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Abstract: In this paper, we study the asymptotic behavior of BV functions in complete metric measure
spaces equipped with a doubling measure supporting a 1-Poincaré inequality. We show that at almost
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1. INTRODUCTION

The classical notion of differentiability for a function f on a subset of Euclidean space 2 C R™
at a point z € Q is that the graph of f should, at (z, f(z)) € R" x R, asymptotically approach
an n-dimensional hyperplane in R®*! as we zoom in. In other words, the function f behaves
asymptotically like an affine function. This notion has been extended to mappings between domains
in Riemannian manifolds in the study of differential geometry.

The seminal work of Cheeger [11] extended the above notion of affine approximation to the realm
of metric measure spaces, with generalized linear functions defined on measured Gromov-Hausdorff
tangent spaces playing the role of affine functions. It was shown there that, if the space is complete,
the measure is doubling, and the space supports a p-Poincaré inequality for some 1 < p < oo, then
every Lipschitz function f on the metric space is asymptotically generalized linear at almost every
point x in the space. More specifically, we have the following: let X, be obtained as a pointed
measured Gromov-Hausdorff limit of scaled versions (X,,, dy,,, i) of the metric measure space
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(X,d,p) with © € X. In considering corresponding scaled versions f,: X, — R of f: X — R,

where
foly) = fly) = f(=@)
Tn

with {r, }nen a sequence of positive numbers decreasing to zero which form the scales associated
with the metric d,, := r,; 'd in the Gromov-Hausdorff limit, the sequence of functions f,, converges
to a limit function fo: X — R (after passing to a subsequence if necessary). Cheeger proved that
this asymptotic limit function f., is a generalized linear function on X.,. Here by a generalized
linear function, the paper [11] means a function that is p-harmonic on X, with a constant function
as its minimal p-weak upper gradient.

In this paper, we extend the study of asymptotic behavior of Lipschitz functions in [11] to
functions of bounded variation in complete metric measure spaces equipped with a doubling measure
supporting a 1-Poincaré inequality. The following theorems give a summary of the principal results
of this paper; the precise versions can be found in the statements of the corresponding theorems in
Sections 4-6.

Theorem A (Theorems 4.8 and 4.9). Suppose that the measure p on the complete metric space
(X,d) is doubling and supports a 1-Poincaré inequality. Let u be a function of bounded variation
on X. For p-a.e. © € X and any tangent space (Xoo,doo, Too, hoo) 0f X based at x, any limit
function us, as described above is 1-harmonic (also known as function of least gradient) and has
quasi-constant minimal 1-weak upper gradient.

The definitions of doubling and Poincaré inequality can be found in (2.1) and (2.4) below.

The most fundamental BV functions are characteristic functions of sets of finite perimeter. For
these functions, the most interesting behavior happens solely at their jump points. Here the study
of asymptotics is different, see e.g. [12, Theorem 5.13] in the Euclidean setting. Similarly, for general
BV functions u, the approach of scaling the function as described above works well when considering
points in X that asymptotically see neither the Cantor nor the jump parts of the variation measure
|Du|| of u, but it is not helpful in the study of asymptotic behavior of u at points in its jump
set Sy. Instead, an approach based on weak™ limits of measures, which can also be used to define
the limit function us, as in Theorem 5.5, is more in line with studying the behavior of u at points
in the jump set S, of u and gives an alternative approach to Theorem A. This measure-theoretic
approach is applied to characteristic functions of sets of finite perimeter in Sections 5 and 6 and
the main conclusions are described in Theorems B and C below.

Theorem B (Theorem 5.5). Suppose that the measure p on the complete metric space (X, d) is
doubling and supports a 1-Poincaré inequality. Let E C X be of finite perimeter P(E,-). Then for
P(E,-)-a.e. point, appropriately scaled versions of P(E,-) converge to a measure on X that is
comparable to the co-dimension 1 Hausdorff measure restricted to the measure-theoretic boundary
of a set (E)oo of locally finite perimeter in Xoo.

In R™, the corresponding limits are not just (n — 1)-dimensional, but are hyperplanes that are
boundaries of sets whose characteristic functions are functions of least gradient, that is, of minimal
boundary surface. In the metric setting, we obtain an analogue with quasiminimal sets playing the
role of hyperplanes and minimal boundary surfaces.

Theorem C (Theorem 6.3). Suppose that the measure (1 on the complete metric space (X,d) is
doubling and supports a 1-Poincaré inequality. Let E C X be of finite perimeter. Then, with respect
to the co-dimension 1 Hausdorff measure, almost every point x on the measure-theoretic boundary
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of E satisfies the following properties: fixing a (pointed) tangent space (Xoo,doo, Too, fhoo) aTiSING
as a Gromov-Hausdorff limit of the scaled sequence (X, dn, T, fin), and by passing to a subsequence
if necessary we obtain that

e the sequence of measures Xg dp, on X, converges weakly™ to a measure uZ on X,

this limit measure is absolutely continuous with respect to oo,

there is a set (E)o C Xoo of finite perimeter such that duk = x(p).. dpico,

the set (E)oo 18 of quasiminimal boundary surface (see Definition 6.2 or [25]), and

the measure described in Theorem B is supported on the boundary of (E)s, and is compa-
rable to the perimeter measure P((E)so,*) of (E)oo-

Thus, beginning with extensions of the Cheeger’s Rademacher theorem for doubling metric spaces
with a Poincaré inequality to the functions of bounded variation, we recover important aspects of
the classical theory of the boundaries of finite perimeter sets in R".

The class of BV functions considered here is based on the notion first proposed by Miranda
Jr. [33], and was further developed in [1, 5, 2]. The corresponding notion of a function of least
gradient was studied in [25, 18, 28]. Just as [11] related asymptotic limits of Lipschitz functions
to generalized linear functions (which are a priori p-harmonic for the indices p > 1 for which X
supports a p-Poincaré inequality), we relate asymptotic limits of BV functions to functions of least
gradient when the point of asymptoticity does not lie in the set where the jump and Cantor parts
of the variation measure live. Additionally, at almost every point with respect to the co-dimension
1 Hausdorff measure in the measure-theoretic boundary of the set of finite perimeter, we relate the
asymptotic limit of that set to sets of finite perimeter that have a quasiminimal boundary surface
as in [25].

In the setting of Heisenberg groups (perhaps the simplest non-Riemannian example of the type of
metric measure spaces studied here), more is known of the asymptotic behavior of BV functions; the
key papers to study this setting are those of Magnani [32], Franchi, Serapioni and Serra-Cassano [13],
and Ambrosio, Ghezzi and Magnani [4]. It is shown in [13, Theorem 4.1] that asymptotic limits of
sets of finite perimeter in a Heisenberg group, based at a reduced boundary point of that set, are
Euclidean (vertical) half-spaces with the boundary plane parallel to the non-horizontal direction.
Studies of asymptotic limits of sets of finite perimeter in more general step-2 Carnot groups can
be found in [14], and for more general Carnot groups in [15]. While the Heisenberg groups are
topologically Euclidean, there are more sets of finite perimeter in the Heisenberg sense than in the
Euclidean sense, see [13, Proposition 2.15]. The papers [13, 14, 15] rely on the group structure
on the Carnot groups, and so they do not address the case of more general Carnot-Carathéodory
spaces. Carnot-Carathéodory spaces can be realized as Riemannian manifolds equipped with a
vector field that satisfies a Hormander-type condition, called the horizontal vector field, see [7] for
more on these spaces.

Carnot-Carathéodory spaces are (locally) doubling metric measure spaces supporting a 1-Poincaré
inequality, and hence the results of the present paper also apply there. Note that tangent spaces of
Carnot-Carathéodory spaces are topological groups equipped with dilation operations, and if the
tangent space is based at a regular point of the Carnot-Carathéodory space, then it is a nilpo-
tent group equipped with a dilation, see [34, 7, 30]. Under further assumptions on the Carnot-
Carathéodory space (which lead to knowing that the tangent spaces are all Carnot groups), a
similar asymptoticity study is undertaken in [4]. We point out here that the results in the current
paper are applicable to all Carnot-Carathéodory spaces of topological dimension at least 2.

If v is a Radon measure on X and z € X, then for almost every r > 0 we know that v(B(z,r) \
0

B(z,r)) = 0. If X is a geodesic space and p is a doubling measure, then p(B(x,r) \ B(z,r)) =
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for each r > 0 and x € X, see [9, Corollary 2.2]. In this paper, we will assume that X is geodesic
in order to simplify many of the proofs (by avoiding the discussion of having to slightly adjust the
radius r in order to ensure that p(B(x,7)\ B(z,r)) = 0), but our results hold also in spaces that are
not geodesic by an easy (but notationally cumbersome) modification discussed in Section 2 below.

The structure of this paper is as follows. In Section 2 we give the basic definitions necessary
for the study of sets of finite perimeter and functions of bounded variation on metric measure
spaces. In Section 3 we discuss pointed measured Gromov-Hausdorff limits. In Section 4 we show
the results stated above regarding that asymptotic limits of BV functions converge to a function
of least gradient (1-harmonic) in the tangent space, see Theorem 4.9. In Section 5 we discuss
asymptotic limits of a set of finite perimeter, and show that for co-dimension 1 almost every point
on the measure-theoretic boundary of that set we have a tangential behavior of the set; more
specifically, there is a Gromov-Hausdorff type limit (E) of the set E at such a point, and this
limit is a set of (locally) finite perimeter; this is the content of Theorem 5.5. We also verify certain
geometric structural regularity of these limit sets, see Theorem 5.4. The final section of this paper
is devoted to the discussion on asymptotic minimality for sets of finite perimeter. In Theorem 6.3
we show that these limit sets (F)o are sets of quasiminimal boundary surfaces.

2. NOTATION AND DEFINITIONS

Here we lay out the main definitions and assumptions for this paper. Much of the terminology
will be similar to that used in [1, 5, 33].

We assume that (X, d, 1) is a complete metric measure space with diam X > 0, that is, X consists
of at least two points. We use the notation B(z,r) for the open ball centered at x € X and of
radius r > 0. If we wish to be specific that the ball is in the metric space X, we write Bx (z, 7).
Given a ball B = B(x,r), we sometimes denote rad B := r; note that in metric spaces, a ball (as a
set) does not necessarily have a unique center and radius, but we understand these to be prescribed
for all balls that we consider. We will always assume that p is doubling: there is a constant Cy > 1
such that for all x € X and r > 0,

(2.1) 0 < u(B(x,2r)) < Cau(B(z,r)) < 0.

By iterating the doubling condition, we obtain for any z € X and any y € B(z, R) with 0 < r <
R < oo that

(22) w(B(yr)) > 1 (1)9’
u(B(e,R) = C3 \R
where @ > 1 only depends on the doubling constant Cj.

When a property holds outside a set of p-measure zero, we say that it holds for p-a.e. z € X.
As complete doubling metric spaces are proper, every closed and bounded set is compact, see for
instance [21, Lemma 4.1.14]. Given an open set W C X, we take Lip,,.(W) to be the space of
functions on W that are Lipschitz on every closed and bounded subset of W, and L{, (W) to be
the space of functions integrable with respect to p on every closed and bounded subset of W. We
say that a sequence of functions f, converges to a function f in L (W) if for every closed and
bounded subset K of W we have that limy_, o fK |fx — fldp = 0. Tt is not difficult to see that
Lip,,.(W) is a dense subclass of L{ (W).

Given a rectifiable curve «: [0,1] — X, we define the length of vy to be

((y) = sup Z d(y(t:), Y (tiv1))
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where the supremum is taken over all finite partitions {¢;} of [0,1]. We will always assume that X
is a geodesic space: for all z,y in X,

d(z,y) = min ()

where the minimum is taken over all curves v joining x to y and is achieved.
Given a function u: X — R, an upper gradient g of u is a nonnegative Borel function such that
for every z,y € X and every rectifiable curve v containing x and y, we have the inequality

(23) u(e) ~ uly)| < [ gds

¥
where ds is arc length (see [21, Sections 6.2 and 6.3] for more information and standard results
about upper gradients).

We say that a family of rectifiable curves I" is of zero p-modulus, for 1 < p < oo, if there is a
nonnegative Borel function p € LP(X) such that for all curves v € T', the curve integral f7 pds
is infinite. If g is a nonnegative p-measurable function on X and (2.3) holds for all curves apart
from a family with zero p-modulus, we say that g is a p-weak upper gradient of w. It is known that
if a function u on X has an upper gradient in L?(X), then there exists a minimal p-weak upper
gradient of u, denoted by g, satisfying g, < g a.e. for any p-weak upper gradient g € LP(X) of u,
see [8, Theorem 2.25].

We always assume that the space X supports a 1-Poincaré inequality. We say that X supports a
p-Poincaré inequality, for 1 < p < oo, if there is a constant C'p > 0 so that for every u € Lip,.(X),
every upper gradient g of u, and every ball B = B(x,r),

1/p
(2.4) ][ |lu —up|du < Cpr (][ gpd,u> ,
B B

where

1
up = ud:zi/ud.
B][B” u(B) Jp "

We will sometimes suppress the “1-” when discussing the inequality. We will denote by C' > 1
a generic constant that only depends on the doubling and Poincaré constants Cy, Cp, and whose
precise value may change even in the same line.

We now wish to discuss functions of bounded variation and sets of finite perimeter in the metric
space (X, d, u). The definitions are quite different than those typically used for X = R"; see [33]

for discussion relating these to the classical definitions. Many results from [33] and [1] will be used
(and cited) in what follows. For u € Lip,.(X), we define

SupyeB(x,r) |U(y) - u(w)|

)

lipu(z) = llggf "
often known as the lower Lipschitz constant of u at x. It is well known that lipw is an upper
gradient of u (see [33, Section 2], for example). We also define
su u(y) —u(x
Lip u(z) := lim sup PyeB(ar) @) ( )|,

r—0 r

the upper Lipschitz constant of u at x.
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Since Lipy,.(X) is dense in L}, (X), we define the total variation of uw € L] (X) on an open set
W cCX as

i—00

V(u, W) := inf {lim inf/ lipu; dp = w; € Lip(W), u; — w in L%OC(W)} .
w

A function u € L{ (X) is said to be of locally bounded variation if V (u, W) is finite for all bounded

open W C X. A function u is said to be of bounded variation if V(u, X) is finite. Let BV (X)
denote the set of functions of bounded variation. For an arbitrary set A C X, we define

V(u, A) ;== inf{V(u,W): AC W, W C X is open}.

If V(u,X) < oo, then V(u,-) is a Radon measure on X by [33, Theorem 3.4], called the variation
measure. In much of current literature on BV functions in metric setting, V(u, A) is also denoted
|Dul|(A). In a significant part of the current literature on BV functions in metric spaces a slightly
different notion of V'(u, W) is used, where instead of infimum over [, lipu; dp the infimum of the
integrals fW Gu,; i is considered, where g, is the minimal 1-weak upper gradient of wu;, see for
example [25]. It follows from [2] that these notions all give the same BV class as well as the same
BV energy V(u, W) for open sets W (and hence all Borel sets). Thus we can equivalently define

1—00

V(u, W) := inf {liminf/ Gu; dp : u; € Lip (W), u; — v in Ll(W)} .
w

Let F C X and let xg denote the characteristic function of E. If yg is of locally bounded
variation we say that E is of locally finite perimeter and if x g is of bounded variation, we say that
E is of finite perimeter. We use P(E,-) := V(xg,-) for the perimeter measure.

