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Abstract— There is considerable evidence that evaluating the
subjective risk level of driving decisions can improve the safety of
Autonomous Driving Systems (ADS) in both typical and complex
driving scenarios. In this paper, we propose a novel data-driven
approach that uses scene-graphs as intermediate representations
for modeling the subjective risk of driving maneuvers. Our
approach includes a Multi-Relation Graph Convolution Network,
a Long-Short Term Memory Network, and attention layers.
To train our model, we formulate subjective risk assessment
as a supervised scene classification problem. We evaluate our
model on both synthetic lane-changing datasets and real-driving
datasets with various driving maneuvers. We show that our
approach achieves a higher classification accuracy than the state-
of-the-art approach on both large (96.4% vs. 91.2%) and small
(91.8% vs. 71.2%) lane-changing synthesized datasets, illustrating
that our approach can learn effectively even from small datasets.
We also show that our model trained on a lane-changing
synthesized dataset achieves an average accuracy of 87.8% when
tested on a real-driving lane-changing dataset. In comparison,
the state-of-the-art model trained on the same synthesized dataset
only achieved 70.3% accuracy when tested on the real-driving
dataset, showing that our approach can transfer knowledge more
effectively. Moreover, we demonstrate that the addition of spatial
and temporal attention layers improves our model’s performance
and explainability. Finally, our results illustrate that our model
can assess the risk of various driving maneuvers more accurately
than the state-of-the-art model (86.5% vs. 58.4%, respectively).

Index Terms— Autonomous vehicle, risk assessment, scene
understanding, graph convolutional neural network.

I. INTRODUCTION

AUTONOMOUS Driving Systems (ADSs) have advanced
significantly in recent years. However, navigation is still

challenging in complex urban environments since the scenar-
ios are highly variable and complex [1]–[3]. The continued
reports of autonomous vehicle crashes only highlight these
challenges [4]–[7]. A risk-based approach for autonomous
driving has the potential to address this challenge and better
assure driving safety. Within this context, the effectiveness of
understanding the driving scenes and quantifying the risk of
driving decisions becomes particularly crucial for ADSs.
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Several papers have leveraged state-of-the-art deep learn-
ing architectures for modeling subjective risk [2], [8]. Such
methods typically use Convolutional Neural Networks (CNNs)
and Long-Short Term Memory Networks (LSTMs) and have
proven effective at capturing features essential for modeling
subjective risk in both spatial and temporal domains [8].
However, it is unclear whether these methods can capture
critical higher-level information, such as the relationships
between traffic participants in a given scene. Failing to capture
these relationships can result in poor ADS performance in
complex scenarios.

To address these limitations, we propose a scene-graph
augmented data-driven approach for assessing the subjective
risk of driving maneuvers, where the scene-graphs serve as
intermediate representations (IR) as shown in Figure 1. The
key advantage of using scene-graph as IR is that they allow us
to model the relationships between the participants in a traffic
scene, thus potentially improving the model’s understanding
of a scene.

Our proposed architecture consists of three major compo-
nents: (i) a pipeline to convert the images of a driving clip
to a sequence of scene-graphs, (ii) a Multi-Relational Graph
Convolution Network (MR-GCN) to convert each of the scene-
graphs to an embedding (a vectorized representation), and
(iii) an LSTM for temporally modeling the sequence of embed-
dings of the respective scene-graphs. Our model also contains
multiple attention layers: (i) a node attention layer before the
embedding of a scene-graph is computed, and (ii) an attention
layer on top of the LSTM, both of which can further improve
its performance and explainability. For training the model,
we formulate the problem of subjective risk assessment as a
supervised scene-graph sequence classification problem.

A. Research Challenges

Overall, designing a risk assessment system for ADSs using
data-driven approaches presents the following challenges:

1) Designing a reliable method that can handle a wide
range of complex and unpredictable traffic scenarios,

2) Building a model that is transferable from the simulation
setting to the real-world setting because the real-world
datasets for supervised training are limited,

3) Building a model that can provide explainable decisions.

To overcome Research Challenge 1, deep learning based
subjective risk assessment methods must be trained on large
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Fig. 1. An illustration of scene-graph extraction using the Real Image Pipeline. In this process, the first step is to detect a list of objects on each frame of a
clip. Then, we project each frame to its bird’s-eye view to better approximate the spatial relations between objects. Finally, we construct a scene-graph using
the list of detected objects and their attributes.

datasets covering a wide range of “corner cases” (espe-
cially risky driving scenarios), which are expensive and
time-consuming to generate [9]. Many researchers resort to
using synthesized datasets containing many examples of these
corner cases to address this issue. However, for these to be
valuable, a model must be able to transfer the knowledge
gained from simulated training data to real-world situations
(Research Challenge 2). A standard method for measuring a
model’s ability to generalize is transferability, where a model’s
accuracy on a dataset different from the training dataset is
evaluated. If a model can transfer the knowledge gained from
a simulated training set to a real-world testing set effectively,
it will likely perform better in unseen real-world scenarios.

Even if these existing methods can transfer knowledge well,
the predictions of such methods lack explainability, which
is crucial for establishing trust between ADSs and human
drivers [10]–[12]. Explainability refers to the ability of a
model to effectively communicate the factors that influenced
its decision-making process for a given input, particularly
those that might lead the model to make incorrect decisions
[12], [13]. Suppose a model can give attention to the aspects or
entities in a traffic scene that make the scenario risky or non-
risky. In that case, it can improve its decision, and its decisions
become more explainable [14] (Research Challenge 3).

