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Abstract

With a view toward fractal spaces, by using a Korevaar-Schoen space approach, we intro-
duce the class of bounded variation (BV) functions in the general framework of strongly local
Dirichlet spaces with a heat kernel satisfying sub-Gaussian estimates. Under a weak Bakry-
Emery curvature type condition, which is new in this setting, this BV class is identified with
a heat semigroup based Besov class. As a consequence of this identification, properties of BV
functions and associated BV measures are studied in detail. In particular, we prove co-area
formulas, global L' Sobolev embeddings and isoperimetric inequalities. It is shown that for
nested fractals or their direct products the BV class we define is dense in L'. The examples of
the unbounded Vicsek set, unbounded Sierpinski gasket and unbounded Sierpinski carpet are
discussed.
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1 Introduction

In this paper we introduce and study functions of bounded variation on strongly local Dirichlet
spaces which may not have Gaussian heat kernel bounds, but have sub-Gaussian heat kernel bounds
as given in (3) and satisfy a weak Bakry—Emery curvature condition (2). We note that some
properties that are usually taken for granted may not hold true in this setting because energy
measures are not necessarily absolutely continuous with respect to a fixed measure u. Therefore,
unlike our analysis in [5] we can not develop and use locally Lipschitz functions, and need to develop
a different set of tools.

This introduction is devoted to giving an overview of the content of the paper and to providing
a summary of the main results obtained. The precise description of the sub-Gaussian heat kernel
bounds and the definition of the Besov spaces that are investigated are presented in Section 2.
Section 3 deals with a weak Bakry—Emery type curvature condition that is key in studying the
notion of BV class introduced in Section 4. Eventually, Section 5 presents several examples of
spaces where the theory developed in previous sections applies.

An approach to BV functions in metric measure spaces

Our approach to a theory of functions of bounded variation (BV) is based on the study of the
L' Korevaar-Schoen class at the critical exponent. To explain our motivation and results, let us
present this approach in the general context of metric measure spaces.

Let (X, d, u) be a locally compact complete metric measure space where p is a Radon measure.
For A > 0 and p > 1, we define the space K.S*P(X) as the collection of all functions f € LP(X, u)
for which

[ Fegnngy = timsup [ [ 2L ) ) < 4o
Kshr(x) - B(z,r) T p/L )) .

r—0+

The LP—Korevaar-Schoen critical exponent of the space is then defined as
/\;3éE := sup{\A > 0 : KSM(X) contains non-constant functions}.

In the context of a complete metric measure space (X, d, i) supporting a 1-Poincaré inequality and
where p is doubling, one has /\ZfE =1 for every p > 1. Note that, at the critical exponent /\;éE =1,
one can construct a Dirichlet form

EL, 1) = 1 s

with domain K S12(X) by using a choice of a Cheeger differential structure as in [32]. This Dirichlet
form is then strictly local and the intrinsic distance dg associated to £ is bi-Lipschitz equivalent to
the original metric d. We refer to [67] and the references therein for further details. In that same
framework, at the critical exponent )ﬁfé =1, one has KS(X) = BV(X) and

Var(f) ~ || fllxst1(x)-



By contrast, in the context of the present paper, (X,d, u) is a complete metric measure space
for which p is doubling (even Ahlfors regular) but for which )\# = dTW, where dy > 2 is a parameter

called the walk dimension of the space, see [41,43]. At the critical exponent /\# = dTW one has a
strongly local (but not strictly local) Dirichlet form

EFH =P ap
KS™2 2(X)

d
with domain K.S TW’Q(X ) whose heat kernel satisfies the sub-Gaussian estimates (3); see [51, Corol-
lary 3.4] and Section 4, Remark 4.3. By analogy with the previous case, it seems then natural to

study the corresponding L' critical exponent )\fk and the associated class K S/\f’I(X ). For the
spaces we are interested in, which are primarily fractals or products of fractals, we shall see that
this class K SA#’l(X ) has many of the expected properties of a BV class: it has co-area formu-
las (see Theorem 4.15), existence of BV measures (see Theorem 4.24), and Sobolev embeddings
(see Theorem 4.18). The key assumption that yields these properties is the weak Bakry-Emery
condition (2).

For nested fractals [12,21,58,66,74], we prove that /\71éﬁ = dy is the Hausdorff dimension of the
space and that KS’\?J(X) is dense in L'(X, 11), see Theorem 5.1. For the Sierpinski carpet [12,15,
17,21] we prove that

N > dy —d +1 (1)

and conjecture that in fact there is an equality in (1). Here, diy is the topological-Hausdorff
dimension defined in [9].

A key point in the study of the L' Korevaar-Schoen classes K .S*!(X) is Proposition 4.1 which
allows us to identify K S*!(X) with the heat semigroup based Besov class BL*(X), a = ﬁ, that
was introduced and extensively studied in our previous papers [4,5]. In particular, we note that

#
oﬁfﬁ = )‘—;V is the critical parameter in the Besov scale of the classes B (X), that is, for o larger than

this threshold, the corresponding Besov classes only contain constant functions. Working directly
with the Besov classes B1®(X) has the advantage of setting us in the framework of [4], which
allows to use a wide range of heat semigroup techniques paralleling the methods developed in [5].
For this reason, most of our results are written for the Besov class B1¥(X) and the corresponding

critical exponent a# rather than in terms of KSM (X) and )\f

Weak Bakry-Emery nonnegative curvature condition

The main tool in this paper is the heat semigroup. In the Euclidean case, the deep connection
between regularizing properties of the heat semigroup and the theory of BV functions and sets
of finite perimeter was uncovered by E. De Giorgi in the celebrated paper [36]. Among many
other works, this connection was further developed and investigated by M. Ledoux in [65] (see
also the references therein). The Bakry—Emery calculus shows that regularizing properties of the
heat semigroup are intimately connected with Ricci curvature-type lower bounds on the underlying
space, see [8]. Thus, it should come as no surprise that the approaches of De Giorgi and Ledoux
and the notions of isoperimetric inequalities and BV functions may be generalized to large classes
of spaces for which Ricci curvature type lower bounds are well understood, like the now-extensively
studied RCD(0, c0) spaces (see [7,31]) or sub-Riemannian spaces (see [24,26]). In the context of
the present paper, although the Bakry—Emery calculus is not available, the weak Bakry—Emery
curvature condition introduced in [5] has a natural Holder analogue which is the key assumption
of our work. We shall say that the weak Bakry-Emery non-negative curvature condition wBE (k)



is satisfied if there exist a constant C' > 0 and a parameter 0 < k < dy such that for every ¢ > 0,
g€ L>®(X,pu) and z,y € X,

d(z,y)"

|Pg(z) — Pig(y)| < C———— il

191l oo (x p0)- (2)

We prove in Theorem 3.7 that fractional metric spaces for which dy > dg > 1 must satisfy
wBE(k) with k = dw — dy. Note that the hypothesis of Theorem 3.7 is stable under rough
isometries in the sense of Barlow-Bass-Kumagai [18,19,23] and it is part of the general theory of
fractional diffusions, see [10,12,13,15,17,20,21,41,58,59] and references therein. In particular for
nested fractals, Theorem 3.7 yields that wBE(k) is satisfied with x = dyw —dp and in that case the
value dy — dg is optimal in the sense that wBE (k) is not satisfied for k > dy — dg. Theorem 3.7
also proves that the Sierpinski carpet satisfies wBF(k) with k = dy — dp, however we conjecture
that in fact the Sierpinski carpet satisfies wBFE(k) with k > dy —dg. It will be a subject of future
work to investigate whether x = dyw — dg + dygr — 1.