The following coarea formula is proven in [33, Proposition 4.2]: if u € BV(X) and W C X is a
Borel set, then

o0
(2.5) Viu, W)= / P({u>t},W)dt.
—0o0

Applying the 1-Poincaré inequality to approximating functions, we get for any u-measurable set

E C X and any ball B = B(x,r) the relative isoperimetric inequality

(2.6) min{u(B(z,r) N E), u(B(z,r) \ E)} < 2CprP(E, B(x,r)),

see e.g. [27, Theorem 3.3].

The 1-Poincaré inequality implies the so-called Sobolev-Poincaré inequality, see e.g. [8, Theo-
rem 4.21], from which we get the following BV version: for every ball B(z,r) and every u € L{, (X),
we have

(@-1)/Q V(u, B(z,2r))
2.7 ][ w— ugs |2/ @D g < o Y B, 2)
( ) ( B(z,r) | Bl )| /J,(B(:l?72’l"))

where @ is the exponent from (2.2).

Moreover, we have the following Poincaré inequality for functions vanishing outside a ball. For
any ball B(z,r) with 0 < r < 2 diam X and any u € L'(B(z,r)) with compact support in B(z,r),
we have

(2.8) / lu| dp < CrV(u, B(x,r));
B(z,r)

this again follows by applying the analogous inequality for Lipschitz functions (see [8, Theorem 4.21,
Theorem 5.51]) to an approximating sequence.
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For a set E C X, the measure-theoretic boundary is defined as the set of points of positive upper
density for E and X \ E:

B Nk B E
O*FE = {meX: limsupw >0 and hmsupw >O}.
rs0 p(B(x,7)) r—o0 p(B(x,r))
We will also be interested in co-dimension 1 Hausdorff measures on X. Recall that p is Ahlfors s-
reqular for s > 0 if there is some constant C'4 > 1 such that whenever z € X and 0 < r < % diam X,

,rS

(2.9)

< w(B(z,1)) < Cyrd.
Ca

If p is Ahlfors s-regular, then the co-dimension 1 Hausdorff measure defined below is just (com-

parable to) the (s — 1)-dimensional Hausdorff measure. We do not wish to always assume Ahlfors
regularity, however. We define the co-dimension 1 Hausdorff measure of a set E C X by

H(E) = sup Hs(E),
§>0

where for § > 0,

H(S(E) := inf {Z @ : Bz = B(xi,n-), i S 5, E C U Bl} .

el el

The following density results can be proved similarly as in [6, Theorem 2.4.3].

Lemma 2.1. Let v be a Radon measure on X, let A C X, and lett > 0. Then the following hold:
Lo v(B(z,r))
if limsupr—————= >t forallz e A, then v(A)>tH(A
f tmsupr 2B o (4) 2 tH(4)

and

if lirggsgp rm <t forallxe A, then v(A) < CyatH(A).

Let £ C X be a set of finite perimeter. We know that for any Borel set A C X,
(2.10) P(E, A) = / 00 dH,
9*ENA

where 0g: X — [a,Cy] with a = «(Cy,Cp) > 0, see [1, Theorem 5.3] and [5, Theorem 4.6].
Furthermore, let

(2.11) S E = {1: €X: ligggfmin{u(B(x’r) NE) wB(zr) \E)} > ”y}

w(B(x,r)) " p(B(w,r))
for a constant v € (0,1/2] depending only on Cy, Cp. Note that £, E C 0*E; by [1, Theorem 5.4
we know that conversely,

(2.12) H(O*E\ £,E) =0.
Lemma 2.2. Let E C X be a set of finite perimeter. Then for H-a.e. x € O*E (and thus
P(E,-)-a.e. z € 0*E),

v

(2.13) 5o < lim inf P(E, B(z,r)) < limsup P(E,B(z,r))

» SR LB ) = wBa ) = O
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Proof. The first inequality holds for every « € ¥, F by the relative isoperimetric inequality (2.6).
To show the second inequality, note that if A C 0*F and € > 0 are such that

. P(E,B(z,1))
s T Bl r))

for all z € A, then by the first part of Lemma 2.1 and by (2.10), we have P(E, A) > (Cq+¢)H(A).
However, according to (2.10), we have P(E, A) < CqH(A). Thus we must have H(A) = 0. O

>Cyq+e

The lower and upper approximate limits of a function u on X are defined respectively by

A o (B, ) n{u <t})
u”(z) ;= sup {tER. }% (Bl —0}

and

NV (B, ) N {u>t))
u’(z) .—mf{tER. ll_r% (B@r) —0}.

The jump set S, is defined to be the set where u™ < u".

By [5, Theorem 5.3], the variation measure of a BV function can be decomposed into the abso-
lutely continuous and singular part, and the latter into the Cantor part and jump part, as follows.
Given u € BV(X), we have for any Borel set A C X

Viu, A) = Vo(u, A) + Vi(u, A)
= Vo(u, A) + Ve(u, A) + Vj(u, A)

uY (z)
/gdu—i—V u, A) + / / Orusey () dt dH(z),
ANS, JuN(x)

where g € L!(X) is the density of the absolutely continuous part and the functions Ofu>ey are as
n (2.10).
We denote by BV,.(X) the class of BV functions with compact support in X.

Definition 2.3. We say that u € BV(X) is a function of least gradient if for all ¢ € BV (X),

(2.14) V(u,supp @) < V(u+ p,suppp).

Remark 2.4. We end this section by gathering together all the assumptions regarding the metric
measure space (X, d, 1) assumed throughout this paper. We assume that X is a complete, geodesic
metric space and that p is a doubling measure on X, supporting a 1-Poincaré inequality. One of the
consequences of assuming that X is complete and p is doubling, is that X is then proper, that is,
closed and bounded subsets of X are compact. See Remark 6.15 at the end of this paper, regarding
the relaxation of some of these assumptions.

3. POINTED MEASURED GROMOV-HAUSDORFF LIMITS

In this section we consider tangent spaces of a metric space at a given point. For this, we first
need to specify what is meant by the convergence of metric spaces. Existing literature has some
slightly different definitions and diverging terminology; here we describe them and provide brief
explanation on how these are equivalent. All metric spaces considered here are assumed to be
proper.
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Definition 3.1. We say that the sequence of pointed metric spaces (Y;,,dy,,yn) converges in the
pointed Gromov-Hausdorff distance to the space (Yoo, doo, Yoo ) if for each positive integer n there is
amap ¢ : Yoo — Yy, s0 that ¢, (yoo) = yn, and for each R > 0 and € > 0 there is a positive integer
N g such that whenever k > N r, we have

(1) suPy yeBy (yoo,r) |8 (Dk(2), D1 (y)) — dyv.. (z,y)| <,
(2) By, (yr, R—€) C UyEq&k(Byoo (yeosR)) BY2 (Y5 €).-

Note that these maps are not required to be continuous, or even measurable. It is possible to
modify ¢, to be measurable, but this is technical, and not necessary for our presentation below.

Remark 3.2. The above definition is compatible with those of [10, 24]. In [10, Definition 8.1.1]
and [21, Chapter 11] the following definition of pointed Gromov-Hausdorff convergence was consid-
ered: For all » > 0 and all 0 < e < r there exists an ng = ng(r, €) such that for all n > ng there
exist functions ¢S : By, (Yoo, 7) — Ys, with

(1) (b;(yoo) = Yn,
(2) ldn(¢5,(2), 67, (y) = doo (2, y)| < € for all 2,y € By, (Yoo, 1),
(3) By, (yn,m —€) C Uye,ﬁ;(Byw (yoor)) BV (y,€).

See [22] for more on pointed Gromov-Hausdorff convergence. To see the compatibility between
these two definitions we note that the scales R and e play the role of localizing the convergence
of the tangent spaces. Thus, the second notion is implied by the first, as seen by the choice
¢S, = ¢n. Conversely, given ¢f, choosing a sequence of R, monotonically increasing to co and
€, monotonically decreasing to 0, we can even choose ¢S, to be independent of € and r; hence the
equivalence of the notion of [10] with ours. However, in proofs it is often easier to work with the
localized versions ¢, since it avoids this additional diagonal argument. Where we wish to use
globally defined functions, we use ¢,,. These are interchangeable.

The notion considered in [24] is also equivalent to the above. Since this notion of [24, Definition 2
and Definition 7] is also useful in this paper, especially in defining notions of weak convergence of
measures to tangent spaces, we now provide that definition as well. According to [24], the sequence
(Y, dn,yn) converges to a proper space (Yoo, doo, Yoo ) if there is a proper metric space (Z,dz) and
a point zy € Z, an isometric embedding ¢ : Yoo — Z, and for each n € N there is an isometric
embedding ¢, : Y;, = Z, such that ¢(ys0) = 20 = tn(yn) and for each R > 0,

(1) imp—oo SUPyepy (y,,7) distz(tn(y), 1Y) =0,

(2) limg, 00 SUD.e By (yoo,R) distz(¢(2),¢(Yy)) = 0.
From this definition we see that whenever R,e > 0 there is some positive integer N, g such that
whenever n > N, g, for each x,y € By, (yn, R) we can find 7,y € By, (Yoo, R + €) such that

max{dz (tn (), 1(2)), dz(tn(y), @)} <& |dy, (2,y) = dv, (7, Y)| < 3e.

We also have that for R > 0 and € > 0 there is some positive integer N, r such that for n > N, g,
whenever z,y € By,_ (Yoo, R) there exist x,,y, € By, (yn, R+ €) such that

max{dz (tn(tn), 1(2)), dz(tn(Yn), 1y)} <& |dy, (Tn, yn) — dy., (2,y)] < 3e.

This shows that the definition of [24] implies our definition above. The fact that our definition
implies the one of [24] comes from the construction of the ambient space Z found in [22], where the
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space Z should be considered to be the completion of the “disjoint union” space Y found in [22,
Section 4.1.1].

Indeed, we can construct the maps ¢, and ¢ from the maps ¢,, and vice versa so that the following
compatibility condition between these two classes of maps is satisfied: For all r > 0,

(3.1) lim Sup dz(tn © Pn(y),L(y)) = 0.
"0 yeBy, (Yoo )

For simplicity, and avoiding modifying the space Z, as well as the approximating maps ¢,,, we
will generally fix them throughout the exposition below. In order to define other notions, such
as convergence of points, curves and functions, passing to a subsequence in n may be necessary.
However, this subsequence will be of n and will not require coming up with new ¢,, or embedding
space Z.

In the light of the above discussion, we can say that a sequence, z, € Y,, converges to z € Y,
if limy, 00 dz(tn(2n),t(2)) = 0, and see that every z € Y is a limit of a sequence z,, € Y,, as here.
By a not-terrible abuse of notation we denote this by

lim z, = z.
n—oo

Next, we define pointed measured Gromov-Hausdorff convergence. For this, we use the embed-
dings described in the above remark. First consider a sequence of Borel measures v, on a metric
space Z. The measures v, converge weakly™ to a Borel measure v on Z if

/Z¢dun—>/z¢d1/

as n — oo for all boundedly supported continuous functions ¢ on Z. We denote this convergence
by vn — v.
To define measured Gromov-Hausdorff convergence, we consider the push-forward measures

tnxVn(A) == Vn(agl (A)).

We say that the sequence of Radon measures v, on Y, converges to a Radon measure v, on Y,
* . *
denoted v, = Voo, if iy, «Vn = tiVo ON Z.

Definition 3.3. We say that a sequence of pointed metric measure spaces (Yy,, dy, Yn, Vn) converges
pointed measured Gromov-Hausdorff to a space (Yoo, doo, Yoo, Voo ), if the sequence converges in the
pointed Gromov-Hausdorff sense, and

1% i\I/
n 00+

Since Z is a proper metric space, it follows that whenever sup,, v, (1,1 (Z)) < oo, there is a
subsequence v, and a Radon measure o on Z such that ¢y, ., X J% in Z. This limit measure
must have support in ¢(Ys), since the support of v, is contained in the limit of the supports of
Un, - Indeed, given ¢ > 0 and a radius R > 0, we know that for large n the set ¢,,(By, (yn, R)) is in
an 3e-neighborhood of ¢(Ys,). Recall that Y., is a proper metric space. We call such measures vy,
limit measures of the sequence v, , and they may depend on the choice of the subsequence; the full
sequence v, may not converge to V.. In the proofs below, we will always pass to the subsequence
where this limit holds. The discussion in this paragraph proves the following lemma.

Lemma 3.4. In the situation described in the above paragraph, veo(Z\1(Ys)) = 0, and hence there
is a Radon measure Voo on Yoo such that Vg = t4Veo.
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Definition 3.5. Let x € X and let r, > 0 with r, — 0. Define the sequence of scaled metrics d,,
on X by
d(y, z
duy2) 1= 2020,

T'n

and the scaled measures L

(B, "

If the sequence (X,,d,,z, ) = (X,dn,z, ) converges to (Xoo, doo, Too, fhoo) in the pointed
measured Gromov-Hausdorff sense, then we say that X, is a tangent space to X at x, with tangent
MEASUTe oo -

Mn =

We know that if 4 is doubling and X is a complete geodesic space, then by passing to a subse-
quence of (X, d,,, x, u,) if necessary, we will always have a tangent metric measure space as above,
which is also geodesic, see [16, Section 6] or the discussion in [21, Section 11]. Note that points of
distance less than r,, from z in (X, d) are, in the space X,,, at distance less than 1 from x, and that
the ball B(x,r,) has u,-measure 1. The tangent space may be non-unique, and depends on the
subsequence chosen.

From the work of [24] we know that if u is doubling and supports a 1-Poincaré inequality, then
for every x € X, all the corresponding tangent spaces have the tangent measure be doubling and
support a 1-Poincaré inequality, with the doubling and Poincaré constants depending quantitatively
only on the corresponding constants for X, see also [21]. A proof of this first appeared in the
work [24] of Keith, but he reports in [24] that it was independently found by himself, Koskela, and
Cheeger.

We will fix the following notion of a limit of functions.

Definition 3.6. We say that a function us, on Xoo is a limit of u, (with u, a function on X,,) if
there exists some subsequence ny and € \, 0 such that for all » > 0

(3.2) klingo | too — Unp,, © d’fzkk ||L°°(Bxoo (TooyT)) = 0.
This is equivalent to the following definition of limits using globally defined maps ¢y:

(3.3) klggo [Uoo = Uny © Okl Lo (Bxo (2o0,r)) = O-

Given a sequence of scaled metric measure spaces (X, dp, Tn, ftr) pointed Gromov-Hausdorff con-
verging t0 (Xoo, dooy Toos oo ), and L > 0 such that w, is an L-Lipschitz function on (X,d,), and
if M > 0 such that for each n € N we have |u,(z,)| < M, then we can obtain a subsequence of
functions uy,, on (X,,,d,,) that converges to an L-Lipschitz function on X,. This is easier to see
from the point of view of the definition of [24] as well. For each n we can find a Lipschitz extension
Up of uy, 01,1 from 1,(X,,) to Z. We refer the interested reader for a detailed treatment of such
an extension in [21, Proposition 11.6.2]. This sequence forms an equibounded and equicontinu-
ous sequence of functions in Z which, being a proper space, lends itself to an application of the
Arzela-Ascoli theorem. Thus we may find a subsequence of @, that converges locally uniformly to
a Lipschitz function o, on Z. We can now choose s, = 1o 0¢. That this choice of us, is a limit of
uy, follows from the compatibility condition (3.1). These are the heuristics behind the proof of [11,
Theorem 10.2], a result which is used in the proof of Theorem 4.8 below.

