is continuous in the quadrant {x < 0 < y} ∩ Ω and smooth inside
each of the regions Kin, Kann, and Kout within the quadrant.

Let us now discuss convexity/concavity of g using the Ibn Sahl–Snell law, based on the
value of g′(x0) at some point η(x0) ∈ A. Since sin(θ) = κ/w, we can determine monotonicity
of the function x 7→ θ(η(x)) and hence of g′(x) in a neighborhood of η(x0) based on the
monotonicity of x 7→ w(η(x)) at x0 and the sign of κ. Note however that one needs to pay
special attention to and distinguish cases when θ = 0 (since this is the borderline value,
where the sign of κ changes), and θ < π/2 as opposed to θ > π/2 (since the monotonicity
of x 7→ w(η(x)) is different in these two cases and so is the relation between monotonicity
of sin(θ) and θ).

Value of Sign of both Monotonicity of
g′(x0) θ(η(x0)) κ and sin(θ) w sin(θ) θ g′

(−∞,−1) (−π/4, 0) − decr. decr. decr. decr.
−1 0 0 decr. const. const. const.

(−1, 1) (0, π/2) + decr. incr. incr. incr.
1 π/2 + const. const. const. const

(1,∞) (π/2, 3π/4) + incr. decr. incr. incr.

From the table above, we can deduce that if g′(x0) < −1 at some point x0 in A, then g
is concave within the entire region A. If g′(x0) = −1 at some point, then g′ ≡ −1 in A.
Finally, if g′(x0) > −1 at some point in A, then g is convex in all of A. The argument
below showing that η should intersect the y-axis horizontally also tells us that the possibility
g′(x) ≤ −1 and the possiblity g′(x) ≥ 1 will not happen.
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Analogous arguments can be made in Kin, leading us to conclude that η is either convex
in Kin, or is concave in Kin. Similar arguments for regions in the other three quadrants
yield analogous conclusions. From this we deduce that η has one-sided tangents where
it intersects the y-axis. This will be used to show below that η will intersect the y-axis
horizontally.

We now check that η = ∂Es intersects the y-axis horizontally for all s ∈ (0, 2). Note
that one-sided directional derivatives on either side of the y-axis exist, which can be seen
from concavity/convexity of the curve from the argument above. Hence it suffices (up to
small error terms) to compare weighted lengths of straight lines close to the y-axis. We
compute the weighted length of the straight line path joining (−ε, b) to the y-axis for some
−1 < b < 1 and sufficiently small ε > 0. Actually, the following calculation discusses only
the case when 0 < b < 0.5, i.e., when ∂Es crosses the y-axis in Kin above the x-axis.
Analogous computations can be done for other values of b ∈ (−1, 1) when ∂Es crosses the
y-axis somewhere in Kann, or in Kin below the x-axis. Consider such a path ϕ making an
angle ϑ, −π/2 < ϑ < π/2, with the horizontal. This takes the form

ϕ(t) = (−ε+ t cosϑ, b+ t sinϑ), 0 ≤ t ≤ ε/(cosϑ).

Clearly w(ϕ(t)) = 0.75 − 0.5(ε − t cosϑ + b + t sinϑ) and ‖ϕ′(t)‖ = 1 for all t. An easy
calculation yields that the weighted length I is given by

4I =
(3− 2ε− 2b)ε

cosϑ
+

(cosϑ− sinϑ)ε2

cos2 ϑ
.

From which we obtain

4(cos2 ϑ)
dI

dϑ
= (3− 2ε− 2b)ε sinϑ+ 2ε2(cosϑ− sinϑ) tanϑ− ε2(cosϑ+ sinϑ).

For small ε (compared to ϑ) we see

4(cos2 ϑ)
dI

dϑ
≈ (3− 2b)ε sinϑ

which is negative for ϑ < 0 and positive for ϑ > 0. Hence one obtains a shorter length
by making ϑ close to 0. Making ε smaller and smaller, we see that the weighted length
minimizing curve η will be horizontal where it intersects the y-axis.

Let us now verify that γ = ∂E1 does not entirely coincide with the x-axis. We do so
by comparing the weighted length of the line segment joining (−0.5, 0) to (0.5, 0) with the
length of the curve that is the concatenation of the line segment joining (−0.5, 0) to (0, 0.2)
and the line segment joining (0, 0.2) to (0.5, 0). A direct computation shows that the first
path has length 5/8, while the second path has length 0.575 ×

√
1.16. Thus, the second

path is shorter (in the weighted sense) than the first path. Since the first path forms part
of the curve that coincides with the x-axis, the claim follows.
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Suppose now that the superlevel set E1 of u is the minimal weak solution set for the
boundary data χF1 . Then γ = ∂E1 intersects the y-axis at a point (0, H) for some 0 <
H < 0.5, and from the discussion above, we know that it does so horizontally. Clearly,
0 < H < 0.5 implies that 0.5 < w(0, H) < 0.75.