B. Our Novel Contributions

Our key contributions are as follows:
1) We present a novel scene-graph augmented data-driven

approach for assessing the risk of driving actions in
autonomous vehicles.

2) We demonstrate that our approach outperforms existing
methods at risk assessment across a wide range of
scenarios using lane change as a use case.

3) We demonstrate that the use of multi-level attention in
our proposed approach provides better explainability.

4) We demonstrate that our scene-graph based approach
can better transfer knowledge gained from simulated
environments to real-world risk assessment tasks.

C. Paper Organization

The rest of the paper is structured as follows: In Section II,
we discuss related works. In Section III we introduce our
scene-graph augmented approach. In Section IV, we discuss

our experimental results. Finally, in Section V, we present our
conclusions.

II. RELATED WORK

A. Design Philosophies in ADSs

Two broad approaches for designing ADSs are (i) modular
design, (ii) end-to-end design [2]. Most modular approaches
comprise a pipeline of separate components from the sensory
inputs to the actuator outputs, while end-to-end approaches
generate output directly from their sensory inputs [15], [16].
One advantage of a modular design approach is the division
of a task into an easier-to-solve set of sub-tasks that have
been addressed in other fields such as robotics [17], com-
puter vision [18] and vehicle dynamics [19]. Therefore, prior
knowledge from these fields can be leveraged when designing
the components corresponding to the sub-tasks. However, one
disadvantage of such an approach is the complexity of the
whole pipeline [2]. End-to-end approaches can achieve good
performance with a smaller network size because they perform
feature extraction from sensor inputs implicitly through the
network’s hidden layers [16]. However, the authors in [20]
point out that the needed level of supervision is too weak for
the end-to-end model to learn critical controlling information
(e.g., from image to steering angle), so it can fail to handle
complicated driving maneuvers.

A third approach was first proposed by DeepDriving [20],
called the direct perception approach. In their approach, a set
of affordance indicators, such as the distance to lane mark-
ings and other cars in the current and adjacent lanes, are
extracted from an image and serve as an IR for generating
the final control output. They prove that the use of this IR
is effective for simple driving tasks such as lane following
and generalizing to real-world environments. Authors in [21]
use a collection of filtered images, each representing a piece
of distinct information, as the IR. They state that the IR
used in their approach allows the training to be conducted
on real or simulated data, facilitating testing and validation
in simulations before testing on a real car. Moreover, they
show that it is easier to synthesize perturbations to the driving
trajectory at the mid-level representations than at the level of
raw sensors, enabling them to produce non-expert behaviors
such as off-road driving and collisions. The authors in [8]
use Mask-RCNN [22] to color the vehicles in each input
image, producing a form of IR. In contrast to the works
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mentioned above, our approach uses a scene-graph IR that
encodes the spatial and semantic relations between all the
traffic participants in a frame.

B. Graph-Based Driving Scene Understanding

Several papers have applied graph-based formulations for
driving scene understanding [23]–[25]. In [24], the authors
propose a 3D-aware egocentric Spatio-temporal interaction
framework that uses both an Ego-Thing graph and an Ego-
Stuff graph, which encode how the ego vehicle interacts with
both moving and stationary objects in a scene, respectively.
In [23], [25], the authors propose a pipeline using a
multi-relational graph convolutional network (MR-GCN) for
classifying the driving behaviors of traffic participants. The
MR-GCN is constructed by combining spatial and temporal
information, including relational information between moving
objects and landmark objects. Our work is primarily inspired
by [23], [25] but differs in the application and network
architecture. These papers focus on predicting each object’s
behavior in the scene-graph while our work focuses on assess-
ing the subjective risk of the entire scenario. Consequently,
we propose a network architecture that implements more
components such as node-attention, graph pooling layers, and
readout operations.

C. Risk Assessment

In prior research, the problem of risk assessment for
autonomous driving has been tackled by modeling either
the objective risk or the subjective risk [10], [26], [27].
The objective risk is defined as the objective probability of
an accident occurring and is usually determined by statisti-
cal analysis [26]. Some works have focused on minimizing
the objective risk by modeling the trajectories of vehicles
[28], [29] to guarantee safe driving. Subjective risk refers
to the driver’s own perceived risk and is an output of the
driver’s cognitive process [10], [27]. One primary reason why
assessing subjective risk is important is because it accounts
for the human behavior perspective and its critical role in
anticipating risks, as many works point out [10], [27], [30].
Further, studies such as [26], [31] provide direct evidence
that a driver’s subjective risk assessment is inversely related
to the risk of traffic accidents. Similarly, [10] suggests that
augmenting an objective risk assessment system with sub-
jective risk techniques can improve overall risk assessment
performance. For these reasons, our goal in this work is to
build a model for subjective risk assessment. In Figure 2,
we present examples of a lane change that is both subjectively
and objectively risky and a lane change that is subjectively
safe but objectively risky from our driving dataset. Both an
objective and subjective approach would likely identify the
obvious risk factor of the close-proximity, high-speed vehicle
in (a). However, an objective risk assessment approach may
incorrectly consider (b) to be risky because of the ego car’s
perceived trajectory while this is, in fact, a safe lane change.