The notion of limit of functions as given above is concordant with the notion of limit of measures.
If w,, and uo are uniformly Lipschitz and us is a limit of u,, , then along the same subsequence
AUy, = Un,, dlin, A Voo 1= Uoo dliso. To see this, note that whenever ¢ is a compactly supported
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Lipschitz function on Z with support Bz (zeo, ), Where the spaces X, and X, isometrically embed
as in 22 if uy,, — Uoo in our sense, then as fn, — oo,

'/ PUny, dlu‘nk 7/ Sﬁuoodﬂoo‘ S/H@7uOOHL°°(BZ(xOC,T))|90|d:unk
zZ Z

—&—‘/uoogad,unk—/uoogoduoo‘—>Oask—>oo.
z z

As before, these functions depend on the subsequence chosen. In fact, there are several depen-
dencies. The very tangent spaces X, and the tangent measures p., depend on the subsequence
of blow ups 7, \, 0. Indeed, different sequences can lead to different tangent spaces that are not
isometric to each other, see for instance the discussion surrounding [31, Theorem 1.4]. Once this
sequence (1), is chosen, every choice of maps ¢,, and ¢S+ leads to the same isometry classes of the
tangent space X, and the tangent measure p,. However, especially when blowing up functions u,,
and measures u,, dii,, one should be careful about this and choose a further subsequence and the
maps, as a sequence of functions may converge with one choice of maps ¢,, ¢S and not converge
with another choice. We will always assume that all these choices are given to us.

4. ASYMPTOTICS AT APPROXIMATE CONTINUITY POINTS AND GENERALIZED LINEAR FUNCTIONS

The goal of this section is to study the asymptotic behavior of BV functions at points outside
the jump and Cantor parts of their variation measures. We start with the following handy lemma.

Lemma 4.1. Let u,v € BV(X). Suppose E C X is a Borel set such that for each x € E we have
u(B(z,1) N E)

r—ot  u(B(z,r))
and u(x) = v(x). Then V(u—v,E) =0 and so for each A C E we have V(u, A) =V (v, A).

=1

)

Proof. From the above, we know that for each ¢ € R the set E N 9*E, is empty, where E; = {x €
X @ u(x) —v(x) > t}. Therefore by the coarea formula (2.5) and by (2.10), the claim follows. O

In the Euclidean setting we know that for £"-a.e. x € R™ (where L™ denotes the n-dimensional
Lebesgue measure) a BV function converges under blow-up to a linear function (see e.g. [3, Theorem
3.83]). In the metric setting, for p > 1 the notion of linear function is interpreted as a function that
is constant or else satisfies the following two properties: (a) the image of X under the function is
R, and (b) the minimal p-weak upper gradient of the function is constant (and given that we have
a Poincaré inequality, this constant should be non-zero if the function is not the constant function);
see for example [11, Section 10]. It was shown in [11, Theorem 10.2] that given a Lipschitz function,
any asymptotic limit of that function at almost every point yields such a linear function on the
corresponding tangent space, which we defined in Section 3. In the case p = 1, which is the natural
setting for BV functions, we will prove that the asymptotic limits are the so-called generalized linear
functions on the tangent spaces.

For g € L{ (X) nonnegative and R > 0, we define the restricted maximal function of g at z € X
by

(4.1) Mpgg(x) = sup][ gdu.
B(x,r)

0<r<R
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The maximal function of a Radon measure v is defined similarly by

Muv(@) = Sw B )’

Recall that if w € BV(X), then
dV(uv ) =gdp+ d‘/s(ua ')a

where g € L'(X) is the Radon-Nikodym derivative of V (u,-) with respect to yu and Vi(u,-) is the
singular part.

Proposition 4.2. Let u € BV(X). Then for p-a.e. x € X for which g(x) > 0 there exists R > 0
and a set Ay # x with density 0 at the point x such that u|pz ry\a, 15 Lipschitz with constant
Cy(x). For p-a.e. x € X for which g(x) =0, for each 6 > 0 there is a set A, 5 F x with density 0
at x such that U|B(a:,R)\Am,5 is Lipschitz with constant §.

Proof. We follow the proof of [21, Proposition 13.5.2]. For u-a.e. x € X, we have

(4.2) lim 9= g(@)|du=0 and lim 2LB@:)

=0
r—0 B(z,r) r—0 ,LL(B(.I‘,’I"))

by the Lebesgue-Radon-Nikodym theorem, see e.g. [21, Section 3.4]. Fix such x € X for which also

g(x) > 0.

Let R > 0 and let y,z € B(x, R) be Lebesgue points of u. For nonnegative integers i we set
B; := B(y,27%d(y,2)), and for negative integers i we set B; := B(z,2%(y,z2)). Then, by the
doubling property of u and the Poincaré inequality (2.7),

|U(y) - u(z)| < Z |UB1' - uBi+1|

1€EL

<C
>,
< Cd(y,2)> 2" i V(1 2B5) QE;)
i€EZ

= z —lil Vs(u,2B;:)

Cll2) 22 <J£Big WE @B )

—|i Vs (u, 2B;)

<) 32 (f o=@+ BE280) . yato),

For s > 0, set

. ey s Vo B)
e O<7’25 <][B(m,r) |g g( )| d'u - ;U’(B(x,’f‘)) ) '

Note that since p is doubling, for any s > 0 and any Radon measure v we have

Msy(y) < CM2d(a:,y)V(y) + CMZSV(JC)~



ASYMPTOTIC BEHAVIOR OF BV FUNCTIONS 14

Applying this with s = 2d(y, z) < 4R in the second inequality below, we get

lu(y) — u(2)| < Cd(y, 2)[g(x) + Maagy,2)lg — 9(2)|(y) + Maagy,2)lg — 9(2)](2)
+ Maagy,) Vs(u, ) (y) + Maagy,z) Vs (u, -)(2)]
< Cd(y, 2)[9(x) + Maay)lg = 9(2) 1Y) + Mad(a,2)lg — 9(2)1(2)
+ Maae,y) Vs (u, ) (y) + Mag(e,2) Vs(u, ) (2) + Msrlg — g(z)](z) + MsrV;(u, ) ()]
< Cd(y, 2)[9(x) + Maaylg — 9(2)|(y) + Mad(a,2) |9 — 9(2)|(2)
(4.3) + Mo,y Vs(u, ) (y) + Maaa,) Vs(u, ) (2) + Tsr].
We only consider R > 0 to be small enough so that 7sgp < g(z) (here we need the fact that

g(z) > 0). We choose a sequence of radii Ry; \, 0 as M — oo such that 2Mrgp,. < g(z) for each
M € N. Next let Ay be the set of all points y € B(z, Rps) such that for some 0 < r < 2d(z, y),

—alx VS(U’B(y’T» MT
];y,T)g g@)ldnt = By 2 e

For each y € Ajps there is a ball B(y,ry) with 0 < r, < 2d(z,y) < 2Rpr such that the above
inequality holds, and so the family {B(y, ry)}yca,, is a cover of Ay;. By the 5-covering theorem we
can extract a countable, pairwise disjoint subfamily G of the above family such that Ays C g cg OB.
If 73r,, = 0, then u(Ajps) = 0; else we see by the doubling property of p that

p(An) < C Y u(B)

Beg

o 2L )
< — —g(x)|du + Vi(u, B
< ity 3o ([l o Vit )

U
<o g9—g(z)|dp+ Vs(u, B(z,4R
2M gm0 ( B(a:74RM)| (@)l ( ( 2

CN(B(:E74RM)) ][ VS(U,B($,4RM))
< ST — g(x)|du +
2MT8RM B(z,4R) |g g(x)| a /J(B(SL’,4R]\/[))
Cu(B(z, Ru)) Cu(B(z, Ru))
< < .
=T oMpg, M ST ow

We can add to each Ay, all the non-Lebesgue points of u different from x, without adding measure.
Now note that ¢ Ay and that by (4.3), u is Cg(x)-Lipschitz in B(x, Ryr) \ Ay. By choosing

AI = U A]V[ \ B({,177]“_|’,]\4+1)7
M=1
we see that u is Cg(x)-Lipschitz in B(z, R1)\ A,. Indeed, if y, z € B(x, R1)\ A, such that y # z # z,
then there are positive integers M7 and Mj such that y € B(x, Rar, ) \ B(x, Ry, +1) with y & Ay,
and z € B(x, Ryr,) \ B(x, Rap+1) with z & Apg,. We can assume that My > M. It then follows
from (4.3) that

(44) ‘U(y) - U(Z)| < Cd(y7 Z)[g(l’) + 2M178R1v11 + 2M27_8RMQ + T8RM1] < 409(33) d(y7 Z)

Therefore u is C'g(x)-Lipschitz continuous in B(z, Ry)\ (A;U{z}). The fact that u is approximately
continuous at z, together with the fact that A, has lower density zero at x (see the argument below),
tells us that u is Cg(x)-Lipschitz continuous in B(x, R1) \ 4,.
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Moreover,

(A, O Bz, Rary))
N( (xaRMo) =¢ Z

This guarantees that A, has lower density 0 at z. On the other hand, by the choice of the covering
of Ay by balls B(y,r,) with radius r, < 2d(x,y), in the estimate for p(Aus) obtained above we
can in fact obtain for any 0 < r < Rjs that

<C Z 27M 50 as My — .
M=My

cc?
< Sar MB(@, 7).

This guarantees that A, has density 0 at . Choosing R = R;, we have proved the first claim.
Finally, if {x € X : g(z) = 0} has positive measure, then the above argument gives that for

p-a.e. z in this set, for every d > 0 there exists A, s with € A, s and A, 5 is of density 0 at x

such that u|p (s, r)\ 4, s i 0-Lipschitz. O

plAre 0 Bla,) < (Bl 4r))

z,8

Lemma 4.3. Let u € BV (X). For p-a.e. x € X the following holds: if A C X has density 0 at z,

then
1 1

limfi/ | —u(z)|du = 0.
r=0 71 u(B(z, 1)) ANB(z,r)

Proof. Excluding a p-negligible set, we can take a Lebesgue point x of « such that (just as in (4.2))

. V(u,B(:c,T))_ .
(45) M u(Bl,n) I

By Holder’s inequality,

@-1/Q /a
11 o 1 u— u(x) Q@) p(ANB(z,7))
e DN C L (]{3@,,.)' (@) d’“‘) ()

Since z is a Lebesgue point of u, by the Sobolev-Poincaré inequality (2.7),

Q Q
(f |u—u<x>|Q/<Q-1>du) s(f u—uBu,r)lQ/(Q_l)du)
B(z,r) B(z,r)
Q—1

Q
+ Z (]l( ) |UB(:L’,2*J'+1T) - UB(:L’,Q*J'T)|Q/(Q71) d/")
B(x,r

( ) (x’r))
< 4[ u, B 2 : o N
=or w(B(x, 1)) |UB (@, 2-i+1r) = UB(a2-ir)]

j*l

V(qur VuB(xQJ“))
< Jt+l,.
cortaBea) | oSy, Lt

SCTM’I‘V( 7)( )

Thus we get
11 R (e (AN B, 7)) 1/
r W(Br)) /,mm o w@l dp < CM:V (s X ()
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Note that by (4.5), lim,_,o M,V (u,-)(z) = g(x) < oo, and so by the fact that A has density 0 at
x, we get the conclusion. O

Definition 4.4. Let v be a real-valued function on a metric space (Z,d). The oscillation of v in a
ball B(z,r) is

oscvi=  sup [v(y) — v(@)|
(z,m) yEB(x,r) r
We also set
LIPv:=  sup lv(y) — v(2)]

Y,2E€EZ 1 y#z d(yv Z)
Observe that (osc)v < LIPwv.

We now return to the sequence X, of zoomed-in versions of X, as defined in Section 3. For
u € BV(X), we wish to study the limit of the functions

u(y) — u(z)

un(y) = L

that are defined on X,,. Suppose the point x satisfies the conclusion of Proposition 4.2. Zooming in
and defining u,, as above, we note that u is only known to be Lipschitz continuous on B(z, R) \ As.
This poses a problem for studying the supposed limit function us,. Though the set A, from
Proposition 4.2 has zero density at point x, it could still be very much in the image of the functions
¢t used for comparing u, with v (note that the ¢¢ are not necessarily continuous). This could
have the effect of a limit function u., having little to do with the values of u outside A,, a set
which is quantitatively marginal as we have shown. It seems prudent to search for a limit function
Uoo that reflects the values of u on B(z, R) \ A, if we want to explore any properties of this limit
function. With that in mind, we make the following definition:

Definition 4.5. For € X for which g(z) > 0 and the conclusion of Proposition 4.2 holds, we
say that the functions ¢,, in the definition of pointed measured Gromov-Hausdorff convergence are
adapted to u if for each R > 0 and € > 0 there is a positive integer N¢ r such that

On(Bx, (T, R) N Ay =10
for all n > N¢ g.

Thanks to the following lemma we know that whenever (X, doo, Too, floo) 1S a tangent space to
X at z as in Definition 3.5, we can always find a subsequence of the sequence (X, dy, z, pi,) such
that the corresponding maps ¢,, are adapted to wu.

Lemma 4.6. Suppose u € BV (X) and x € X is a point for which g(x) > 0 and the conclusion
of Proposition 4.2 holds. If (Xoo,doosToo, fioo) 18 a pointed measured Gromov-Hausdorff limit of
(X, dn,x, uy) for some positive sequence r,, — 0, then there exist functions ¢, that are adapted to
u at x.

Proof. Assume for simplicity that R = 1/2 and fix 0 < ¢ < 1. By the doubling condition, we have
that
w(B(x,2s) N Ay)

—0 ass—0.
w(B(z, s))

(4.6)
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By (2.2), there exists @ > 1 such that whenever y € B(z,s) and 0 < ¢ <s,

It follows that if y € B(z,r,) (i.e. y € By(x,1)), then

]. N(B(yvern)) —
66Q < m = Mn(Bn(yve))a

where B, is the ball in the metric d,, = r,,1d. On the other hand, (4.6) implies that for sufficiently
small 7,

B n " 1
w(B(z,2r,) N AL) la

w(B(x,rn)) c
It follows that for such n, the set B, (y, €)\ A, has positive measure and therefore cannot be empty.
That is, X \ A, is e-dense in B, (x,1).