We would like to briefly comment on the curvature interpretation of the weak Bakry—Emery
condition wBE(k). Our Theorem 3.7 holds only when dy > dy > 1, which means that this
theorem is applicable for low dimensional spaces. In such a low dimensional situation, geometrically
speaking, there is no curvature. For nested fractals, the topological and topological Hausdorff
dimension are both 1. Thus, in some sense, they are analogues of lines which have zero curvature.
From a different perspective this corresponds to the Hodge-type theorems in [49,50] and Liouville-
type theorems [39,52] and [76, Introduction and Section 4]. The curvature interpretation of wBE(k)
will only manifest itself in higher dimension when dp > dy, and this is why Subsection 3.3 is
important, as it allows us to construct higher dimensional examples satisfying wBE(k). When
dy > dw one can expect the boundary of sets of finite perimeter to have a real geometry more
complicated than that of Cantor sets.

Beyond direct products of fractional spaces [29,53,78,79], which in a sense are still flat, one
could try to construct “fractional manifolds, or fractafolds [77,80], with non-negative curvature”
which would be metric spaces with heat kernels satisfying a sub-Gaussian estimate and a geometric
non-negative curvature condition, which would in turn imply the validity of wBE(k) on these
fractafolds. This is beyond the scope of the present paper.

One long term goal of this project is also to develop tools for Li-Yau type estimates, in particular
on the decay of the gradient of the heat kernel. In our setting a gradient is to be understood in a
measure-theoretic sense, which motivates a large part of our work. Consideration of fractals in this
context is important, in particular, because they appear as models for manifolds with slow heat
kernel decay [11], and limit sets of Schreier graphs of self-similar groups, which include groups of
intermediate growth and non elementary amenable groups, see [22,56,69,70] and references therein.
The forthcoming papers [1, 3] will extend these ideas to non-local forms and infinite dimensional
spaces.

Main results on BV functions under the wBE(x) condition

On a dg-Ahlfors regular metric measure space (X, d, u) whose heat kernel satisfies the sub-Gaussian
estimates (3), we define

BV(X) := KSM1(X) = BLel (X)
and for f € BV (X),

r—0t

f( )|
Var(f —hmmf/ / o 1,u ) du(y) du(x).
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We show that for nested fractals, or their products, BV (X) is dense in L'(X, i), see Theorems 5.1
and 5.6.

A set E C X will be said to be of finite perimeter if 1z € BV (X). For a set E of finite perimeter
we define its perimeter as P(E) = Var(1g). Note that, unlike in the strictly local setting in [5],
the perimeter P(E) may not be induced by a Radon measure in a classical sense, but in some
generalized sense that will be further studied in some specific situations in [2].

Our main assumption to study the BV class is that X satisfies wBE(x) with

k= dw — N = dy (1 —af).

From Theorems 3.7 and 3.8 this assumption is, for instance, satisfied for nested fractals or their
products. The main results we obtain under this assumption are the following:

1. Locality property (Theorem 4.9): There is a constant C' > 0 such that for every f € BV (X),

r>0T

swp e | [ S W) = S0)ldute) duty) < OVar(y).

2. Co-area estimate (Theorem 4.15): There exist constants ¢,C > 0 such that for every non-
negative f € BV (X),

¢ [ Var(ts gt < Var(s) < ¢ [ Var(ip, g i,
0 0

where Ei(f) = {x € X : f(x) > t}. In particular, for f € BV (X) the sets E(f) ={zx € X :
f(z) > t} are of finite perimeter for almost every ¢ > 0.

3. (Theorem 4.17): There exists a constant C' > 0 such that for every Borel set £ C X,
P(E) < CCq,—(E),

where Cj , (E) denotes the (dw — r)-codimensional lower Minskowski content of E. In
particular, any set whose measure-theoretic boundary has finite (dy — k)-codimensional lower
Minskowski content has finite perimeter

4. Sobolev inequality I (Theorem 4.18): Assume dy — k < dg. Then BV (X) c L' (X, u) and
there is C' > 0 such that for every f € BV (X),

1l e (x ) < CVar(f),

where the critical Sobolev exponent 1* is given by the formula

i_l dw—/i'
1* dy

In particular, there exists a constant C' > 0 such that for every set E of finite perimeter

di—dw +k

WE) T < CP(B),

This is our analog of an isoperimetric inequality.



5. Sobolev inequality II (Theorem 4.20): Assume k = dy — dg > 0. Then BV (X) C L>®(X, )
and there exists a constant C' > 0 such that for every f € BV(X) and a.e. z,y € X

[f(z) = fy)| < CVar(f).

Note that this is in contrast to the strictly local case, where no such pointwise control can be
obtained for BV functions; however, in that case, if X also supports a 1-Poincaré inequality,
then we have a pointwise control in terms of the Hardy-Littlewood maximal function of the
BV energy measure.

We also show that BV functions naturally induce Radon measures on X that we call BV
measures, see Section 4.6. In a certain sense, those measures can be thought of as gradient measures
of BV functions. Because of possible oscillatory phenomena due to the geometry of the underlying
space X, we do not expect that a given f € BV (X) has in general a unique associated BV measure.
However, Theorem 4.24 shows the remarkable fact that all the BV measures associated to a given
f are mutually equivalent. If the function f is regular enough we show in Theorem 4.31 that its
energy measure can be controlled by the lower envelope of its BV measures.

Main examples

The motivation for this paper comes from the following three standard fractal examples: unbounded
Vicsek set (Figure 1), unbounded Sierpinski gasket (Figure 2), and unbounded Sierpinski carpet
(Figure 3). The properties of BV spaces are remarkably different in these cases and, therefore, on
spaces with sub-Gaussian heat kernel bounds (3) one can expect a theory of BV functions that in
general is analogous to the BV theory in R, but in some sense richer in detail and more variable.

On the Vicsek set, as on all nested fractals, k = dyy — dg and BV functions of finite energy are
dense in L', see Theorems 5.1 and 5.2(1), with equivalent BV and energy measures. Furthermore,
in a future work on the Vicsek set one will see that we can develop a complete theory analogous to
the one dimensional case but including new oscillatory phenomena.

-

%*"i*

Figure 1: A part of an infinite, or unbounded, Vicsek set.