Several works have studied subjective risk assessment for
autonomous driving systems [8], [10], [27], [32]. In [32],
Hidden Markov Models (HMMs) and Language Models are

Fig. 2. An example of (a) a lane change that is both subjectively and
objectively risky as well as (b) a subjectively safe but objectively risky lane
change from our driving dataset. In (a), the ego car starts a safe lane change,
but a high-speed vehicle suddenly appears in the ego car’s blind spot and
nearly collides with it. In (b), the ego car appears to drive directly towards
the adjacent vehicle but is actually making a safe lane change on a curved
road.

used to detect unsafe lane change events. The approach taken
in [8] is the most related to our work as it infers the risk-level
of overall driving scenes with a deep Spatio-temporal neural
network architecture. Using Mask-RCNN [22] to generate an
IR for each image, their approach achieves a 3% performance
gain in risk assessment. They show that the architecture with
Semantic Mask Transfer (SMT) + CNN + LSTM can perform
25% better than the architecture with Feature Transfer (FT) +
Frame-by-Frame (FbF). This result indicates that capturing
the spatial and temporal features from a single camera can
be useful in modeling subjective risk. However, this approach
only considers the spatial features (the latent vector output of
the CNN layers) of a frame instead of the relations between
all the traffic participants. Our work uses scene-graphs as IRs
to capture the high-level relationships between all the traffic
participants of a scene.

III. SCENE-GRAPH AUGMENTED APPROACH

FOR RISK ASSESSMENT

In this section, we discuss our proposed approach for scene-
graph augmented risk assessment. In our work, we make the
same assumption used in [8] that the set of driving sequences
can be partitioned into two jointly exhaustive and mutually
exclusive subsets: risky and safe. We denote the sequence of
images of length T by I = {I1, I2, I3, . . . , IT }. We assume the
existence of a spatio-temporal function f that outputs whether
a sequence of driving actions x is safe or risky via a risk
label y, as given in Equation 1.

y = f (I) = f ({I1, I2, I3, . . . , IT −1, IT }), (1)

where

y =
{

(1, 0), if the driving sequence is safe

(0, 1), if the driving sequence is risky.
(2)

In this section, we propose a suitable model for approxi-
mating the function f . In the model we propose, the first step
is the extraction of the scene-graph Gt from each image It of
the video clip I. This step is achieved by a series of processes
that we collectively call the Scene-Graph Extraction Pipeline,
described in Section III-A. In the second step, these scene-
graphs are passed through graph convolution layers and an
attention-based graph pooling layer. The graph-level embed-
dings of each scene-graph, hGt , are then calculated using a
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graph readout operation. Next, these scene-graph embeddings
are passed sequentially to LSTM cells to acquire the spatio-
temporal representation, denoted as Z, of each scene-graph
sequence. Lastly, we use a Multi-Layer Perceptron (MLP)
layer with a Softmax activation function to acquire the final
inference, denoted as ŷ, of the risk for each driving sequence I.
We describe more details regarding each of our model’s
components in Section III-B.

A. Scene-Graph Extraction Pipeline

Several approaches have been proposed for extracting
scene-graphs from images by detecting the objects in a scene
and then identifying their visual relationships [33], [34].
However, these works have focused on single general images
instead of a sequence of images as it arises in autonomous
driving, where higher accuracy is demanded. Thus, we adopted
a partially rule-based process to extract objects and their
attributes from images called the Real Image Pipeline. Besides,
to evaluate how our approach performs with scene-graphs
containing ground truth information, we use the Carla Ground
Truth (GT) Pipeline as a surrogate for the ideal situation
where the attributes for each object can be correctly extracted.
After the objects and attributes have been extracted, the scene-
graphs are constructed as described in III-A.3. We discuss
these two approaches in detail below.

1) Real Image Pipeline: In this pipeline, object attributes
and bounding boxes are extracted directly from images using
state-of-the-art image processing techniques. As Figure 1
shows, we first convert each image It into a collection of
objects Ot using Detectron2, a state-of-the-art object detection
model based on Faster RCNN [35], [36]. Next, we use
OpenCV’s perspective transformation library to generate a
top-down perspective of the image, commonly known as a
“birds-eye view” projection [37]. This projection allows us
to approximate each object’s location relative to the road
markings and the ego vehicle. Next, for each detected object
in Ot , we use its estimated location and class type (cars,
motorcycles, pedestrians, lanes, etc.) to compute the attributes
required in building the scene-graph.

2) Carla Ground Truth Pipeline: Object detection and
location estimation with solely a monocular camera can be
unstable because of factors such as weather and camera posi-
tion [38], which can impact the correctness of our image-based
scene-graph construction pipeline and thus our approach’s per-
formance. To evaluate our methodology under the assumption
that object attributes can be extracted without error, we build
our scene-graphs using the ground-truth location and class
information for each vehicle in the Carla GT Pipeline. We
extract this information directly from Carla simulator [9]
without using any image processing steps.

3) Graph Construction: After collecting the list of objects
in each image and their attributes, we begin constructing the
corresponding scene-graphs as follows. For each image It ,
we denote the corresponding scene-graph by Gt = {Ot , At }
and model it as a directed multi-graph where multiple types
of edges connect nodes. The nodes of a scene-graph, denoted
as Ot , represent the objects in a scene such as lanes, roads,

traffic signs, vehicles, pedestrians, etc. The edges of Gt are
represented by the adjacency matrix At , where each value
in At represents the type of the corresponding edge in Gt .
The edges between two nodes represent the different kinds of
relations between them (e.g., near, Front_Left, isIn, etc.).

