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spaces equipped with a doubling measure supporting a 1-Poincaré inequality. We show that at almost

every point x outside the Cantor and jump parts of a BV function, the asymptotic limit of the function is

a Lipschitz continuous function of least gradient on a tangent space to the metric space based at x. We

also show that, at co-dimension 1 Hausdorff measure almost every measure-theoretic boundary point of a

set E of finite perimeter, there is an asymptotic limit set (E)∞ corresponding to the asymptotic expansion
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that the perimeter measure of (E)∞ is Ahlfors co-dimension 1 regular.
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1. Introduction

The classical notion of differentiability for a function f on a subset of Euclidean space Ω ⊂ Rn
at a point x ∈ Ω is that the graph of f should, at (x, f(x)) ∈ Rn × R, asymptotically approach
an n-dimensional hyperplane in Rn+1 as we zoom in. In other words, the function f behaves
asymptotically like an affine function. This notion has been extended to mappings between domains
in Riemannian manifolds in the study of differential geometry.

The seminal work of Cheeger [11] extended the above notion of affine approximation to the realm
of metric measure spaces, with generalized linear functions defined on measured Gromov-Hausdorff
tangent spaces playing the role of affine functions. It was shown there that, if the space is complete,
the measure is doubling, and the space supports a p-Poincaré inequality for some 1 ≤ p <∞, then
every Lipschitz function f on the metric space is asymptotically generalized linear at almost every
point x in the space. More specifically, we have the following: let X∞ be obtained as a pointed
measured Gromov-Hausdorff limit of scaled versions (Xn, dn, x, µn) of the metric measure space
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(X, d, µ) with x ∈ X. In considering corresponding scaled versions fn : Xn → R of f : X → R,
where

fn(y) :=
f(y)− f(x)

rn
with {rn}n∈N a sequence of positive numbers decreasing to zero which form the scales associated
with the metric dn := r−1n d in the Gromov-Hausdorff limit, the sequence of functions fn converges
to a limit function f∞ : X∞ → R (after passing to a subsequence if necessary). Cheeger proved that
this asymptotic limit function f∞ is a generalized linear function on X∞. Here by a generalized
linear function, the paper [11] means a function that is p-harmonic on X∞ with a constant function
as its minimal p-weak upper gradient.

In this paper, we extend the study of asymptotic behavior of Lipschitz functions in [11] to
functions of bounded variation in complete metric measure spaces equipped with a doubling measure
supporting a 1-Poincaré inequality. The following theorems give a summary of the principal results
of this paper; the precise versions can be found in the statements of the corresponding theorems in
Sections 4–6.

Theorem A (Theorems 4.8 and 4.9). Suppose that the measure µ on the complete metric space
(X, d) is doubling and supports a 1-Poincaré inequality. Let u be a function of bounded variation
on X. For µ-a.e. x ∈ X and any tangent space (X∞, d∞, x∞, µ∞) of X based at x, any limit
function u∞ as described above is 1-harmonic (also known as function of least gradient) and has
quasi-constant minimal 1-weak upper gradient.

The definitions of doubling and Poincaré inequality can be found in (2.1) and (2.4) below.
The most fundamental BV functions are characteristic functions of sets of finite perimeter. For

these functions, the most interesting behavior happens solely at their jump points. Here the study
of asymptotics is different, see e.g. [12, Theorem 5.13] in the Euclidean setting. Similarly, for general
BV functions u, the approach of scaling the function as described above works well when considering
points in X that asymptotically see neither the Cantor nor the jump parts of the variation measure
‖Du‖ of u, but it is not helpful in the study of asymptotic behavior of u at points in its jump
set Su. Instead, an approach based on weak* limits of measures, which can also be used to define
the limit function u∞ as in Theorem 5.5, is more in line with studying the behavior of u at points
in the jump set Su of u and gives an alternative approach to Theorem A. This measure-theoretic
approach is applied to characteristic functions of sets of finite perimeter in Sections 5 and 6 and
the main conclusions are described in Theorems B and C below.

Theorem B (Theorem 5.5). Suppose that the measure µ on the complete metric space (X, d) is
doubling and supports a 1-Poincaré inequality. Let E ⊂ X be of finite perimeter P (E, ·). Then for
P (E, ·)-a.e. point, appropriately scaled versions of P (E, ·) converge to a measure on X∞ that is
comparable to the co-dimension 1 Hausdorff measure restricted to the measure-theoretic boundary
of a set (E)∞ of locally finite perimeter in X∞.

In Rn, the corresponding limits are not just (n − 1)-dimensional, but are hyperplanes that are
boundaries of sets whose characteristic functions are functions of least gradient, that is, of minimal
boundary surface. In the metric setting, we obtain an analogue with quasiminimal sets playing the
role of hyperplanes and minimal boundary surfaces.

Theorem C (Theorem 6.3). Suppose that the measure µ on the complete metric space (X, d) is
doubling and supports a 1-Poincaré inequality. Let E ⊂ X be of finite perimeter. Then, with respect
to the co-dimension 1 Hausdorff measure, almost every point x on the measure-theoretic boundary
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of E satisfies the following properties: fixing a (pointed) tangent space (X∞, d∞, x∞, µ∞) arising
as a Gromov-Hausdorff limit of the scaled sequence (Xn, dn, x, µn), and by passing to a subsequence
if necessary we obtain that

• the sequence of measures χE dµn on Xn converges weakly* to a measure µE∞ on X∞,
• this limit measure is absolutely continuous with respect to µ∞,
• there is a set (E)∞ ⊂ X∞ of finite perimeter such that dµE∞ = χ(E)∞ dµ∞,
• the set (E)∞ is of quasiminimal boundary surface (see Definition 6.2 or [25]), and
• the measure described in Theorem B is supported on the boundary of (E)∞, and is compa-

rable to the perimeter measure P ((E)∞, ·) of (E)∞.

Thus, beginning with extensions of the Cheeger’s Rademacher theorem for doubling metric spaces
with a Poincaré inequality to the functions of bounded variation, we recover important aspects of
the classical theory of the boundaries of finite perimeter sets in Rn.

The class of BV functions considered here is based on the notion first proposed by Miranda
Jr. [33], and was further developed in [1, 5, 2]. The corresponding notion of a function of least
gradient was studied in [25, 18, 28]. Just as [11] related asymptotic limits of Lipschitz functions
to generalized linear functions (which are a priori p-harmonic for the indices p > 1 for which X
supports a p-Poincaré inequality), we relate asymptotic limits of BV functions to functions of least
gradient when the point of asymptoticity does not lie in the set where the jump and Cantor parts
of the variation measure live. Additionally, at almost every point with respect to the co-dimension
1 Hausdorff measure in the measure-theoretic boundary of the set of finite perimeter, we relate the
asymptotic limit of that set to sets of finite perimeter that have a quasiminimal boundary surface
as in [25].

In the setting of Heisenberg groups (perhaps the simplest non-Riemannian example of the type of
metric measure spaces studied here), more is known of the asymptotic behavior of BV functions; the
key papers to study this setting are those of Magnani [32], Franchi, Serapioni and Serra-Cassano [13],
and Ambrosio, Ghezzi and Magnani [4]. It is shown in [13, Theorem 4.1] that asymptotic limits of
sets of finite perimeter in a Heisenberg group, based at a reduced boundary point of that set, are
Euclidean (vertical) half-spaces with the boundary plane parallel to the non-horizontal direction.
Studies of asymptotic limits of sets of finite perimeter in more general step-2 Carnot groups can
be found in [14], and for more general Carnot groups in [15]. While the Heisenberg groups are
topologically Euclidean, there are more sets of finite perimeter in the Heisenberg sense than in the
Euclidean sense, see [13, Proposition 2.15]. The papers [13, 14, 15] rely on the group structure
on the Carnot groups, and so they do not address the case of more general Carnot-Carathéodory
spaces. Carnot-Carathéodory spaces can be realized as Riemannian manifolds equipped with a
vector field that satisfies a Hörmander-type condition, called the horizontal vector field, see [7] for
more on these spaces.

Carnot-Carathéodory spaces are (locally) doubling metric measure spaces supporting a 1-Poincaré
inequality, and hence the results of the present paper also apply there. Note that tangent spaces of
Carnot-Carathéodory spaces are topological groups equipped with dilation operations, and if the
tangent space is based at a regular point of the Carnot-Carathéodory space, then it is a nilpo-
tent group equipped with a dilation, see [34, 7, 30]. Under further assumptions on the Carnot-
Carathéodory space (which lead to knowing that the tangent spaces are all Carnot groups), a
similar asymptoticity study is undertaken in [4]. We point out here that the results in the current
paper are applicable to all Carnot-Carathéodory spaces of topological dimension at least 2.

If ν is a Radon measure on X and x ∈ X, then for almost every r > 0 we know that ν(B(x, r) \
B(x, r)) = 0. If X is a geodesic space and µ is a doubling measure, then µ(B(x, r) \ B(x, r)) = 0
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for each r > 0 and x ∈ X, see [9, Corollary 2.2]. In this paper, we will assume that X is geodesic
in order to simplify many of the proofs (by avoiding the discussion of having to slightly adjust the
radius r in order to ensure that µ(B(x, r)\B(x, r)) = 0), but our results hold also in spaces that are
not geodesic by an easy (but notationally cumbersome) modification discussed in Section 2 below.

The structure of this paper is as follows. In Section 2 we give the basic definitions necessary
for the study of sets of finite perimeter and functions of bounded variation on metric measure
spaces. In Section 3 we discuss pointed measured Gromov-Hausdorff limits. In Section 4 we show
the results stated above regarding that asymptotic limits of BV functions converge to a function
of least gradient (1-harmonic) in the tangent space, see Theorem 4.9. In Section 5 we discuss
asymptotic limits of a set of finite perimeter, and show that for co-dimension 1 almost every point
on the measure-theoretic boundary of that set we have a tangential behavior of the set; more
specifically, there is a Gromov-Hausdorff type limit (E)∞ of the set E at such a point, and this
limit is a set of (locally) finite perimeter; this is the content of Theorem 5.5. We also verify certain
geometric structural regularity of these limit sets, see Theorem 5.4. The final section of this paper
is devoted to the discussion on asymptotic minimality for sets of finite perimeter. In Theorem 6.3
we show that these limit sets (E)∞ are sets of quasiminimal boundary surfaces.

2. Notation and definitions

Here we lay out the main definitions and assumptions for this paper. Much of the terminology
will be similar to that used in [1, 5, 33].

We assume that (X, d, µ) is a complete metric measure space with diamX > 0, that is, X consists
of at least two points. We use the notation B(x, r) for the open ball centered at x ∈ X and of
radius r > 0. If we wish to be specific that the ball is in the metric space X, we write BX(x, r).
Given a ball B = B(x, r), we sometimes denote radB := r; note that in metric spaces, a ball (as a
set) does not necessarily have a unique center and radius, but we understand these to be prescribed
for all balls that we consider. We will always assume that µ is doubling: there is a constant Cd ≥ 1
such that for all x ∈ X and r > 0,

(2.1) 0 < µ(B(x, 2r)) ≤ Cdµ(B(x, r)) <∞.

By iterating the doubling condition, we obtain for any x ∈ X and any y ∈ B(x,R) with 0 < r ≤
R <∞ that

(2.2)
µ(B(y, r))

µ(B(x,R))
≥ 1

C2
d

( r
R

)Q
,

where Q > 1 only depends on the doubling constant Cd.
When a property holds outside a set of µ-measure zero, we say that it holds for µ-a.e. x ∈ X.

As complete doubling metric spaces are proper, every closed and bounded set is compact, see for
instance [21, Lemma 4.1.14]. Given an open set W ⊂ X, we take Liploc(W ) to be the space of
functions on W that are Lipschitz on every closed and bounded subset of W , and L1

loc(W ) to be
the space of functions integrable with respect to µ on every closed and bounded subset of W . We
say that a sequence of functions fk converges to a function f in L1

loc(W ) if for every closed and
bounded subset K of W we have that limk→∞

∫
K
|fk − f | dµ = 0. It is not difficult to see that

Liploc(W ) is a dense subclass of L1
loc(W ).

Given a rectifiable curve γ : [0, 1]→ X, we define the length of γ to be

`(γ) := sup
∑
i

d(γ(ti), γ(ti+1))
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where the supremum is taken over all finite partitions {ti} of [0, 1]. We will always assume that X
is a geodesic space: for all x, y in X,

d(x, y) = min `(γ)

where the minimum is taken over all curves γ joining x to y and is achieved.
Given a function u : X → R, an upper gradient g of u is a nonnegative Borel function such that

for every x, y ∈ X and every rectifiable curve γ containing x and y, we have the inequality

(2.3) |u(x)− u(y)| ≤
∫
γ

g ds,

where ds is arc length (see [21, Sections 6.2 and 6.3] for more information and standard results
about upper gradients).

We say that a family of rectifiable curves Γ is of zero p-modulus, for 1 ≤ p < ∞, if there is a
nonnegative Borel function ρ ∈ Lp(X) such that for all curves γ ∈ Γ, the curve integral

∫
γ
ρ ds

is infinite. If g is a nonnegative µ-measurable function on X and (2.3) holds for all curves apart
from a family with zero p-modulus, we say that g is a p-weak upper gradient of u. It is known that
if a function u on X has an upper gradient in Lp(X), then there exists a minimal p-weak upper
gradient of u, denoted by gu, satisfying gu ≤ g a.e. for any p-weak upper gradient g ∈ Lp(X) of u,
see [8, Theorem 2.25].

We always assume that the space X supports a 1-Poincaré inequality. We say that X supports a
p-Poincaré inequality, for 1 ≤ p <∞, if there is a constant CP > 0 so that for every u ∈ Liploc(X),
every upper gradient g of u, and every ball B = B(x, r),

(2.4)

∫
B

|u− uB | dµ ≤ CP r
(∫

B

gp dµ

)1/p

,

where

uB :=

∫
B

u dµ :=
1

µ(B)

∫
B

u dµ.

We will sometimes suppress the “1-” when discussing the inequality. We will denote by C ≥ 1
a generic constant that only depends on the doubling and Poincaré constants Cd, CP , and whose
precise value may change even in the same line.

We now wish to discuss functions of bounded variation and sets of finite perimeter in the metric
space (X, d, µ). The definitions are quite different than those typically used for X = Rn; see [33]
for discussion relating these to the classical definitions. Many results from [33] and [1] will be used
(and cited) in what follows. For u ∈ Liploc(X), we define

lipu(x) := lim inf
r→0

supy∈B(x,r) |u(y)− u(x)|
r

,

often known as the lower Lipschitz constant of u at x. It is well known that lipu is an upper
gradient of u (see [33, Section 2], for example). We also define

Lipu(x) := lim sup
r→0

supy∈B(x,r) |u(y)− u(x)|
r

,

the upper Lipschitz constant of u at x.
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Since Liploc(X) is dense in L1
loc(X), we define the total variation of u ∈ L1

loc(X) on an open set
W ⊂ X as

V (u,W ) := inf

{
lim inf
i→∞

∫
W

lipui dµ : ui ∈ Lip(W ), ui → u in L1
loc(W )

}
.

A function u ∈ L1
loc(X) is said to be of locally bounded variation if V (u,W ) is finite for all bounded

open W ⊂ X. A function u is said to be of bounded variation if V (u,X) is finite. Let BV (X)
denote the set of functions of bounded variation. For an arbitrary set A ⊂ X, we define

V (u,A) := inf{V (u,W ) : A ⊂W, W ⊂ X is open}.
If V (u,X) < ∞, then V (u, ·) is a Radon measure on X by [33, Theorem 3.4], called the variation
measure. In much of current literature on BV functions in metric setting, V (u,A) is also denoted
‖Du‖(A). In a significant part of the current literature on BV functions in metric spaces a slightly
different notion of V (u,W ) is used, where instead of infimum over

∫
W

lipui dµ the infimum of the

integrals
∫
W
gui dµ is considered, where gui is the minimal 1-weak upper gradient of ui, see for

example [25]. It follows from [2] that these notions all give the same BV class as well as the same
BV energy V (u,W ) for open sets W (and hence all Borel sets). Thus we can equivalently define

V (u,W ) := inf

{
lim inf
i→∞

∫
W

gui dµ : ui ∈ Liploc(W ), ui → u in L1(W )

}
.

Let E ⊂ X and let χE denote the characteristic function of E. If χE is of locally bounded
variation we say that E is of locally finite perimeter and if χE is of bounded variation, we say that
E is of finite perimeter. We use P (E, ·) := V (χE , ·) for the perimeter measure.

The following coarea formula is proven in [33, Proposition 4.2]: if u ∈ BV (X) and W ⊂ X is a
Borel set, then

(2.5) V (u,W ) =

∫ ∞
−∞

P ({u > t},W ) dt.