On the Sierpinski gasket we also have k = dy — dp, but BV functions do not even contain
piecewise harmonic functions, see Theorems 5.1 and 5.2(2), and one expects all BV functions to
be discontinuous, and BV measures to be purely atomic, see Conjecture 5.3. The absence of
intrinsically smooth functions of bounded variation is a very surprising phenomenon that has not
been observed before. On the Sierpinski gasket differentiability properties of intrinsically smooth
functions rely on delicate results following from the Furstenberg-Kesten theory of invariant measures
and Lyapunov exponents for products of i.i.d. random matrices, which includes a non-commutative
matrix version of the classical ergodic theorems. In particular, one can expect that the estimates
of the Lyapunov exponents are intimately related to the Besov-type estimates of the intrinsically



Figure 2: A part of an infinite, or unbounded, Sierpinski gasket.

smooth functions. A detailed analysis involves the mutual singularity of energy and Hausdorff
measures [27,47,48,62]. The difference in the analysis on the Vicsek set and on the Sierpinski
gasket is topological, see [54]. This will be the subject of future work in [2].

Figure 3: A part of an infinite, or unbounded, Sierpinski carpet.

On the Sierpinski carpet we conjecture that dyw—dy < k < dw—dg+dig—1, c.f. Conjecture 5.4.
Proving this fact would involve, in particular, improving estimates on the Hoélder continuity of
harmonic functions obtained in [12,15,17]. It is also closely related to the Besov critical exponents
defined in (7), and to a measurable version of isoperimetric type arguments that will be the subject
of future work. In addition, this conjecture combines the fractal analog of the Einstein-type relation
r ~ t1/4w between spatial distance r and time ¢ with a detailed analysis of the e-neighborhoods of
boundaries of open sets and our co-area formulas in Section 4.3.

Convention and notations

Throughout the paper we use ¢, C to denote positive constants that may change from line to line.
The quadruple (X, i, £, F) denotes a topological measure space (X, u) equipped with a Dirichlet
form (€, F) on L?(X, 1), where F denotes the collection of functions f € L?(X, i) for which E(f, f)
is finite. The notations dp,dy and d;g denote the Hausdorff, walk, and topological-Hausdorff
dimensions respectively, of a space X with metric d. Strictly speaking, we deal with a metric
measure space (X, d, ) equipped with a Dirichlet form (£, F). We will assume throughout the
paper that £ is associated with the metric d via the sub-Gaussian estimates (3) and the weak
Bakry-Emery curvature conditions (2) mentioned above.
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2 Preliminaries

Our assumptions are quite general, and the main classes of examples we are interested in this paper
are fractal spaces. We refer to [12,41,58,59] for further details on the following framework and
assumptions.

2.1 Metric measure Dirichlet spaces with sub-Gaussian heat kernel estimates

Let (X,d,u) be a locally compact metric measure space where p is a Radon measure supported
on X. Let now (£,F = dom(€)) be a Dirichlet form on X, that is: a densely defined, closed,
symmetric and Markovian form on L?(X, ), see [33,38]. We denote by C.(X) the vector space
of all continuous functions with compact support in X and Cy(X) its closure with respect to the
supremum norm. A core for (X, u, &, F) is a subset C of C.(X)NF which is dense in C.(X) in the
supremum norm and dense in F in the norm

1/2
1l = (112200, + D)

In the literature, this norm is sometimes denoted by H'(X,u) or W12(X, u). The Dirichlet form
£ is called regular if it admits a core. It is called strongly local if for any two functions u,v € F
with compact supports such that u is constant in a neighborhood of the support of v, we have
E(u,v) =0, see [38, Page 6]. We denote by {P;} the heat semigroup associated with the Dirichlet
space (X, &, F, u) and refer to Section 2.2 in [4] for a summary of its basic properties.

Throughout the paper, we make the following assumptions. Note that they are not independent
(some may be derived from combinations of the others); the list was chosen for comprehension rather
than minimality.

Assumption 2.1 (Regularity).
o B(z,r):={ye X |d(z,y) <r} has compact closure for any v € X and any r € (0, 00).

o 1 is Ahlfors dy-regular, i.e. there exist c1,ca,dy € (0,00) such that cyr®# < ,u(B(:B,r)) <
cord® for any x € X and any r € [O, +oo).

o & is a reqular, strongly local Dirichlet form.

Assumption 2.2 (Sub-Gaussian Heat Kernel Estimates). {P;} has a continuous heat kernel
pe(x,y) satisfying, for some cs,cq,c5,c6 € (0,00) and dy € (2, +00),

A )AL d(a,y)™ \ 7=
et /dw exp<—06(w) " 1) < pilay) < est™ 0/ eXp<_C4(($7y)) " 1> ?

t t

for uxp-a.e. (x,y) € X x X and each t € (0,+oo).



The parameter dg is the Hausdorff dimension, and the parameter dyy is called the walk dimen-
sion, even though it is, strictly speaking, not a dimension of a geometric object. It is possible to
prove that if the metric space (X, d) satisfies a chain condition, then 2 < dy < dy+1, see [14,40,42].
When dy = 2, one speaks of Gaussian estimates and when dyy > 2, one speaks then of sub-Gaussian
estimates. In this framework, it is known that the semigroup {P;} is conservative, i.e. P11 =1. It
is important to note that in this paper, unlike [5], the distance d(z,y) is not necessarily the intrinsic
distance associated with the Dirichlet form. The only link between the distance and the Dirichlet
form we need to develop our theory is the sub-Gaussian heat kernel estimates (3).

The following is an easy but frequently-used consequence of the sub-Gaussian bounds for the
heat kernel.

Lemma 2.3. Let k > 0. There are constants C,c > 0 so that for every x,y € X and t > 0,

d(z,y) pe(x,y) < Ct/Wpy(z,y). (4)

Proof. Using the sub-Gaussian estimate (3) to bound p;(x,y) from above and pq(z,y) from below,
this reduces to the observation that

1

(AT xp (e (A2 ) < (e 22T

t ct

for a suitable choice of C and c. O

2.2 Barlow’s fractional metric spaces and fractional diffusions

Our setting is closely related to the setting of fractional metric spaces with fractional diffusions
defined by Barlow [12], which differ from ours only in that they are assumed to be geodesic; later we
will see that this latter assumption implies, and is perhaps no stronger than, the weak Bakry—Emery
assumption we need in order to construct a rich theory of BV functions.

According to [12, Definition 3.2], a complete metric measure space (X, d) with a Borel measure
u is a fractional metric space of dimension dy if it is dy-Ahlfors regular and satisfies the midpoint
property, i.e. for any x,y € X there exists z € X such that d(z, z2) = d(z,y) = %d(m,y). The latter
is equivalent to requiring the space be geodesic. In this context, Barlow introduced in [12, Section 3]
a class of processes called fractional diffusions. A fractional diffusion is a p-symmetric, conservative
Feller diffusion on X for which there is a jointly continuous heat kernel p;(x,y) that is symmetric,
has the semigroup property and satisfies the sub-Gaussian estimates (3). In his notation, our P,
is in FD(dpy,dw) provided X is geodesic. We note that in this context [12, Theorem 3.20] says
2<dw <1+dp.

2.3 Heat kernel based Besov classes

Let p > 1 and a > 0. As in [4], we define the Besov seminorm

1/p
£l =supt ([ [ 1) = 1) Pmte.paue)nn )
t>0 X JX
and define the heat semigroup-based Besov class by
BP(X) = {f € L”(X,p) : [[fllpa < +oo}.