The points in A, can be easily avoided by redefining the approximating isometries ¢,, such that
points (1) and (2) of Definition 3.1 still hold, but with 3e rather than e. O

tn(Bn(x,2) N A,) =

Lemma 4.7. Let v be a Lipschitz function on a metric measure space (Z,dz,uz), where uz is
doubling. Suppose that K C Z and z € Z such that

pz(B(z,r) N K)

=0.
=0t pz(B(z.7)
Then
Lipv(z) := limsupM = limsup M
T At dwe)

Proof. Clearly

e PG =00 S L ule) — ()]
Z3y—z dZ(yvz) Z\K>y—=z dZ(yaZ)

Let y; € Z be a sequence converging to z such that

[v(z) — v(ys) nsu [v(z) —v(y)|
dz(Yi, 2) _”29;,—3 dz(y,z)

If we have a subsequence of this sequence that lies in Z \ K, then we have the desired equality. So
suppose without loss of generality that each y; € K. We claim that for each € > 0 there is some
positive integer N, such that when i > N, we have dz(w,y;) < edz(z,y;) for some w € Z \ K.
Indeed, if this is not the case, then there is a positive number ¢y and a subsequence i, such that
B(yi,,,€0dz(%,v:,)) C K, in which case by the doubling property of pz we have
B NnNK 1
lim sup nz(Bzr) O K) > —=>0

rsot Mz(B(z,r)) Ca
where « is the real number for which 2%¢y > 4. This would violate the assumption on the density
of K at z.
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Now fixing ¢ > 0, with w; € Z \ K such that dz(y;, w;) < edz(z,y;), we have
[v(2) = vlya)| _ [v(z) —o(wi)| dz(zwi) | |o(wi) —o(y)] _ [v(z) = v(ws)] dz(z, wi)

< < + Le
dz (i, 2) dz(z,w;)  dz(yi,z) dz(yi, 2) dz(z,w;)  dz(yi,2)
[v(z) — v(wi)|
— 2 L
dz(z,w;) el Le
where L is a Lipschitz constant of v. Letting i — oo followed by ¢ — 0T gives the desired
identity. (]

Now we wish to speak about functions u, that are limits of u,, according to (3.3), with the
functions ¢,, adapted to u. Note that the values of u,, on A, are not considered in evaluating (3.3)
by the maps ¢,,.

By Holder’s inequality, the 1-Poincaré inequality implies the p-Poincaré inequality for all 1 <
p < 0o. By [26, Proposition 4.3], for each k € N there is a Lipschitz function v, € BV (X) such
that

n({y € X+ u(y) #v(y)}) < 1/k.

Since for any measurable set K C X we have that the upper density of K at almost every point in
X \ K is zero, by modifying the set Ki = {y € X : u(y) # vk(y)} on a set of measure zero we can
assume that p(Kj) < 1/k and that for every z € X \ K, we have

lim sup wB(@r) O Ky)
rsot W(B(x,7))

and that vy is asymptotically generalized linear in the sense of [11, Theorem 10.2] (see also [11,
Definition 8.1 and Definition 10.1]) and that the analysis of Proposition 4.2 holds for . By further
enlarging K, if necessary (without increasing its measure), we can also assume that x is a Lebesgue
point of Lipwvg. Since both Kj and A, have upper density zero at x, from Lemma 4.7 we know
that z is a Lebesgue point also for Lip u of any Lipschitz extension @ of u| (s, r)\[4,uK,] t0 B(7, R).
Note that we then have by Lemma 4.7 that

=0

Lip U|B(x,R)\(AzUKk)(x) = Lipu(x) = Lip vg(z).
Thus the theory developed in [11, Section 10] is applicable for x € X \ K. Let N = (), oy Kp.
Then p(N) = 0, and for each € X \ N the theory developed in [11, Section 10] is applicable.
Therefore by [11, Theorem 10.2], this immediately implies the equality of upper and lower Lipschitz
constants for u, and this Lipschitz constant Lip us is indeed a constant on X, and that

Lipus = Lipu(z) = Lip u|p(s,r)\ 4, (2),
and this constant minimal p-weak upper gradient, for any 1 < p < o0, of us is bounded above by
Cg(x) thanks to Proposition 4.2. On the other hand, by the lower semicontinuity of BV energy, we
know that dV (vg,-) < Lipvg dp, and so the Radon-Nikodym derivative of V (vg,-) with respect to
i, which by Lemma 4.1 is also equal to the Radon-Nikodym derivative g of V(u,-) with respect to
pin X \ K}, is bounded above by Lip v,. Therefore we have

g9(z) < Lipus < Cg(x).
We collect these observations below.

Theorem 4.8. Let u € BV(X). Then for p-a.e. x € X and any tangent space (Xoo, doo, Loos foo)s
any function us that arises as a limit adapted to uw at x has a constant minimal p-weak upper
gradient for each p > 1 and that constant is less than Cg(z), where C is as in Proposition 4.2.



ASYMPTOTIC BEHAVIOR OF BV FUNCTIONS 19

Furthermore, with h the minimal 1-weak upper gradient of us, we have that L/(4Cy) < h < L
where L is the constant minimal p-weak upper gradient, and Cy depends solely on the doubling and
the 1-Poincaré constants of Xeo.

Proof. For p-a.e. x € X at which g(x) > 0, the proof of the first part of the theorem follows from
the discussions above. By Proposition 4.2, at p-a.e. x € X at which g(z) = 0 we have that for every
6 > 0, we can extend (U|B(x,R)\Am,5) o1 as a 6-Lipschitz function U, to Z, and so any limit U, of
a subsequence (at least one limit exists thanks to the Arzela-Ascoli theorem) is also §-Lipschitz on
Z. Tt follows that us, = Us 0 ¢ is d-Lipschitz continuous on X,. Since this holds for each § > 0,
we have that us, is 0-Lipschitz continuous, that is, it is constant. It follows then again that its
minimal 1-weak upper gradient is the constant function 0 = g(z).

Thus it now suffices to prove the last statement of the theorem at the points where g is pos-
itive. From a telescoping argument for the Lipschitz function us (see for example [21, Proof of
Theorem 8.1.7(iii)]) on X, we see that whenever £ > 0, for z,w € X, with d(z,w) < & we have

[too (2) — oo (w)] < Codx.. (2, w)[Mych(2) + Mych(w)],

where, as in (4.1), M,h(o) = sup0<p9fB(07p) hdps for o € Xo,. Thus it follows from the local
version of [21, Theorem 10.2.8] that 4Cy My.h is an upper gradient of u,. Therefore by the
minimality of the constant function L as a p-weak upper gradient of .., we see that L < 4Cy Myc.h
for each € > 0. Letting ¢ — 0 and invoking the Lebesgue differentiation theorem, we see that
L < 4Cyh. Finally, as u is Lipschitz, the constant function L is also equal to Lip us, which is also
an upper gradient of us,, and so by the minimality of h as a 1-weak upper gradient, we see that
h < L, completing the proof. O

Theorem 4.9. Let u € BV(X). Then for p-a.e. x € X for which g(x) > 0, and for every
tangent space (Xoo, doos Toos foo ), Ny function us, that arises as a limit adapted to u at x satisfies
Uoo(Too) = 0 and

9(x)

2 < 0SC U < LIPuy < Cg(x

C 7 B(ys) 9()
for every y € Xoo and s > 0. Furthermore, u, is a function of least gradient. For p-a.e. x € X
for which g(x) =0, us is a constant function.
Proof. The inequality B(?sc )uoo < LIP uy, is true by definition, and the inequality LIP uy, < Cg(x)
Y,S

follows from Proposition 4.2 and [11, Theorem 10.2] applied to the blow-up of the Lipschitz function

u. For the inequality % < (osc)uoo we first note that by [23, Theorem 6.2.1],
Y,s

lipu(x) <
) <

where u is a McShane extension of u\B(I,l)\Am to B(z,1). Now note by Lemma 4.1 that

% <lipu(z).
By [11, Theorem 10.2] we know that u, is generalized linear and hence is p-harmonic for each
p > 1 (see [11, Definition 8.1]). Letting p — 17, it follows from [28, Theorem 3.3] that us is a
function of least gradient in X ..
Finally, if g(z) = 0 and z is a point of density 1 for the set {y € X : g(y) = 0}, then we can
choose for each n € N a set B(x,7,,) \ Az 15 as in Proposition 4.2 such that u is 1/n-Lipschitz on
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B(x,rn) \ Ag1/n- Thus the limit function ue is 1/n-Lipschitz continuous for each n € N, and so is
0-Lipschitz, that is, u., is constant. O

The focus of the next section will be to study asymptotic behavior of the characteristic function
x g of a set E of finite perimeter at a boundary point. In considering such behavior, it is not possible
to obtain a fruitful notion of the asymptotic limit of x z in a manner analogous to the above. Instead
of considering a sequence of scaled versions of x g, as with the scaled versions w, = [u — u(x)]/ry
above, we consider the scaled versions of the measures pg given by dug , == u(B(z, 7)) xE du,
and study weak* limits of such measures. The rest of this section discusses how the two notions,
one dealing with a scaled version of the function and the other with a scaled version of the measure,
are related.

We fix a sequence X,, = (X, d,, x, iy, ) that converges in the pointed measured Gromov-Hausdorff
sense to a tangent space Xoo = (Xoo, doo, Too, lhoo) as discussed above, and for such a sequence we
let v,, be the measure on X,, given by

dvy = p(B(z,7)) " (u — u(x)) /ry dp.

We wish to show that the sequence of measures v,, has a subsequence that converges to the measure
Uoo Afboo -
Theorem 4.10. Letu € BV (X). Then for u-a.e. © € X we have the following: if (X oo, doos Too, too)

s any tangent space to X at x, and us is a function that arises as a limit adapted to w at x, then
also

dvy, = w(B(z, 7)) " Hu — u(x))/rp dit = oo dpine as n — co.
Naturally, this weak limit is attained along the same subsequence as u., is. In addition to
the connection that the above theorem makes between the way the limit function u., was obtained
above and the tangent-space analysis of sets of finite perimeter in the next section, the theorem also

gives an elegant way of constructing the limit function u, without having to modify the functions
¢, of Definition 3.1 to avoid the sets A,.

Proof. Assume that z is a Lebesgue point of u such that

‘/«S 7B )
lim lg —g(x)|dp=0 and lim Velu, Bla, 1))

-0
r—0 B(z,r) r—0 M(B(Z‘,T)) ’

and such that the conclusion of Lemma 4.3 holds. Let A be the set of all points y € X such that
for some 0 < r < 2d(z,y),

o Va(w B(y.1)
][B@,T)'g g@ldet = By

Just as in the proof of Proposition 4.2, we get

(4.7) Jim MA 0 B(@,7))

r—=0  u(B(z,1)) =0

By Lemma 4.3 we obtain

_ 1 u — u(z)|
48 lim ———— / T e
(4.8) r=0 p(B(x,7)) ANB(z,T)
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Fix R > 0 and consider the embeddings ¢: X, — Z and ¢,,: X,, — Z. To prove the theorem, we
need to show that whenever ¢ is a continuous function supported in Bz(i(zx), R), we have

lim ¢Ln7*(dyn):/Z¢L*(uw o).

n—oo z

Just as in Proposition 4.2, we have that for all sufficiently large n € N, u|p(z 25, )\ 4 is C(g(x) +1)-
Lipschitz. Then, define @ to be the McShane extension of u|p(4 25r,)\ 4. Just as in Theorem 4.8, we
see that u« is a limit function of (w—u(x))/r, which are all C[g(x)+ 1]-Lipschitz, and the sequence
of measures pu(B(x,r,)) " r (u — u(x)) du also converges weakly* to s dits. See Definition 3.6
and the discussion following it. It thus suffices to show that if f, := (u — u(x))/r, and g, =
(u — u(x))/ry, then we have that u(B(z,7,)) " (fu — gn) du — 0.

Let ¢ be a continuous function supported in the ball Bz (t(z ), R). Then for all sufficiently large
n,

\ [ St (= ) )

-|/ ) = 90)0) a0

< Bl jusae ),
U(B(x>r7z)) B(x,2Rry,) Tn Tn
ey i) o)
U(B(szn)) B(z,2Rr,)NA T'n Tn

The last line follows since u(x) = u(z) and & = v on B(x,2Rr,) \ A. The first term converges to
zero since |u — u(x)|/r, < C(g(z) + 1)R on B(z,2Rr,) by the Lipschitz bound for @ and (4.7).
Finally, the second term converges to zero by (4.8). O

5. ASYMPTOTIC LIMITS OF SETS OF FINITE PERIMETER

Let £ C X be a set of finite perimeter, and fix a point z € 0* E such that Lemma 2.2 holds. We
will zoom in at x to study the asymptotic properties of E. Let r, > 0 with r,, — 0. In this section,
we always consider the sequence

(Xos s 1) (x L g ! )
) y Ly [ = y T Ty e
e " Tn w(B(z, 7))

under pointed measured Gromov-Hausdorff convergence. We also wish to study the behavior of the
measure P(F,-) as we zoom in, so let
(X, dn, 7, Po(E,-)) = (X, LR T"P(E,-)) :
T'n w(B(x,mn))
Taking subsequences as necessary (not relabeled), we find the following measures on the limit space
(Xoos dooy Too):
fin = Hoos
pn (- N E) = /’(‘oEo7

pin (- N E°) = MoEva

and P,(E,-) = 7.
For ease of notation, we denote the ball Bx,(z,p) by B,(z,p); note that as a set, this is the
same as the ball B(z,r,p) in X. In Section 3 it was noted that a tangent space (Xoo, doo, T, fhoo)
always exists, is geodesic, and p, is doubling and supports a 1-Poincaré inequality. Note that
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pin (- NV E) + p (- N E€) = 1, and so pZ 4+ pE = pso. The existence of 7o, follows from Lemma 2.2:
by (2.13), for every k € N,

. . Tn 1+[log, k1]
5.1 limsup P,(E, B, (x,k)) = limsup ———<P(F, B(z, kry,)) < C 2

At various points in this section, we specify additional conditions on x € 9*F by excluding H-
negligible parts of 0*E.

Since X is geodesic and p is doubling, the space satisfies the following annular decay property:
there exists 6 = 0(Cy) € (0,1] such that for all y € X, r > 0, and 0 < € < 1, we have

(5.2) u(B(y:r)\ By, r(1 —¢))) < C’u(B(y, 7)),
see [9, Corollary 2.2]. In particular, this property implies that all spheres have zero y-measure.
We now define two sets in Xo. Let (E) be the collection of all points z € X, for which
E
o BBy (7))
=0 fioo (Bx . (2,7))
and let (E)s be the analogous collection of all points z € X, for which
Ee
By (21)
70 fioo (Bx . (2,7))

)

=1

Lemma 5.1. If z € X, and z, € X,, with z, — z (or, more precisely, t,(z,) = t(200) in Z ), then
for every r > 0,

(B (2,1) = 1 jin (B(2,7).
The analogous result holds for the measures i, (- N E) and pZ, and for p,(- 0 E€) and pZ .