Applying the 1-Poincaré inequality to approximating functions, we get for any µ-measurable set
E ⊂ X and any ball B = B(x, r) the relative isoperimetric inequality

(2.6) min{µ(B(x, r) ∩ E), µ(B(x, r) \ E)} ≤ 2CP rP (E,B(x, r)),

see e.g. [27, Theorem 3.3].
The 1-Poincaré inequality implies the so-called Sobolev-Poincaré inequality, see e.g. [8, Theo-

rem 4.21], from which we get the following BV version: for every ball B(x, r) and every u ∈ L1
loc(X),

we have

(2.7)

(∫
B(x,r)

|u− uB(x,r)|Q/(Q−1) dµ

)(Q−1)/Q

≤ CrV (u,B(x, 2r))

µ(B(x, 2r))
,

where Q is the exponent from (2.2).
Moreover, we have the following Poincaré inequality for functions vanishing outside a ball. For

any ball B(x, r) with 0 < r < 1
4 diamX and any u ∈ L1(B(x, r)) with compact support in B(x, r),

we have

(2.8)

∫
B(x,r)

|u| dµ ≤ CrV (u,B(x, r));

this again follows by applying the analogous inequality for Lipschitz functions (see [8, Theorem 4.21,
Theorem 5.51]) to an approximating sequence.
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For a set E ⊂ X, the measure-theoretic boundary is defined as the set of points of positive upper
density for E and X \ E:

∂∗E :=

{
x ∈ X : lim sup

r→0

µ(B(x, r) ∩ E)

µ(B(x, r))
> 0 and lim sup

r→0

µ(B(x, r) \ E)

µ(B(x, r))
> 0

}
.

We will also be interested in co-dimension 1 Hausdorff measures on X. Recall that µ is Ahlfors s-
regular for s > 0 if there is some constant CA ≥ 1 such that whenever x ∈ X and 0 < r < 1

2 diamX,

(2.9)
rs

CA
≤ µ(B(x, r)) ≤ CArs.

If µ is Ahlfors s-regular, then the co-dimension 1 Hausdorff measure defined below is just (com-
parable to) the (s− 1)-dimensional Hausdorff measure. We do not wish to always assume Ahlfors
regularity, however. We define the co-dimension 1 Hausdorff measure of a set E ⊂ X by

H(E) := sup
δ>0
Hδ(E),

where for δ > 0,

Hδ(E) := inf

{∑
i∈I

µ(Bi)

ri
: Bi = B(xi, ri), ri ≤ δ, E ⊂

⋃
i∈I

Bi

}
.

The following density results can be proved similarly as in [6, Theorem 2.4.3].

Lemma 2.1. Let ν be a Radon measure on X, let A ⊂ X, and let t > 0. Then the following hold:

if lim sup
r→0

r
ν(B(x, r))

µ(B(x, r))
≥ t for all x ∈ A, then ν(A) ≥ tH(A)

and

if lim sup
r→0

r
ν(B(x, r))

µ(B(x, r))
≤ t for all x ∈ A, then ν(A) ≤ CdtH(A).

Let E ⊂ X be a set of finite perimeter. We know that for any Borel set A ⊂ X,

(2.10) P (E,A) =

∫
∂∗E∩A

θE dH,

where θE : X → [α,Cd] with α = α(Cd, CP ) > 0, see [1, Theorem 5.3] and [5, Theorem 4.6].
Furthermore, let

(2.11) ΣγE :=

{
x ∈ X : lim inf

r→0
min

{
µ(B(x, r) ∩ E)

µ(B(x, r))
,
µ(B(x, r) \ E)

µ(B(x, r))

}
≥ γ

}
for a constant γ ∈ (0, 1/2] depending only on Cd, CP . Note that ΣγE ⊂ ∂∗E; by [1, Theorem 5.4]
we know that conversely,

(2.12) H(∂∗E \ ΣγE) = 0.

Lemma 2.2. Let E ⊂ X be a set of finite perimeter. Then for H-a.e. x ∈ ∂∗E (and thus
P (E, ·)-a.e. x ∈ ∂∗E),

(2.13)
γ

2CP
≤ lim inf

r→0

P (E,B(x, r))

µ(B(x, r))/r
≤ lim sup

r→0

P (E,B(x, r))

µ(B(x, r))/r
≤ Cd.
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Proof. The first inequality holds for every x ∈ ΣγE by the relative isoperimetric inequality (2.6).
To show the second inequality, note that if A ⊂ ∂∗E and ε > 0 are such that

lim sup
r→0

r
P (E,B(x, r))

µ(B(x, r))
≥ Cd + ε

for all x ∈ A, then by the first part of Lemma 2.1 and by (2.10), we have P (E,A) ≥ (Cd + ε)H(A).
However, according to (2.10), we have P (E,A) ≤ CdH(A). Thus we must have H(A) = 0. �

The lower and upper approximate limits of a function u on X are defined respectively by

u∧(x) := sup

{
t ∈ R : lim

r→0

µ(B(x, r) ∩ {u < t})
µ(B(x, r))

= 0

}
and

u∨(x) := inf

{
t ∈ R : lim

r→0

µ(B(x, r) ∩ {u > t})
µ(B(x, r))

= 0

}
.

The jump set Su is defined to be the set where u∧ < u∨.
By [5, Theorem 5.3], the variation measure of a BV function can be decomposed into the abso-

lutely continuous and singular part, and the latter into the Cantor part and jump part, as follows.
Given u ∈ BV (X), we have for any Borel set A ⊂ X

V (u,A) = Va(u,A) + Vs(u,A)

= Va(u,A) + Vc(u,A) + Vj(u,A)

=

∫
A

g dµ+ Vc(u,A) +

∫
A∩Su

∫ u∨(x)

u∧(x)

θ{u>t}(x) dt dH(x),

where g ∈ L1(X) is the density of the absolutely continuous part and the functions θ{u>t} are as
in (2.10).

We denote by BVc(X) the class of BV functions with compact support in X.

Definition 2.3. We say that u ∈ BV (X) is a function of least gradient if for all ϕ ∈ BVc(X),

(2.14) V (u, suppϕ) ≤ V (u+ ϕ, suppϕ).

Remark 2.4. We end this section by gathering together all the assumptions regarding the metric
measure space (X, d, µ) assumed throughout this paper. We assume that X is a complete, geodesic
metric space and that µ is a doubling measure on X, supporting a 1-Poincaré inequality. One of the
consequences of assuming that X is complete and µ is doubling, is that X is then proper, that is,
closed and bounded subsets of X are compact. See Remark 6.15 at the end of this paper, regarding
the relaxation of some of these assumptions.

3. Pointed measured Gromov-Hausdorff limits

In this section we consider tangent spaces of a metric space at a given point. For this, we first
need to specify what is meant by the convergence of metric spaces. Existing literature has some
slightly different definitions and diverging terminology; here we describe them and provide brief
explanation on how these are equivalent. All metric spaces considered here are assumed to be
proper.
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Definition 3.1. We say that the sequence of pointed metric spaces (Yn, dn, yn) converges in the
pointed Gromov-Hausdorff distance to the space (Y∞, d∞, y∞) if for each positive integer n there is
a map φn : Y∞ → Yn so that φn(y∞) = yn, and for each R > 0 and ε > 0 there is a positive integer
Nε,R such that whenever k ≥ Nε,R, we have

(1) supx,y∈BY∞ (y∞,R) |dYk(φk(x), φk(y))− dY∞(x, y)| < ε,

(2) BYk(yk, R− ε) ⊂
⋃
y∈φk(BY∞ (y∞,R))BYk(y, ε).

Note that these maps are not required to be continuous, or even measurable. It is possible to
modify φn to be measurable, but this is technical, and not necessary for our presentation below.

Remark 3.2. The above definition is compatible with those of [10, 24]. In [10, Definition 8.1.1]
and [21, Chapter 11] the following definition of pointed Gromov-Hausdorff convergence was consid-
ered: For all r > 0 and all 0 < ε < r there exists an n0 = n0(r, ε) such that for all n ≥ n0 there
exist functions φεn : BY∞(y∞, r)→ Yn with

(1) φεn(y∞) = yn,

(2) |dn(φεn(x), φεn(y))− d∞(x, y)| < ε for all x, y ∈ BY∞(y∞, r),

(3) BYn(yn, r − ε) ⊂
⋃
y∈φεn(BY∞ (y∞,r))

BYn(y, ε).

See [22] for more on pointed Gromov-Hausdorff convergence. To see the compatibility between
these two definitions we note that the scales R and ε play the role of localizing the convergence
of the tangent spaces. Thus, the second notion is implied by the first, as seen by the choice
φεn := φn. Conversely, given φεn, choosing a sequence of Rn monotonically increasing to ∞ and
εn monotonically decreasing to 0, we can even choose φεn to be independent of ε and r; hence the
equivalence of the notion of [10] with ours. However, in proofs it is often easier to work with the
localized versions φεn, since it avoids this additional diagonal argument. Where we wish to use
globally defined functions, we use φn. These are interchangeable.

The notion considered in [24] is also equivalent to the above. Since this notion of [24, Definition 2
and Definition 7] is also useful in this paper, especially in defining notions of weak convergence of
measures to tangent spaces, we now provide that definition as well. According to [24], the sequence
(Yn, dn, yn) converges to a proper space (Y∞, d∞, y∞) if there is a proper metric space (Z, dZ) and
a point z0 ∈ Z, an isometric embedding ι : Y∞ → Z, and for each n ∈ N there is an isometric
embedding ιn : Yn → Z, such that ι(y∞) = z0 = ιn(yn) and for each R > 0,

(1) limn→∞ supy∈BYn (yn,R) distZ(ιn(y), ι(Y∞)) = 0,

(2) limn→∞ supz∈BY∞ (y∞,R) distZ(ι(z), ι(Yn)) = 0.

From this definition we see that whenever R, ε > 0 there is some positive integer Nε,R such that
whenever n > Nε,R, for each x, y ∈ BYn(yn, R) we can find x̂, ŷ ∈ BY∞(y∞, R+ ε) such that

max{dZ(ιn(x), ι(x̂)), dZ(ιn(y), ι(ŷ))} < ε, |dYn(x, y)− dY∞(x̂, ŷ)| < 3ε.

We also have that for R > 0 and ε > 0 there is some positive integer Nε,R such that for n > Nε,R,
whenever x, y ∈ BY∞(y∞, R) there exist xn, yn ∈ BYn(yn, R+ ε) such that

max{dZ(ιn(xn), ι(x)), dZ(ιn(yn), ι(y))} < ε, |dYn(xn, yn)− dY∞(x, y)| < 3ε.

This shows that the definition of [24] implies our definition above. The fact that our definition
implies the one of [24] comes from the construction of the ambient space Z found in [22], where the
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space Z should be considered to be the completion of the “disjoint union” space Y found in [22,
Section 4.1.1].

Indeed, we can construct the maps ιn and ι from the maps φn and vice versa so that the following
compatibility condition between these two classes of maps is satisfied: For all r > 0,

(3.1) lim
n→∞

sup
y∈BY∞ (y∞,r)

dZ(ιn ◦ φn(y), ι(y)) = 0.

For simplicity, and avoiding modifying the space Z, as well as the approximating maps φn, we
will generally fix them throughout the exposition below. In order to define other notions, such
as convergence of points, curves and functions, passing to a subsequence in n may be necessary.
However, this subsequence will be of n and will not require coming up with new φn or embedding
space Z.

In the light of the above discussion, we can say that a sequence, zn ∈ Yn, converges to z ∈ Y∞
if limn→∞ dZ(ιn(zn), ι(z)) = 0, and see that every z ∈ Y∞ is a limit of a sequence zn ∈ Yn as here.
By a not-terrible abuse of notation we denote this by

lim
n→∞

zn = z.

Next, we define pointed measured Gromov-Hausdorff convergence. For this, we use the embed-
dings described in the above remark. First consider a sequence of Borel measures νn on a metric
space Z. The measures νn converge weakly* to a Borel measure ν on Z if∫

Z

φdνn →
∫
Z

φdν

as n → ∞ for all boundedly supported continuous functions φ on Z. We denote this convergence

by νn
∗
⇀ ν.

To define measured Gromov-Hausdorff convergence, we consider the push-forward measures

ιn,∗νn(A) := νn(ι−1n (A)).

We say that the sequence of Radon measures νn on Yn converges to a Radon measure ν∞ on Y∞,

denoted νn
∗
⇀ ν∞, if ιn,∗νn

∗
⇀ ι∗ν∞ on Z.

Definition 3.3. We say that a sequence of pointed metric measure spaces (Yn, dn, yn, νn) converges
pointed measured Gromov-Hausdorff to a space (Y∞, d∞, y∞, ν∞), if the sequence converges in the
pointed Gromov-Hausdorff sense, and

νn
∗
⇀ ν∞.

Since Z is a proper metric space, it follows that whenever supn νn(ι−1n (Z)) < ∞, there is a

subsequence νnk and a Radon measure ν̂∞ on Z such that ιnk,∗νnk
∗
⇀ ν̂∞ in Z. This limit measure

must have support in ι(Y∞), since the support of ν∞ is contained in the limit of the supports of
νnk . Indeed, given ε > 0 and a radius R > 0, we know that for large n the set ιn(BYn(yn, R)) is in
an 3ε-neighborhood of ι(Y∞). Recall that Y∞ is a proper metric space. We call such measures ν∞
limit measures of the sequence νnk , and they may depend on the choice of the subsequence; the full
sequence νn may not converge to ν∞. In the proofs below, we will always pass to the subsequence
where this limit holds. The discussion in this paragraph proves the following lemma.

Lemma 3.4. In the situation described in the above paragraph, ν̂∞(Z \ι(Y∞)) = 0, and hence there
is a Radon measure ν∞ on Y∞ such that ν̂∞ = ι∗ν∞.
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Definition 3.5. Let x ∈ X and let rn > 0 with rn → 0. Define the sequence of scaled metrics dn
on X by

dn(y, z) :=
d(y, z)

rn
,

and the scaled measures

µn :=
1

µ(B(x, rn))
µ.

If the sequence (Xn, dn, x, µn) := (X, dn, x, µn) converges to (X∞, d∞, x∞, µ∞) in the pointed
measured Gromov-Hausdorff sense, then we say that X∞ is a tangent space to X at x, with tangent
measure µ∞.

We know that if µ is doubling and X is a complete geodesic space, then by passing to a subse-
quence of (X, dn, x, µn) if necessary, we will always have a tangent metric measure space as above,
which is also geodesic, see [16, Section 6] or the discussion in [21, Section 11]. Note that points of
distance less than rn from x in (X, d) are, in the space Xn, at distance less than 1 from x, and that
the ball B(x, rn) has µn-measure 1. The tangent space may be non-unique, and depends on the
subsequence chosen.

From the work of [24] we know that if µ is doubling and supports a 1-Poincaré inequality, then
for every x ∈ X, all the corresponding tangent spaces have the tangent measure be doubling and
support a 1-Poincaré inequality, with the doubling and Poincaré constants depending quantitatively
only on the corresponding constants for X, see also [21]. A proof of this first appeared in the
work [24] of Keith, but he reports in [24] that it was independently found by himself, Koskela, and
Cheeger.

We will fix the following notion of a limit of functions.

Definition 3.6. We say that a function u∞ on X∞ is a limit of un (with un a function on Xn) if
there exists some subsequence nk and εk ↘ 0 such that for all r > 0

(3.2) lim
k→∞

‖u∞ − unk ◦ φεknk‖L∞(BX∞ (x∞,r)) = 0.

This is equivalent to the following definition of limits using globally defined maps φk:

(3.3) lim
k→∞

‖u∞ − unk ◦ φk‖L∞(BX∞ (x∞,r)) = 0.

Given a sequence of scaled metric measure spaces (Xn, dn, xn, µn) pointed Gromov-Hausdorff con-
verging to (X∞, d∞, x∞, µ∞), and L > 0 such that un is an L-Lipschitz function on (X, dn), and
if M ≥ 0 such that for each n ∈ N we have |un(xn)| ≤ M , then we can obtain a subsequence of
functions unk on (Xnk , dnk) that converges to an L-Lipschitz function on X∞. This is easier to see
from the point of view of the definition of [24] as well. For each n we can find a Lipschitz extension
ûn of un ◦ ι−1n from ιn(Xn) to Z. We refer the interested reader for a detailed treatment of such
an extension in [21, Proposition 11.6.2]. This sequence forms an equibounded and equicontinu-
ous sequence of functions in Z which, being a proper space, lends itself to an application of the
Arzelà-Ascoli theorem. Thus we may find a subsequence of ûn that converges locally uniformly to
a Lipschitz function û∞ on Z. We can now choose u∞ = û∞ ◦ ι. That this choice of u∞ is a limit of
un follows from the compatibility condition (3.1). These are the heuristics behind the proof of [11,
Theorem 10.2], a result which is used in the proof of Theorem 4.8 below.

The notion of limit of functions as given above is concordant with the notion of limit of measures.
If un and u∞ are uniformly Lipschitz and u∞ is a limit of unk , then along the same subsequence

dνnk := unk dµnk
∗
⇀ dν∞ := u∞ dµ∞. To see this, note that whenever ϕ is a compactly supported
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Lipschitz function on Z with support BZ(x∞, r), where the spaces Xn and X∞ isometrically embed

as in [22], if unk → u∞ in our sense, then as µnk
∗
⇀ µ∞,∣∣∣∣ ∫

Z

ϕunk dµnk −
∫
Z

ϕu∞ dµ∞

∣∣∣∣ ≤ ∫
Z

‖ûnk − u∞‖L∞(BZ(x∞,r))|ϕ| dµnk

+

∣∣∣∣ ∫
Z

u∞ϕdµnk −
∫
Z

u∞ϕdµ∞

∣∣∣∣→ 0 as k →∞.