Our first goal is to compare the space B»“(X) to Besov type spaces previously considered in a
similar framework (see [41]).



For a € [0,00) and p € [1,00), we introduce the following seminorm: for f € LP(X,u) and

r € (0,00), 1/
p
Ny(fir) = ra+dH/p (// v dule )du(y)) )
and
NE(f) = thlopﬂ Ny (f.r),
where

A, ={(z,y) € X x X : d(z,y) <r}.
We then define the Besov space B7(X) by

BO(X) = {f € LP(X,p) : NJ(f) < oo}
It is clear that B52(X) C B (X) for g, az € [0,00) with a1 < as.

Theorem 2.4. [71, Theorem 3.2] Let p > 1 and o > 0. We have B5(X) = Bp’ﬁ(X) and there
exist constants cp, Cp o > 0 such that for every f € B5(X) and r > 0,

¢p sup NJ(f,s) <|If
se(0,r

1
p,a/dw < Cp,a < sup N;(fv S) + raHfHLP(X,u)) .

s€(0,r]
In particular, || fllpa/dy = SUPse(0,400) Ny (f>8), and f € LP(X, ) is in Bp’ﬁ(X) if and only if
lim sup,_,o+ Ng(f,7) < 00

Remark 2.5. The above theorem is essentially a rephrasing of [71, Theorem 3.2/, though the
estimates we obtain are slightly sharper. However, the notion of Besov spaces given in [71] considers
dyadic jumps in the parameter t; hence the proof given there is slightly more complicated than ours.
We include the relatively short proof because the estimates are useful in later sections.

Proof. We first prove the lower bound. For ¢ > 0 and a > 0 observe from (3) that
pe(,y) = esexp(—co)t™ /MW for d(z,y) < £/,

so that
1y = st 5 [ / () = £ ) Ppele, ) dpu(x)du(y)
> supt” iw / /A — fW)Ppe(z, y)du(z)du(y)

>0 1/dW

> sup s exp(—co) / /A — J)Pdp(a)duy)

>0 1 /dW

= c5exp(—cg) supNO‘(f ¢/ dwyp

from which the lower bound follows. We now turn to the upper bound. Fixing r > 0, we set

_ / / Pz, )| £ (@) — F)IP du) duy),
X JX\B(y,r)

10



B(t) = / /A ()| () — F@)P dulz) du(y),

so that [y [ [f(x) — f(W)|Ppe(x,y)du(z)du(y) = A(t) + B(t). By (3) and the inequality |f(z) —
P <2271 f@)P + £ )P,

d(z, y)
At) < // exp(—c >'2pfypduxduy
O = gawta [ fomn, @ (F70) ™) 2P duo) duty)
- d(z, y) )
= du/dw Z/ /B(W Bk 1) eXP< 04( ) [F@)IP du(x) du(y)
Pcy i (k1) iy L
th/dW Z/ y72 exp<—C4<t> w
2Pes i okd P AN e U |
Ty Zcr’ﬂ A exp(—ea () ™ (20)
dir/d _d dw 1
= s Y (S o) (o () )

<|fI%, 2p+dHC2C3Z /

p+dp d
=T, / dH/dw—lexp(_z—#lqsﬁ) s
d ].Og2 W/t

dw
r
< 08exp<—09(t> )Hf“Lp(Xu)’

_ 4w 1
where cg := 2~ W -T¢y and cg := 2PTH cyc3(dyy log 2) ! I gdm/dw—1 exp(—cgs W 1) ds.
On the other hand, for B(t), by (3) we have

Bl < // on(-en(” Ao )y 7= 15e) - S due) d)
<o Z / [ e ) - P dute) dutr

'X B(y,21=#r)\B(y,2*r)

o—kdy vy

th/dw Z// exp(—04 t )
(2'F )po‘+dH P (k) T T f)P

032 Ty xp| ¢ T ) " //A Sk, 21 k ypa-+du du(z) du(y)

k=1
d 1
dwk> dw exp<—09(rtw2 dyy (k— 1))dw1>

| /\

) )P du(y)

| /\

(rdW /t)( 2dW dw 1 1
g /dw ( 9 -1 dinr—l) d
exp 48 (A Tog2)s s

dw /t) (29w )k

| /\

)\f( )~ F)P du(z) dpy)

IN

0o TdW
<ecs3 2p0‘+dthW sup Ny (f,s pZ(
s€(0,r] =1 t

Scﬁdw sup N,'(f,s)P.
s€(0,r]

Hence one has

o

[ 1@ = s dntelantn < esexp( ~en( )Y + entE sup N0

s€(0,r]
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This yields

_ bx o C
supt & [ [ 15@) = F) P ) du@auts) < er sup NS+ G20
t>0 s€(0,r]
The proof is thus complete. O

2.4 Besov regularity of indicators of sets and density of BY® in L!

In order to have an interesting theory we certainly need our Besov spaces to contain non-constant
functions. It is also natural to be concerned with whether they are dense in the Lebesgue spaces.
Accordingly we follow [4, Section 5.2] and define critical exponents as follows:

o, = sup{a >0 : BP%(X) is dense in LP(X, 1)},

f (7)

o = sup{a > 0 : BPY(X) contains non-constant functions}.

Note that a;, < a# . In this section we concern ourselves only with a simple condition for B (X)
to be dense in L'(X, ), as this is the essential case to consider in studying functions of bounded
variation. It will become apparent when we treat the co-area formula, Theorem 4.15 that the
significant question is whether a characteristic function 1z of a Borel set E is in B%*(X), and it
is well-known that this is related to boundary regularity of the measure-theoretic boundary.

Definition 2.6. Let E C X be a Borel set. We say x is a Lebesgue density point of E and write
x € E* if
lim sup wBlw;r) N E)
rsot W(B(z,7))
The measure-theoretic boundary is 0*FE = E* N (E°)*, see e.g. [6, Section 4]. Now for r > 0 define
the measure-theoretic r-neighborhood 0FE by

> 0.

O E = (E*N(E%,;)U((E)*NE,), (8)
where E, = {x € X : p(B(z,r) N E) >0} and similarly for (E°),.

Notice that 0*E C Ny>00fE C OF, where this last is the topological boundary. We have the
following easy consequence of Theorem 2.4.

Lemma 2.7. Suppose E C X is a finite measure Borel set such that

lim sup =% (87 E) < oo,
r—0t

then 1p € BL(X).

Proof. From Theorem 2.4 it suffices to show that limsup,_,o+ Ny' W (1p,r) < 0o, however comput-
ing directly from the definition (6)

NE (L) = g | / 15(2) — 1u)] du(z) duy)
= T'OédVV+dH</EM(B( r) N E°) du(y) + /Ec,u(B y,r) N E) d,u(y)>
dp(

(
1 C
= adw Ty (/E*m(EC)T M(B(y,r) NE ) y) + /(EC)*OET ,u(B(y, )N E) d,u(y))
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< 2e9r W 1 (OFE),

where we used Ahlfors regularity both to ensure Lebesgue density points have full measure (see [45,
Lemma 1.8] or [46, Section 3.4]) so as to pass from E to E* and from E° to (E€)*, and for the
estimate pu(B(y,r)) < cords. O

Note that in the above lemma we must have ady < dg because the measure of the r-
neighborhood of a point is bounded below by ¢r® . Rephrasing the above in terms of the critical
exponents and using the density in L'(X, 1) of the set of characteristic functions of a basis for the
topology we have the following result.