In assessing the risk of driving behaviors, traffic partici-
pants’ relations that we consider useful are the distance rela-
tions and the directional relations. The assumption made here
is that the local proximity and positional information of one
object will influence the other’s motion only if they are within
a certain distance. Therefore, in this work, we extract only
the location information for each object and adopt a simple
rule to determine the relations between the objects using their
attributes (e.g., relative location to the ego car), as shown
in Figure 1. to ed by one of the relations r ∈ {Near_Collision
(4 ft.), Super_Near (7 ft.), Very_Near (10 ft.), Near (16 ft.),
Visible (25 ft.)} if the objects are physically separated by a
distance that is within that relation’s threshold. In the case of
the directional relations, we assume two objects are related by
the relation r ∈ {Front_Left, Left_Front, Left_Rear, Rear_Left,
Rear_Right, Right_Rear, Right_Front, Front_Right} based on
their relative positions if they are within the Near threshold
distance from one another.

In addition to directional and distance relations, we also
implement the isIn relation that connects vehicles with their
respective lanes. For the Carla GT Pipeline, we extract the
ground-truth lane assignments for each vehicle from the sim-
ulator directly. For the Real Image Pipeline, we use each
vehicle’s horizontal displacement relative to the ego vehicle to
assign vehicles to either the Left Lane, Middle Lane, or Right
Lane based on a known lane width. Our abstraction only
includes these three-lane areas, and, as such, we map vehicles
in all left lanes to the same Left Lane node and all vehicles in
right lanes to the Right Lane node. If a vehicle overlaps two
lanes (i.e., during a lane change), we assign it an isIn relation
to both lanes. Figure 1 illustrates an example of resultant
scene-graph.

B. Scene-Graph Sequence Based Risk Assessment Model

The model we propose consists of three major components:
a spatial model, a temporal model, and a risk inference com-
ponent. The spatial model outputs the embedding hGt for each
scene-graph Gt . The temporal model processes the sequence
of scene-graph embeddings hI = {hG1, hG2 , . . . , hGT } and
produces the spatio-temporal embedding Z. The risk infer-
ence component outputs each driving clip’s final risk assess-
ment, denoted as Ŷ , by processing the Spatio-temporal
embedding Z. The overall network architecture is shown in
Figure 3. We discuss each of these components in detail
below.

1) Spatial Modeling: The spatial model we propose uses
MR-GCN layers to compute the embedding for a scene-graph.
The use of MR-GCN allows us to capture multiple types of
relations on each scene-graph Gt = {Ot , At }. In the Message
Propagation phase, a collection of node embeddings and their
adjacency information serve as the inputs to the MR-GCN
layer. Specifically, the l-th MR-GCN layer updates the node
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Fig. 3. An illustration of our model’s architecture. First each image It ∈ I is converted to a scene-graph Gt via the Scene-Graph Extraction Pipeline. Next
each scene-graph Gt is converted to its corresponding scene-graph embedding hGt via the graph convolution, pooling, and readout operations in the Spatial
Modeling block. Then, the resulting scene-graph embeddings are sequentially processed by LSTM and temporal attention layers to acquire the spatio-temporal
representation Z for a scene-graph sequence. Finally, the risk inference ŷ of the sequence is calculated from Z using an MLP with a Softmax activation
function.

embedding, denoted as h(l)
v , for each node v as follows:

h(l)
v = �0 · h(l−1)

v +
∑
r∈At

∑
u∈Nr (v)

1

|Nr (v)|�r · h(l−1)
u , (3)

where Nr (v) denotes the set of neighbor indices of node v
with the relation r ∈ At . �r is a trainable relation-specific
transformation for relation r in MR-GCN layer. Since the
information in (l − 1)-th layer can directly influence the
representation of the node at l-th layer, MR-GCN uses another
trainable transformation �0 to account for the self-connection
of each node using a special relation [39]. Here, we initialize
each node embedding h(0)

v , ∀v ∈ Ot , by directly converting the
node’s type information to its corresponding one-hot vector.

Typically, the node embedding becomes more refined and
global as the number of graph convolutional layers, L,
increases. However, the authors in [40] also suggest that the
features generated in earlier iterations might generalize the
learning better. Therefore, we consider the node embeddings
generated from all the MR-GCN layers. To be more specific,
we calculate the embedding of node v at the final layer,
denoted as HL

v , by concatenating the features generated from
all the MR-GCN layers, as follows,

HL
v = CONCAT({h(l)

v }|l = 0, 1, . . . , L). (4)

We denote the collection of node embeddings of scene-graph
Gt after passing through L layers of MR-GCN as Xprop

t
(L can be 1, 2 or 3).