As before, these functions depend on the subsequence chosen. In fact, there are several depen-
dencies. The very tangent spaces X∞ and the tangent measures µ∞ depend on the subsequence
of blow ups rn ↘ 0. Indeed, different sequences can lead to different tangent spaces that are not
isometric to each other, see for instance the discussion surrounding [31, Theorem 1.4]. Once this
sequence (rn)n is chosen, every choice of maps ιn and φεkn leads to the same isometry classes of the
tangent space X∞ and the tangent measure µ∞. However, especially when blowing up functions un
and measures un dµn, one should be careful about this and choose a further subsequence and the
maps, as a sequence of functions may converge with one choice of maps ιn, φ

εk
n and not converge

with another choice. We will always assume that all these choices are given to us.

4. Asymptotics at approximate continuity points and generalized linear functions

The goal of this section is to study the asymptotic behavior of BV functions at points outside
the jump and Cantor parts of their variation measures. We start with the following handy lemma.

Lemma 4.1. Let u, v ∈ BV (X). Suppose E ⊂ X is a Borel set such that for each x ∈ E we have

lim
r→0+

µ(B(x, r) ∩ E)

µ(B(x, r))
= 1,

and u(x) = v(x). Then V (u− v,E) = 0 and so for each A ⊂ E we have V (u,A) = V (v,A).

Proof. From the above, we know that for each t ∈ R the set E ∩ ∂∗Et is empty, where Et = {x ∈
X : u(x)− v(x) > t}. Therefore by the coarea formula (2.5) and by (2.10), the claim follows. �

In the Euclidean setting we know that for Ln-a.e. x ∈ Rn (where Ln denotes the n-dimensional
Lebesgue measure) a BV function converges under blow-up to a linear function (see e.g. [3, Theorem
3.83]). In the metric setting, for p > 1 the notion of linear function is interpreted as a function that
is constant or else satisfies the following two properties: (a) the image of X under the function is
R, and (b) the minimal p-weak upper gradient of the function is constant (and given that we have
a Poincaré inequality, this constant should be non-zero if the function is not the constant function);
see for example [11, Section 10]. It was shown in [11, Theorem 10.2] that given a Lipschitz function,
any asymptotic limit of that function at almost every point yields such a linear function on the
corresponding tangent space, which we defined in Section 3. In the case p = 1, which is the natural
setting for BV functions, we will prove that the asymptotic limits are the so-called generalized linear
functions on the tangent spaces.

For g ∈ L1
loc(X) nonnegative and R > 0, we define the restricted maximal function of g at x ∈ X

by

(4.1) MRg(x) := sup
0<r≤R

∫
B(x,r)

g dµ.
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The maximal function of a Radon measure ν is defined similarly by

MRν(x) := sup
0<r≤R

ν(B(x, r))

µ(B(x, r))
.

Recall that if u ∈ BV (X), then

dV (u, ·) = g dµ+ dVs(u, ·),

where g ∈ L1(X) is the Radon-Nikodym derivative of V (u, ·) with respect to µ and Vs(u, ·) is the
singular part.

Proposition 4.2. Let u ∈ BV (X). Then for µ-a.e. x ∈ X for which g(x) > 0 there exists R > 0
and a set Ax 63 x with density 0 at the point x such that u|B(x,R)\Ax is Lipschitz with constant
Cg(x). For µ-a.e. x ∈ X for which g(x) = 0, for each δ > 0 there is a set Ax,δ 63 x with density 0
at x such that u|B(x,R)\Ax,δ is Lipschitz with constant δ.

Proof. We follow the proof of [21, Proposition 13.5.2]. For µ-a.e. x ∈ X, we have

(4.2) lim
r→0

∫
B(x,r)

|g − g(x)| dµ = 0 and lim
r→0

Vs(u,B(x, r))

µ(B(x, r))
= 0

by the Lebesgue-Radon-Nikodym theorem, see e.g. [21, Section 3.4]. Fix such x ∈ X for which also
g(x) > 0.

Let R > 0 and let y, z ∈ B(x,R) be Lebesgue points of u. For nonnegative integers i we set
Bi := B(y, 2−id(y, z)), and for negative integers i we set Bi := B(z, 2id(y, z)). Then, by the
doubling property of µ and the Poincaré inequality (2.7),

|u(y)− u(z)| ≤
∑
i∈Z
|uBi − uBi+1 |

≤ C
∑
i∈Z

∫
2Bi

|u− u2Bi | dµ

≤ Cd(y, z)
∑
i∈Z

2−|i|
V (u, 2Bi)

µ(2Bi)

= Cd(y, z)
∑
i∈Z

2−|i|
(∫

2Bi

g dµ+
Vs(u, 2Bi)

µ(2Bi)

)
≤ Cd(y, z)

∑
i∈Z

2−|i|
(∫

2Bi

|g − g(x)| dµ+
Vs(u, 2Bi)

µ(2Bi)

)
+ Cd(y, z)g(x).

For s > 0, set

τs := sup
0<r≤s

(∫
B(x,r)

|g − g(x)| dµ+
Vs(u,B(x, r))

µ(B(x, r))

)
.

Note that since µ is doubling, for any s > 0 and any Radon measure ν we have

Msν(y) ≤ CM2d(x,y)ν(y) + CM2sν(x).
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Applying this with s = 2d(y, z) < 4R in the second inequality below, we get

|u(y)− u(z)| ≤ Cd(y, z)[g(x) +M2d(y,z)|g − g(x)|(y) +M2d(y,z)|g − g(x)|(z)
+M2d(y,z)Vs(u, ·)(y) +M2d(y,z)Vs(u, ·)(z)]
≤ Cd(y, z)[g(x) +M2d(x,y)|g − g(x)|(y) +M2d(x,z)|g − g(x)|(z)

+M2d(x,y)Vs(u, ·)(y) +M2d(x,z)Vs(u, ·)(z) +M8R[g − g(x)](x) +M8RVs(u, ·)(x)]

≤ Cd(y, z)[g(x) +M2d(x,y)|g − g(x)|(y) +M2d(x,z)|g − g(x)|(z)
+M2d(x,y)Vs(u, ·)(y) +M2d(x,z)Vs(u, ·)(z) + τ8R].(4.3)

We only consider R > 0 to be small enough so that τ8R < g(x) (here we need the fact that
g(x) > 0). We choose a sequence of radii RM ↘ 0 as M → ∞ such that 2Mτ8RM < g(x) for each
M ∈ N. Next let AM be the set of all points y ∈ B(x,RM ) such that for some 0 < r ≤ 2d(x, y),∫

B(y,r)

|g − g(x)| dµ+
Vs(u,B(y, r))

µ(B(y, r))
> 2Mτ8RM .

For each y ∈ AM there is a ball B(y, ry) with 0 < ry ≤ 2d(x, y) < 2RM such that the above
inequality holds, and so the family {B(y, ry)}y∈AM is a cover of AM . By the 5-covering theorem we
can extract a countable, pairwise disjoint subfamily G of the above family such that AM ⊂

⋃
B∈G 5B.

If τ8RM = 0, then µ(AM ) = 0; else we see by the doubling property of µ that

µ(AM ) ≤ C
∑
B∈G

µ(B)

≤ C

2Mτ8RM

∑
B∈G

(∫
B

|g − g(x)| dµ+ Vs(u,B)

)

≤ C

2Mτ8RM

(∫
B(x,4RM )

|g − g(x)| dµ+ Vs(u,B(x, 4RM ))

)

≤ Cµ(B(x, 4RM ))

2Mτ8RM

(∫
B(x,4RM )

|g − g(x)| dµ+
Vs(u,B(x, 4RM ))

µ(B(x, 4RM ))

)

≤ Cµ(B(x,RM ))

2Mτ8RM
τ4RM ≤

Cµ(B(x,RM ))

2M
.

We can add to each AM all the non-Lebesgue points of u different from x, without adding measure.
Now note that x 6∈ AM and that by (4.3), u is Cg(x)-Lipschitz in B(x,RM ) \AM . By choosing

Ax :=

∞⋃
M=1

AM \B(x,RM+1),

we see that u is Cg(x)-Lipschitz in B(x,R1)\Ax. Indeed, if y, z ∈ B(x,R1)\Ax such that y 6= x 6= z,
then there are positive integers M1 and M2 such that y ∈ B(x,RM1) \B(x,RM1+1) with y 6∈ AM1

and z ∈ B(x,RM2) \ B(x,RM2+1) with z 6∈ AM2 . We can assume that M2 > M1. It then follows
from (4.3) that

(4.4) |u(y)− u(z)| ≤ C d(y, z)[g(x) + 2M1τ8RM1
+ 2M2τ8RM2

+ τ8RM1
] ≤ 4C g(x) d(y, z).

Therefore u is Cg(x)-Lipschitz continuous in B(x,R1)\(Ax∪{x}). The fact that u is approximately
continuous at x, together with the fact that Ax has lower density zero at x (see the argument below),
tells us that u is Cg(x)-Lipschitz continuous in B(x,R1) \Ax.
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Moreover,

µ(Ax ∩B(x,RM0))

µ(B(x,RM0
))

≤ C
∞∑

M=M0

µ(AM )

µ(B(x,RM ))
≤ C

∞∑
M=M0

2−M → 0 as M0 →∞.

This guarantees that Ax has lower density 0 at x. On the other hand, by the choice of the covering
of AM by balls B(y, ry) with radius ry ≤ 2d(x, y), in the estimate for µ(AM ) obtained above we
can in fact obtain for any 0 < r ≤ RM that

µ(AM ∩B(x, r)) ≤ C

2M
µ(B(x, 4r)) ≤ CC2

d

2M
µ(B(x, r)).

This guarantees that Ax has density 0 at x. Choosing R = R1, we have proved the first claim.
Finally, if {x ∈ X : g(x) = 0} has positive measure, then the above argument gives that for

µ-a.e. x in this set, for every δ > 0 there exists Ax,δ with x 6∈ Ax,δ and Ax,δ is of density 0 at x
such that u|B(x,R)\Ax,δ is δ-Lipschitz. �

Lemma 4.3. Let u ∈ BV (X). For µ-a.e. x ∈ X the following holds: if A ⊂ X has density 0 at x,
then

lim
r→0

1

r

1

µ(B(x, r))

∫
A∩B(x,r)

|u− u(x)| dµ = 0.

Proof. Excluding a µ-negligible set, we can take a Lebesgue point x of u such that (just as in (4.2))

(4.5) lim
r→0

V (u,B(x, r))

µ(B(x, r))
= g(x).

By Hölder’s inequality,

1

r

1

µ(B(x, r))

∫
A∩B(x,r)

|u−u(x)| dµ ≤ 1

r

(∫
B(x,r)

|u− u(x)|Q/(Q−1) dµ

)(Q−1)/Q(
µ(A ∩B(x, r))

µ(B(x, r))

)1/Q

.

Since x is a Lebesgue point of u, by the Sobolev-Poincaré inequality (2.7),(∫
B(x,r)

|u− u(x)|Q/(Q−1) dµ

)Q−1
Q

≤

(∫
B(x,r)

|u− uB(x,r)|Q/(Q−1) dµ

)Q−1
Q

+

∞∑
j=1

(∫
B(x,r)

|uB(x,2−j+1r) − uB(x,2−jr)|Q/(Q−1) dµ

)Q−1
Q

≤ CrV (u,B(x, r))

µ(B(x, r))
+

∞∑
j=1

|uB(x,2−j+1r) − uB(x,2−jr)|

≤ CrV (u,B(x, r))

µ(B(x, r))
+ C

∞∑
j=1

2−j+1r
V (u,B(x, 2−j+1r))

µ(B(x, 2−j+1r))

≤ CrMrV (u, ·)(x).

Thus we get

1

r

1

µ(B(x, r))

∫
A∩B(x,r)

|u− u(x)| dµ ≤ CMrV (u, ·)(x)

(
µ(A ∩B(x, r))

µ(B(x, r))

)1/Q

.
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Note that by (4.5), limr→0MrV (u, ·)(x) = g(x) < ∞, and so by the fact that A has density 0 at
x, we get the conclusion. �

Definition 4.4. Let v be a real-valued function on a metric space (Z, d). The oscillation of v in a
ball B(x, r) is

osc
(x,r)

v := sup
y∈B(x,r)

|v(y)− v(x)|
r

.

We also set

LIP v := sup
y,z∈Z : y 6=z

|v(y)− v(z)|
d(y, z)

.

Observe that osc
(x,r)

v ≤ LIP v.

We now return to the sequence Xn of zoomed-in versions of X, as defined in Section 3. For
u ∈ BV (X), we wish to study the limit of the functions

un(y) :=
u(y)− u(x)

rn

that are defined on Xn. Suppose the point x satisfies the conclusion of Proposition 4.2. Zooming in
and defining un as above, we note that u is only known to be Lipschitz continuous on B(x,R) \Ax.
This poses a problem for studying the supposed limit function u∞. Though the set Ax from
Proposition 4.2 has zero density at point x, it could still be very much in the image of the functions
φεn used for comparing un with u∞ (note that the φεn are not necessarily continuous). This could
have the effect of a limit function u∞ having little to do with the values of u outside Ax, a set
which is quantitatively marginal as we have shown. It seems prudent to search for a limit function
u∞ that reflects the values of u on B(x,R) \ Ax if we want to explore any properties of this limit
function. With that in mind, we make the following definition:

Definition 4.5. For x ∈ X for which g(x) > 0 and the conclusion of Proposition 4.2 holds, we
say that the functions φn in the definition of pointed measured Gromov-Hausdorff convergence are
adapted to u if for each R > 0 and ε > 0 there is a positive integer Nε,R such that

φεn(BX∞(x∞, R)) ∩Ax = ∅

for all n ≥ Nε,R.

Thanks to the following lemma we know that whenever (X∞, d∞, x∞, µ∞) is a tangent space to
X at x as in Definition 3.5, we can always find a subsequence of the sequence (Xn, dn, x, µn) such
that the corresponding maps φn are adapted to u.

Lemma 4.6. Suppose u ∈ BV (X) and x ∈ X is a point for which g(x) > 0 and the conclusion
of Proposition 4.2 holds. If (X∞, d∞, x∞, µ∞) is a pointed measured Gromov-Hausdorff limit of
(X, dn, x, µn) for some positive sequence rn → 0, then there exist functions φn that are adapted to
u at x.

Proof. Assume for simplicity that R = 1/2 and fix 0 < ε ≤ 1. By the doubling condition, we have
that

(4.6)
µ(B(x, 2s) ∩Ax)

µ(B(x, s))
→ 0 as s→ 0.
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By (2.2), there exists Q > 1 such that whenever y ∈ B(x, s) and 0 < t ≤ s,

1

C

(
t

s

)Q
≤ µ(B(y, t))

µ(B(x, s))
.

It follows that if y ∈ B(x, rn) (i.e. y ∈ Bn(x, 1)), then

1

C
εQ ≤ µ(B(y, εrn))

µ(B(x, rn))
= µn(Bn(y, ε)),

where Bn is the ball in the metric dn = r−1n d. On the other hand, (4.6) implies that for sufficiently
small rn,

µn(Bn(x, 2) ∩Ax) =
µ(B(x, 2rn) ∩Ax)

µ(B(x, rn))
<

1

C
εQ.

It follows that for such n, the set Bn(y, ε)\Ax has positive measure and therefore cannot be empty.
That is, X \Ax is ε-dense in Bn(x, 1).

The points in Ax can be easily avoided by redefining the approximating isometries φn such that
points (1) and (2) of Definition 3.1 still hold, but with 3ε rather than ε. �

Lemma 4.7. Let v be a Lipschitz function on a metric measure space (Z, dZ , µZ), where µZ is
doubling. Suppose that K ⊂ Z and z ∈ Z such that

lim
r→0+

µZ(B(z, r) ∩K)

µZ(B(z, r))
= 0.

Then

Lip v(z) := lim sup
Z3y→z

|v(z)− v(y)|
dZ(y, z)

= lim sup
Z\K3y→z

|v(z)− v(y)|
dZ(y, z)

.

Proof. Clearly

lim sup
Z3y→z

|v(z)− v(y)|
dZ(y, z)

≥ lim sup
Z\K3y→z

|v(z)− v(y)|
dZ(y, z)

.

Let yi ∈ Z be a sequence converging to z such that

|v(z)− v(yi)|
dZ(yi, z)

→ lim sup
Z3y→z

|v(z)− v(y)|
dZ(y, z)

.

If we have a subsequence of this sequence that lies in Z \K, then we have the desired equality. So
suppose without loss of generality that each yi ∈ K. We claim that for each ε > 0 there is some
positive integer Nε such that when i ≥ Nε, we have dZ(w, yi) ≤ εdZ(z, yi) for some w ∈ Z \ K.
Indeed, if this is not the case, then there is a positive number ε0 and a subsequence ik such that
B(yik , ε0dZ(z, yik)) ⊂ K, in which case by the doubling property of µZ we have

lim sup
r→0+

µZ(B(z, r) ∩K)

µZ(B(z, r))
≥ 1

Cαd
> 0

where α is the real number for which 2αε0 ≥ 4. This would violate the assumption on the density
of K at z.
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Now fixing ε > 0, with wi ∈ Z \K such that dZ(yi, wi) ≤ εdZ(z, yi), we have

|v(z)− v(yi)|
dZ(yi, z)

≤ |v(z)− v(wi)|
dZ(z, wi)

dZ(z, wi)

dZ(yi, z)
+
|v(wi)− v(yi)|
dZ(yi, z)

≤ |v(z)− v(wi)|
dZ(z, wi)

dZ(z, wi)

dZ(yi, z)
+ Lε

≤ |v(z)− v(wi)|
dZ(z, wi)

[1 + ε] + Lε

where L is a Lipschitz constant of v. Letting i → ∞ followed by ε → 0+ gives the desired
identity. �

Now we wish to speak about functions u∞ that are limits of un according to (3.3), with the
functions φn adapted to u. Note that the values of un on Ax are not considered in evaluating (3.3)
by the maps φn.