Proof. We prove the result for the measures p,(- N E) and pZ; the proofs for the other two pairs
are analogous. Fix n > 0. By the lower semicontinuity of measure in open sets under weak*
convergence (see e.g. [3, Proposition 1.62]),

poo(Bx o (2.7 =) = p (Bz (z,r = ) < lminf [t i (B 0 )] (Bz (2,7 = n)).
Here Bz(z,7 —n) is the ball in Z whose center is the image of z under the isometric embedding ¢.
Letting €, := dz(zn, 2), we have €, — 0 and for large n,
BZ(Z?T - T]) - BZ(ZnaT -"n + 671) - BZ(Znar)v

where again we label the image of z, under the isometric embedding ¢,, also by z,. Now we can
conclude

WE.(Bx (2,7 — 1) < liminf i (Bu(z0,7) (1 E).
n—oo
Thus letting n — 0,
(5.3) pE (Bx_ (z,7)) < liminf p, (B (zn,7) N E).

n—oo

Again fix n > 0. By upper semicontinuity of measure in compact sets under weak™ convergence,
poo(Bx o (2,1 +20)) 2 pl (Bx, (2,7 + 1)) 2 Hmsup [tncpin (B N )] (Bz (2,7 + 1))
n—oo

Again for large n,
Bz(z,7+1n)) D Bz(2n,7 + 10— €n) D Bz(2n,7),
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and we conclude
uZ (Bx_ (2,7 + 2n)) > limsup , (B (zn,7) N E).

n—oo
Note that the measure p, also satisfies the annular decay property, and that pZ < ji., so spheres
in X, do not carry positive 2 -weight; therefore letting n — 0, we get

pE (Bx_(z,7)) > limsup p, (B (2n,7) N E).
n—oo
Combining this with (5.3) completes the proof. O

Proposition 5.2. The sets (E)s and (E€) are disjoint. Moreover,
froo(Xoo \ [(E) oo U (E) o)) = 0.
Proof. Suppose z € (E)oo N (E¢) . Then
E E°
(B (ar) (B (an)
r—0 MOO(BXOO(Z,’/‘)) r—0 MOO(BXOO(Z,T))

By the Gromov-Hausdorff convergence, there is a sequence z,, € X,, with z,, — z. Thus for any
small enough r > 0, Lemma 5.1 gives

2/3 < M — lim fin (B (n,m) N E) ~ lim w(B(zp, rr,) N E)

NOO(BXOQ (Z,?")) n—00 Nln(Bn(xn’T)) n—00 u(B(xn,rrn))

and similarly

:“oEoc (Bx,.(2,7)) — lim p(B(zn, rry) N E°)

poo(Bxoo(2,7))  m=oe p(B(2n,770))

Adding together, we find for all small enough r > 0 and large enough n
4/3 < /‘(B(xmmnn))7

W(B(zn,7r0))

which is not possible. Therefore (E)o and (E€)s are disjoint.

Next, we show that peo(Xoo \ [(F)eo U (E€)s]) = 0. To this end, we will show that the Radon-
Nikodym derivative of pf with respect to jis is fioo-a.e. either 1 or 0. Let this Radon-Nikodym
derivative be denoted by ¢. Let Ag := {z € X : 0 < p(2) < 1}, and suppose that piec(Ag) > 0.
Then there is some R > 0 and 0 < § < 1 such that the set

2/3 <

A:={2€Bx_(2x,R): d <¢(z) <1—4¢ and z is a Lebesgue point of ¢}
satisfies
oo (A) > Spiso (Bx o, (Too, R)).
We fix 0 < € < R and consider the family of balls Bx__(z,p), 2 € A and 0 < p < &, such that
e
too(Bxo. (2,0) JBx_ (2.p)

As every z € A is a Lebesgue point of ¢, the corresponding family of closed balls is a fine cover
of A, and hence there is a pairwise disjoint subfamily {B;}5°; such that poo (A \ Uj~; B;) = 0 and
then also oo (A \ U;o, B;i) = 0, since spheres have fio-measure zero. Now, observe that

(5.4) 0 < Ydie < 1—24.
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and so we can find N € N such that

N
(5.5) oo (Bx oo (00, R)) < Y fhoo(Bi)-

i=1
Denote the center of each B; by x*. By Lemma 5.1 we can find j. € N such that whenever n > j,
there are points z,--- oz € X = X,, converging to x!,..., " respectively such that
(5.6) (1= 0%) oo (Bi) < pin(Bn(ay,rad By)) < (14 6%) pioo(By).
forall i =1,...,N. This gives
(5.7) (1= 0*) oo (Bx o (oo, R)) < pn(Bn (@, R)) < (1+6) oo (Bxo. (o0, R)),

1-62 1-6%2 1 pin (Br (2%, rad B;) N E)
5 < P dpioo < :
1+62 7 1462 poo(Bs) Jp, o (Br (2%, rad B;))
1+46% 1 1+ 47

5.8 < — it < <1-4§/2;
(5.8) —1_52MOO(Bi)/Bi<P,Uoo_1+5_ /2;
here, to obtain (5.8) we also used (5.4). We can also ensure that the collection of balls (“lifts” of
B; to X,,) {B(x!, r,rad B;)}Y | are pairwise disjoint. Inequality (5.8) tells us that if § > 0 was
chosen small enough, then

(B(x!,r,rad B;) N E)
w(B(zh, r, rad B;))
Now, applying the relative isoperimetric inequality (2.6) to these balls gives
r, rad B;
(B(ai, rprad By))
Thus we obtain, recalling that rad B; < ¢ < R,

5/2 <t <1-4/2.

§/2 <20p P(E, B(z!,r,rad B;)).
i

N N
) Z w(B(zt  r, rad B;)) < 4Cpery, Z P(E, B(z!,r,rad B;)) < 4Cper, P(E, B(z,2r, R)).
i=1 i=1
By (5.5) and (5.6), we now have
N

52(1 — 8)toe (Bx.. (200, R) < 5(1 = 623 poc(By)
i=1

< 521\[: (B (a1, rad B;))
2 u(B@,ra)
4Cpery,

< mP(E,B(x,%“nR)).

Applying (5.7) now gives

§2(1 — 6%) u(B(z,rnR)) < 4Cpery,
1507 u(Ble,rn) ~ n(B@ra))
By the doubling property of u we obtain
2(1-6%) 1 < Tn
1462 4CpCue — p(B(x,2r,R))

P(E,B(z,2r,R)).

0<

P(E,B(z,2r,R)).
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Now letting n — oo, by (2.13) we get
P2(1-6%) 1
1+62 4CpCye

for every 0 < ¢ < 1, which is not possible. Thus u(Ap) = 0.
Now the claim fioo (Xoo \ [(E)oo U (E)w]) = 0 follows from the fact that uZ + pZ = poo. O

0< <Oy

Note that by the above proposition and by the Radon-Nikodym theorem, we now have
PE(A) = too(B)oo NA) and i (A) = pioo((E)oo N A)

for Borel sets A C X, and moreover 0*(E) oo = Xoo \ ((E)oo U (E)oo)-

Now we wish to study the support of the asymptotic perimeter measure 7o, in (Xoo, doo,s Too)-
We first prove a proposition that states that if a point z € X, is in the support of 7., then it can
be seen as the limit of special points in 9*E. Recall from (2.11) that

w(Bly,r) N E) w(B(y,r) N E*) .
R e R A
for some v = v(Cq,Cp) € (0,1/2]. By (2.10) and (2.12) we know that P(F,-) is concentrated on
5, E.

For each m € N, let

Y B = {y € X : lim infmin{
r—0

Y _ P(EBGr)
2Cr =" (B

1
Gm::{zesz: <20y fora110<r<}.
m

By Lemma 2.2 we know that

H (6*E\ U Gm> =0,
meN
and G, C Gp41 for all m € N. Note that for every » > 0 the map z — P(E,B(z,r)) is lower
semicontinuous, and so G, is a Borel set. Combining the definitions of ¥, F and Gp,, for every

z € Xy E NGy, we find 7, > 0 such that
(5.9) rP(E,B(z,r)) < Kmin{u(B(z,7) N E), u(B(z,r) N E°)}
for all 0 < r < r,, where K = K(Cy4,Cp). Hence we can refine G,,, further by considering the set

Gy, = {z € Gyt (5.9) holds for all 0 < r < 1} .
m

Note then that G, is a Borel set, and that G}, C G}, for m € N with

H (8*E\ U G;) =0
meN
As P(E,-) is asymptotically doubling by (2.13), we know that the Lebesgue differentiation theorem
holds for the measure P(FE,-). Hence for any fixed m € N, by the Lebesgue differentiation theorem,
Gy, is of density 1 (with respect to the measure P(E,-)) at P(E,-)-a.e. x € Gf,. It is at such a
point that we will zoom in and take our limiting measures.

Proposition 5.3. Let (X,,,d,, z, i) be a pointed measured Gromov-Hausdorff convergent sequence
such that the base point x is a point of P(E,-)-density 1 for G, for some m € N. Suppose that
z € X 18 such that

Too(Bx_ (2, R)) >0
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for all R > 0. Then there is a sequence z, € X, that converges to z (in Z) such that each z, is in
Gy,

Proof. Fix R > 0. By the Gromov-Hausdorff convergence there exist sequences ¢, — 0 and
Zn € X, = X such that dz(z,, z) < €,, and then by lower semicontinuity under weak* convergence,
(5.10)

oo P B, (R+e)rn)) _ o PB4, (Bz(2, R)))
hnrr_1>1£frn W(Bar) > hnrr_1>1£frn (B > Too(Bx . (2, R)) > 0.

We would like to know that there exists @,, € G, N B(zp, (R+€,)ry) for all sufficiently large n € N.
Suppose that this is not the case. Then there is a subsequence ny, such that B(z,,, (R + €n, )7n,.)
is disjoint from G7,. Choose M > 0 large enough so that for all k € N,
B(zn,, (R+ €n,)rn,) C Bz, Mry,).
As B(zy,, (R+ €n, )7, ) and B(z, Mr,, ) NG, are disjoint, we have
P(E,B(zy,, (R+ €n,)rn,)) + P(E,B(x, Mr,, ) NG},) < P(E,B(z, Mry,)),
which is equivalent to
. P(E,B(xn,, (R+ €, )T n,)) . P(E,B(x,Mr,,)NGZ,) . P(E, B(x, Mrnk))
" p(B(x;7n,)) " w(B(x,7n,)) = w(B(w,ra,)

Call the left-hand side of this inequality Ay + By, and the right-hand side C. The assumption that
x is a point of density 1 in G, implies that By /Cy — 1 as k — oco. Thus A;/Cy — 0 as k — 0.

On the other hand, by the definition of G,,, we must have C} < 2M*1C’3+10g2(M) < oo for large
k € N. Therefore Ay, — 0 as k — oo, which contradicts (5.10). Thus, there is some N7 € N such
that there is a point Z,, € G¥, N B(zy, (R + €,)r,) for all n > N;. We rename this sequence 7..
Similarly, there exists a sequence

Ei € Gr, N Bz, (2*1R +€)Tn)
for all n > Ns > N;. We continue inductively in this fashion to find for each k£ € N,
551 € G, N B(xp, (Q_kR +€n)rn)

for all n > N > Nip_1. Now
dz (T, 2) <dz(FE,2,) + dz(2n,2) <27 R+ €, + €,
For n € [Ny, Ni41), set 2, := Z¢. Then z, has the desired properties. O
Note also that the support of 7, is contained in X.; this can be seen as follows. If z € Z such
that 7o (Bz(z, R)) > 0 for all R > 0, then there exists a sequence z,, € X,, such that z,, — z in Z.

It follows that z € X .
We now provide growth estimates for the measure 7.

Theorem 5.4. Consider the sequence (X, dn, @, liy,) such that x is a point of P(E,-)-density 1 for
G, for some m € N. Suppose that z € X is such that

Too(Bx_ (2, R)) >0
for all R > 0. Then
(Bx,. (7))

1 poo(Bxo (2,7) < Too(Bx o (2,7)) < o

(5.11) C g -

for all v > 0,
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where C = C(Cq,Cp), and
(5.12) Too () oo U (E) ) = 0.

*

Proof. By Proposition 5.3, there is a sequence z, € G}, that converges to z in Z. Fix » > 0 and
0 < n < r/2. Using the basic properties of weak* convergence as in the proof of Proposition 5.3,
we find a sequence of positive numbers €, with lim,,_,. €, = 0 such that

. P(E,B(zn, (r + €2)r0)) : P(E, B(zn, (r —n)rn))
5.13) liminfr > Too(B z,r)) > limsupr .
R T ) B L S TV R N)
We can rewrite the term on the right-most side of (5.13) as

P E B ns - n B ny - n
fimsup(r — gy, PEBCn = 0)r) (B, myra)
n—»o0 w(B(zn, (r=mrn))  (r =n)u(B(z,m0))

Since z, € G}, we know that

P(E, Blen (r = )ra))
p(B(zn, (r =n)ra))  — 2Cp
for all large enough n (that is, when (r — n)r, < 1/m). Additionally, by Lemma 5.1,
lim sup 1(B(zn, (r —n)rn)) _ lim sup 1(B(zn, (r —n)rn))
n—oo (F=n)u(B(x,m))  (r=mn) nooc p(B(2,70))
(B (7~ 1)

(T - 77)7"n

r—=n
o1 pee(Bxo(51)
- Cﬁ '[’ )

since fi is doubling with constant C%. Thus by (5.13), we get

o 7 Hx(Bx.(27))

- 2C§CP r '

Next we rewrite the term on the left-most side of (5.13) as
o P(E, B(zn, (r + €n)rn))  p(B(2n, (1 + €n)rn))
lim inf(r + €,)ry : .
nTreo w(B(zn, (1 + €n)rn)) (r + en)u(B(z, )

Since z € G7,, we know that

Too(Bx_ (2,7))

P(E,B(zn, (r + €,)r))
(B (zn, (1 + €n)rn))
for all large enough n. Similarly to above, we obtain
lim (B (zn, (1 + €n)Tn)) _ foo(Bx . (2,7))
n—oo (4 €n)p(B(x, 7)) r

whence from (5.13) we obtain

(r+€en)rn <20y

)

(B )
Too(Bx_ (2,1)) < 204 M
This proves (5.11).
It now only remains to show (5.12). It suffices to show that when z € (E)s U (E€) s, for each
k € N there is some 7, > 0 such that 7o (Bx__(2,72)) < Cuoo(Bx_, (2,7:))/(kr;), from which we
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will know (via (5.11)) that there must be p, > 0 with 7o (Bx_, (2, p.)) = 0. Fix k € N. Suppose
2z € (E) is in the support of . Then there is some r, > 0 such that

.UOO(BXOC(ZWZ)O(EC)OO) 1

poo(Bx o (2,72)) k'

Let €, — 0 and G}, 2 z, — z as given by the conclusion of Proposition 5.3. By Lemma 5.1 we
have

l lim H(B(zn,rzrn)) _ /LI’OO(BXOO(Z7TZ))

> :uoo(BXOO (z,rz) n (EC)OO)

B E°
— lim p(B(zy,172m) N E°)
n—oo  p(B(z,mn))

Thus for all large enough n € N,

1
Eu(B(zn,rzrn)) > w(B(zn, rorye) N ES).

Since z, € G%,, by (5.9) we have that for all large enough n € N,

TZTnP(E,B(zn,rzrn)) < K,u(B(zn,rzrn) N E°) < 5
w(B(zn,7210)) 1(B(zn,7210)) k
Thus for any n > 0,
. P(E,B(zn,r.m)) _ K1 . . u(B(zn,7r2rn))
meolBa (oo =) SHRIE = Sy S o e B )
_ K poo(Bx. (2,72))
k T,

by Lemma 5.1. Since K = K(Cy, Cp), letting n — 0 gives

K poo(Bxo.(2,72))

k r, '

By choosing k € N large enough, the above would violate the left-hand inequality of (5.11), and so

z cannot be in the support of 7. Thus, there is some p, > 0 with 7 (B(%,p,)) = 0. Since this
happens for every z € (F)s, we know that mo, does not charge (E)o. Indeed, with

(Blwc U= | B,
2€(E) oo

'/Too(BXOQ (Z, Tz)) S

an open set containing (F)s, we have mo(U) = 0. A similar argument gives the existence of an
open set V D (E¢) s with mo (V) = 0. This completes the proof. O

Next we show that the set (F) is of locally finite perimeter in the space X .. Denote by H the
co-dimension 1 Hausdorff measure in the space (X, doo, fioo)-

Theorem 5.5. For all R > 0, we have P((E)s, Bx_ (Zoo, R)) < 00. The measures P((E)oo, "),
Toos and H(0*(E)so N+) are comparable. The sets (E)oo and (E) s are open in Xo.