Corollary 2.8. If there is a non-empty open set E with pi(E) < 0o and limsup, g+ r =W u(9*F) <
oo, then o&% > «. If this estimate is true for a family of open sets E which generates the topology

of X, then a] > a.

3 Weak Bakry-Emery curvature condition

In this section we introduce the key condition that will allow us to study the BV class. This
condition, called wBE(k), is the Holder analogue of the weak Bakry-Emery curvature condition
that was previously introduced in strictly local Dirichlet spaces (see [5,25]). It quantifies a uniform
regularization property of the heat semigroup in a scale invariant manner.

3.1 Definition of wBE(k)

Definition 3.1. We say that (X, u, &, F) satisfies the weak Bakry—Emery non-negative curvature
condition wBE(k) if there exist a constant C' > 0 and a parameter 0 < k < dw such that for every
t>0,g€L>®X,pu) and z,y € X,

d(z,y)"
tlﬂ)/dw

|Prg(x) — Pg(y)| < C 191l £oe (x,10)- 9)
Remark 3.2. We note that if (X, d) satisfies a chain condition as in [41, Section 7], then one must
have k < 1. The chain condition is that there is a constant Cp > 0 so that for each x,y € X and
positive integers m > 2, there is a sequence of points x = x1,xa, -+ ,Tn =y from X such that for
j=1,---,n—1 we have d(xj,xj4+1) < %d(x,y). Indeed, it is easily seen that the chain condition
implies that a-Hélder functions g with o > 1 need to be constant, for then we have for each integer
n > 2,

n—1 n—1
l9(x) —g()| <> lgla;) — g(zi)| < CCR D n*d(z,y)* < C O d(w,y)*n' ™7,
j=1 j=1

and as o > 1, letting n — oo shows that g(x) = g(y).

Since P, is a contraction in L (X, ), the estimate (9) is only relevant when d(zx,y) is small
compared to t1/9" . In particular, one has the following result:

Lemma 3.3. If (X, pu, &, F) satisfies wBE(k) for some 0 < k < dw, then it satisfies wBE(x') for
every 0 < k' < k.
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Proof. Since (t_l/de(:E, y))" < (t_l/de(:U, y))ﬁl if d(z,y) < tY/9w | it suffices to consider d(z,y) >
t1/4w  for which the result follows from the estimate

d(z,y)"

|Pig(x) — Prg(y)| < 2[|Pegllpes(x,0) < 209l oo (x ) < 2 7y 191l oo (xp0)- O

The weak Bakry—Emery condition is also related to the Holder regularity of the heat kernel.

Lemma 3.4. Assume that (X, p,E, F) satisfies the weak Bakry-Emery condition wBE(k). Then,
there exists a constant C > 0 such that for everyt >0, x,y,z € X,

d(x,y)"
I, 2) — uly,2)| < O eI (10)

Proof. The weak Bakry—Emery estimate is equivalent to

d(z,y)"
tl‘i/dw ’

/ pe(2, 2) = pe(y, 2)|du(z) < C
X

so the result follows by computing
pe(a2) — pu(y, ) = \ [ a0 = bl w2

C
< {utin /X [Py, u) = prya(y, w)ldp(u). a

Remark 3.5. Note that if (3) holds, then there always exists k € (0,1) such that (10) holds for
everyt >0, p-a.e. x,y,z € X, see for instance [34, Proposition 4.5], or [44, Section 5.3]. However
one should not expect [34,44] to give the optimal k.

Remark 3.6. Suppose (X,d, ) is Ahlfors dg-regular and the heat kernel satisfies the sub-Gaussian
upper bound in (3). Then validity of the weak Bakry-Emery curvature condition (9) implies the
sub-Gaussian lower bound for the heat kernel in (3) for everyt > 0, p-a.e. x,y € X. This is es-
tablished using the proof of [34, Theorem 3.1], for which one needs to know that py(x,y) > ct—4u/dw
on d(z,y) < at’ W for some a > 0. In order to validate the latter, we first note that the Ahlfors
dr-reqularity and heat kernel upper bound imply that for any t > 0 and p-a.e. x € M, we have
pe(z,x) > ct=1/dw  Indeed, this can be obtained by applying the conservativeness property of the
heat semigroup and Jensen’s inequality. Furthermore, the weak Bakry—Emery condition gives (10)
from which we obtain a suitable a > 0 via the computation:

d(z,y)" (at*/dw )~ 1
‘pt(xax) *pt(yvl‘” < Ct(HJFdH)/dW < C tﬁ/dW Pt($a$) < ipt(x’x)'

3.2 Fractional metric spaces satisfying wBE(k)

Recall from Section 2.2 that if X is geodesic then our assumptions put us in Barlow’s class of
fractional metric spaces with fractional diffusions. Assuming this, and that the dimension of the
state space is small compared to the walk dimension, specifically that dg < dy, we can use Barlow’s
results to obtain a weak Bakry-Emery inequality. Specifically, [12, Theorem 3.40] says that then
for any A > 0, z,y € X and f € L>®(X, p),

UnF(x) = U ()| < CX™ 8w d(, )™ = || ]| o (x.1)» (11)

where {Uy} >0 is the resolvent associated with P;. The latter may be written as (L — A\)~! using
the generator L for which P, = e'r'. From this we deduce wBE(dy — dp) as follows.
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Theorem 3.7. A fractional metric space (X,d, ) for which 1 < dpg < dw satisfies wBE (k) with
R = dW — dH.

Proof. Let f € L>®(X,u) and A > 0. Since the heat semigroup solves the heat equation, we have
LP, = %, and so

(= NPf@ < [ |Gono) = o) | du) | =xn:

Applying [35, Corollary 5] and the sub-Gaussian estimates in (3), we obtain

0 C 4o d(x, )W\ 7= C
‘apt(x,y)‘ < St W exp ( - C((t)) w 1) < S pe(.y),
where the two pairs of constants ¢, C' are different. By the conservativeness property of the heat

semigroup, i.e. fX pe(x,y)du(y) = 1, we obtain

C

C
(L= NPI@] < [ (Gratem) + o) du@ e < (5 +X) 1 lcon

X
Then, we note that P,f = Uy(L — A\)P,f. Therefore, in view of (11), for any A > 0 and z,y € X
we have

_dy
|Pif(z) — Pof(y)| < CX” W d(z,y)™ (L = N)Pof || poo(x0)
~an dw—dm C
< ONTW d(, )™ (4 2 [l -

So choosing A = C/t, it follows that

dyy —d

_wTeH
\Pif(z) — Pf(y)| < Ct w d(z, y)™ || £l oo (x- O

We remark that the proof of (11) uses the geodesic property in two places. In one, the proof
of [12, Corollary 3.38], one can use Ahlfors regularity instead, but its use in the proof of [12,
Lemma 3.9] is more subtle. More significantly, we will see that the weak Bakry—Emery estimate
wBE(dw — dp) is optimal for finitely ramified sets like the Sierpinski gasket or Vicsek set in the
sense that wBE(k) is not satisfied if k > dw — di. However we believe it is not optimal for the
Sierpinski carpet, see Conjecture 5.4. In view of the discussion in Section 3.5, the Vicsek set may
be particularly interesting because k = 1 and the Vicsek set is a dendrite, see [57,81].