The node embedding Xprop
t is further processed with an

attention-based graph pooling layer. As stated in [13], such an
attention-based pooling layer can improve the explainability
of predictions and is typically considered a part of a uni-
fied computational block of a graph neural network (GNN)
pipeline. In this layer, nodes are pooled according to the scores
predicted from either a trainable simple linear projection [41]
or a separate trainable GNN layer [42]. We denote the graph
pooling layer that uses the SCORE function in [41] as
TopkPool and the one that uses the SCORE function in [42] as
SAGPool. The calculation of the overall process is presented
as follows:

α = SCORE(Xprop
t , At), (5)

P = topk(α), (6)

where α stands for the coefficients predicted by the graph
pooling layer for nodes in Gt and P represents the indices
of the pooled nodes which are selected from the top k of the
nodes ranked according to α. The number k of the nodes to
be pooled is calculated by a pre-defined pooling ratio, pr ,
and using k = pr × |Ot |, where we consider only a constant
fraction pr of the embeddings of the nodes of a scene-graph
to be relevant (i.e., 0.25, 0.5, 0.75). We denote the node
embeddings and edge adjacency information after pooling by
Xpool

t and Apool
t and are calculated as follows:

Xpool
t = (Xprop

t � tanh(α))P, (7)

Apool
t = Aprop

t (P,P). (8)

where � represents an element-wise multiplication, ()P refers
to the operation that extracts a subset of nodes based on P and
()(P,P) refers to the formation of the adjacency matrix between
the nodes in this subset.

Finally, our model aggregates the node embeddings of
the graph pooling layer, Xpool

t , using a graph READOUT
operation, to produce the final graph-level embedding hGt for
each scene-graph Gt as given by

hGt = READOUT(Xpool
t ), (9)

where the READOUT operation can be either summation,
averaging, or selecting the maximum of each feature dimen-
sion, over all the node embeddings, known as sum-pooling,
mean-pooling, or max-pooling, respectively. The process until
this point is repeated across all images in I to produce the
sequence of embedding, hI .

2) Temporal Modeling: The temporal model we propose
uses an LSTM for converting the sequence of scene-graph
embeddings hI to the combined spatio-temporal embedding
Z. For each timestamp t , the LSTM updates the hidden state
pt and cell state ct as follows,

pt , ct = LSTM(hGt , ct−1), (10)

where hGt is the final scene-graph embedding from
timestamp t . After the LSTM processes all the scene-graph
embeddings, a temporal readout operation is applied to the
resultant output sequence to compute the final Spatio-temporal
embedding Z given by

Z = TEMPORAL_READOUT(p1, p2, . . . , pT ) (11)
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where the TEMPORAL_READOUT operation could be
extracting only the last hidden state pT (LSTM-last), or be
a temporal attention layer (LSTM-attn).

In [11], adding an attention layer b to the encoder-decoder
based LSTM architecture is shown to achieve better per-
formance in Neural Machine Translation (NMT) tasks. For
the same reason, we include LSTM-attn in our architecture.
LSTM-attn calculates a context vector q using the hidden state
sequence {p1, p2, . . . , pT } returned from the LSTM encoder
layer as given by

q =
T∑

t=1

βt pt (12)

where the probability βt reflects the importance of pt in
generating q . The probability βt is computed by a Softmax
output of an energy function vector e, whose component et

is the energy corresponding to pt . Thus, the probability βt is
formally given by

βt = exp(et )∑T
k=1 exp(ek)

, (13)

where the energy et associated with pt is given by et =
b(s0, pt). The temporal attention layer b scores the importance
of the hidden state pt to the final output, which in our case is
the risk assessment. The variable s0 in the temporal attention
layer b is computed from the last hidden representation pT .
The final Spatio-temporal embedding for a video clip, Z ,
is computed by feeding the context vector q to another LSTM
decoder layer.

3) Risk Inference: The last piece of our model is the
risk inference component that computes the risk assessment
prediction Ŷ using the spatio-temporal embedding Z. This
component is composed of a MLP layer followed by a Softmax
activation function. Thus, the prediction Ŷ is given by

Ŷ = Sof tmax(MLP(Z)) (14)

The loss for the prediction is calculated as follows,

argmin CrossEntropyLoss(Y, Ŷ ) (15)

For training our model, we use a mini-batch gradient descent
algorithm that updates its parameters by training on a batch
of scene-graph sequences. To account for label imbalance,
we apply class weighting when calculating loss. Besides,
several dropout layers are inserted into the network to reduce
overfitting.

IV. EXPERIMENTAL RESULTS

In this section, we provide extensive experimental results
to illustrate the accuracy of our model and its ability to
transfer knowledge (transferability) for a specific driving
maneuver: lane changes. This task by itself is crucial, given
that 7.62% of all traffic accidents between light vehicles can be
attributed to improper execution of lane changes [43]. Besides,
we also evaluate our model’s capability for turning as well
as entering or leaving the traffic flow of a road (merging
and branching, respectively). We evaluate our approach by

providing comparisons between our model and a state-of-
the-art SMT+CNN+LSTM based risk assessment model [8].
We refer to this model as the baseline. Besides, we provide
results for our model’s best hyper-parameter setting and per-
form an ablation study to evaluate the contribution of each
major component in our model.

A. Dataset Preparation

We prepared two types of datasets for our experiments
(i) synthesized lane-changing datasets and (ii) real-world
driving datasets. To create the synthesized datasets, we devel-
oped a tool to generate lane-changing clips using the Carla1

and Carla Scenario Runner.2 We generated the real-world
dataset by extracting lane change clips and other driving
actions from the Honda Driving Dataset (HDD) [44].