Proof. To prove the first claim, we use a discrete convolution construction. Assume for simplicity
that R = 1. Fix 0 < € < 1/9, and take a maximal e-separated set {z;}7°; C Xo. Then the balls
By, := Bx__(z,€) cover X and Bx__ (zx, 14¢) have bounded overlap. For each k we can find points
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zpn € Xp converging to z (in Z). Thus, by considering a tail-end of the sequence if necessary,
there is a sequence 0 < §,, — 0 with d,, < € such that dz(teo(2k), tn(2k,n)) < dpn, and by Lemma 5.1,

(5.14) (1= 82 1 (B (21,0)) < fin(Bu (210, €) N E)
and
(5.15) tn(Br(2kns€)) < (14 0n)ptoc (Bx o (28, €)) < (14 8,) tin (B (2k,ns €))-

Observe that we need only do this for the points z; € Bx__ (20, 2), of which there are only finitely
many, and thus we can choose §,, > 0 such that the above hold for all corresponding indices k. By
the bounded overlap property of the balls Bx__(zk, 14¢€), we also have that for each such positive
integer n, the collection of balls B, (zx n,6€) has a bounded overlap; this will be needed in the
computations (5.18).

Now take a partition of unity by means of C/e-Lipschitz functions ¢ € Lip(Xoo;[0,1]) with
supp(¢xr) C Bx_ (2k, 2¢) for each k € N; see e.g. [21, p. 104]. Let u := xp, and for each n € N we
set

(5.16) Vi = ) UB, (50) P
k=1

where
(B (zkn, rne) N E)

UB, (zk.n,e€ :][ Ud/f’fn :]Z Ud,u =
(#k,m26) B, (2k,n,€) B(zk,n,rne€) LL(B(Zk’n,TnE))

Let | € N such that B; N\ Bx__ (Too, 1) # 0. Given y1,y2 € B, we estimate

Z uBn(zk,n,e) ¢7<' (yl) - Z up,, (2k,n€) ¢7€ (yQ)

k=1 k=1

> (UB, (smre) = UBy(2100) (G (W1) — ¢k(y2))‘
k=1

[on(y1) = on (y2)| =

<Y B (zr) = B () |10k (U1) — Dk (32))]

k=1
= Z |U'Bn(zk,n75) - U‘Bn,(zz,n,e)”@bk(yl) - ¢k(y2)‘
keN
BXoc (Zk,QE)ﬂBl;é@
doo (Y1,Y2)
< C Z |U/Bn(zkm,,e) - uBn(Zz,mE)‘ .

€
keN
BXOQ (Zk,QG)HBl#(ﬂ

Note that for the indices k in the last sum, we have doo(z,21) < 3€ and so dn(zgn, 21,n) < De.
Thus, each ball B,,(2kn,€) is contained in B, (2 ,,6¢). By the bounded overlap property, there
are at most J number of balls B,,(2k n, €) contained in By, (z,, 6¢), with J depending solely on the
doubling constant of u,, — which is the same doubling constant of u. Moreover, for each k for which
Bx__(zr,2¢) N By # 0, we have that

|uBn(zk,n75) - uBn(Zl,,ngE)l < C]Z lu — /U/Bn(zl,n76€)| dftn,.
Bn(zl,n76€)
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Thus, we can continue the estimate via the Poincaré inequality:

€ € doo y 7y
o () — v )| < C i — o000 i 22Y182)
B (21,n,6€) €
S Ce doo(ylay2) Pn(EaBn(zl,naGE)).
€ Hn(Bn(Zl,na 66))

Thus, we get for y € By,
P, (E, By, (zn, 6¢€))
Mn(Bn(Zl;ruGG)) '

Lipvy,(y) <C
Therefore, in Bx__ (oo, 1),

P,(E, By (2,0, 6¢))
Mn(Bn<Zl,n>€)) .

By the definition of pointed measured Gromov-Hausdorff convergence, lim,,_,o dz(tn(2), t(2)) =
0, see Definition 3.3 and the discussion preceding it. If B; N Bx_ (e, 1) # 0, then By, (2., 2¢) N
B, (x,1+¢) # (0. Hence by (5.15) and by the bounded overlap of the family B, (2, 6¢), k € N,
we have

(5.17) Lipv, <CY xa,
=1

: Pn(Ean(Zln76€))
Lipv; dus, < C oo (B :
/BXOo (Too,1) mE Z OO( l) Mn(Bn(Zl,ru 5))

leN
By (z1,n,2€)NBy (z,14€)#0

(5.18) < C(1+6n) > P (E, Bn(zi,n, 6¢€))

leEN

Bn(zlyn,Qe)ﬂeBn(m,l+5);ﬁ®

CP,(E, Bp(z,1+ 9€))
CP,(E,By(z,2)).
This remains bounded as n — oo, see (5.1). We can do the above for a sequence ¢; — 0, with
n =n(i) — oo and d,, — 0, to obtain a sequence of functions v; = vfj(i) € Lip(Bx__ (%o, 1)). Since
V(vi, (Bx., (s, 1)) is bounded by (5.18), we find a subsequence, also denoted by wv;, such that

v; = w in LY(Bx_ (700, 1)), see [33, Theorem 3.7]. By lower semicontinuity,
(5.19)

V(w,Bx_ (Ts0,1)) < hminf/ Lip v; djioo < Climsup P, (Bp(x,2)) < moo(Bx. (Zoo,3))
BXoo (:Eoo,l)

1—00 n—oo

<
<

and so w € BV (Bx_ (%0, 1)). We need to check that w = x () in L' (Bx_ (%, 1)). To do so, fix
Yy € Bx__ (%00, 1) N (E)o and fix n € (0,1). Then by definition of (E)«, for large enough i € N we
have
% (Bx.,. (y, 4€i))
MOO(BXoo (y7 461))
We denote the covering of X, corresponding to an index i € N by B} := B(z},¢;). It follows that
for all balls B;, with 2B} containing y, we have (note that s is doubling with constant C%)

>1—n.

1 (Bx, (Zgi’éz')) <t 1 (Bx_ (y,4€:))
foo(Bx. (2, €)) — ¢ pioo(Bx. (y, 4€:))

< Cg’n.
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Thus by (5.14) and (5.15),
fin; (Bn, (Zkn, s €i) N E) > 1 — 6, p&(Bx, (211;:7 €)) > 1 — 0y,
Pon; (B, (Zk,nwei)) T 14 6n; too(Bx o, (Z;cv €)) — 1+ 0n,

Now, by definition of the discrete convolutions (5.16), we have
1—0p,
1+ 0p,

i

(1—Cgn).

vi(y) = (1 - Can).
Letting ¢ — oo, we get
w(y) > 1 Cgn.

Since n > 0 was arbitrary, we conclude w(y) = 1 (the values taken on by the functions v; are
between 0 and 1, so necessarily w(y) < 1). Similarly, we get w(y) = 0 for all y € (F¢)s. Also
by Proposition 5.2 we know that fieo(Xoo \ ((E)oo U (E€) ) = 0. Thus w = x (g, as functions
in L'(Bx_ (Ts0,1)). Recall that we are assuming R = 1 just for convenience; we conclude that
X(E).. € BV(Bx, (2, R)) for all R > 0.

Next, for z € X, and r > 0, by an argument analogous to that leading to (5.19), we obtain

(5.20) P((E)oo, B(z,1)) < moo (2, 37).

From the final part of the proof of Theorem 5.4, we know that 7, is supported inside X \ (UUV),
where U and V are (open) neighborhoods of (E)s and (E€)e, respectively. Conversely, if z €
Xoo \ [(E)oo U (E) o], which we recall is the same set as 0*(E)o, then z is in the support of
P((E)x,*) by the relative isoperimetric inequality (2.6). Thus by (5.20), z is in the support of
Too- I conclusion, the support of 7 is exactly 0*(E)oo = Xoo \ [U UV]. Moreover, by (5.11) and
Lemma 2.1 we know that 7 is comparable to H(0*(E)s N+). By (2.10) we know that P((E)ec, -)
is also comparable to H(9*(E)s N-). Thus the three measures moo, P((E)oo, ), and H(0*(E)eN-)
are all comparable. Finally, by the relative isoperimetric inequality and the fact that P((E)x,-)
does not see the set U, it follows that U cannot intersect (E°). Indeed, if UN(E°) is non-empty,
then by the construction of U, we can find z € (F)s and p, > 0 such that B(z,p,) N (E%) is
non-empty. Thus we have both e (B(z,p:) N (E)s) > 0 and peo(B(z, p2) N (E) ) > 0. Since
Proo(Xoo \ [(E)oo U (E) o)) = 0, it follows from the relative isoperimetric inequality (2.6) applied to
the ball B(z, p,), that we must have P((E)oo,U) > P((E)oo, B(z, p2)) > 0, contradicting the fact
that P((E)o, U) = 0. Thus (E)s = U and similarly (E€) s = V. O

Remark 5.6. If y is an Ahlfors s-regular measure for some s > 1 (recall (2.9)), then it is straight-
forward to verify that p, is also Ahlfors s-regular in X, and then by Theorems 5.4 and 5.5,
P((E)co, ) (and 7o) are Ahlfors (s — 1)-regular measures in X,. This corresponds to what we get
in a Euclidean space R", for s = n.

6. ASYMPTOTIC QUASI-LEAST GRADIENT PROPERTY

From Theorem 4.9 we now know that asymptotic limits (u-a.e.) of a BV function outside of the
Cantor and jump parts of the function are of least gradient. We will show in this section that at
co-dimension 1 almost every point of the measure-theoretic boundary of a set F of finite perimeter,
any limit set (E). is a set of quasiminimal boundary surface as defined in [25], that is, x(g).
is of quasi-least gradient. First we develop some preliminary results that are also of independent
interest.
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6.1. Asymptotic minimality for sets of finite perimeter. The following theorem shows that
given a set F of finite perimeter, at essentially almost every point in 0* E the set F is asymptotically
a minimal surface; compare this to [1, Proposition 5.7], where a weaker notion of asymptotic
quasiminimality is established, where the quasiminimality condition requires to compare (locally)
the perimeter of E with the perimeter of modifications of E by balls alone.

Theorem 6.1. Let E C X be a set of finite perimeter. Then

infueBv, (Bzor)) V(XE +u, B(zo, 7))\ )
P(E, B(xo,7)) N

lim
r—0

for P(E,-)-a.e. z € X.
Proof. Note that the zero function is in BV, (B(xq, 7)), and so for each r > 0,

infuec v, (B(zo,r)) V (XE +u, B(z0,7)) <1
P(E, B(xg,1)) -
Hence to prove the theorem, it suffices to show that

inf Vv B
lim inf (ln u€BV,.(B(zo,r)) (XE + u, (33077“))> >1

r=0 P(E, B(xg,T))

o i Vixe +u, Bla,r)
- miyepv,(B(z,r)) ¥ \XE + U, b(Z,T
A= X:1 f 1
{x Rt ( P(B, B(r,1)) > - }

Note that A is the increasing limit of sets A,, where

.. o (Infucpv.(B@r) VXE +u,B(z,7)) 1

A, =<z € X : liminf < . <l—-—%, nel
r—0 P(E, B(z,1)) n

It therefore suffices to show that each A, satisfies P(E, A,) = 0. To this end, fix n € N. Then for
every x € A, there exist r¥ — 0 and u? € BV,(B(z,r?)) with

Vixe +ui, B(z,r))

P(E, B(z,r7))

Furthermore, as P(E,X) < oo, for every x € X we have P(E,0B(z,r)) = 0 for H!'-almost every
r > 0. We can therefore choose rf > 0 such that in addition to the above, P(E,dB(z,r7)) =0
for every x € A,,. This is because as uf has compact support in B(z,r?), we can choose a
smaller ¥ such that the support of uf is still contained in this smaller ball. Fix k£ € N such that
1/k < Ydiam X. The collection {B(z,7¥) : 0 < r¥ < 1/k}yca, is a fine cover of A,, that is,
for every x € A,, we have inf; r¥ = 0. By (2.13) we know that P(E,-) is asymptotically doubling,
and so it satisfies the Vitali covering theorem, see [21, Theorem 3.4.3]. So we can pick a countable
pairwise disjoint collection {B} = B(z%,7¥)}52 | =: G such that, recalling also that P(E,dB) = 0
for each B € Gy,

(6.2) P(E,An\ U B) :P(E,An\ U B) =0.

BEGy, Beg,

We use the collection of balls B;? to perturb the function xg. Recall that for each ball B;? there is
a function u¥ € BV.(BF) as in (6.1). Set

(o ]
hi = xg + ZU?
j=1

<1-n""L

(6.1)
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By the 1-Poincaré inequality (2.8) for compactly supported functions, for all j € N

n—1

[ < €l v B < O V(e b B 4 V. B < 2V e, BY).
B

J

Therefore by the pairwise disjointness of the balls in the collection Gy,

/X IXE — hi| dp < ;/Bk || dp < %V(XEvX)~
Therefore hy — xg in L*(X) as k — oco. By the lower semicontinuity of the total variation,
(6.3) Vixe,X) < likn_1>i£f Vihg, X).
For ease of notation, for each j € N let

J J
J :UEZC and  hy ; ::u—l—Zuf.
i=1

i=1

Now

i i
V(hrj, Gry) < V(e | BE) + Vil |J 0BF)
=1

i=1

and so V(hij,Gr,;) = V(h;, ngl BF). Since Gy, j is a closed set, it follows that
V(hi,j, X) =V, Grj) + V(i X\ Grj)
j
Z hk,Ja +VP(XE'?AX’\CJICJ)
J

<= V(xe,Bf)+V(xe X \Gr;) by (6.1)

=1

J
=V(xg, X)—n"'V <XE3 U Bf) .
i=1

Therefore

V(hg, X) <liminf V(hy ;, X) < V(xg,X) —n~ ! lim V(XE,UB>

j—o0o j—oo
=1

=V(xg,X)—n"'V (XE» U B) .