We now claim that in the region x > 0, γ = ∂E1 first intersects the x-axis at a point
(a, 0) with 0 < a ≤ w(0, H). If not, then γ will intersect the region

R = {(x, y) ∈ Ω: x, y > 0, x+ y > w(0, H)}.

Clearly, R ⊂ Kann ∪Kout. In R ∩Kann, we have w(x, y) = x+ y > w(0, H). Hence, there
will be a point (x0, y0) in the boundary of R where γ crosses into R, and at this point
w(x0, y0) = x0 + y0 = w(0, H). Since γ has slope zero at the point (0, H) where the weight
was w(0, H), it follows that γ has slope zero at (x0, y0) as well. Due to convexity of γ
in Kann, the slope of γ would necessarily be strictly positive inside the region R ∩ Kann.
We also know that γ will be a straight line segment in R ∩Kout. It follows that γ would
never reach the point (1, 0), contradicting the definition of γ. This gives the claim. Hence
γ passes through a point (a, 0) for some 0 < a ≤ w(0, H) and then continues horizontally
towards (1, 0).

Now suppose t > 1 is such that η = ∂Et intersects the y-axis at a point (0, H̃) with
H < H̃ < 0.5. It follows from minimality of E1, symmetry of the setting, and the fact that
η cannot intersect γ at the y-axis that η is disjoint from γ. Hence, η will never meet the
x-axis, so its trajectory, outside the y-axis, is completely determined by Snell’s law. Since
η is horizontal at (0, H̃), it follows from Snell’s law that η will be horizontal at a point of
Kann where the weight agrees with w(0, H̃), hence at a point (x, y) with 0 < x < 0.75 and
y > 0. If H̃ were greater than 0.5, then η would be horizontal exactly at one point, viz.
(0, H̃) on the y-axis. Using the arguments of Example 6.6, η intersects ∂Ω at a point whose
height is bounded away from 0. Consequently, t > t0 for some t0 > 1.

Now suppose η = ∂Et for some 1 < t < t0. Then η must intersect the y-axis at the
point (0, H). The trajectory of η is determined by Snell’s law until it meets the x-axis.
Thus, η = ∂Et and γ = ∂E1 coincide until they meet the x-axis. The curve η then follows
the x-axis for some time before leaving it and intersecting ∂Ω at a point with height t− 1.
This final trajectory is calculated as in Example 6.6.

Thus, whether E1 is a minimal solution set or not, η = ∂Et has the following form
for t ∈ (2 − t0, t0): η begins at the point in ∂Ω with y-coordinate t − 1, then intersects
the x-axis which it follows for some time. From there, η can move either up (if Et is the
minimal weak solution set) or down (if Et is the maximal weak solution set), intersecting
the y-axis in a point of the form (0,±H). To obtain η in the region x ≤ 0, simply reflect
through the y-axis.

Note that if Et is minimal (∂Et goes up) then Es must also be minimal for all t0 ≥ s ≥ t.
Choosing ∂Eta stay in the upper half-plane for some ta ∈ [2− t0, t0] yields a solution whose
superlevel sets Et are minimal for t ∈ (ta, 2). Choosing ∂Etb to move into the lower half-
plane for some tb ∈ [2−t0, t0] leads to another solution, whose superlevel sets Et are maximal
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for all t ∈ (0, tb). Contour curves of two distinct such solutions, the first corresponding to
ta = 2 − t0, and the second corresponding to tb = t0, are shown below. A careful analysis
using the sin(arctan(g′(x)) + π/4) = κ/w(x, g(x)) gave the following picture of the two
solutions. The left part of the two pictures is of the contour curves of the solutions, while
the right part is the height-map of the solutions. In Figure 12, the solution takes the value
2− t0 in the middle lenticular region, while in Figure 13, the solution takes on the value t0.
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Figure 12: Level sets ∂Et for t ∈ (0, 2) in Example 6.9, when the solution is constructed using
minimal weak solution sets as the “superlevel pancakes”. Heightmap of u is on the
right; the color at each point represents the solution’s value there.
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Figure 13: Level sets and a heightmap of the solution in Example 6.9 constructed using maximal
weak solution sets as the “superlevel pancakes”. Note that u(x, y) = 2− ũ(x,−y), where
ũ is the solution shown in Figure 12.
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