Carla is an open-source driving simulator [9] that allows
users to control a vehicle in either manual mode or autopilot
mode. The Carla Scenario Runner contains a set of atomic
controllers that enable users to control a car in a driving scene
and perform complex driving maneuvers. We modified the
user script in Carla so that it can (i) select one autonomous
car randomly and switch its mode to manual mode, and then
(ii) utilize Scenario Runner’s function to force the vehicle to
change lanes.

The data generating tool allows us to fabricate lane changing
clips directly instead of extracting them from long driving
clips. We generated a wide range of simulated lane changes
using the various presets in Carla that allowed us to specify the
number of cars, pedestrians, weather and lighting conditions,
etc. Also, through the APIs provided by the Traffic Man-
ager (TM) of the Carla simulator, we were able to customize
the driving characteristics of every autonomous vehicle, such
as the intended speed considering the current speed limit,
the chance of ignoring the traffic lights, or the chance of
neglecting collisions with other vehicles. Overall, this allowed
us to simulate a wide range of very realistic urban driving
environments and generate synthesized datasets suitable for
training and testing a model.

We generated two synthesized lane-changing datasets: a
271-syn dataset and a 1043-syn dataset, containing 271 and
1,043 lane changing clips, respectively. In addition, we sub-
sampled the 271-syn and 1043-syn datasets further to create
two balanced datasets that have a 1:1 distribution of risky
to safe lane changes: 96-syn and 306-syn. For real driving
datasets, we processed the HDD dataset to create a dataset
called 1361-honda. Specifically, 1361-honda contains 571 lane
changing, 350 turning, 297 branching, and 149 merging video
clips. For evaluating the capability of the model to transfer
knowledge after training on 271-syn and 1043-syn datasets,
we subsampled 1361-honda to create a real-driving lane-
changing dataset which contains 571 lane changing clips,
denoted as the 571-honda dataset.

To label the video clips in both the real-world and synthe-
sized datasets, we performed an annotation process similar to
the one used in [8]. The process starts with multiple human

1https://github.com/carla-simulator/carla
2https://github.com/carla-simulator/scenario_runner
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annotators assigning a risk score to each clip that ranges from
−2 to 2, where 2 implies a highly risky driving scenario and
−2 implies the safest driving scenario. Then for each video
clip, the risk labels of all the annotators are averaged and
converted to a binary label y as follows: if the average is ≤ 0,
then the label y = 0 (safe) is assigned, else label y = 1 (risky)
is assigned.

In our work, we used five different anonymous annotators.
After the annotation process, the annotators were required
to write down the criteria and rationale they used when
annotating the video clips. This process ensured that the
annotators paid attention while labeling, reducing the odds of
trivial misjudgment of a driving scene’s risk level. The risk
factors common among the five annotators were the distance
to other cars and the side curbs, the speed relative to other
vehicles, the sizes of adjacent vehicles, the presence of bikers
or pedestrians, and the traffic light status. Besides, the sudden
or random appearance of objects in the scene was also a critical
factor in determining a driving scene’s risk level.

We randomly split each dataset into a training set and a
testing set by the ratio 7:3 such that the split is stratified,
i.e., the proportion of risky to safe lane change clips in each
of the splits is the same. The models are first trained on the
training set before being evaluated on the testing set. The final
score of a model on a dataset is computed by averaging over
the testing set scores for ten different stratified train-test splits
of the dataset.

B. Training and Model Specification

Our models were implemented using PyTorch and PyTorch-
Geometric [45], [46]. We used the ADAM optimizer for
the training algorithm. We considered three learning rates:
{0.0005, 0.0001, 0.00005}, and a weight decaying rate of
5 × 10−4 per epoch. We used a batch size of 16 sequences
for each training epoch. In our experiments, we trained
each model for 200 epochs. Regarding the setting of
hyper-parameters, we considered the options described in
Section III-B. From our experimentation, we found that
the best option for the hyper-parameters of our model
is a mini-batch size of 16 sequences, a learning rate
of 0.00005, two MR-GCN layers with 100 hidden units,
a SAGPool pooling layer with a ratio of 0.5, sum-pooling
for graph readout operation and LSTM-attn for temporal
modeling.

To ensure a fair comparison between our model and the
baseline, we reported the performance of the model configu-
rations with the lowest validation loss throughout the training
in the results section. All the experiments were conducted on
a server with one NVIDIA TITAN-XP graphics card and one
NVIDIA GeForce GTX 1080 graphics card. For implementing
the baseline model [8], we used the source code available
at their open-source repository.3 The source code and scene-
graph datasets used in our experiments are open sourced at
https://github.com/louisccc/sg-risk-assessment.

3https://github.com/Ekim-Yurtsever/DeepTL-Lane-Change-Classification

C. Experiments on Risk Assessment

We evaluate each model’s performance by measuring its
classification accuracy and the Area Under the Curve (AUC) of
the Receiver Operating Characteristic (ROC) for each dataset.
The classification accuracy is the ratio of the number of correct
predictions on the test set of a dataset to the total number of
samples in the testing set. AUC, sometimes referred to as a
balanced accuracy measure [47], measures the probability that
a binary classifier ranks a positive sample more highly than
a random negative sample. This is a more balanced measure
for measuring accuracy, especially with imbalanced datasets
(i.e. 271-syn, 1043-syn, 571-honda).