By Hölder’s inequality, the 1-Poincaré inequality implies the p-Poincaré inequality for all 1 <
p < ∞. By [26, Proposition 4.3], for each k ∈ N there is a Lipschitz function vk ∈ BV (X) such
that

µ({y ∈ X : u(y) 6= vk(y)}) < 1/k.

Since for any measurable set K ⊂ X we have that the upper density of K at almost every point in
X \K is zero, by modifying the set Kk = {y ∈ X : u(y) 6= vk(y)} on a set of measure zero we can
assume that µ(Kk) < 1/k and that for every x ∈ X \Kk we have

lim sup
r→0+

µ(B(x, r) ∩Kk)

µ(B(x, r))
= 0

and that vk is asymptotically generalized linear in the sense of [11, Theorem 10.2] (see also [11,
Definition 8.1 and Definition 10.1]) and that the analysis of Proposition 4.2 holds for x. By further
enlarging Kk if necessary (without increasing its measure), we can also assume that x is a Lebesgue
point of Lip vk. Since both Kk and Ax have upper density zero at x, from Lemma 4.7 we know
that x is a Lebesgue point also for Lip ũ of any Lipschitz extension ũ of u|B(x,R)\[Ax∪Kk] to B(x,R).
Note that we then have by Lemma 4.7 that

Lipu|B(x,R)\(Ax∪Kk)(x) = Lip ũ(x) = Lip vk(x).

Thus the theory developed in [11, Section 10] is applicable for x ∈ X \ Kk. Let N =
⋂
k∈NKk.

Then µ(N) = 0, and for each x ∈ X \ N the theory developed in [11, Section 10] is applicable.
Therefore by [11, Theorem 10.2], this immediately implies the equality of upper and lower Lipschitz
constants for ũ, and this Lipschitz constant Lipu∞ is indeed a constant on X∞, and that

Lipu∞ ≡ Lip ũ(x) = Lipu|B(x,R)\Ax(x),

and this constant minimal p-weak upper gradient, for any 1 < p <∞, of u∞ is bounded above by
Cg(x) thanks to Proposition 4.2. On the other hand, by the lower semicontinuity of BV energy, we
know that dV (vk, ·) ≤ Lip vk dµ, and so the Radon-Nikodym derivative of V (vk, ·) with respect to
µ, which by Lemma 4.1 is also equal to the Radon-Nikodym derivative g of V (u, ·) with respect to
µ in X \Kk, is bounded above by Lip vk. Therefore we have

g(x) ≤ Lipu∞ ≤ C g(x).

We collect these observations below.

Theorem 4.8. Let u ∈ BV (X). Then for µ-a.e. x ∈ X and any tangent space (X∞, d∞, x∞, µ∞),
any function u∞ that arises as a limit adapted to u at x has a constant minimal p-weak upper
gradient for each p > 1 and that constant is less than Cg(x), where C is as in Proposition 4.2.
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Furthermore, with h the minimal 1-weak upper gradient of u∞, we have that L/(4C0) ≤ h ≤ L
where L is the constant minimal p-weak upper gradient, and C0 depends solely on the doubling and
the 1-Poincaré constants of X∞.

Proof. For µ-a.e. x ∈ X at which g(x) > 0, the proof of the first part of the theorem follows from
the discussions above. By Proposition 4.2, at µ-a.e. x ∈ X at which g(x) = 0 we have that for every
δ > 0, we can extend (u|B(x,R)\Ax,δ)◦ ι−1n as a δ-Lipschitz function Un to Z, and so any limit U∞ of
a subsequence (at least one limit exists thanks to the Arzela-Ascoli theorem) is also δ-Lipschitz on
Z. It follows that u∞ = U∞ ◦ ι is δ-Lipschitz continuous on X∞. Since this holds for each δ > 0,
we have that u∞ is 0-Lipschitz continuous, that is, it is constant. It follows then again that its
minimal 1-weak upper gradient is the constant function 0 = g(x).

Thus it now suffices to prove the last statement of the theorem at the points where g is pos-
itive. From a telescoping argument for the Lipschitz function u∞ (see for example [21, Proof of
Theorem 8.1.7(iii)]) on X∞, we see that whenever ε > 0, for z, w ∈ X∞ with d(z, w) < ε we have

|u∞(z)− u∞(w)| ≤ C0 dX∞(z, w)[M4εh(z) +M4εh(w)],

where, as in (4.1), Mrh(o) := sup0<ρ≤r
∫
B(o,ρ)

h dµ∞ for o ∈ X∞. Thus it follows from the local

version of [21, Theorem 10.2.8] that 4C0M4εh is an upper gradient of u∞. Therefore by the
minimality of the constant function L as a p-weak upper gradient of u∞, we see that L ≤ 4C0M4εh
for each ε > 0. Letting ε → 0 and invoking the Lebesgue differentiation theorem, we see that
L ≤ 4C0h. Finally, as u∞ is Lipschitz, the constant function L is also equal to Lipu∞ which is also
an upper gradient of u∞, and so by the minimality of h as a 1-weak upper gradient, we see that
h ≤ L, completing the proof. �

Theorem 4.9. Let u ∈ BV (X). Then for µ-a.e. x ∈ X for which g(x) > 0, and for every
tangent space (X∞, d∞, x∞, µ∞), any function u∞ that arises as a limit adapted to u at x satisfies
u∞(x∞) = 0 and

g(x)

C
≤ osc
B(y,s)

u∞ ≤ LIPu∞ ≤ Cg(x)

for every y ∈ X∞ and s > 0. Furthermore, u∞ is a function of least gradient. For µ-a.e. x ∈ X
for which g(x) = 0, u∞ is a constant function.

Proof. The inequality osc
B(y,s)

u∞ ≤ LIPu∞ is true by definition, and the inequality LIPu∞ ≤ Cg(x)

follows from Proposition 4.2 and [11, Theorem 10.2] applied to the blow-up of the Lipschitz function

ũ. For the inequality g(x)
C ≤ osc

(y,s)
u∞ we first note that by [23, Theorem 6.2.1],

lip ũ(x) ≤ osc
B(y,s)

u∞,

where ũ is a McShane extension of u|B(x,1)\Ax to B(x, 1). Now note by Lemma 4.1 that

g(x)

C
≤ lip ũ(x).

By [11, Theorem 10.2] we know that u∞ is generalized linear and hence is p-harmonic for each
p > 1 (see [11, Definition 8.1]). Letting p → 1+, it follows from [28, Theorem 3.3] that u∞ is a
function of least gradient in X∞.

Finally, if g(x) = 0 and x is a point of density 1 for the set {y ∈ X : g(y) = 0}, then we can
choose for each n ∈ N a set B(x, rn) \ Ax,1/n as in Proposition 4.2 such that u is 1/n-Lipschitz on
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B(x, rn) \Ax,1/n. Thus the limit function u∞ is 1/n-Lipschitz continuous for each n ∈ N, and so is
0-Lipschitz, that is, u∞ is constant. �

The focus of the next section will be to study asymptotic behavior of the characteristic function
χE of a set E of finite perimeter at a boundary point. In considering such behavior, it is not possible
to obtain a fruitful notion of the asymptotic limit of χE in a manner analogous to the above. Instead
of considering a sequence of scaled versions of χE , as with the scaled versions un = [u − u(x)]/rn
above, we consider the scaled versions of the measures µE given by dµE,n := µ(B(x, rn))−1χE dµ,
and study weak* limits of such measures. The rest of this section discusses how the two notions,
one dealing with a scaled version of the function and the other with a scaled version of the measure,
are related.

We fix a sequence Xn = (X, dn, x, µn) that converges in the pointed measured Gromov-Hausdorff
sense to a tangent space X∞ = (X∞, d∞, x∞, µ∞) as discussed above, and for such a sequence we
let νn be the measure on Xn given by

dνn := µ(B(x, rn))−1(u− u(x))/rn dµ.

We wish to show that the sequence of measures νn has a subsequence that converges to the measure
u∞ dµ∞.

Theorem 4.10. Let u ∈ BV (X). Then for µ-a.e. x ∈ X we have the following: if (X∞, d∞, x∞, µ∞)
is any tangent space to X at x, and u∞ is a function that arises as a limit adapted to u at x, then
also

dνn = µ(B(x, rn))−1(u− u(x))/rn dµ
∗
⇀ u∞ dµ∞ as n→∞.

Naturally, this weak limit is attained along the same subsequence as u∞ is. In addition to
the connection that the above theorem makes between the way the limit function u∞ was obtained
above and the tangent-space analysis of sets of finite perimeter in the next section, the theorem also
gives an elegant way of constructing the limit function u∞ without having to modify the functions
φn of Definition 3.1 to avoid the sets Ax.

Proof. Assume that x is a Lebesgue point of u such that

lim
r→0

∫
B(x,r)

|g − g(x)| dµ = 0 and lim
r→0

Vs(u,B(x, r))

µ(B(x, r))
= 0,

and such that the conclusion of Lemma 4.3 holds. Let A be the set of all points y ∈ X such that
for some 0 < r ≤ 2d(x, y), ∫

B(y,r)

|g − g(x)| dµ+
Vs(u,B(y, r))

µ(B(y, r))
> 1.

Just as in the proof of Proposition 4.2, we get

(4.7) lim
r→0

µ(A ∩B(x, r))

µ(B(x, r))
= 0.

By Lemma 4.3 we obtain

(4.8) lim
r→0

1

µ(B(x, r))

∫
A∩B(x,r)

|u− u(x)|
r

dµ = 0.
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Fix R > 0 and consider the embeddings ι : X∞ → Z and ιn : Xn → Z. To prove the theorem, we
need to show that whenever φ is a continuous function supported in BZ(ι(x∞), R), we have

lim
n→∞

∫
Z

φ ιn,∗(dνn) =

∫
Z

φ ι∗(u∞ dµ∞).

Just as in Proposition 4.2, we have that for all sufficiently large n ∈ N, u|B(x,2Rrn)\A is C(g(x)+1)-
Lipschitz. Then, define ũ to be the McShane extension of u|B(x,2Rrn)\A. Just as in Theorem 4.8, we
see that u∞ is a limit function of (ũ− ũ(x))/rn which are all C[g(x)+1]-Lipschitz, and the sequence
of measures µ(B(x, rn))−1r−1n (ũ − ũ(x)) dµ also converges weakly* to u∞ dµ∞. See Definition 3.6
and the discussion following it. It thus suffices to show that if fn := (ũ − ũ(x))/rn and gn :=

(u− u(x))/rn, then we have that µ(B(x, rn))−1(fn − gn) dµ
∗
⇀ 0.

Let φ be a continuous function supported in the ball BZ(ι(x∞), R). Then for all sufficiently large
n, ∣∣∣∣ ∫

Z

φ ιn,∗ ((fn − gn) dµn)

∣∣∣∣ =

∣∣∣∣ ∫
Xn

φ(ιn(y))(fn − gn)(y) dµn(y)

∣∣∣∣
≤ ‖φ‖∞
µ(B(x, rn))

∫
B(x,2Rrn)

∣∣∣∣ ũ− ũ(x)

rn
− u− u(x)

rn

∣∣∣∣ dµ
≤ ‖φ‖∞
µ(B(x, rn))

∫
B(x,2Rrn)∩A

∣∣∣∣ ũ− ũ(x)

rn

∣∣∣∣+

∣∣∣∣u− u(x)

rn

∣∣∣∣ dµ.
The last line follows since ũ(x) = u(x) and ũ = u on B(x, 2Rrn) \ A. The first term converges to
zero since |ũ − ũ(x)|/rn ≤ C(g(x) + 1)R on B(x, 2Rrn) by the Lipschitz bound for ũ and (4.7).
Finally, the second term converges to zero by (4.8). �

5. Asymptotic limits of sets of finite perimeter

Let E ⊂ X be a set of finite perimeter, and fix a point x ∈ ∂∗E such that Lemma 2.2 holds. We
will zoom in at x to study the asymptotic properties of E. Let rn > 0 with rn → 0. In this section,
we always consider the sequence

(Xn, dn, x, µn) :=

(
X,

1

rn
· d, x, 1

µ(B(x, rn))
· µ
)

under pointed measured Gromov-Hausdorff convergence. We also wish to study the behavior of the
measure P (E, ·) as we zoom in, so let

(Xn, dn, x, Pn(E, ·)) :=

(
X,

1

rn
· d, x, rn

µ(B(x, rn))
P (E, ·)

)
.

Taking subsequences as necessary (not relabeled), we find the following measures on the limit space
(X∞, d∞, x∞):

µn
∗
⇀ µ∞,

µn(· ∩ E)
∗
⇀ µE∞,

µn(· ∩ Ec) ∗⇀ µE
c

∞ ,

and Pn(E, ·) ∗⇀ π∞.

For ease of notation, we denote the ball BXn(z, ρ) by Bn(z, ρ); note that as a set, this is the
same as the ball B(z, rnρ) in X. In Section 3 it was noted that a tangent space (X∞, d∞, x, µ∞)
always exists, is geodesic, and µ∞ is doubling and supports a 1-Poincaré inequality. Note that
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µn(· ∩E) +µn(· ∩Ec) = µn, and so µE∞+µE
c

∞ = µ∞. The existence of π∞ follows from Lemma 2.2:
by (2.13), for every k ∈ N,

(5.1) lim sup
n→∞

Pn(E,Bn(x, k)) = lim sup
n→∞

rn
µ(B(x, rn))

P (E,B(x, krn)) ≤ C1+dlog2 ke
d .

At various points in this section, we specify additional conditions on x ∈ ∂∗E by excluding H-
negligible parts of ∂∗E.

Since X is geodesic and µ is doubling, the space satisfies the following annular decay property :
there exists δ = δ(Cd) ∈ (0, 1] such that for all y ∈ X, r > 0, and 0 < ε < 1, we have

(5.2) µ(B(y, r) \B(y, r(1− ε))) ≤ Cεδµ(B(y, r)),

see [9, Corollary 2.2]. In particular, this property implies that all spheres have zero µ-measure.
We now define two sets in X∞. Let (E)∞ be the collection of all points z ∈ X∞ for which

lim
r→0

µE∞(BX∞(z, r))

µ∞(BX∞(z, r))
= 1,

and let (Ec)∞ be the analogous collection of all points z ∈ X∞ for which

lim
r→0

µE
c

∞ (BX∞(z, r))

µ∞(BX∞(z, r))
= 1.

Lemma 5.1. If z ∈ X∞ and zn ∈ Xn with zn → z (or, more precisely, ιn(zn)→ ι(z∞) in Z), then
for every r > 0,

µ∞(BX∞(z, r)) = lim
n→∞

µn(Bn(zn, r)).

The analogous result holds for the measures µn(· ∩ E) and µE∞, and for µn(· ∩ Ec) and µE
c

∞ .

Proof. We prove the result for the measures µn(· ∩ E) and µE∞; the proofs for the other two pairs
are analogous. Fix η > 0. By the lower semicontinuity of measure in open sets under weak*
convergence (see e.g. [3, Proposition 1.62]),

µE∞(BX∞(z, r − η)) = µE∞(BZ(z, r − η)) ≤ lim inf
n→∞

[ιn,∗µn(E ∩ ·)] (BZ(z, r − η)).

Here BZ(z, r − η) is the ball in Z whose center is the image of z under the isometric embedding ι.
Letting εn := dZ(zn, z), we have εn → 0 and for large n,

BZ(z, r − η) ⊂ BZ(zn, r − η + εn) ⊂ BZ(zn, r),

where again we label the image of zn under the isometric embedding ιn also by zn. Now we can
conclude

µE∞(BX∞(z, r − η)) ≤ lim inf
n→∞

µn(Bn(zn, r) ∩ E).

Thus letting η → 0,

(5.3) µE∞(BX∞(z, r)) ≤ lim inf
n→∞

µn(Bn(zn, r) ∩ E).

Again fix η > 0. By upper semicontinuity of measure in compact sets under weak* convergence,

µE∞(BX∞(z, r + 2η)) ≥ µE∞(BX∞(z, r + η)) ≥ lim sup
n→∞

[ιn,∗µn(E ∩ ·)] (BZ(z, r + η)).

Again for large n,

BZ(z, r + η)) ⊃ BZ(zn, r + η − εn) ⊃ BZ(zn, r),
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and we conclude

µE∞(BX∞(z, r + 2η)) ≥ lim sup
n→∞

µn(Bn(zn, r) ∩ E).