3.3 Stability of wBE(k) by tensorization

The condition wBE(k) is stable under tensor powers. This yields many examples, and is important
in analysis on fractals, see [29,53,78,79].
Let (X,d, ) satisfy the assumptions 2.1 and 2.2. Consider (X", dx»,u®"), where the metric
/

dxn is defined as follows: for any x = (21,29, - ,x,) € X" and X' = (2,2, ,2]) € X",

dyy n dyy
dxn(x,x')w-1 = dx (zi, ) w1,
i=1
Then (X", dxn, u®") is Ahlfors ndy-regular and the heat kernel on X" given by
P (%, y) = pilar, v1) -+ pe(wn, yn)

satisfies the sub-Gaussian bounds (3) with d(x,y) replaced by d(x,y).
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Proposition 3.8. If (X,d, u) satisfies wBE(k), then (X™, dxn, u®") also satisfies wBE(k).

Proof. Let f € L>®(X",u®"). Given x,x' € X" we may estimate the change in PX"f due to
changing a single component of x using wBE(k) on X:

‘Pt nf(x/h"'7‘%‘;—17171')"'7:1:71)_]315 nf(w/h"'7'17;71‘24-17"'71‘71)‘
n—1 n—1
< }Pt(PtX f(xllv ’li;flf’xi-i-lv"' aﬁn))(mi)_Pt(PtX f(xllv ’xéflv'vl’i-&-lv'” ,:En))(.%‘;)‘
d(;pi’x;)'{ xn—1 / / d(xiainé)ﬁ
< CW HPt fQ@ @y, @i, @) Loo(Xo) = W||f”L°°(X")~

Bounding the change in each component in this manner and summing over components yield

dX” (Xa X/)H

tr/dw HfHLOO(X”)a

n n 1 = .
’Pt f(x)—P; f(xl)‘ < CW (Z; d(x;, x5) ) [l fllpoe(xny < C
where C' is independent of n if k > 1. O

3.4 Continuity of P, in BP“ for p > 2 and pseudo-Poincaré inequalities

In this section, we study the continuity of the heat semigroup in the Besov spaces in the range p > 2.
This complements the results of [4, Section 5.1] which treated the case 1 < p < 2 without the weak
Bakry-Emery estimate (9). We also obtain the pseudo-Poincaré inequalities in Proposition 3.10.
These are a key technical tool in our work, especially in the case p = 1 which is an analog of [5,
Lemma 4.3] in the sub-Gaussian setting.
In what follows we use the following notation. For 1 < p < oo let
2\ K 1

e (-2 2

and note that the restriction 0 < x < dy in (9) implies 0 < g, < 1.

Theorem 3.9. If (X, u,E, F) satisfies the weak Bakry-Emery condition wBE(k) and 2 < p < o0
then there is C' > 0 such that for everyt >0 and f € LP(X, )

1P f

C
|p7/3p < t@”fHLP(X,My

In particular, for t >0, Py : LP(X, ) — BPP(X) is bounded.

Proof. Consider the map P, defined by P.f(x,y) = P.f(x) — P.f(y). It was proved in [4, Propo-
sition 4.6] that || f Hgl /2= 2E(f, f). Applying this to P,f we conclude from standard estimates
that || P f]l2,1/2 < Ct—1/2||f||L2(X,p) (see also [4, Theorem 5.1]), which is equivalent to the following

bound, valid for all s > 0:

[ [ o) P @)~ Pt ) Panta) i) < €51
XJX

Here we view this as saying P; : L?(X, p) — L*(X x X, pspt ® p) is bounded by C(%)UZ.

We now consider the case where f € L>®(X, u), s,t > 0, and ¢ > 1. Fix a compact set K and
compute using the weak Bakry-Emery condition (9) and (4) that

</K /Xps(x’ YIPf(x) = Pof(y)|dp(x) du(y)> N

16



< Ol ([ [ pemriteyytante) )

< Ol fl=(5) e < /K /X pcs<x,y>du<x>du<y>)1/q

=l ) T

Since (K x X, psu®pu) is a finite measure space we conclude on sending ¢ — oo that Py : L®(X, u) —

L*(K x X, ps,u, ® p) with bound C(%)K/dw, but since the bound does not depend on K it is valid
also for Py : L=°(X, u) — L*=°(X x X, psut®@pu). By the Riesz-Thorin interpolation theorem it follows

that Py : LP(X, u) — LP(X x X, psp ® p) and is bounded by C’( ) so dividing by s% and taking
the supremum over s > 0 gives the result. O

Among our main applications of the weak Bakry—Emery condition wBE(k) are the following
pseudo-Poincaré inequalities for the semigroup when 1 < p < 2. These complement those for p > 2
which were obtained without wBE(k) in [4, Proposition 5.3].

Proposition 3.10 (Pseudo-Poincaré inequalities). Let 1 < p < 2. If (X, u, E, F) satisfies the weak
Bakry-Emery condition wBE(k), then there is C > 0 such that for every f € LP(X,pn), and t > 0,

1/p
IPf — Fllineg < CH% hmmf< / / pr(2,9)|f (@ (y)pdu(:v)du(y)> .

=0t TP

Proof. We denote

w0y =1 [ alr=Pvdu=5- [ [ oo ula) = ) (0(0) = o) dite)dnto)

Fix f € LP(X,pu) and h € LY X, pu) where p and ¢ are conjugate exponents. Using the strong
continuity of the semigroup P, in L'(X, p1), one has for ¢ > 0,

1 t+7 T
/ (P.f — f)hdu = lim / (/ P, fds —/ Pfds)hdu
=0t T 0
lim / / Psirf — Pf)hd,uds—— hm / E-(Psf,h) (13)
In the case p =1 we now estimate E-(Psf, h) = E-(f, Psh) using wBE(x) and then (4) as follows:
205 P < 7 [ [ prlaalPabia) = P)I£(@) ~ F)ldue)du(y
<l [ [ pole)ite, ) @) - F0)ldn(e)duty)
TSMW Jx Jx
1
< C||hfl e —7g——5" Per (@, 9)|f(z) — f(y)|du(z)du(y). (14)
seldw b [ [
The 1 < p < 2 case is similar except that we use Holder’s inequality and Theorem 3.9 to obtain
20e- (£, 21| < 1 [ ol Pb@) = P @) = F)ldua)duty)
< 7 HP Pl La(x x X jpr ducdp) T HPOfHLP(XXX,pTdu@du)
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1/p
5055q||h||Lq(X,u)Tﬁp</X /X pT<x,y>|f<z>—f<y>\pdu<x>du<y>) . (1)

Integrating (14) and (15) over s € (0,¢) as in (13) and taking liminf__ g+ give for 1 <p <2:

1/p
[t = ptn] < sy tmint ([ [ prtel o) - rp e du))
so the conclusion follows by LP — L? duality. O

3.5 [LP—Besov critical exponents and generalized Riesz transforms

Recall that the density or triviality of the spaces BP“(X) can be described using the critical
exponents aj, < a# , where the former is supremal for density in LP and the latter supremal for
containing non-constant functions, see (7). In this section we give bounds on the exponents that
follow from the weak Bakry-Emery condition (9), using the notation Bp from (12). Bounds without
this condition were proved in [4, Section 5.2], namely % < 04; if 1 <p<2and oc# < % if p> 2.