Figure 4 shows the comparison between our model’s per-
formance and the baseline model [8] for all the synthetic
datasets. The results show that our approach consistently
outperforms [8] across all the datasets in terms of both
classification accuracy and AUC. Particularly, on the 1043-syn
dataset, our Image-based and GT pipelines outperform [8]
in classification accuracy by 4.4% and 5% respectively
(i.e., an accuracy of 95.8% and 96.4% compared to 91.4%
for the baseline).

We found that the performance difference between our
approach and the baseline increased when the training datasets
were smaller. Figure 4 shows that the difference in the
accuracy between our approach using the GT pipeline and
the baseline [8] is 5% for the 1043-syn dataset and 8.7% for
the 271-syn dataset. This result indicates that our approach
can learn an accurate model even from a smaller dataset. We
postulate this is a direct result of its use of a scene-graph
based IR.

We also found that our approach performs better than the
baseline on balanced datasets. Among the datasets used for
evaluation of the models, the datasets 271-syn and 306-syn
contain roughly the same number of clips but differ in
the distribution of safe to risky lane changes (2.30:1 for
271-syn vs. 1:1 for 306-syn). We found that the performance
difference between our image-based approach and the baseline
on these datasets is 12.9% on the 306-syn dataset compared to
7.8% on the 271-syn dataset, indicating that our approach can
discriminate between the two classes better than the baseline.

We also evaluated the contribution of each functional com-
ponent in our proposed model by conducting an ablation study.
The results of the study are shown in Table I. From Table I we
find that the simplest of the models, with no MR-GCN layer
(replaced with an MLP layer) and a simple average of the
embeddings in hI for the temporal model (denoted as mean
in Table I), achieves a classification accuracy of 75%. We
find that replacing mean with an LSTM layer for temporal
modeling yields a 10.5% increase in performance. We also
find that including a single MR-GCN with 64 hidden units
and sum-pooling to the simplest model results in a 14.8%
performance gain over the simplest model. The performance
gain achieved by just including the MR-GCN layer suggests
the effectiveness of considering the relations between objects.
Finally, we find that the model with one MR-GCN with
64 hidden units and sum-pooling plus the LSTM layer for
temporal modeling yields the maximum gain of 18.1% over
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Fig. 4. Accuracy and AUC comparison between our approaches (Real Image and Carla GT) and [8] on different datasets. In these experiments, we trained
the model using the hyper-parameter settings reported in Section IV-C.

TABLE I

THE RESULTS OF THE CARLA GT APPROACH ON 1043-syn DATASET WITH

VARIOUS SPATIAL AND TEMPORAL MODELING SETTINGS. IN THESE
EXPERIMENTS, WE USED MR-GCN LAYERS WITH 64 HIDDEN

UNITS AND sum-pooling AS THE GRAPH READOUT OPERATION

Fig. 5. The results of comparing transferability between our Real Image
model and [8]. In this experiment, we trained our model using our best
hyper-parameters on both 271-syn dataset and 1043-syn dataset. Then we
tested the accuracy of our approach on both original dataset and 571-honda
dataset. We followed the same procedure to train and test [8].

the simplest model. These results clearly demonstrate the
importance of each component in the model we propose.

D. Evaluation of Attention Mechanisms on Risk Assessment

In this section, we evaluate the various attention components
of our proposed model. To evaluate the benefit of attention
over the spatial domain, we tested our model with three

different graph attention methods: no attention, SAGPool, and
TopkPool. To evaluate the impact of attention on the temporal
domain, we tested our model with the following temporal
models: mean, LSTM-last, and LSTM-attn. The detailed results
that elucidate the effectiveness of these different attention
mechanisms are presented in Table I.

For evaluating the benefits of graph attention, we start
with an attention-free model: one MR-GCN layer with sum-
pooling + mean. In comparison, the model that uses SAGPool
for attention on the graph shows a 2.7% performance gain over
the attention-free model. This result indicates that the use of
attention over both nodes and relations allows SAGPool to
better filter out irrelevant nodes from each scene-graph. We
found that the model using TopkPool as the graph-attention
layer became relatively unstable, resulting in a 2.4% perfor-
mance drop compared to the attention-free model. This is
likely because TopkPool ignores the relations between nodes
when calculating α. Another reason for this instability could
be the random initialization of weights in TopkPool, which can
exponentially affect the overall performance as stated in [13].

For evaluating the impact of attention on the temporal
model, we evaluated the effects of adding a temporal attention
layer to the following two models: (i) with no MR-GCN
layers and no temporal attention and (ii) with one MR-GCN
layer and no temporal attention. Compared to the model with
no MR-GCN layer and no temporal attention, the model’s
performance with no MR-GCN and LSTM-attn was found to
be 0.1% higher. We also found that adding LSTM-attn to the
model with one MR-GCN layer increases its performance by
0.7% over the same model with no temporal attention. These
results demonstrate that the inclusion of temporal attention
does improve the performance, though only marginally. The
reason why we only see a marginal improvement can be that
the temporal attention layer is less relevant with the dataset
that our model was trained on. When preparing these datasets,
we manually removed the frames that are irrelevant to a lane
change, exactly the set of frames that temporal attention would
have given less attention to, thus minimizing its effect.