Note that the measure µ∞ also satisfies the annular decay property, and that µE∞ ≤ µ∞, so spheres
in X∞ do not carry positive µE∞-weight; therefore letting η → 0, we get

µE∞(BX∞(z, r)) ≥ lim sup
n→∞

µn(Bn(zn, r) ∩ E).

Combining this with (5.3) completes the proof. �

Proposition 5.2. The sets (E)∞ and (Ec)∞ are disjoint. Moreover,

µ∞(X∞ \ [(E)∞ ∪ (Ec)∞]) = 0.

Proof. Suppose z ∈ (E)∞ ∩ (Ec)∞. Then

lim
r→0

µE∞(BX∞(z, r))

µ∞(BX∞(z, r))
= 1 = lim

r→0

µE
c

∞ (BX∞(z, r))

µ∞(BX∞(z, r))
.

By the Gromov-Hausdorff convergence, there is a sequence xn ∈ Xn with xn → z. Thus for any
small enough r > 0, Lemma 5.1 gives

2/3 <
µE∞(BX∞(z, r))

µ∞(BX∞(z, r))
= lim
n→∞

µn(Bn(xn, r) ∩ E)

µn(Bn(xn, r))
= lim
n→∞

µ(B(xn, rrn) ∩ E)

µ(B(xn, rrn))

and similarly

2/3 <
µE

c

∞ (BX∞(z, r))

µ∞(BX∞(z, r))
= lim
n→∞

µ(B(xn, rrn) ∩ Ec)
µ(B(xn, rrn))

.

Adding together, we find for all small enough r > 0 and large enough n

4/3 <
µ(B(xn, rrn))

µ(B(xn, rrn))
,

which is not possible. Therefore (E)∞ and (Ec)∞ are disjoint.
Next, we show that µ∞(X∞ \ [(E)∞ ∪ (Ec)∞]) = 0. To this end, we will show that the Radon-

Nikodym derivative of µE∞ with respect to µ∞ is µ∞-a.e. either 1 or 0. Let this Radon-Nikodym
derivative be denoted by ϕ. Let A0 := {z ∈ X∞ : 0 < ϕ(z) < 1}, and suppose that µ∞(A0) > 0.
Then there is some R > 0 and 0 < δ < 1 such that the set

A := {z ∈ BX∞(x∞, R) : δ < ϕ(z) < 1− δ and z is a Lebesgue point of ϕ}

satisfies

µ∞(A) > δµ∞(BX∞(x∞, R)).

We fix 0 < ε < R and consider the family of balls BX∞(z, ρ), z ∈ A and 0 < ρ < ε, such that

(5.4) δ <
1

µ∞(BX∞(z, ρ))

∫
BX∞ (z,ρ)

ϕdµ∞ < 1− δ.

As every z ∈ A is a Lebesgue point of ϕ, the corresponding family of closed balls is a fine cover
of A, and hence there is a pairwise disjoint subfamily {Bi}∞i=1 such that µ∞(A \

⋃∞
i=1Bi) = 0 and

then also µ∞(A \
⋃∞
i=1Bi) = 0, since spheres have µ∞-measure zero. Now, observe that

δµ∞(BX∞(x∞, R)) < µ∞(A) ≤
∞∑
i=1

µ∞(Bi),
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and so we can find N ∈ N such that

(5.5) δµ∞(BX∞(x∞, R)) <

N∑
i=1

µ∞(Bi).

Denote the center of each Bi by xi. By Lemma 5.1 we can find jε ∈ N such that whenever n ≥ jε,
there are points x1n, · · · , xNn ∈ X = Xn converging to x1, . . . , xN respectively such that

(5.6) (1− δ2)µ∞(Bi) ≤ µn(Bn(xin, radBi)) ≤ (1 + δ2)µ∞(Bi).

for all i = 1, . . . , N . This gives

(1− δ2)µ∞(BX∞(x∞, R)) ≤ µn(Bn(x,R)) ≤ (1 + δ2)µ∞(BX∞(x∞, R)),(5.7)

δ
1− δ2

1 + δ2
≤ 1− δ2

1 + δ2
1

µ∞(Bi)

∫
Bi

ϕdµ∞ ≤
µn(Bn(xin, radBi) ∩ E)

µn(Bn(xin, radBi))

≤ 1 + δ2

1− δ2
1

µ∞(Bi)

∫
Bi

ϕdµ∞ ≤
1 + δ2

1 + δ
≤ 1− δ/2;(5.8)

here, to obtain (5.8) we also used (5.4). We can also ensure that the collection of balls (“lifts” of
Bi to Xn) {B(xin, rn radBi)}Ni=1 are pairwise disjoint. Inequality (5.8) tells us that if δ > 0 was
chosen small enough, then

δ/2 ≤ µ(B(xin, rn radBi) ∩ E)

µ(B(xin, rn radBi))
≤ 1− δ/2.

Now, applying the relative isoperimetric inequality (2.6) to these balls gives

δ/2 ≤ 2CP
rn radBi

µ(B(xin, rn radBi))
P (E,B(xin, rn radBi)).

Thus we obtain, recalling that radBi < ε < R,

δ

N∑
i=1

µ(B(xin, rn radBi)) ≤ 4CP εrn

N∑
i=1

P (E,B(xin, rn radBi)) ≤ 4CP εrnP (E,B(x, 2rnR)).

By (5.5) and (5.6), we now have

δ2(1− δ2)µ∞(BX∞(x∞, R)) ≤ δ(1− δ2)

N∑
i=1

µ∞(Bi)

≤ δ
N∑
i=1

µ(Bn(xin, rn radBi))

µ(B(x, rn))

≤ 4CP εrn
µ(B(x, rn))

P (E,B(x, 2rnR)).

Applying (5.7) now gives

δ2(1− δ2)

1 + δ2
µ(B(x, rnR))

µ(B(x, rn))
≤ 4CP εrn
µ(B(x, rn))

P (E,B(x, 2rnR)).

By the doubling property of µ we obtain

0 <
δ2(1− δ2)

1 + δ2
1

4CPCdε
≤ rn
µ(B(x, 2rnR))

P (E,B(x, 2rnR)).
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Now letting n→∞, by (2.13) we get

0 <
δ2(1− δ2)

1 + δ2
1

4CPCdε
≤ Cd

for every 0 < ε < 1, which is not possible. Thus µ(A0) = 0.
Now the claim µ∞(X∞ \ [(E)∞ ∪ (Ec)∞]) = 0 follows from the fact that µE∞ + µE

c

∞ = µ∞. �

Note that by the above proposition and by the Radon-Nikodym theorem, we now have

µE∞(A) = µ∞((E)∞ ∩A) and µE
c

∞ (A) = µ∞((Ec)∞ ∩A)

for Borel sets A ⊂ X∞, and moreover ∂∗(E)∞ = X∞ \ ((E)∞ ∪ (Ec)∞).
Now we wish to study the support of the asymptotic perimeter measure π∞ in (X∞, d∞, x∞).

We first prove a proposition that states that if a point z ∈ X∞ is in the support of π∞, then it can
be seen as the limit of special points in ∂∗E. Recall from (2.11) that

ΣγE :=

{
y ∈ X : lim inf

r→0
min

{
µ(B(y, r) ∩ E)

µ(B(y, r))
,
µ(B(y, r) ∩ Ec)
µ(B(y, r))

}
≥ γ

}
⊂ ∂∗E

for some γ = γ(Cd, CP ) ∈ (0, 1/2]. By (2.10) and (2.12) we know that P (E, ·) is concentrated on
ΣγE.

For each m ∈ N, let

Gm :=

{
z ∈ ΣγE :

γ

2CP
≤ rP (E,B(z, r))

µ(B(z, r))
≤ 2Cd for all 0 < r <

1

m

}
.

By Lemma 2.2 we know that

H

(
∂∗E \

⋃
m∈N

Gm

)
= 0,

and Gm ⊂ Gm+1 for all m ∈ N. Note that for every r > 0 the map z 7→ P (E,B(z, r)) is lower
semicontinuous, and so Gm is a Borel set. Combining the definitions of ΣγE and Gm, for every
z ∈ ΣγE ∩Gm we find rz > 0 such that

(5.9) rP (E,B(z, r)) ≤ K min{µ(B(z, r) ∩ E), µ(B(z, r) ∩ Ec)}
for all 0 < r ≤ rz, where K = K(Cd, CP ). Hence we can refine Gm further by considering the set

G∗m :=

{
z ∈ Gm : (5.9) holds for all 0 < r <

1

m

}
.

Note then that G∗m is a Borel set, and that G∗m ⊂ G∗m+1 for m ∈ N with

H

(
∂∗E \

⋃
m∈N

G∗m

)
= 0.

As P (E, ·) is asymptotically doubling by (2.13), we know that the Lebesgue differentiation theorem
holds for the measure P (E, ·). Hence for any fixed m ∈ N, by the Lebesgue differentiation theorem,
G∗m is of density 1 (with respect to the measure P (E, ·)) at P (E, ·)-a.e. x ∈ G∗m. It is at such a
point that we will zoom in and take our limiting measures.

Proposition 5.3. Let (Xn, dn, x, µn) be a pointed measured Gromov-Hausdorff convergent sequence
such that the base point x is a point of P (E, ·)-density 1 for G∗m for some m ∈ N. Suppose that
z ∈ X∞ is such that

π∞(BX∞(z,R)) > 0
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for all R > 0. Then there is a sequence zn ∈ Xn that converges to z (in Z) such that each zn is in
G∗m.

Proof. Fix R > 0. By the Gromov-Hausdorff convergence there exist sequences εn → 0 and
xn ∈ Xn = X such that dZ(xn, z) < εn, and then by lower semicontinuity under weak* convergence,
(5.10)

lim inf
n→∞

rn
P (E,B(xn, (R+ εn)rn))

µ(B(x, rn))
≥ lim inf

n→∞
rn
P (E, ι−1n (BZ(z,R)))

µ(B(x, rn))
≥ π∞(BX∞(z,R)) > 0.

We would like to know that there exists x̃n ∈ G∗m∩B(xn, (R+εn)rn) for all sufficiently large n ∈ N.
Suppose that this is not the case. Then there is a subsequence nk such that B(xnk , (R + εnk)rnk)
is disjoint from G∗m. Choose M > 0 large enough so that for all k ∈ N,

B(xnk , (R+ εnk)rnk) ⊂ B(x,Mrnk).

As B(xnk , (R+ εnk)rnk) and B(x,Mrnk) ∩G∗m are disjoint, we have

P (E,B(xnk , (R+ εnk)rnk)) + P (E,B(x,Mrnk) ∩G∗m) ≤ P (E,B(x,Mrnk)),

which is equivalent to

rnk
P (E,B(xnk , (R+ εnk)rnk))

µ(B(x, rnk))
+ rnk

P (E,B(x,Mrnk) ∩G∗m)

µ(B(x, rnk))
≤ rnk

P (E,B(x,Mrnk))

µ(B(x, rnk))
.

Call the left-hand side of this inequality Ak+Bk, and the right-hand side Ck. The assumption that
x is a point of density 1 in G∗m implies that Bk/Ck → 1 as k → ∞. Thus Ak/Ck → 0 as k → ∞.

On the other hand, by the definition of Gm, we must have Ck ≤ 2M−1C
2+log2(M)
d < ∞ for large

k ∈ N. Therefore Ak → 0 as k → ∞, which contradicts (5.10). Thus, there is some N1 ∈ N such
that there is a point x̃n ∈ G∗m ∩ B(xn, (R + εn)rn) for all n ≥ N1. We rename this sequence x̃1n.
Similarly, there exists a sequence

x̃2n ∈ G∗m ∩B(xn, (2
−1R+ εn)rn)

for all n ≥ N2 > N1. We continue inductively in this fashion to find for each k ∈ N,

x̃kn ∈ G∗m ∩B(xn, (2
−kR+ εn)rn)

for all n ≥ Nk > Nk−1. Now

dZ(x̃kn, z) ≤ dZ(x̃kn, xn) + dZ(xn, z) ≤ 2−kR+ εn + εn.

For n ∈ [Nk, Nk+1), set zn := x̃kn. Then zn has the desired properties. �

Note also that the support of π∞ is contained in X∞; this can be seen as follows. If z ∈ Z such
that π∞(BZ(z,R)) > 0 for all R > 0, then there exists a sequence xn ∈ Xn such that xn → z in Z.
It follows that z ∈ X∞.

We now provide growth estimates for the measure π∞.

Theorem 5.4. Consider the sequence (Xn, dn, x, µn) such that x is a point of P (E, ·)-density 1 for
G∗m for some m ∈ N. Suppose that z ∈ X∞ is such that

π∞(BX∞(z,R)) > 0

for all R > 0. Then

(5.11)
1

C

µ∞(BX∞(z, r))

r
≤ π∞(BX∞(z, r)) ≤ Cµ∞(BX∞(z, r))

r
for all r > 0,
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where C = C(Cd, CP ), and

(5.12) π∞((E)∞ ∪ (Ec)∞) = 0.

Proof. By Proposition 5.3, there is a sequence zn ∈ G∗m that converges to z in Z. Fix r > 0 and
0 < η < r/2. Using the basic properties of weak* convergence as in the proof of Proposition 5.3,
we find a sequence of positive numbers εn with limn→∞ εn = 0 such that

(5.13) lim inf
n→∞

rn
P (E,B(zn, (r + εn)rn))

µ(B(x, rn))
≥ π∞(BX∞(z, r)) ≥ lim sup

n→∞
rn
P (E,B(zn, (r − η)rn))

µ(B(x, rn))
.

We can rewrite the term on the right-most side of (5.13) as

lim sup
n→∞

(r − η)rn
P (E,B(zn, (r − η)rn))

µ(B(zn, (r − η)rn))
· µ(B(zn, (r − η)rn))

(r − η)µ(B(x, rn))
.

Since zn ∈ G∗m, we know that

(r − η)rn
P (E,B(zn, (r − η)rn))

µ(B(zn, (r − η)rn))
≥ γ

2CP

for all large enough n (that is, when (r − η)rn < 1/m). Additionally, by Lemma 5.1,

lim sup
n→∞

µ(B(zn, (r − η)rn))

(r − η)µ(B(x, rn))
=

1

(r − η)
lim sup
n→∞

µ(B(zn, (r − η)rn))

µ(B(x, rn))

=
µ∞(BX∞(z, r − η))

r − η

≥ 1

C2
d

µ∞(BX∞(z, r))

r
,

since µ∞ is doubling with constant C2
d . Thus by (5.13), we get

π∞(BX∞(z, r)) ≥ γ

2C2
dCP

µ∞(BX∞(z, r))

r
.

Next we rewrite the term on the left-most side of (5.13) as

lim inf
n→∞

(r + εn)rn
P (E,B(zn, (r + εn)rn))

µ(B(zn, (r + εn)rn))
· µ(B(zn, (r + εn)rn))

(r + εn)µ(B(x, rn))
.

Since z ∈ G∗m, we know that

(r + εn)rn
P (E,B(zn, (r + εn)rn))

µ(B(zn, (r + εn)rn))
≤ 2Cd

for all large enough n. Similarly to above, we obtain

lim
n→∞

µ(B(zn, (r + εn)rn))

(r + εn)µ(B(x, rn))
=
µ∞(BX∞(z, r))

r
,

whence from (5.13) we obtain

π∞(BX∞(z, r)) ≤ 2Cd
µ∞(BX∞(z, r))

r
.

This proves (5.11).
It now only remains to show (5.12). It suffices to show that when z ∈ (E)∞ ∪ (Ec)∞, for each

k ∈ N there is some rz > 0 such that π∞(BX∞(z, rz)) ≤ Cµ∞(BX∞(z, rz))/(krz), from which we
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will know (via (5.11)) that there must be ρz > 0 with π∞(BX∞(z, ρz)) = 0. Fix k ∈ N. Suppose
z ∈ (E)∞ is in the support of π∞. Then there is some rz > 0 such that

µ∞(BX∞(z, rz) ∩ (Ec)∞)

µ∞(BX∞(z, rz))
<

1

k
.

Let εn → 0 and G∗m 3 zn → z as given by the conclusion of Proposition 5.3. By Lemma 5.1 we
have

1

k
lim
n→∞

µ(B(zn, rzrn))

µ(B(x, rn))
=
µ∞(BX∞(z, rz))

k
> µ∞(BX∞(z, rz) ∩ (Ec)∞)

= lim
n→∞

µ(B(zn, rzrn) ∩ Ec)
µ(B(x, rn))

.

Thus for all large enough n ∈ N,

1

k
µ(B(zn, rzrn)) ≥ µ(B(zn, rzrn) ∩ Ec).

Since zn ∈ G∗m, by (5.9) we have that for all large enough n ∈ N,

rzrn
P (E,B(zn, rzrn))

µ(B(zn, rzrn))
≤ Kµ(B(zn, rzrn) ∩ Ec)

µ(B(zn, rzrn))
≤ K

k
.

Thus for any η > 0,

π∞(BX∞(z, rz − η)) ≤ lim inf
n→∞

rn
P (E,B(zn, rzrn))

µ(B(x, rn))
≤ K

k

1

rz
lim inf
n→∞

µ(B(zn, rzrn))

µ(B(x, rn))

=
K

k

µ∞(BX∞(z, rz))

rz

by Lemma 5.1. Since K = K(Cd, CP ), letting η → 0 gives

π∞(BX∞(z, rz)) ≤
K

k

µ∞(BX∞(z, rz))

rz
.