Theorem 3.11. If (X, u,E, F) satisfies the weak Bakry-Emery condition wBE(k) then:
° F0r1§p§2wehave%ﬁazgaﬁgﬁp.
e Forp>2 we haveﬁpga;‘,gaﬁgé.

Proof. If 1 <p <2 and o > B, then for f € B»*(X) we have

1/p
liminf — </ / pr(x,y)|f(z) — f(y)|P du(x) du(y)) < lim(i)r+1f 75| fllpa = O,
T—

T—=0T Tﬁp

so Proposition 3.10 implies P,f = f for all ¢ > 0. Since the heat kernel upper bound implies by
interpolation the estimate

C
1P fll oo () < =z 1 2o )
trdw

we deduce by letting ¢ — +oo that f is zero and thus constant. This gives af <Bpforl<p<2
The bound a, > l is true even without the weak Bakry-Emery inequality, see [4, Proposition 5.6].
Since ||f||2 12 = = 2&(f, f), see [4, Proposition 4.6], Proposition 3.10 also shows that E(f, f) =0

implies f is constant, under which hypothesis a# < % was proven for p > 2 in [4, Proposition 5.6].
For the other inequality, if p > 2 then Theorem 3.9 says P, f € BP’»(X) whenever f € LP(X, p);
since P;f — f in LP(X, ) when t — 0 we conclude that BP#(X) is dense in LP(X, 1) and hence
Bp < . O

Remark 3.12. Note that from 1 > % one deduces that k < dTW. If (X,d) satisfies a chain

condition, then from Remark 3.2, one has k < 1. Thus, in that case, if k = dTW, one actually has
k=1 and dy = 2, meaning that the heat kernel has Gaussian estimates.

The next corollary shows that the upper bound x = dTW may only be achieved in Dirichlet
spaces that admit a carré du champ.
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Corollary 3.13. If (X,d,u) satisfies wBE(k) with k = dTW, then the form £ admits a carré du
chamyp operator. More precisely, for every f € L>(X, u) N F there is T(f, f) € L'(X,n) such that
forall g € L®(X,u)NF,

Proof. If (X,d, ) satisfies wBE(k) with k = dTW then B8, = 3 for every p > 1, so Theorem 3.11
yields aj = oz}i7£ = 1. It follows that B?!/2(X) N F is dense in F in the norm &)+ Hf||%2)1/2,

and the existence of the carré du champ operator is provided by Corollary 4.12 in [4]. O
It is natural to ask under what conditions one has aj, = af = f3p for the optimal x such that

wBE(k) is satisfied. This is a question for future study, however it seems worthwhile to briefly
comment here on the connection of this problem to a natural notion of Riesz transform. For p > 1,
€ (0,1], let us say that X satisfies (R, o) if there exists a constant C' = C), , such that

[fllp.a < ClI=L)* Fll o (x.10):

for all f in a suitable domain. For instance, in the strictly local framework of [5], under the
strong Bakry-Emery curvature condition, Corollary 4.10 in [5] gives ||f||p 12 ™~ Jx T(f, £)P2dp and
(Rp,1/2) is therefore equivalent to boundedness of the Riesz transform in LP(X, ).

In the present setting one has the following result.

Lemma 3.14. For 1 < p < 2, validity of (R, ,) implies o, = [3p.
Proof. By analyticity of the semigroup, one has for every f € LP(X, p),

C
1Pfllps, < CN(—=L)Pofllo(x ) < t?p”fHLP(X,M)'

Therefore, for ¢t > 0, P, : LP(X,u) — BP#»(X) is bounded. In addition, the heat semigroup is
strongly continuous on LP(X,pu) for 1 <p <2, ie., ||Pf — fllre(x,u) — 0 as t tends to 0. We thus
conclude that BP(X) is dense in LP(X, i) and ay, > Bp. The proof is complete by recalling that
ay, < Bp from Theorem 3.11. O

4 BYV class

We now turn to the highlight of our paper and define the BV class. As always, we assume that
(X, d, p) satisfies the standing Assumption 2.1 and Assumption 2.2.

4.1 L' Korevaar-Schoen and BV class

To motivate our definition of the BV class, we first introduce the scale of L' Korevaar-Schoen type
spaces (see [60,61] for the classical definitions). For A > 0, we define the space KS*!'(X) to be
those f € L'(X, ) for which

sy = imsup [ / )’ dyu(y) du(z) < +oo.

r—0+

where we recall that A, = {(z,y) € X x X : d(z, y) < r}. Similarly, we define the space KS™!(X)
to be those f € L(X, u) for which

I lhesa) = sup / /A )' duu(y) dp() < +oo.
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Proposition 4.1. For A > 0,

1.2

KSM(X) = KSM(X) =B aw (X).

A
Moreover, KSM (X)) and BLW(X) have equivalent norms.

Remark 4.2. We note that KSM(X) and KS(X) do not have equivalent norms in general, but
that the inequality || fllxsni(x) < 1fllcsri(xy s always true.

A

Proof. The fact that KSM(X) and B 7w w (X) are equal with comparable norms follows from
Theorem 2.4, and the inclusion KSM (X) ¢ KSM (X) is immediate. Thus it remains to prove that
KSM(X )CICS/\l( ). If f € KSM(X), take € > 0 so that we have

o ([ r ()Bf W) = T gy () < 20 s

re(0,e]

Using |f(z) — f(y)| < |f(z)| + |f(y)| and e1r?® < p(B(z,7)) < cor®, one has for r > &

C
J[ Bty ante) < o [ 05+ 1) dut) dnt)

< e [ FO(B) duty
C

C
< Tj”f”ﬂ(x,@ < EijHLl(X,u)-

Combining this with the estimate when r € (0, €] gives || fllcgra < Cmax{e || f|ln1(x), 2/l f | xegr }-
[

In this, and what follows, we set
A} = sup{\ >0 : KSM(X) is dense in L' (X, u)},
AP = sup{A > 0 : KS™'(X) contains non-constant functions.}.

Remark 4.3. Though it is not directly relevant to the L' theory of BV functions developed here,

we point out it is possible to prove that for the L? critical exponents one has Ny = )\72éﬁ = dTW and

that KSdTW’2(X) = ICSdTW’2(X) = F with comparable norms. The proof will appear in a later work.
We can now define the BV class.
Definition 4.4. Let BV (X) := K 1(X)and for f € BV(X) define

= 11m 1in )| X
Var(f lr_)0+f//A (5 ))d u(y) du(z).