Figure 6 demonstrates our model’s capability to pinpoint
the critical factors in assessing driving risk in both temporal
and spatial domains. As Equation 7 shows, the node attention
weights α are used by our graph pooling layer to filter the
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Fig. 6. The visualization of attention weights in both spatial (α) and temporal (β) domains using a risky lane changing clip as an example. We used a gradient
color from light yellow to red for visualizing each node’s projection score that indicates its importance in calculating a scene-graph embedding. We also used
a gradient colored (white to red) bar chart to visualize the temporal attention coefficients β1, β2, . . . β36 used for calculating the context vector c.

objects in a scene-graph that are less significant for assessing
the risk. In the temporal domain, the attention weights, β,
allow the LSTM encoder to score each intermediate hidden
state (pt ) and retain only the useful information in Z for
the final risk assessment. Table I demonstrates the benefit
of applying attention layers in risk assessment. Specifically,
it shows that the addition of the SAGPool attention layer
improves the accuracy of the baseline model (1 MR-GCN +
mean) by 2.7% and that including LSTM-attn to the baseline
model (1 MR-GCN + LSTM-last) increases the performance
by 0.3%.

In addition to improving our model’s performance,
the inclusion of graph and temporal attention improves the
explainability of our model’s risk assessment decisions. We
demonstrate this capability using the visualization of both
graph attention and temporal attention provided in Figure 6.
Figure 6 shows the trend of the attention scores β1, β2, . . . βT

for a risky lane changing clip. Intuitively, the frame with
a higher attention score αt contributes more to the context
vector c (shown in Equation 12), thus playing a more critical
role in calculating hGt and contributing to the final risk
assessment decision. In this risky lane changing example,
the temporal attention scores progressively increase between
frames 19 and 32 during the lane change; and the highest
frame attention weights appear in frames 33 and 34, which are
the frames immediately before the collision occurs. Figure 6
also shows the projection scores for the node attention layer,
where a higher score for a node indicates that it contributes
more to the final decision of risk assessment. As shown in
this example, as the ego car approaches the yellow vehicle,
the node attention weights for the ego car and the yellow
vehicle are increased proportionally to the scene’s overall risk.
In the first few frames, the risk of collision is low; thus,
the node attention weights are low; however, in the last few
frames, a collision between these two vehicles is imminent;
thus, the attention weights for the two cars are much higher
than for any other nodes in the graph. This example clearly
demonstrates our model’s capability to pinpoint the critical
factors in a scene-graph that contributed to its risk assessment
decision. This capability can be valuable for debugging edge
cases at design time, thus reducing the chances of ADS making

unexpected, erroneous decisions in real-world scenarios and
improving human trust in the system.

E. Transferability From Virtual to Real Driving

In this section, we demonstrate our approach’s capability to
effectively transfer the knowledge learned from a simulated
dataset to a real-world dataset. To demonstrate this capability,
we use the model weights and parameters learned from train-
ing on the 271-syn dataset or the 1043-syn dataset directly
for testing on the real-world driving dataset: 571-honda. We
also compare the transferability of our model with that of the
baseline method [8]. The results are shown in Figure 5.

As expected, the performance of both our approach and the
baseline degrades when tested on 571-honda dataset. However,
as Figure 5 shows, the accuracy of our approach only drops
by 6.7% and 3.5% when the model is trained on 271-syn and
1043-syn, respectively, while the baseline’s performance drops
drastically by a much higher 21.3% and 14.9%, respectively.
The results categorically show that our proposed model can
transfer knowledge more effectively than the baseline.

F. Risk Assessment by Action Type

In this section, we show results from evaluating our model’s
performance on various other driving scenarios available in
the HDD: turning, branching, merging, etc. The results for
training and evaluating our model on the 1361-honda dataset
are shown in Table II. From Table II, we can observe that our
approach significantly outperforms [8] in both overall accuracy
(0.86 v.s. 0.58) and overall AUC (0.91 v.s. 0.61), indicating
that our approach can better assess risk across various driving
scenarios. In Table II we also show the performance for
each action type. The results show that our approach also
outperforms [8] on each individual type of driving scenario.
Our approach slightly under-performs on turning scenarios
compared to its performance on other action types. This
discrepancy is likely because turning scenarios are intrinsically
more complicated than straight-road driving scenarios (lane
change, branch, merge). Another reason could be that the
heading of vehicles is a contributing factor in complicated
scenarios, while the scene-graph used in our work contains
only distance and directional relations.
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TABLE II

BREAKDOWN OF RISK ASSESSMENT PERFORMANCE BY DRIVER ACTION
TYPES (LANE CHANGING, MERGING, BRANCHING, AND TURNING)

EVALUATED ON 1361-Honda DATASET

V. CONCLUSION

Subjective risk assessment is a challenging, safety-critical
problem that requires a good semantic understanding of many
possible road scenarios. Our results show that our scene-graph
augmented approach outperforms state-of-the-art techniques at
risk assessment tasks in terms of accuracy (95.8% vs. 91.4%)
and AUC (0.978 vs. 0.958). We also show that our approach
can learn with much less training data than these techniques,
as our approach achieves 91.8% accuracy on the 96-syn dataset
compared to 78.2% accuracy achieved by [8]. Additionally, our
results show that our approach can better transfer knowledge
gained from simulated datasets to real-world datasets (5.0%
avg. acc. drop for our approach vs. 18.1% avg. acc. drop for
[8]). We also show that the use of spatial and temporal atten-
tion components improves our approach’s performance and
explainability. Finally, our results illustrate that our model can
more accurately assess the risk of diverse driving maneuvers
than the state-of-the-art model (86.5% for our approach vs.
58.4% for [8]).
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