Begy

(6.4)
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Set K}, := UBegk B and Fy, := A, \ K}, for each k € N. We have P(E, Fy,) = 0 for each k € N by
(6.2). For F :=J,o, Fi, and K := (0, K) we then have P(E, F) = 0. In light of (6.3) and (6.4),
we have

P(E,X)<P(E,X) — hkniioréfnflp (E,K) < P(E,X) —n"'P(E,K),

and so P(E, K) = 0. Since A,, C FUK, it follows that P(E, A,,) = 0. This completes the proof. [

A similar analysis can be carried out for functions v € BV(X) with slightly more involved
computations to obtain analogous asymptotic minimality results for u; we do not do so here as we
have a stronger result for u outside its jump and Cantor sets in Theorem 4.9. In Theorem 4.9 we
obtain the global least gradient property of u, on the tangent space X,, whereas in Theorem 6.1
above we do not consider least gradient properties of an asymptotic (blow-up) limit of E in the
tangent space X, but consider the asymptotic least gradient property of xg in X itself. In the
next subsection, we will explore analogous properties of the blow-up limit (EF)s, but unlike in
Theorem 6.1 we do not have (E) to be of least gradient in X, but merely a quasi-least gradient,
see Theorem 6.3. This turns out to be not merely an artifact of our proof, but a real obstacle as
demonstrated by Example 6.13 below.

6.2. Quasiminimality at almost every point. In this subsection we finally prove the quasimin-
imality property of the asymptotic limit set (E)o.

Definition 6.2. A set F C X is said to be K-quasiminimal, K > 1, if for every B(z, R) C X and
every ¢ € BV (B(x, R)) we have
1

DB, B(x,R)) < V(xp + ¢, Bz, R)).

Without loss of generality and applying a truncation, one can restrict attention to ¢ with values in
[—1,1], and such that xg + ¢ has values in [0, 1].

The asymptotic minimality of E (Theorem 6.1) can be upgraded to quasiminimality at generic
tangents of the limit set (F)s. In terms of notation, here we only consider the sequence

1 1
(Xna dn,l',ﬂn) = <X7 — d,.’ﬂ, T\ p’>
Tn /J(B(.T, ’rn))
under the pointed measured Gromov-Hausdorff convergence, with 7, \, 0, see the discussion in
Section 3.

Theorem 6.3. Let E C X be a set of finite perimeter. Then, for P(E,-)-almost every x € X
and for any space (Xoo, doos Toos floo) arising as a pointed measured Gromov-Hausdorff tangent at
x, any set (E)s that arises as an asymptotic limit of E along some sequence v, \, 0 is a K-
quasiminimizer. Here K depends only on the constants Cq,Cp.

The proof involves lifting Lipschitz functions with small energy to the sequence, and a pasting
argument. The desired quasiminimality estimate then follows using Theorem 6.1 for the lifted
sequence. We need the following general BV approximation theorem, which is an analog of [11,
Lemma 5.2] for p = 1. We follow the arguments of Cheeger.

Proposition 6.4. Let f € BV(X). Then, there exist Lipschitz continuous f; with bounded Lipschitz
continuous upper gradients v; such that f; — f in L1 (X) and v;dp = dV (f,).

loc
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To prove this proposition we define the following auxiliary function. For a nonnegative Borel
function g on X we set Fy: X x X — [0, 00] to be

.F!}X(l'l,xg) = Fglx1,22) := inf/g ds,
Ty

whenever 1,22 € X. If 1 = x9, we set Fy(z1,22) = 0. The infimum is taken over all rectifiable
curves v connecting x; to z2. Note that by the definition of upper gradient (2.3), we have that if
g is an upper gradient of a function f: X — R, then for every =,y € X,

[f (@) = fW)l < Fy(,y).
For the proof of the following lemma see [11, Lemma 5.18] or [20, pp. 13-14].

Lemma 6.5. Fizn > 0. Let g: X — [n,00) be a countably valued lower semicontinuous function.
Then for g, > n an increasing sequence of Lipschitz continuous functions on X converging pointwise
gn g, we have that for every x,y € X,

F = lim F .
(2, y) ot 9. (2, )
Moreover, such a sequence g, exists.

Lemma 6.6. Let f € BV(X). Then there is a sequence of Lipschitz functions fi on X such that
fe = fin L (X) and lip fr dp = dV (f, ).

loc

Proof. By the definition of the total variation we can find a sequence of locally Lipschitz functions
frx and upper gradients g, = lip f such that f, — f in L{ _(X) and limy [, grdp = V(f, X).
Multiplying with suitable cutoff functions if necessary, we can assume that the fj are Lipschitz.

For any open set U C X, we have by the definition of the total variation that

(6.5) V(f,U) < liminf/ gk dj.
k—o0 U

On the other hand, for any closed set F' C X we have

V(f,X)= lim / gkduzlimsup/gkdu—l—liminf/ gkd,uzlimsup/gkdu+V(f,X\F),

k—o0 k—o0

where the last inequality again follows by the definition of the total variation. Thus

iimsup [ gudy < V(/,F),
F

k—o0

According to a standard characterization of the weak* convergence of Radon measures, see e.g. [12,
p. 54], the above inequality and (6.5) together give g du — dV (f,-). O

Lemma 6.7. Let f be a nonnegative Lipschitz function on X and g € L}, (X) a bounded countably

loc

valued lower semicontinuous upper gradient of f. Suppose that there is a T > 0 such that g > T on
X. Then there is a sequence fy of Lipschitz continuous functions on X with fi, — f in L}, (X)

and bounded Lipschitz continuous upper gradients g of fr such that g, — g in L}DC(X) and g
monotone increases to g everywhere on X, and g, > 7 for each k.

Proof. Since g is lower semicontinuous, we can find a sequence of Lipschitz continuous functions
gr > 7 on X such that g — g in L{ (X) and in addition g < gry1 < g on X for each k € N. By

loc
Lemma 6.5 we know that F, = limj, F,, pointwise everywhere on X x X.
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Next, we fix g € X and for each positive integer ¢ let ;1\1 be a maximal 1/i-net of X such that
:4\1- C EE for each i € N, and let A; = 1/4\1 N B(xzg,2i). Then A; C A;4+1, and by the doubling
property of u we know that A; is a finite set for each i. As g is bounded, we can also ensure that
each g < M and g < M on X for some positive M. Therefore for each y € X we know that F,
and F,, are MC-Lipschitz where C is the quasiconvexity constant of X. Now, taking inspiration
from the McShane extension (see also [11]), we set

fo(@) := f{f(y) + Fo, (2, 9) : y € Ax}.

Then fy is also M C-Lipschitz on X. A standard argument (see e.g. [21, p. 384]) shows that gy is
an upper gradient of f.

For z € |J,, Ay, we choose n € N such that © € A,; then for k¥ > n 4+ 1 we see that € Ay.
It follows that fi(z) < f(x). If y € X \ B(x,L) for some L > 0 then as f is nonnegative,
fly) + Fge(x,y) > L7; thus to obtain fi(z) it suffices to look only at y € Ay N B(x, L) where
L=[1+ f(x)]/7. Let yi, € A N B(z, L) such that

k71 Jrfk(x) > f(yk) +‘ng(x7yk)'

Then the sequence (y;) lies in the compact set B(z, L) and hence has a subsequence Yk; converging
to some Yoo € B(z,L). Thus f(x) > limp oo fr(2) > f(Yoo) + limp 00 Fg. (z,yx). Observe that

|}—gk(x;yk) - ]:gk(xvyooﬂ S MCd(ykvyoo)
It then follows from Lemma 6.5 that

flz) > kh—g)lo fe(®) > f(Yoo) + kli_{gof% (T,Yo0) = f(Yoo) +]:g(mvy<>0) > f(z),

and it then follows that limg_ fi(z) = f(z). Now the uniform Lipschitz continuity of fi, k € N
and f shows that lim f = f pointwise on X. An appeal to the Lebesgue dominated convergence
theorem (and the fact that fr < |[f|lz~B) + Mk < 00 on the ball B = B(xo,k)) yields the

convergence also in L _(X). O

The above lemmas allow us now to prove Proposition 6.4.

Proof of Proposition 6.4. By Lemma 6.6 we obtain a sequence fj of Lipschitz functions on X with
fx — fin L\ (X) and upper gradients gx = lip fi. of fx such that gy du — dV (f,-). Note that each
gr is bounded. By the Vitali-Carathéodory theorem, see e.g. [21, p. 108], for each k we can find
a bounded countably valued lower semicontinuous function gj > gx such that |g;, — gr|lz1(x) = 0
as k — oo. Note that automatically g; is also an upper gradient of f;. Moreover, we now have
gy dp = dV(f,-), and so we also have (g} + k™ ']du = dV (f,").

Next we apply Lemma 6.7 to obtain bounded Lipschitz functions vy and Lipschitz functions Fy,
such that vy, is an upper gradient of Fy, Fy, — f in L{ (X), and v, — [g}, + k=] = 0 in L] (X) as

loc
k — oo. Tt follows then also that vy, du — dV (f,-), completing the proof of the proposition. (]

We will need the following lemma from Keith [24, Proposition 4], see also [20, proof of Proposi-
tion 2.17]. This lemma is a simple consequence of the Arzela-Ascoli theorem together with the lower
semicontinuity of g. In the lemmas below we will consider curves 7, to be arc length parametrized
in the sense that each v, : [0,L] — Z such that v,|j,¢(,,) is arc-length parametrized, and =, is
constant on [£(7y,), L]. Here, £(v,) denotes the length of 7,,. Of course, the limit curve v,, may not
be arc-length parametrized in the above sense, but is sub-arc-length parametrized in the sense that
6(7‘[t1,t2]) <ty — t1 for any 0<t <ty < L.
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Lemma 6.8. [24, Proposition 4] Let Z be a proper metric space and g: Z — R a nonnegative lower
semicontinuous function. If L > 0, K C Z a compact set, and (yn)n 18 a sequence of curves in Z
with length at most L such that each v, is contained in K, then there exists a rectifiable curve vy
so that a subsequence of 7y, converges to v uniformly. For such v we also have that

/ gdsgliminf/ gds.
n—oo

oo n

As a corollary, we obtain the following.

Lemma 6.9. Let g: Z — [1,00) be a nonnegative lower semicontinuous function on a proper space
Z for some T >0, and assume that x, — x and y, — y are sequences of points in Z. Then,

(6.6) Fol@y) < Umint 7y (@n, yn)-

Note that we avoid assuming Z has any rectifiable curves, or that it is quasiconvex. This
is necessary for our application where Z is the proper metric space into which the sequence of
scaled spaces X; and the tangent space X, embed isometrically as described in the latter part of
Remark 3.2.

Proof. If the limit infimum on the right hand side of (6.6) is infinite, there is nothing to prove. So
we will assume that it is finite. By passing to a subsequence, we can assume that there is some real
number M > 0 such that Fg(zy,y,) < M for all n. Then for every 0 < € < M, there exist curves
¥, connecting x,, and y, such that

TK(,‘)/YL) < / gds < Fg(ﬂfmyn) +e <2M.

Since 7, connects z, to y,, and these converge, respectively, to x and y, the curves =, lie, for
sufficiently large n, in the closed ball B(xz, M + 2M /1) which is compact. Then, by Lemma 6.8, by
taking a subsequence if necessary, the sequence ~,, converges to some curve v, and

n—oo
oo n

Fylz,y) < / gds < liminf/ gds < lirginffq(xn,yn) +e.
Since this holds for every small € > 0 the claim follows. O

Lemma 6.10. Let (X;,d;, x;, 11;) — (Xoos doo, Toos floo) be a sequence of scaled (from X ) metric
measure spaces converging in the pointed measured Gromov-Hausdorff sense. If f is a nonnegative
Lipschitz function on X, with a bounded Lipschitz upper gradient v, then there exists a subse-
quence, also denoted (X;,d;,x;, ;), and uniformly Lipschitz continuous functions f; with Lipschitz
continuous upper gradients v; on X; such that

vy dp; = v dptos,
and f is a limit function of f; in the sense of (3.3).

Proof. Without loss of generality, we can assume that v > 7 for some positive 7, since otherwise
we can obtain the result by considering max{v,1/k} instead of v for each positive integer k, and
then complete the proof with the help of a diagonalization argument, letting k — oc.

Let 0: Z — R be a McShane extension of the Lipschitz function v o L\L_&M) on (X)) to the
entirety of Z. Also, such an extension can be chosen to be bounded and so that v > 7. Let
v; ;=00 X; = R
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Next, let f: Z — R be constructed similarly, by first setting f(z) := f o1 (2) for z € 1(Xs),
and then taking a McShane extension to Z. We can choose f to be nonnegative. Next we construct
the functions f;: X; — R so that v; is an upper gradient of f; as follows. For z € X; we set

fila) i= inf [F(ua(w)) + Fo O s, )] = nf (Fluiw) + FE ).

For ease of notation, we set F,,(z,y) = ng(X"')(ai(y), ti(z)) for x,y € X;. From the definition of
fi it is clear that f;(z) < f (1;(x)) for each x € X;. Also, f; is nonnegative, and has v; as an upper
gradient.