By choosing k ∈ N large enough, the above would violate the left-hand inequality of (5.11), and so
z cannot be in the support of π∞. Thus, there is some ρz > 0 with π∞(B(z, ρz)) = 0. Since this
happens for every z ∈ (E)∞, we know that π∞ does not charge (E)∞. Indeed, with

(E)∞ ⊂ U :=
⋃

z∈(E)∞

B(z, ρz),

an open set containing (E)∞, we have π∞(U) = 0. A similar argument gives the existence of an
open set V ⊃ (Ec)∞ with π∞(V ) = 0. This completes the proof. �

Next we show that the set (E)∞ is of locally finite perimeter in the space X∞. Denote by H the
co-dimension 1 Hausdorff measure in the space (X∞, d∞, µ∞).

Theorem 5.5. For all R > 0, we have P ((E)∞, BX∞(x∞, R)) < ∞. The measures P ((E)∞, ·),
π∞, and H(∂∗(E)∞ ∩ ·) are comparable. The sets (E)∞ and (Ec)∞ are open in X∞.

Proof. To prove the first claim, we use a discrete convolution construction. Assume for simplicity
that R = 1. Fix 0 < ε < 1/9, and take a maximal ε-separated set {zk}∞k=1 ⊂ X∞. Then the balls
Bk := BX∞(zk, ε) cover X∞ and BX∞(zk, 14ε) have bounded overlap. For each k we can find points
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zk,n ∈ Xn converging to zk (in Z). Thus, by considering a tail-end of the sequence if necessary,
there is a sequence 0 < δn → 0 with δn < ε such that dZ(ι∞(zk), ιn(zk,n)) < δn, and by Lemma 5.1,

(5.14) (1− δn)µE∞(BX∞(zk, ε)) ≤ µn(Bn(zk,n, ε) ∩ E)

and

(5.15) µn(Bn(zk,n, ε)) ≤ (1 + δn)µ∞(BX∞(zk, ε)) ≤ (1 + δn)2 µn(Bn(zk,n, ε)).

Observe that we need only do this for the points zk ∈ BX∞(x∞, 2), of which there are only finitely
many, and thus we can choose δn > 0 such that the above hold for all corresponding indices k. By
the bounded overlap property of the balls BX∞(zk, 14ε), we also have that for each such positive
integer n, the collection of balls Bn(zk,n, 6ε) has a bounded overlap; this will be needed in the
computations (5.18).

Now take a partition of unity by means of C/ε-Lipschitz functions φk ∈ Lip(X∞; [0, 1]) with
supp(φk) ⊂ BX∞(zk, 2ε) for each k ∈ N; see e.g. [21, p. 104]. Let u := χE , and for each n ∈ N we
set

(5.16) vεn :=

∞∑
k=1

uBn(zk,n,ε)φk,

where

uBn(zk,n,ε) =

∫
Bn(zk,n,ε)

u dµn =

∫
B(zk,n,rnε)

u dµ =
µ(B(zk,n, rnε) ∩ E)

µ(B(zk,n, rnε))
.

Let l ∈ N such that Bl ∩BX∞(x∞, 1) 6= ∅. Given y1, y2 ∈ Bl, we estimate

|vεn(y1)− vεn(y2)| =

∣∣∣∣∣
∞∑
k=1

uBn(zk,n,ε)φk(y1)−
∞∑
k=1

uBn(zk,n,ε)φk(y2)

∣∣∣∣∣
=

∣∣∣∣∣
∞∑
k=1

(uBn(zk,n,ε) − uBn(zl,n,ε))(φk(y1)− φk(y2))

∣∣∣∣∣
≤
∞∑
k=1

|uBn(zk,n,ε) − uBn(zl,n,ε)||φk(y1)− φk(y2)|

=
∑
k∈N

BX∞ (zk,2ε)∩Bl 6=∅

|uBn(zk,n,ε) − uBn(zl,n,ε)||φk(y1)− φk(y2)|

≤ C
∑
k∈N

BX∞ (zk,2ε)∩Bl 6=∅

|uBn(zk,n,ε) − uBn(zl,n,ε)|
d∞(y1, y2)

ε
.

Note that for the indices k in the last sum, we have d∞(zk, zl) ≤ 3ε and so dn(zk,n, zl,n) ≤ 5ε.
Thus, each ball Bn(zk,n, ε) is contained in Bn(zl,n, 6ε). By the bounded overlap property, there
are at most J number of balls Bn(zk,n, ε) contained in Bn(zl,n, 6ε), with J depending solely on the
doubling constant of µn – which is the same doubling constant of µ. Moreover, for each k for which
BX∞(zk, 2ε) ∩Bl 6= ∅, we have that

|uBn(zk,n,ε) − uBn(zl,n,ε)| ≤ C
∫
Bn(zl,n,6ε)

|u− uBn(zl,n,6ε)| dµn.
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Thus, we can continue the estimate via the Poincaré inequality:

|vεn(y1)− vεn(y2)| ≤ C
∫
Bn(zl,n,6ε)

|u− uBn(zl,n,6ε)| dµn
d∞(y1, y2)

ε

≤ Cε d∞(y1, y2)

ε

Pn(E,Bn(zl,n, 6ε))

µn(Bn(zl,n, 6ε))
.

Thus, we get for y ∈ Bl,

Lip vεn(y) ≤ CPn(E,Bn(zl,n, 6ε))

µn(Bn(zl,n, 6ε))
.

Therefore, in BX∞(x∞, 1),

(5.17) Lip vεn ≤ C
∞∑
l=1

χBl
Pn(E,Bn(zl,n, 6ε))

µn(Bn(zl,n, ε))
.

By the definition of pointed measured Gromov-Hausdorff convergence, limn→∞ dZ(ιn(x), ι(x∞)) =
0, see Definition 3.3 and the discussion preceding it. If Bl ∩ BX∞(x∞, 1) 6= ∅, then Bn(zl,n, 2ε) ∩
Bn(x, 1 + ε) 6= ∅. Hence by (5.15) and by the bounded overlap of the family Bn(zk,n, 6ε), k ∈ N,
we have ∫

BX∞ (x∞,1)

Lip vεn dµ∞ ≤ C
∑
l∈N

Bn(zl,n,2ε)∩Bn(x,1+ε)6=∅

µ∞(Bl)
Pn(E,Bn(zl,n, 6ε))

µn(Bn(zl,n, ε))

≤ C(1 + δn)
∑
l∈N

Bn(zl,n,2ε)∩Bn(x,1+ε) 6=∅

Pn(E,Bn(zl,n, 6ε))

≤ CPn(E,Bn(x, 1 + 9ε))

≤ CPn(E,Bn(x, 2)).

(5.18)

This remains bounded as n → ∞, see (5.1). We can do the above for a sequence εi → 0, with
n = n(i)→∞ and δni → 0, to obtain a sequence of functions vi = vεin(i) ∈ Lip(BX∞(x∞, 1)). Since

V (vi, (BX∞(x∞, 1)) is bounded by (5.18), we find a subsequence, also denoted by vi, such that
vi → w in L1(BX∞(x∞, 1)), see [33, Theorem 3.7]. By lower semicontinuity,
(5.19)

V (w,BX∞(x∞, 1)) ≤ lim inf
i→∞

∫
BX∞ (x∞,1)

Lip vi dµ∞ ≤ C lim sup
n→∞

Pn(Bn(x, 2)) ≤ π∞(BX∞(x∞, 3))

and so w ∈ BV (BX∞(x∞, 1)). We need to check that w = χ(E)∞ in L1(BX∞(x∞, 1)). To do so, fix
y ∈ BX∞(x∞, 1) ∩ (E)∞ and fix η ∈ (0, 1). Then by definition of (E)∞, for large enough i ∈ N we
have

µE∞(BX∞(y, 4εi))

µ∞(BX∞(y, 4εi))
≥ 1− η.

We denote the covering of X∞ corresponding to an index i ∈ N by Bik := B(zik, εi). It follows that
for all balls Bik with 2Bik containing y, we have (note that µ∞ is doubling with constant C2

d)

µE
c

∞ (BX∞(zik, εi))

µ∞(BX∞(zik, εi))
≤ C6

d

µE
c

∞ (BX∞(y, 4εi))

µ∞(BX∞(y, 4εi))
≤ C6

dη.
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Thus by (5.14) and (5.15),

µni(Bni(zk,ni , εi) ∩ E)

µni(Bni(zk,ni , εi))
≥ 1− δni

1 + δni

µE∞(BX∞(zik, εi))

µ∞(BX∞(zik, εi))
≥ 1− δni

1 + δni
(1− C6

dη).

Now, by definition of the discrete convolutions (5.16), we have

vi(y) ≥ 1− δni
1 + δni

(1− C6
dη).

Letting i→∞, we get

w(y) ≥ 1− C6
dη.

Since η > 0 was arbitrary, we conclude w(y) = 1 (the values taken on by the functions vi are
between 0 and 1, so necessarily w(y) ≤ 1). Similarly, we get w(y) = 0 for all y ∈ (Ec)∞. Also
by Proposition 5.2 we know that µ∞(X∞ \ ((E)∞ ∪ (Ec)∞)) = 0. Thus w = χ(E)∞ as functions

in L1(BX∞(x∞, 1)). Recall that we are assuming R = 1 just for convenience; we conclude that
χ(E)∞ ∈ BV (BX∞(x∞, R)) for all R > 0.

Next, for z ∈ X∞ and r > 0, by an argument analogous to that leading to (5.19), we obtain

(5.20) P ((E)∞, B(z, r)) ≤ π∞(z, 3r).

From the final part of the proof of Theorem 5.4, we know that π∞ is supported inside X \(U∪V ),
where U and V are (open) neighborhoods of (E)∞ and (Ec)∞, respectively. Conversely, if z ∈
X∞ \ [(E)∞ ∪ (Ec)∞], which we recall is the same set as ∂∗(E)∞, then z is in the support of
P ((E)∞, ·) by the relative isoperimetric inequality (2.6). Thus by (5.20), z is in the support of
π∞. In conclusion, the support of π∞ is exactly ∂∗(E)∞ = X∞ \ [U ∪ V ]. Moreover, by (5.11) and
Lemma 2.1 we know that π∞ is comparable to H(∂∗(E)∞ ∩ ·). By (2.10) we know that P ((E)∞, ·)
is also comparable to H(∂∗(E)∞ ∩ ·). Thus the three measures π∞, P ((E)∞, ·), and H(∂∗(E)∞ ∩ ·)
are all comparable. Finally, by the relative isoperimetric inequality and the fact that P ((E)∞, ·)
does not see the set U , it follows that U cannot intersect (Ec)∞. Indeed, if U ∩(Ec)∞ is non-empty,
then by the construction of U , we can find z ∈ (E)∞ and ρz > 0 such that B(z, ρz) ∩ (Ec)∞ is
non-empty. Thus we have both µ∞(B(z, ρz) ∩ (E)∞) > 0 and µ∞(B(z, ρz) ∩ (Ec)∞) > 0. Since
µ∞(X∞ \ [(E)∞ ∪ (Ec)∞]) = 0, it follows from the relative isoperimetric inequality (2.6) applied to
the ball B(z, ρz), that we must have P ((E)∞, U) ≥ P ((E)∞, B(z, ρz)) > 0, contradicting the fact
that P ((E)∞, U) = 0. Thus (E)∞ = U and similarly (Ec)∞ = V . �

Remark 5.6. If µ is an Ahlfors s-regular measure for some s > 1 (recall (2.9)), then it is straight-
forward to verify that µ∞ is also Ahlfors s-regular in X∞, and then by Theorems 5.4 and 5.5,
P ((E)∞, ·) (and π∞) are Ahlfors (s− 1)-regular measures in X∞. This corresponds to what we get
in a Euclidean space Rn, for s = n.

6. Asymptotic quasi-least gradient property

From Theorem 4.9 we now know that asymptotic limits (µ-a.e.) of a BV function outside of the
Cantor and jump parts of the function are of least gradient. We will show in this section that at
co-dimension 1 almost every point of the measure-theoretic boundary of a set E of finite perimeter,
any limit set (E)∞ is a set of quasiminimal boundary surface as defined in [25], that is, χ(E)∞

is of quasi-least gradient. First we develop some preliminary results that are also of independent
interest.
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6.1. Asymptotic minimality for sets of finite perimeter. The following theorem shows that
given a set E of finite perimeter, at essentially almost every point in ∂∗E the set E is asymptotically
a minimal surface; compare this to [1, Proposition 5.7], where a weaker notion of asymptotic
quasiminimality is established, where the quasiminimality condition requires to compare (locally)
the perimeter of E with the perimeter of modifications of E by balls alone.

Theorem 6.1. Let E ⊂ X be a set of finite perimeter. Then

lim
r→0

(
infu∈BVc(B(x0,r)) V (χE + u,B(x0, r))

P (E,B(x0, r))

)
= 1

for P (E, ·)-a.e. x ∈ X.

Proof. Note that the zero function is in BVc(B(x0, r)), and so for each r > 0,

infu∈BVc(B(x0,r)) V (χE + u,B(x0, r))

P (E,B(x0, r))
≤ 1.

Hence to prove the theorem, it suffices to show that

lim inf
r→0

(
infu∈BVc(B(x0,r)) V (χE + u,B(x0, r))

P (E,B(x0, r))

)
≥ 1

Let

A :=

{
x ∈ X : lim inf

r→0

(
infu∈BVc(B(x,r)) V (χE + u,B(x, r))

P (E,B(x, r))

)
< 1

}
Note that A is the increasing limit of sets An where

An :=

{
x ∈ X : lim inf

r→0

(
infu∈BVc(B(x,r)) V (χE + u,B(x, r))

P (E,B(x, r))

)
< 1− 1

n

}
, n ∈ N.

It therefore suffices to show that each An satisfies P (E,An) = 0. To this end, fix n ∈ N. Then for
every x ∈ An, there exist rxi → 0 and uxi ∈ BVc(B(x, rxi )) with

(6.1)
V (χE + uxi , B(x, rxi ))

P (E,B(x, rxi ))
< 1− n−1.

Furthermore, as P (E,X) < ∞, for every x ∈ X we have P (E, ∂B(x, r)) = 0 for H1-almost every
r > 0. We can therefore choose rxi > 0 such that in addition to the above, P (E, ∂B(x, rxi )) = 0
for every x ∈ An. This is because as uxi has compact support in B(x, rxi ), we can choose a
smaller rxi such that the support of uxi is still contained in this smaller ball. Fix k ∈ N such that
1/k < 1

4 diamX. The collection {B(x, rxi ) : 0 < rxi < 1/k}x∈An is a fine cover of An, that is,
for every x ∈ An we have infi r

x
i = 0. By (2.13) we know that P (E, ·) is asymptotically doubling,

and so it satisfies the Vitali covering theorem, see [21, Theorem 3.4.3]. So we can pick a countable
pairwise disjoint collection {Bkj = B(xkj , r

k
j )}∞j=1 =: Gk such that, recalling also that P (E, ∂B) = 0

for each B ∈ Gk,

(6.2) P

(
E,An \

⋃
B∈Gk

B

)
= P

(
E,An \

⋃
B∈Gk

B

)
= 0.

We use the collection of balls Bkj to perturb the function χE . Recall that for each ball Bkj there is

a function ukj ∈ BVc(Bkj ) as in (6.1). Set

hk := χE +

∞∑
j=1

ukj .
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By the 1-Poincaré inequality (2.8) for compactly supported functions, for all j ∈ N∫
Bkj

|ukj | dµ ≤ Crkj V (ukj , B
k
j ) ≤ Crkj

[
V (χE + ukj , B

k
j ) + V (χE , B

k
j )
]
≤ C 2− n−1

k
V (χE , B

k
j ).

Therefore by the pairwise disjointness of the balls in the collection Gk,∫
X

|χE − hk| dµ ≤
∞∑
j=1

∫
Bkj

|ukj | dµ ≤
C

k
V (χE , X).

Therefore hk → χE in L1(X) as k →∞. By the lower semicontinuity of the total variation,

(6.3) V (χE , X) ≤ lim inf
k→∞

V (hk, X).

For ease of notation, for each j ∈ N let

Gk,j :=

j⋃
i=1

B
k

i and hk,j := u+

j∑
i=1

uki .

Now

V (hk,j , Gk,j) ≤ V (hk,j ,

j⋃
i=1

Bki ) + V (hk,j ,

j⋃
i=1

∂Bki )

= V (hk,j ,

j⋃
i=1

Bki ) +

j∑
i=1

V (χE , ∂B
k
i )

= V (hk,j ,

j⋃
i=1

Bki )

and so V (hk,j , Gk,j) = V (hk,j ,
⋃j
i=1B

k
i ). Since Gk,j is a closed set, it follows that

V (hk,j , X) = V (hk,j , Gk,j) + V (hk,j , X \Gk,j)

=

j∑
i=1

V (hk,j , B
k
i ) + V (χE , X \Gk,j)

< (1− n−1)

j∑
i=1

V (χE , B
k
i ) + V (χE , X \Gk,j) by (6.1)

= V (χE , X)− n−1V

(
χE ,

j⋃
i=1

Bki

)
.

Therefore

V (hk, X) ≤ lim inf
j→∞

V (hk,j , X) ≤ V (χE , X)− n−1 lim
j→∞

V

(
χE ,

j⋃
i=1

Bki

)

= V (χE , X)− n−1V

(
χE ,

⋃
B∈Gk

B

)
.

(6.4)
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Set Kk :=
⋃
B∈Gk B and Fk := An \Kk for each k ∈ N. We have P (E,Fk) = 0 for each k ∈ N by

(6.2). For F :=
⋃∞
k=1 Fk and K :=

⋂∞
k=1Kk we then have P (E,F ) = 0. In light of (6.3) and (6.4),

we have

P (E,X) ≤ P (E,X)− lim inf
k→∞

n−1P (E,Kk) ≤ P (E,X)− n−1P (E,K),

and so P (E,K) = 0. Since An ⊂ F∪K, it follows that P (E,An) = 0. This completes the proof. �

A similar analysis can be carried out for functions u ∈ BV (X) with slightly more involved
computations to obtain analogous asymptotic minimality results for u; we do not do so here as we
have a stronger result for u outside its jump and Cantor sets in Theorem 4.9. In Theorem 4.9 we
obtain the global least gradient property of u∞ on the tangent space X∞, whereas in Theorem 6.1
above we do not consider least gradient properties of an asymptotic (blow-up) limit of E in the
tangent space X∞, but consider the asymptotic least gradient property of χE in X itself. In the
next subsection, we will explore analogous properties of the blow-up limit (E)∞, but unlike in
Theorem 6.1 we do not have (E)∞ to be of least gradient in X∞, but merely a quasi-least gradient,
see Theorem 6.3. This turns out to be not merely an artifact of our proof, but a real obstacle as
demonstrated by Example 6.13 below.

6.2. Quasiminimality at almost every point. In this subsection we finally prove the quasimin-
imality property of the asymptotic limit set (E)∞.

Definition 6.2. A set E ⊂ X is said to be K-quasiminimal, K ≥ 1, if for every B(x,R) ⊂ X and
every φ ∈ BVc(B(x,R)) we have

1

K
P (E,B(x,R)) ≤ V (χE + φ,B(x,R)).

Without loss of generality and applying a truncation, one can restrict attention to φ with values in
[−1, 1], and such that χE + φ has values in [0, 1].

The asymptotic minimality of E (Theorem 6.1) can be upgraded to quasiminimality at generic
tangents of the limit set (E)∞. In terms of notation, here we only consider the sequence

(Xn, dn, x, µn) :=

(
X,

1

rn
· d, x, 1

µ(B(x, rn))
· µ
)

under the pointed measured Gromov-Hausdorff convergence, with rn ↘ 0, see the discussion in
Section 3.

Theorem 6.3. Let E ⊂ X be a set of finite perimeter. Then, for P (E, ·)-almost every x ∈ X
and for any space (X∞, d∞, x∞, µ∞) arising as a pointed measured Gromov-Hausdorff tangent at
x, any set (E)∞ that arises as an asymptotic limit of E along some sequence rn ↘ 0 is a K-
quasiminimizer. Here K depends only on the constants Cd, CP .

The proof involves lifting Lipschitz functions with small energy to the sequence, and a pasting
argument. The desired quasiminimality estimate then follows using Theorem 6.1 for the lifted
sequence. We need the following general BV approximation theorem, which is an analog of [11,
Lemma 5.2] for p = 1. We follow the arguments of Cheeger.

Proposition 6.4. Let f ∈ BV (X). Then, there exist Lipschitz continuous fi with bounded Lipschitz

continuous upper gradients vi such that fi → f in L1
loc(X) and vi dµ

∗
⇀ dV (f, ·).
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To prove this proposition we define the following auxiliary function. For a nonnegative Borel
function g on X we set Fg : X ×X → [0,∞] to be

FXg (x1, x2) := Fg(x1, x2) := inf
γ

∫
γ

g ds,

whenever x1, x2 ∈ X. If x1 = x2, we set Fg(x1, x2) = 0. The infimum is taken over all rectifiable
curves γ connecting x1 to x2. Note that by the definition of upper gradient (2.3), we have that if
g is an upper gradient of a function f : X → R, then for every x, y ∈ X,

|f(x)− f(y)| ≤ Fg(x, y).

For the proof of the following lemma see [11, Lemma 5.18] or [20, pp. 13–14].

Lemma 6.5. Fix η > 0. Let g : X → [η,∞) be a countably valued lower semicontinuous function.
Then for gn ≥ η an increasing sequence of Lipschitz continuous functions on X converging pointwise
gn ↗ g, we have that for every x, y ∈ X,

Fg(x, y) = lim
n→∞

Fgn(x, y).

Moreover, such a sequence gn exists.

Lemma 6.6. Let f ∈ BV (X). Then there is a sequence of Lipschitz functions fk on X such that

fk → f in L1
loc(X) and lip fk dµ

∗
⇀ dV (f, ·).

Proof. By the definition of the total variation we can find a sequence of locally Lipschitz functions
fk and upper gradients gk = lip fk such that fk → f in L1

loc(X) and limk

∫
X
gk dµ = V (f,X).

Multiplying with suitable cutoff functions if necessary, we can assume that the fk are Lipschitz.
For any open set U ⊂ X, we have by the definition of the total variation that

(6.5) V (f, U) ≤ lim inf
k→∞

∫
U

gk dµ.

On the other hand, for any closed set F ⊂ X we have

V (f,X) = lim
k→∞

∫
X

gk dµ ≥ lim sup
k→∞

∫
F

gk dµ+ lim inf
k→∞

∫
X\F

gk dµ ≥ lim sup
k→∞

∫
F

gk dµ+ V (f,X \ F ),

where the last inequality again follows by the definition of the total variation. Thus

lim sup
k→∞

∫
F

gk dµ ≤ V (f, F ).

According to a standard characterization of the weak* convergence of Radon measures, see e.g. [12,

p. 54], the above inequality and (6.5) together give gk dµ
∗
⇀ dV (f, ·). �

Lemma 6.7. Let f be a nonnegative Lipschitz function on X and g ∈ L1
loc(X) a bounded countably

valued lower semicontinuous upper gradient of f . Suppose that there is a τ > 0 such that g ≥ τ on
X. Then there is a sequence fk of Lipschitz continuous functions on X with fk → f in L1

loc(X)
and bounded Lipschitz continuous upper gradients gk of fk such that gk → g in L1

loc(X) and gk
monotone increases to g everywhere on X, and gk ≥ τ for each k.

Proof. Since g is lower semicontinuous, we can find a sequence of Lipschitz continuous functions
gk ≥ τ on X such that gk → g in L1

loc(X) and in addition gk ≤ gk+1 ≤ g on X for each k ∈ N. By
Lemma 6.5 we know that Fg = limk Fgk pointwise everywhere on X ×X.
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Next, we fix x0 ∈ X and for each positive integer i let Âi be a maximal 1/i-net of X such that

Âi ⊂ Âi+1 for each i ∈ N, and let Ai = Âi ∩ B(x0, 2i). Then Ai ⊂ Ai+1, and by the doubling
property of µ we know that Ai is a finite set for each i. As g is bounded, we can also ensure that
each gk ≤ M and g ≤ M on X for some positive M . Therefore for each y ∈ X we know that Fg
and Fgk are MC-Lipschitz where C is the quasiconvexity constant of X. Now, taking inspiration
from the McShane extension (see also [11]), we set

fk(x) := inf{f(y) + Fgk(x, y) : y ∈ Ak}.

Then fk is also MC-Lipschitz on X. A standard argument (see e.g. [21, p. 384]) shows that gk is
an upper gradient of fk.

For x ∈
⋃
nAn, we choose n ∈ N such that x ∈ An; then for k ≥ n + 1 we see that x ∈ Ak.

It follows that fk(x) ≤ f(x). If y ∈ X \ B(x, L) for some L > 0 then as f is nonnegative,
f(y) + Fgk(x, y) ≥ Lτ ; thus to obtain fk(x) it suffices to look only at y ∈ Ak ∩ B(x, L) where
L = [1 + f(x)]/τ . Let yk ∈ Ak ∩B(x, L) such that

k−1 + fk(x) ≥ f(yk) + Fgk(x, yk).

Then the sequence (yk) lies in the compact set B(x, L) and hence has a subsequence ykj converging

to some y∞ ∈ B(x, L). Thus f(x) ≥ limk→∞ fk(x) ≥ f(y∞) + limk→∞ Fgk(x, yk). Observe that

|Fgk(x, yk)−Fgk(x, y∞)| ≤MC d(yk, y∞).

It then follows from Lemma 6.5 that

f(x) ≥ lim
k→∞

fk(x) ≥ f(y∞) + lim
k→∞

Fgk(x, y∞) = f(y∞) + Fg(x, y∞) ≥ f(x),

and it then follows that limk→∞ fk(x) = f(x). Now the uniform Lipschitz continuity of fk, k ∈ N
and f shows that limk fk = f pointwise on X. An appeal to the Lebesgue dominated convergence
theorem (and the fact that fk ≤ ‖f‖L∞(B) + Mk < ∞ on the ball B = B(x0, k)) yields the

convergence also in L1
loc(X). �

The above lemmas allow us now to prove Proposition 6.4.

Proof of Proposition 6.4. By Lemma 6.6 we obtain a sequence fk of Lipschitz functions on X with

fk → f in L1
loc(X) and upper gradients gk = lip fk of fk such that gk dµ

∗
⇀ dV (f, ·). Note that each

gk is bounded. By the Vitali-Carathéodory theorem, see e.g. [21, p. 108], for each k we can find
a bounded countably valued lower semicontinuous function g′k ≥ gk such that ‖g′k − gk‖L1(X) → 0
as k → ∞. Note that automatically g′k is also an upper gradient of fk. Moreover, we now have

g′k dµ
∗
⇀ dV (f, ·), and so we also have [g′k + k−1]dµ

∗
⇀ dV (f, ·).

Next we apply Lemma 6.7 to obtain bounded Lipschitz functions vk and Lipschitz functions Fk
such that vk is an upper gradient of Fk, Fk → f in L1

loc(X), and vk − [g′k + k−1]→ 0 in L1
loc(X) as

k →∞. It follows then also that vk dµ
∗
⇀ dV (f, ·), completing the proof of the proposition. �

We will need the following lemma from Keith [24, Proposition 4], see also [20, proof of Proposi-
tion 2.17]. This lemma is a simple consequence of the Arzelà-Ascoli theorem together with the lower
semicontinuity of g. In the lemmas below we will consider curves γn to be arc length parametrized
in the sense that each γn : [0, L] → Z such that γn|[0,`(γn)] is arc-length parametrized, and γn is
constant on [`(γn), L]. Here, `(γn) denotes the length of γn. Of course, the limit curve γ∞ may not
be arc-length parametrized in the above sense, but is sub-arc-length parametrized in the sense that
`(γ|[t1,t2]) ≤ t2 − t1 for any 0 ≤ t1 < t2 ≤ L.
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Lemma 6.8. [24, Proposition 4] Let Z be a proper metric space and g : Z → R a nonnegative lower
semicontinuous function. If L > 0, K ⊂ Z a compact set, and (γn)n is a sequence of curves in Z
with length at most L such that each γn is contained in K, then there exists a rectifiable curve γ∞
so that a subsequence of γn converges to γ∞ uniformly. For such γ∞ we also have that∫

γ∞

g ds ≤ lim inf
n→∞

∫
γn

g ds.

As a corollary, we obtain the following.

Lemma 6.9. Let g : Z → [τ,∞) be a nonnegative lower semicontinuous function on a proper space
Z for some τ > 0, and assume that xn → x and yn → y are sequences of points in Z. Then,

(6.6) Fg(x, y) ≤ lim inf
n→∞

Fg(xn, yn).

Note that we avoid assuming Z has any rectifiable curves, or that it is quasiconvex. This
is necessary for our application where Z is the proper metric space into which the sequence of
scaled spaces Xi and the tangent space X∞ embed isometrically as described in the latter part of
Remark 3.2.

Proof. If the limit infimum on the right hand side of (6.6) is infinite, there is nothing to prove. So
we will assume that it is finite. By passing to a subsequence, we can assume that there is some real
number M > 0 such that Fg(xn, yn) ≤ M for all n. Then for every 0 < ε < M , there exist curves
γn connecting xn and yn such that

τ`(γn) ≤
∫
γn

g ds ≤ Fg(xn, yn) + ε ≤ 2M.

Since γn connects xn to yn, and these converge, respectively, to x and y, the curves γn lie, for
sufficiently large n, in the closed ball B(x,M + 2M/τ) which is compact. Then, by Lemma 6.8, by
taking a subsequence if necessary, the sequence γn converges to some curve γ∞, and

Fg(x, y) ≤
∫
γ∞

g ds ≤ lim inf
n→∞

∫
γn

g ds ≤ lim inf
n→∞

Fg(xn, yn) + ε.

Since this holds for every small ε > 0 the claim follows. �

Lemma 6.10. Let (Xi, di, xi, µi) → (X∞, d∞, x∞, µ∞) be a sequence of scaled (from X) metric
measure spaces converging in the pointed measured Gromov-Hausdorff sense. If f is a nonnegative
Lipschitz function on X∞, with a bounded Lipschitz upper gradient v, then there exists a subse-
quence, also denoted (Xi, di, xi, µi), and uniformly Lipschitz continuous functions fi with Lipschitz
continuous upper gradients vi on Xi such that

vi dµi
∗
⇀ v dµ∞,

and f is a limit function of fi in the sense of (3.3).

Proof. Without loss of generality, we can assume that v ≥ τ for some positive τ , since otherwise
we can obtain the result by considering max{v, 1/k} instead of v for each positive integer k, and
then complete the proof with the help of a diagonalization argument, letting k →∞.

Let v̂ : Z → R be a McShane extension of the Lipschitz function v ◦ ι|−1ι(X∞) on ι(X∞) to the

entirety of Z. Also, such an extension can be chosen to be bounded and so that v̂ ≥ τ . Let
vi := v̂ ◦ ιi : Xi → R.



ASYMPTOTIC BEHAVIOR OF BV FUNCTIONS 38

Next, let f̂ : Z → R be constructed similarly, by first setting f̂(z) := f ◦ ι−1(z) for z ∈ ι(X∞),

and then taking a McShane extension to Z. We can choose f̂ to be nonnegative. Next we construct
the functions fi : Xi → R so that vi is an upper gradient of fi as follows. For x ∈ Xi we set

fi(x) := inf
y∈Xi

[f̂(ιi(y)) + F ιi(Xi)v̂ (ιi(y), ιi(x))] = inf
y∈Xi

[f̂(ιi(y)) + FXivi (y, x)].

For ease of notation, we set Fvi(x, y) := F ιi(Xi)v̂ (ιi(y), ιi(x)) for x, y ∈ Xi. From the definition of

fi it is clear that fi(x) ≤ f̂(ιi(x)) for each x ∈ Xi. Also, fi is nonnegative, and has vi as an upper
gradient.

We will now show that f is a limit function of fi. To do so, we need to show for every r > 0,

lim
i→∞

‖f − fi ◦ φi‖L∞(BX∞ (x∞,r)) = 0,

where φi are the approximating maps from Definition 3.1. Suppose this is not the case. Then there
is some r > 0 and some δ > 0 such that, by passing to a subsequence if needed, we have

(6.7) lim inf
i→∞

‖f − fi ◦ φi‖L∞(BX∞ (x∞,r)) > δ.

Thus, for each i there is a point xi ∈ BX∞(x∞, r) such that

(6.8) |f(xi)− fi(φi(xi))| > δ.

Since X∞ is proper and xi ∈ BX∞(x∞, r) for all i, there is a subsequence, also denoted with the
index i, such that xi → x ∈ X∞. Fix δ > 0. Then from the definition of fi(φi(xi)), we have yi ∈ Xi

such that

(6.9) |fi(φi(xi))− f̂(ιi(yi))−Fvi(yi, φi(xi))| ≤ δ/4.
Combining the above with (6.8) we get

|f(xi)− f̂(ιi(yi))−Fvi(yi, φi(xi))| ≥ δ/2.

By (6.9) we have f̂(ιi(yi)) + Fvi(yi, φi(xi)) ≤ fi(φi(xi)) + δ/4 ≤ f̂(ιi(φi(xi))) + δ/4, and so the
triangle inequality gives

(6.10) |f(xi)− f̂(ιi(φi(xi)))|+ f̂(ιi(φi(xi)))− f̂(ιi(yi))−Fvi(yi, φi(xi)) ≥ δ/4.

For the first term, note that f(xi) = f̂(ι(xi)), and from (3.1) we get limi→∞ dZ(ι(xi), ιi(φi(xi))) = 0,

and thus from the Lipschitz continuity of f̂ ,

(6.11) lim
i→∞

|f̂(ι(xi))− f̂(ιi(φi(xi)))| = 0.