We will now show that f is a limit function of f;. To do so, we need to show for every r > 0,
Jm |If = fi 0 bill L= (B (weeir) = 0

where ¢; are the approximating maps from Definition 3.1. Suppose this is not the case. Then there
is some r > 0 and some § > 0 such that, by passing to a subsequence if needed, we have

(6.7) i inf {| f = fi 0 ¢ill L= (B, (2ocr)) > 0
Thus, for each 4 there is a point ; € Bx__(%eo, ) such that

(6.8) [ (@:) = fi(@i(xi))| > 0.
Since X, is proper and z; € Bx__ (Zs0,r) for all 4, there is a subsequence, also denoted with the

index i, such that ; - « € X. Fix § > 0. Then from the definition of f;(¢;(z;)), we have y; € X;
such that

(6.9) [fi(@ilwn)) = f(1i(w0)) = Fou (i, 01())| < 0/4.
Combining the above with (6.8) we get

[ (@i) = S (i(yi) = Fo, (yi, dili))| =2 6/2.
By (6.9) we have f(1i(yi)) + Fu, (i 6i(2:)) < fi(i(w:)) +6/4 < f(ui(di(2:))) + /4, and so the
triangle inequality gives
(610) 17~ Falgrm)] + Feal6ile)) — Fleatwn)) — Fuu i 6u() = 5/
For the first term, note that f(z;) = fA(L(l’Z)E, and from (3.1) we get lim;_, o0 dz(e(x4), ti(di(2:))) = 0,
and thus from the Lipschitz continuity of f,

(6.11) T () — F(ua(n(a))] = 0.
Since lim; x; = z, we also have

dz(i(di(xi)), u(x)) < dz(vi(Pi(xi)), (i) + dz(v(zi), o(x))
(6.12) =dz(ti(pi(x:)), t(x)) +dx (zi,x) =0 asi— 0.
Therefore the sequence of real numbers f(1;(¢;(2;))) is bounded, that is, there is some M > § >
0 such that sup; f(ti(¢i(x;))) < M. The functions v; are bounded from below by 7 and f is
nonnegative. Therefore, if d(¢;(x;),y;) > 2M /7, then

Fei(y) + Fo (i ¢i(@)) = Fori (yi, di(w)) = 2M > Flui(@i(@i) + 8 > fildi(w:)) + 9,
which would violate the choice of y;, (6.9). Hence we must have d(¢;(z;),y;) < 2M /7. As the

sequence ¢;(¢;(x;)) lies in a ball, in Z, centered at ¢(x) by (6.12), we see then that the sequence
ti(y;) also lies in a ball centered at ¢(x). Therefore, by the properness of Z, there is a subsequence,
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also denoted with the index i, and a point § € Z such that lim;¢;(y;) = §. As y; € X; and
X, converges to the metric space X, it follows that § = «(y) for some y € Xo. Then by
Lemma 6.9 we get FZ(u(x),t(y)) < liminf; oo FZ(1i(di(24)),ti(yi)). Note that F, (yi, ¢i(z:)) =
fgi(Xi)(Li(yi),Li(qﬁi(xi))), which is not the same as FZ(1;(y:), ti(¢i(2;))). However, we have that

FZ (i), i(i(y))) < fgi(Xi)(Li(yi),Li(q’)i(xi))). Now by (6.10) and (6.11), we obtain
§ 7L (@), u(y) < § +liminf FF (i), 1i(9i(0))

< Wm[f(ui(9i(2:)) = F(ui(w)] = F(u(2)) = F(() = f (@) = F(v)-
We now use the specific structure of Z; by [22], we can choose Z to be the completion of pairwise
disjoint union of X;, ¢ € N. With such a choice, it follows that if + is a non-constant rectifiable

curve in Z, then either ~ lies entirely in ¢;(X;) for some positive integer i, or else « lies entirely in
(X o). Tt follows that

FZ(u@), o(y)) = FL (@), ly)) = F=(a,y).

Hence from the above inequality we obtain
Fre=(z,y) < §+ Fr=(x,y) < f(z) — fly) < |f(z) = fW)],
which is not possible as v is an upper gradient of f. Thus (6.7) is false, and so f = lim; f; as
desired.
Finally, we show that v; dju; — vdpse as follows. Pick a test function ¢ € C.(Z). Then also

@0 € Co(Z). Using this fact and the fact that ¢; ., B Ly floo, We get

lim @ Li (Vi dp;) = lim / GO dug b :/ OV diypioo :/ O Le(Vdiin)-

1— 00 A 1— 00 A A A

O

We also need the following lemma, which stitches two given BV functions along an annulus to
yield a BV function whose BV energy is controllable.

Lemma 6.11. [33, Lemma 3.3] Let f € BV(X), 2 € X, 0<a <b <R, and g € BV(B(z,b)).
Then there exists a 2/(b— a)-Lipschitz function n : X — [0, 1] with compact support in B(x,b), and
such that n =1 on B(x,a) such that h =ng+ (1 —n)f € BV(X) with

Vi Ble B) VU, B R\ BGa) +Vig B 457 [ f gl n

Finally, we can conclude the proof of Theorem 6.3.

Proof of Theorem 6.3. Let x € ¥, be a point where the conclusions of Theorem 6.1, Lemma 2.2 and
Theorem 5.5 hold. We will show that the corresponding asymptotic set (E)~ is K-quasiminimal
for some K, which will be determined at the end of the proof. Since P(E,-)-almost every x € X is
such a point, this concludes the proof. Let R > 0, z € X, and ¢ € BV.(Bx_ (z, R)). By slightly
decreasing R if necessary, we can assume that P((E)e,dBx__ (2, R)) = 0.

From Theorem 6.1, there is some ry > 0 such that that for every ro > r > 0 there is some
positive e, such that lim,_,g+ &, = 0 and whenever 1) € BV (Bx(x,r)), we have

(613) P(EaBX(‘T7T)) < (1 + 57’) V(XE + TZJ,BX(%T))-

By a standard truncation argument, we can assume without loss of generality that 0 < x(g).. +
¢ < 1. By Proposition 6.4 we can find a sequence of Lipschitz function—Lipschitz upper gradient
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pairs f;,v; on X, with each v; bounded, such that f; — X(E)o T in L%OC(XOO) and v; ditoo A
dV(x(p)., +©,-). Next, for each positive integer i we apply Lemma 6.10 to obtain lifts f; ,,,v;n to
Xy, such that v; , dup BuNYR dis and f;,, — f;. Further, by truncating each f; and f; ,, we can
also assume 0 < f;, fi p < 1.

By passing to a subsequence of (X,,, d,,, , pi,) if necessary, with p fixed and chosen in the interval
2[R+ dx (z,%00)], 3[R+ dx_ (2, %c0)]], we have pr, < 1 and that

D [da(6a(v), Gu(w)) — dx (5, 0)| <

Y WEBXx  (Too,p)
and
B, (z,p) C U Bn(y,1/n).
YE€Pn(Bx oo (Tos,p+1/n))

For each n we set z,, := ¢,,(z). By choosing p appropriately, we can also ensure
(6.14) Too(0Bx . (o0, p)) = 0.

Then by the above,
dx(z,z,)
Tn
Fix 7 € (0,1). We now use Lemma 6.11 to stitch f;,, on B, (z,,R) to xg on B, (z, p) \ By(zn, [1+
T|R) using the Lipschitz function 7, to obtain h; , := 1y, fi, + (1 — 1) xXE. Then, since pr,, < ro,
we know that

1
= dn(xawn) S cho(xooaz) + —.
n

P(E,Bx(xz,prn)) < (1+¢€,p,) V(hin, Bx(z,pry)).
Note by Lemma 6.11 that
V(hi,m Bn(xa p)) < Pn(Ea Bn(l‘, p) \ Bn(xna R)) =+ V(fi,m Bn(xm [1 + T]R))
2
T Bn(znv[l“""]R)\Bn(Ian)

Note that h;,, — xg has compact support on B,(z,p) for large enough n since we can ensure
B, (zy,[1 + T]R) C Bp(x,p). Combining this with the (asymptotic) minimality of xg at x as
explained above, we obtain that

(B, Bo(2.0)) < [+ £pn] | Pa(B, Bu(w. ) \ Buln, R)) + / i
By (zn,[14+7T]R)
2
T | firn — xE|dptn | -
T By (20,[14+7]R)\ By (20, R)

In the above, we have also used the fact that as v; ,, is an upper gradient of f; ,,, we have dV (f; p, ) <

Vi,n d;un
Recall that xg is either 0 or 1 on X, and 0 < f; , f; < 1, and so we have

Ifimn —xEl=QQ = fin)xe+ 1 —xE)fin
and

Ifi = xE)|l = (1= fi)xm). + (1= x@E)fie
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Thus, since xg dpn — XE., Qoo and since po, gives measure zero to every sphere due to the
geodesic property and doubling of X, (recall (5.2)), we get

lim |f7,n - XE| d,un
e By (@, [1+7]R)\ By (20, R)

= h_>m [(1 - fi,n)XE + (1 - XE)fi,n] dpn,
nTreo Bn(mnv[1+T]R)\Bn(In>R)

/ (1= fi)xE)y. + (1= Xx@).)fil ditoo
Bx o (%,[1+7]|R)\Bx , (2, R)

/ Ifi = X(B)o | dltioo-
Bx ., (2,[1+7]R)\Bx o, (2,R)

Now letting n — oo and using (6.14), we obtain
Toc(Bx (00 )) < (B (2c09) \ B (2. R) + [ .

Bx, (z,[1+7]R)
2

— |fi = x(B).. | ditoo-
TR /By (21471 R)\Bx.. (,R) )

Thus we get
2
Too(Bx. (2, R)) S/ Vi dphoo + —5 |fi = X(B)o | dptoo-

Bx.. (z[1+7]R) TR Jpy_ (2,14+71R)\Bx.. (+,R)
Now letting 7 — oo gives

Too(Bx, (2, R)) < V(x(p). + ¢, Bx. (z,[1+27]|R)),
where we used the fact that f; — x(g)_ in L]

Le(Xoo) and v; dpss = dV (x(p).. + ¢, ). Now letting
7 — 0 and finally using the assumption P((E),dBx_ (2, R)) = 0 we obtain

Too(Bx.. (2, R)) < V(X(B). + ¢ Bx. (2, R)).
Now by Theorem 5.5 we have

where C' is the comparison constant that connects mo, t0 P((E)s, ). Thus choosing K = C' yields
the desired outcome. This completes the proof. O

6.3. Concluding remarks. In Section 4 we have shown that any asymptotic limit, at p-almost
every point, of a BV function is a function of least gradient on a corresponding tangent space X,
and is Lipschitz continuous with a constant minimal p-weak upper gradient. In Section 6 we have
shown that given a set E of finite perimeter in X, at H-almost every point of its measure-theoretic
boundary we have the existence of an asymptotic limit set (E)o, C X such that this asymptotic
limit set is of quasiminimal boundary surface (that is, x (g is of quasi-least gradient).

Remark 6.12. If v € BV (X), from the co-area formula we know that for almost every ¢t € R its
super-level set

E,:={reX :ulz)>t}
is of finite perimeter in X. Let Rr be the collection of all ¢ € R for which FE; is of finite perimeter,
and let A C Rr be a countable dense subset of Rrp. For each t € A let K; be the collection of
all points in X at which the conclusion of Theorem 6.3 fails for E;; then H(U,c 4 K:) = 0. Let
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x € Sy \U,ca K¢, where S, is the jump set of u. Note that if 2 € X \ 0* E;, then for every tangent
space X based at that point, the corresponding set (F:)s is either all of X, or is empty, and
hence does satisfy the conclusion of Theorem 6.3. Thus we have here that K; C 9*F;. A Cantor
diagonalization argument gives us for each ¢ € A an asymptotic limit (F)eo C Xoo, with X a
tangent space to X based at z, of the set E;. We know then that each (F})s is of quasiminimal
boundary in X in the sense of [25], with the quasiminimality constant K independent of t.
Moreover, note that if ¢1,t2 € A such that ¢; < t3, then E;, C E;, and so by the construction
of (Et)so we have that (Ei,)ee C (Et, )oo. Indeed, by the definition of (E) from the discussion
before Lemma 5.1, we have that when z € X, for which z € (E},), we have uoE<f2 < uoEo” on X
(because Ey, C Ey, C X), and so

Eq, Ey,
L BB () e (Bx (1)
r—0+ MOO(BXOO (Z,?“)) r—0+ MOO(BXOC(zvr))
and so we must have z € (Ey, )oo. In this discussion, recall that we have fixed 2 € Sy \ U;c4 Kt
We can now set

)

Uoo(2) :==sup{t € A: z € (Et)oo}-
An argument as in the proof of [29, Theorem 4.10] tells us that us, is of quasi-least gradient in X .
It would be interesting to know in which sense, if any, is this us, an asymptotic limit of v at x.

The limit set F is a quasi-minimizer according to Theorem 6.3 , in contrast to the minimizer
property of the limit us, of u at the absolutely continuous point of |[Dul|, see Theorem 4.9. The
next example shows that this disconnect is real and is not an artifact of our proof.

Example 6.13. For positive integers n let a,, = 1/n! and b,, = —a,,. Let X =R be equipped with
the Euclidean metric and with a weighted measure du = wdL'. Let us choose the weight w so that

(@) 2 if bop—1 < < byy 0T A2y < T < A2p—1,
wl\r) =
1 otherwise.

Then if we choose the base point = 0 and the sequence of scales r,, = 1/(2n —1)!, we can see that
the limit space X, = R is equipped with the measure po given by dpeo = (x[=1,11+ %XR\[_M])dﬁl.
If we take E = (—00,0], then F is of finite perimeter with perimeter measure P(E,-) the Dirac
measure supported at 0. The limit set E,, = (—00,0) is quasiminimal, but is not a minimal set
as F:= (—o0,1) has a smaller perimeter measure; here, the perimeter measure Ps(Foo, Xoo) = 1
whereas Py (F, Xoo) = %, and note that E, AF is a relatively compact subset of X.

Remark 6.14. In Definition 6.2 of quasiminimality we used balls B(x, R). The study undertaken
in [25] is applicable to functions satisfying this definition; however, the notion of quasiminimality
given in [25] is slightly stronger, namely whenever ¢ is a compactly supported BV function on X,
we have
V(u,supp(p)) < KV (u+ ¢,supp(p)).

The proof given in Subsection 6.2 can be easily adapted to prove that x(g)_ satisfies this stronger
version, but the proof gets messy, and hence we gave the relatively more transparent proof showing
that x (g, satisfies Definition 6.2. To prove the stronger quasiminimality criterion of [25], one
first modifies the stitching lemma (Lemma 6.11) by replacing B(x,a), B(x,b) with open sets U,V
with U € V and considering n to be a Lipschitz function with n = 1 on U, n = 0 on X \ V.
The term 2/(b — a) is then replaced with a constant C' that depends solely on U, V. Next, in
the proof of quasiminimality, one replaces Bx__(z,[1 + 7]|R) with U, where U is the support of ¢
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and U, = {y € X : dx_(y,U) < 7}. In this case, By (zn, [l + T]R) is replaced with a suitable
approximation of U, in X,,, ensuring that this approximating open set is contained within B, (z, p)
where p = 2[diamx__ (U) + dist (U, z0)]-

Remark 6.15. While we have assumed throughout this paper that X is a geodesic space, we can
omit this additional assumption and assume a weaker 1-Poincaré inequality where the ball B on
the right-hand side of (2.4) is replaced by a concentric ball AB with radius A times the radius of
B, see [21, Section 8.1]. The reason for this is as follows: a weak 1-Poincaré inequality implies that
the space is quasiconvex (that is, every pair of points z,y € X can be joined by a rectifiable curve
of length at most C d(x,y) with C' depending solely on the doubling and Poincaré constants), and
then a bi-Lipschitz change in the metric will allow the space to become geodesic. In geodesic spaces,
a weak Poincaré inequality can be promoted to be a strong Poincaré inequality, that is, A = 1. This
is discussed in [21, Theorem 9.1.15] and in [19]. The class of functions of bounded variation is
invariant under a bi-Lipschitz metric change. Thus the assumptions of geodesicity and the strong
version of the Poincaré inequality are not restrictions, only conveniences. This bi-Lipschitz change
in the metric on X would induce a bi-Lipschitz change in the tangent space X, with a bi-Lipschitz
equivalent geodesic limit metric on X, obtained as a limit of re-scaled geodesics metrics on X. We
obtain that the asymptotic limit function us, as in Theorem 4.9 is of least gradient with respect
to this length metric on X, and therefore is of quasi-least gradient with respect to the original
metric on the tangent space X .
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