Since limi xi = x, we also have

dZ(ιi(φi(xi)), ι(x)) ≤ dZ(ιi(φi(xi)), ι(xi)) + dZ(ι(xi), ι(x))

= dZ(ιi(φi(xi)), ι(xi)) + dX∞(xi, x)→ 0 as i→∞.(6.12)

Therefore the sequence of real numbers f̂(ιi(φi(xi))) is bounded, that is, there is some M > δ >

0 such that supi f̂(ιi(φi(xi))) ≤ M . The functions vi are bounded from below by τ and f is
nonnegative. Therefore, if d(φi(xi), yi) > 2M/τ , then

f̂(ιi(yi)) + Fvi(yi, φi(xi)) ≥ FXivi (yi, φi(xi)) ≥ 2M > f̂(ιi(φi(xi))) + δ ≥ fi(φi(xi)) + δ,

which would violate the choice of yi, (6.9). Hence we must have d(φi(xi), yi) ≤ 2M/τ . As the
sequence ιi(φi(xi)) lies in a ball, in Z, centered at ι(x) by (6.12), we see then that the sequence
ιi(yi) also lies in a ball centered at ι(x). Therefore, by the properness of Z, there is a subsequence,
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also denoted with the index i, and a point ŷ ∈ Z such that limi ιi(yi) = ŷ. As yi ∈ Xi and
Xi converges to the metric space X∞, it follows that ŷ = ι(y) for some y ∈ X∞. Then by
Lemma 6.9 we get FZv̂ (ι(x), ι(y)) ≤ lim infi→∞ FZv̂ (ιi(φi(xi)), ιi(yi)). Note that Fvi(yi, φi(xi)) =

F ιi(Xi)v̂ (ιi(yi), ιi(φi(xi))), which is not the same as FZv̂ (ιi(yi), ιi(φi(xi))). However, we have that

FZv̂ (ιi(yi), ιi(φi(xi))) ≤ F ιi(Xi)v̂ (ιi(yi), ιi(φi(xi))). Now by (6.10) and (6.11), we obtain

δ
4 + FZv̂ (ι(x), ι(y)) ≤ δ

4 + lim inf
i
FZv̂ (ιi(yi), ιi(φi(xi)))

≤ lim
i

[f̂(ιi(φi(xi)))− f̂(ιi(yi))] = f̂(ι(x))− f̂(ι(y)) = f(x)− f(y).

We now use the specific structure of Z; by [22], we can choose Z to be the completion of pairwise
disjoint union of Xi, i ∈ N. With such a choice, it follows that if γ is a non-constant rectifiable
curve in Z, then either γ lies entirely in ιi(Xi) for some positive integer i, or else γ lies entirely in
ι(X∞). It follows that

FZv̂ (ι(x), ι(y)) = F ι(X∞)
v̂ (ι(x), ι(y)) = FX∞v (x, y).

Hence from the above inequality we obtain

FX∞v (x, y) < δ
4 + FX∞v (x, y) ≤ f(x)− f(y) ≤ |f(x)− f(y)|,

which is not possible as v is an upper gradient of f . Thus (6.7) is false, and so f = limi fi as
desired.

Finally, we show that vi dµi
∗
⇀ v dµ∞ as follows. Pick a test function φ ∈ Cc(Z). Then also

φv̂ ∈ Cc(Z). Using this fact and the fact that ιi,∗µi
∗
⇀ ι∗µ∞, we get

lim
i→∞

∫
Z

φ ιi,∗(vi dµi) = lim
i→∞

∫
Z

φ v̂ dιi,∗µi =

∫
Z

φ v̂ dι∗µ∞ =

∫
Z

φ ι∗(v dµ∞).

�

We also need the following lemma, which stitches two given BV functions along an annulus to
yield a BV function whose BV energy is controllable.

Lemma 6.11. [33, Lemma 3.3] Let f ∈ BV (X), x ∈ X, 0 < a < b ≤ R, and g ∈ BV (B(x, b)).
Then there exists a 2/(b− a)-Lipschitz function η : X → [0, 1] with compact support in B(x, b), and
such that η = 1 on B(x, a) such that h = ηg + (1− η)f ∈ BV (X) with

V (h,B(x,R)) ≤ V (f,B(x,R) \B(x, a)) + V (g,B(x, b)) +
2

b− a

∫
B(x,b)\B(x,a)

|f − g| dµ.

Finally, we can conclude the proof of Theorem 6.3.

Proof of Theorem 6.3. Let x ∈ Σγ be a point where the conclusions of Theorem 6.1, Lemma 2.2 and
Theorem 5.5 hold. We will show that the corresponding asymptotic set (E)∞ is K-quasiminimal
for some K, which will be determined at the end of the proof. Since P (E, ·)-almost every x ∈ X is
such a point, this concludes the proof. Let R > 0, z ∈ X∞, and ϕ ∈ BVc(BX∞(z,R)). By slightly
decreasing R if necessary, we can assume that P ((E)∞, ∂BX∞(z,R)) = 0.

From Theorem 6.1, there is some r0 > 0 such that that for every r0 > r > 0 there is some
positive εr such that limr→0+ εr = 0 and whenever ψ ∈ BVc(BX(x, r)), we have

(6.13) P (E,BX(x, r)) ≤ (1 + εr)V (χE + ψ,BX(x, r)).

By a standard truncation argument, we can assume without loss of generality that 0 ≤ χ(E)∞ +
ϕ ≤ 1. By Proposition 6.4 we can find a sequence of Lipschitz function–Lipschitz upper gradient
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pairs fi, vi on X∞, with each vi bounded, such that fi → χ(E)∞ + ϕ in L1
loc(X∞) and vi dµ∞

∗
⇀

dV (χ(E)∞ +ϕ, ·). Next, for each positive integer i we apply Lemma 6.10 to obtain lifts fi,n, vi,n to

Xn such that vi,n dµn
∗
⇀ vi dµ∞ and fi,n → fi. Further, by truncating each fi and fi,n, we can

also assume 0 ≤ fi, fi,n ≤ 1.
By passing to a subsequence of (Xn, dn, x, µn) if necessary, with ρ fixed and chosen in the interval

[2[R+ dX∞(z, x∞)], 3[R+ dX∞(z, x∞)]], we have ρ rn < r0 and that

sup
y,w∈BX∞ (x∞,ρ)

|dn(φn(y), φn(w))− dX∞(y, w)| < 1

n
,

and

Bn(x, ρ) ⊂
⋃

y∈φn(BX∞ (x∞,ρ+1/n))

Bn(y, 1/n).

For each n we set xn := φn(z). By choosing ρ appropriately, we can also ensure

(6.14) π∞(∂BX∞(x∞, ρ)) = 0.

Then by the above,

dX(x, xn)

rn
= dn(x, xn) ≤ dX∞(x∞, z) +

1

n
.

Fix τ ∈ (0, 1). We now use Lemma 6.11 to stitch fi,n on Bn(xn, R) to χE on Bn(x, ρ) \Bn(xn, [1 +
τ ]R) using the Lipschitz function ηn to obtain hi,n := ηnfi,n + (1− ηn)χE . Then, since ρ rn < r0,
we know that

P (E,BX(x, ρ rn)) ≤ (1 + ερ rn)V (hi,n, BX(x, ρ rn)).

Note by Lemma 6.11 that

V (hi,n, Bn(x, ρ)) ≤ Pn(E,Bn(x, ρ) \Bn(xn, R)) + V (fi,n, Bn(xn, [1 + τ ]R))

+
2

τR

∫
Bn(xn,[1+τ ]R)\Bn(xn,R)

|fi,n − χE | dµn.

Note that hi,n − χE has compact support on Bn(x, ρ) for large enough n since we can ensure
Bn(xn, [1 + τ ]R) ⊂ Bn(x, ρ). Combining this with the (asymptotic) minimality of χE at x as
explained above, we obtain that

Pn(E,Bn(x, ρ)) ≤ [1 + ερrn ]

(
Pn(E,Bn(x, ρ) \Bn(xn, R)) +

∫
Bn(xn,[1+τ ]R)

vi,n dµn

+
2

τR

∫
Bn(xn,[1+τ ]R)\Bn(xn,R)

|fi,n − χE | dµn

)
.

In the above, we have also used the fact that as vi,n is an upper gradient of fi,n, we have dV (fi,n, ·) ≤
vi,n dµn.

Recall that χE is either 0 or 1 on X∞, and 0 ≤ fi,n, fi ≤ 1, and so we have

|fi,n − χE | = (1− fi,n)χE + (1− χE)fi,n

and

|fi − χ(E)∞ | = (1− fi)χ(E)∞ + (1− χ(E)∞)fi.
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Thus, since χE dµn
∗
⇀ χE∞ dµ∞ and since µ∞ gives measure zero to every sphere due to the

geodesic property and doubling of X∞ (recall (5.2)), we get

lim
n→∞

∫
Bn(xn,[1+τ ]R)\Bn(xn,R)

|fi,n − χE | dµn

= lim
n→∞

∫
Bn(xn,[1+τ ]R)\Bn(xn,R)

[(1− fi,n)χE + (1− χE)fi,n] dµn

=

∫
BX∞ (z,[1+τ ]R)\BX∞ (z,R)

[(1− fi)χ(E)∞ + (1− χ(E)∞)fi] dµ∞

=

∫
BX∞ (z,[1+τ ]R)\BX∞ (z,R)

|fi − χ(E)∞ | dµ∞.

Now letting n→∞ and using (6.14), we obtain

π∞(BX∞(x∞, ρ)) ≤ π∞(BX∞(x∞, ρ) \BX∞(z,R)) +

∫
BX∞ (z,[1+τ ]R)

vi dµ∞

+
2

τR

∫
BX∞ (z,[1+τ ]R)\BX∞ (z,R)

|fi − χ(E)∞ | dµ∞.

Thus we get

π∞(BX∞(z,R)) ≤
∫
BX∞ (z,[1+τ ]R)

vi dµ∞ +
2

τR

∫
BX∞ (z,[1+τ ]R)\BX∞ (z,R)

|fi − χ(E)∞ | dµ∞.

Now letting i→∞ gives

π∞(BX∞(z,R)) ≤ V (χ(E)∞ + ϕ,BX∞(x, [1 + 2τ ]R)),

where we used the fact that fi → χ(E)∞ in L1
loc(X∞) and vi dµ∞

∗
⇀ dV (χ(E)∞ +ϕ, ·). Now letting

τ → 0 and finally using the assumption P ((E)∞, ∂BX∞(z,R)) = 0 we obtain

π∞(BX∞(z,R)) ≤ V (χ(E)∞ + ϕ,BX∞(z,R)).

Now by Theorem 5.5 we have

P ((E)∞, BX∞(z,R)) ≤ C V (χ(E)∞ + ϕ,BX∞(z,R)),

where C is the comparison constant that connects π∞ to P ((E)∞, ·). Thus choosing K = C yields
the desired outcome. This completes the proof. �

6.3. Concluding remarks. In Section 4 we have shown that any asymptotic limit, at µ-almost
every point, of a BV function is a function of least gradient on a corresponding tangent space X∞
and is Lipschitz continuous with a constant minimal p-weak upper gradient. In Section 6 we have
shown that given a set E of finite perimeter in X, at H-almost every point of its measure-theoretic
boundary we have the existence of an asymptotic limit set (E)∞ ⊂ X∞ such that this asymptotic
limit set is of quasiminimal boundary surface (that is, χ(E)∞ is of quasi-least gradient).

Remark 6.12. If u ∈ BV (X), from the co-area formula we know that for almost every t ∈ R its
super-level set

Et := {x ∈ X : u(x) > t}
is of finite perimeter in X. Let RF be the collection of all t ∈ R for which Et is of finite perimeter,
and let A ⊂ RF be a countable dense subset of RF . For each t ∈ A let Kt be the collection of
all points in X at which the conclusion of Theorem 6.3 fails for Et; then H(

⋃
t∈AKt) = 0. Let
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x ∈ Su \
⋃
t∈AKt, where Su is the jump set of u. Note that if x ∈ X \ ∂∗Et, then for every tangent

space X∞ based at that point, the corresponding set (Et)∞ is either all of X∞ or is empty, and
hence does satisfy the conclusion of Theorem 6.3. Thus we have here that Kt ⊂ ∂∗Et. A Cantor
diagonalization argument gives us for each t ∈ A an asymptotic limit (Et)∞ ⊂ X∞, with X∞ a
tangent space to X based at x, of the set Et. We know then that each (Et)∞ is of quasiminimal
boundary in X∞ in the sense of [25], with the quasiminimality constant K independent of t.
Moreover, note that if t1, t2 ∈ A such that t1 < t2, then Et2 ⊂ Et1 and so by the construction
of (Et)∞ we have that (Et2)∞ ⊂ (Et1)∞. Indeed, by the definition of (E)∞ from the discussion

before Lemma 5.1, we have that when z ∈ X∞ for which z ∈ (Et2)∞, we have µ
Et2∞ ≤ µEt1∞ on X∞

(because Et2 ⊂ Et1 ⊂ X), and so

1 = lim
r→0+

µ
Et2∞ (BX∞(z, r))

µ∞(BX∞(z, r))
≤ lim
r→0+

µ
Et1∞ (BX∞(z, r))

µ∞(BX∞(z, r))
≤ 1,

and so we must have z ∈ (Et1)∞. In this discussion, recall that we have fixed x ∈ Su \
⋃
t∈AKt.

We can now set
u∞(z) := sup{t ∈ A : z ∈ (Et)∞}.

An argument as in the proof of [29, Theorem 4.10] tells us that u∞ is of quasi-least gradient in X∞.
It would be interesting to know in which sense, if any, is this u∞ an asymptotic limit of u at x.

The limit set E∞ is a quasi-minimizer according to Theorem 6.3 , in contrast to the minimizer
property of the limit u∞ of u at the absolutely continuous point of ‖Du‖, see Theorem 4.9. The
next example shows that this disconnect is real and is not an artifact of our proof.

Example 6.13. For positive integers n let an = 1/n! and bn = −an. Let X = R be equipped with
the Euclidean metric and with a weighted measure dµ = wdL1. Let us choose the weight w so that

w(x) =

{
2 if b2n−1 < x ≤ b2n or a2n ≤ x < a2n−1,

1 otherwise.

Then if we choose the base point x = 0 and the sequence of scales rn = 1/(2n−1)!, we can see that
the limit space X∞ = R is equipped with the measure µ∞ given by dµ∞ = (χ[−1,1]+

1
2χR\[−1,1])dL1.

If we take E = (−∞, 0], then E is of finite perimeter with perimeter measure P (E, ·) the Dirac
measure supported at 0. The limit set E∞ = (−∞, 0) is quasiminimal, but is not a minimal set
as F := (−∞, 1) has a smaller perimeter measure; here, the perimeter measure P∞(E∞, X∞) = 1
whereas P∞(F,X∞) = 1

2 , and note that E∞∆F is a relatively compact subset of X∞.

Remark 6.14. In Definition 6.2 of quasiminimality we used balls B(x,R). The study undertaken
in [25] is applicable to functions satisfying this definition; however, the notion of quasiminimality
given in [25] is slightly stronger, namely whenever ϕ is a compactly supported BV function on X,
we have

V (u, supp(ϕ)) ≤ K V (u+ ϕ, supp(ϕ)).

The proof given in Subsection 6.2 can be easily adapted to prove that χ(E)∞ satisfies this stronger
version, but the proof gets messy, and hence we gave the relatively more transparent proof showing
that χ(E)∞ satisfies Definition 6.2. To prove the stronger quasiminimality criterion of [25], one
first modifies the stitching lemma (Lemma 6.11) by replacing B(x, a), B(x, b) with open sets U, V
with U b V and considering η to be a Lipschitz function with η = 1 on U , η = 0 on X \ V .
The term 2/(b − a) is then replaced with a constant C that depends solely on U, V . Next, in
the proof of quasiminimality, one replaces BX∞(z, [1 + τ ]R) with Uτ where U is the support of ϕ
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and Uτ = {y ∈ X∞ : dX∞(y, U) < τ}. In this case, Bn(xn, [1 + τ ]R) is replaced with a suitable
approximation of Uτ in Xn, ensuring that this approximating open set is contained within Bn(x, ρ)
where ρ = 2[diamX∞(U) + dist(U, x∞)].

Remark 6.15. While we have assumed throughout this paper that X is a geodesic space, we can
omit this additional assumption and assume a weaker 1-Poincaré inequality where the ball B on
the right-hand side of (2.4) is replaced by a concentric ball λB with radius λ times the radius of
B, see [21, Section 8.1]. The reason for this is as follows: a weak 1-Poincaré inequality implies that
the space is quasiconvex (that is, every pair of points x, y ∈ X can be joined by a rectifiable curve
of length at most C d(x, y) with C depending solely on the doubling and Poincaré constants), and
then a bi-Lipschitz change in the metric will allow the space to become geodesic. In geodesic spaces,
a weak Poincaré inequality can be promoted to be a strong Poincaré inequality, that is, λ = 1. This
is discussed in [21, Theorem 9.1.15] and in [19]. The class of functions of bounded variation is
invariant under a bi-Lipschitz metric change. Thus the assumptions of geodesicity and the strong
version of the Poincaré inequality are not restrictions, only conveniences. This bi-Lipschitz change
in the metric on X would induce a bi-Lipschitz change in the tangent space X∞, with a bi-Lipschitz
equivalent geodesic limit metric on X∞ obtained as a limit of re-scaled geodesics metrics on X. We
obtain that the asymptotic limit function u∞ as in Theorem 4.9 is of least gradient with respect
to this length metric on X∞, and therefore is of quasi-least gradient with respect to the original
metric on the tangent space X∞.
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