#
Note that from Proposition 4.1 one has BV (X) = Blef (X), where afﬁ = 2—;‘/ is the L'-Besov
critical exponent.

Example 4.5. For nested fractals /\71éﬁ =\ =dwa] =dpg, as we will see in Theorem 5.1. For the
In2

Sierpinski carpet one conjectures )\f& =\ =dyg —dig + 1, where diyg = ad + 1 s the topological-
n

Hausdorff dimension of the Sierpinski carpet defined in [9, Theorem 5.4], see Conjecture 5.4.
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4.2 Locality property of BV functions

Throughout the remainder of this section we make the following crucial assumption.
Assumption 4.6. X satisfies wBE(k) with k = dy — A\ = dy (1 — o).
From Lemma 3.3 and Theorem 3.11, this implies that
k = sup{r’ : X satisfies wBE(x")}.

Example 4.7. From Theorems 3.7 and 3.8, if X is a nested fractal, then for every n > 1, X"
satisfies wBE(k) with k = dw (1 — of) = dw — dimg(X).

Remark 4.8. If X satisfies wBE (k) with k = dy — A} = dw (1 — aF), then from Theorem 3.11,
one has \] = /\f’E and thus Assumption 4.6 is satisfied.

For f € LY(X, i), let

M, f(x) = [f (@) = f(y)ldu(y)

e
rdw=ru(B(z,7)) J (o)

so that
Var(f —hmlnf/ M, f(x) du(zx).

r—0+

An important result is that wBFE(k) implies the following locality property of the || - ||171_dL
w

Besov seminorm:

Theorem 4.9. There exist constants ¢,C > 0 such that for every f € BV (X),
Var(f) < £l e < CVar(f)

where we recall that || - ||11— = s the Besov seminorm for BLI#/dw (X)), see (5). Consequently
w
there is C' > 0 such that for every f € BV (X),

sup / M, f(y)dp(y) < Climinf /X M, (y)dp(y),

r>0JX r—=0T
and the two Korevaar-Schoen spaces KSM (X)) and KSM (X)) have equivalent norms for A = dyy —k.

We divide the proof of Theorem 4.9 into several lemmas. For f € L'(X,u), we will use the
notation

Var,(f) =1i f
arel) = Imgt o=

/ / pe(z,y)|f (@) = f(y)] du(z) duly).

The next two results are useful consequences of the Fubini theorem. In this and several later
results, for f € L1(X, ) we use the notation Ey(f) = {z € X : f(z) > t}. We note that if f >0
a.e. and ¢ > 0, then 1g, ) € LY (X, i) and therefore Proposition 3.10 applies to 1g,p)-

Lemma 4.10. If f € LY (X, u) and g € L®(X, i), f,g > 0 a.e., then

/ / s, ) F () — F ()] dia()dpa(y)
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< /0 (HPs(glEt<f>) = 95l 1 x ) + 1Pl x\m(s) — ng\Et(f)HLl(X,u)> dt.

In particular, if g =1 then

/X /X ps(,9) (@) = F(y)] dp(w)dply) <2 / 1P (L) = Ll o o

Proof. Let A={(z,y) € X x X : f(z) < f(y)}. Then for s > 0,

/ / s ()| (@) — £()] dp()dp(y)
- / (9(2) + 9(0))pa(z, )| £ (@) — )| dpu()ds(y)

f)
= [ [ e n)6@) + g)auaranty
4ty
- / / / Li(@). () (V) diLa(2,y) ps(,y)(9(x) + 9(y))dp(z)dply)
X JXJO
- /0 /X /XlEt(f)(y)[l_1Et(f)($)]ps($,y) (9(z) + 9(y)du(z)du(y) dt
:/0 /X\Et(f) Ps(g1,(p))(2) du(x) dt+/0 /Et(f) Py(glx\ g, () (@) dulz) dt.

The result now follows from the fact that |Ps(g1g,s)) — 91g,(p| = [Ps(91E, )| on X\ E(f) and
similarly for the other term.

In particular, when g = 1, there holds fX\Et(f) Pi(1g,(5))(x) fEt Ps(1x\g,(5)) () du(z).
Thus we conclude the proof. O

Lemma 4.11. If f € L}(X,p), f > 0 a.e., then

/ Var*(lEt(f)) dt § Var*(f)
0

Proof. We compute by using Lemma 4.10 and Fatou’s lemma
/ Var,( 1Et ) dt
:/0 lim inf ——= 7177 / / Pr(, ) L, (p) (@) — 1g, () (y)| du(z) duly) dt
e ([ @) - 15 Wit ) duto) duto)
e 2
<timinf = [ po(e.9) (/) ~ F0)) dulz) dity)

T—=0T -

— liminf / / pe ()| () — £(@)] dula) dia(y). 0

T—0t 7—

< lim inf =
o0t STy

Combining our results thus far we have the following.

Lemma 4.12. There is C > 0 so for every f € L' (X, i),

[fll11- = < CVary(f).
w
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Proof. We first recall the L'-pseudo-Poincaré inequality in Proposition 3.10, namely, for any f €
LY(X,p) and t > 0,
I1Pef = flls g < O Var,(f).

Considering f, = (f + n)+ and letting E(f,) = {z € X : f(x) > t}, we apply the above pseudo-
Poincaré inequality to the integrand in the expression in Lemma 4.10 with ¢ = 1 and obtain from
Lemma 4.11

/X /X pe(, )| ful) — fu ()] dpa()dpy) < 2 /0 1Pl gy — Lo ot (et
SCsl'{/dW/ Var,(1g,(f,))dt
0
< Cs' "W Var,(f,).

Letting n — oo, dividing by s'~%/9w and taking the supremum concludes the proof. O

Combining the preceeding results with arguments from Theorem 2.4 proves our final lemma
and completes the proof of Theorem 4.9.

Lemma 4.13. There exist constants C1,Ca > 0 such that for every f € BV (X),
CyVar,(f) < Var(f) < CyVar,(f).

Proof. The second inequality is obtained using the definition and Theorem 2.4 to see that

Var(f <sup/ Mef(g)dpy) < O Fll- =

r>0

and applying Lemma 4.12. To prove the first inequality we decompose as in the proof of Theo-
rem 2.4. Fix f € L}(X, ), and 6,t > 0. Write

:tlw /X /X P, 9) | £(z) — F@)] dia(z) dp(y)

and estimate as follows. Let r = 6t/ . For d(z,y) < 6t/ the sub-Gaussian upper bound (3)
implies py(x,y) < Ct=%/4W 5o that

o [ eI — ) ) < g [ 1) - @) dute) )
< €ttt | Mo say F0)dn(y) i= ()
X

For d(z,y) > 6t/ we instead use the sub-Gaussian bounds (3) to see there are ¢,C' > 1 and
¢ > 0 such that

d dw -
pi(z,y) < Cexp (—c’((aj’f) )dW '

dy
>pct(ﬂf,y) < Cexp(—d6w 1) pa(z,y)

and therefore

1
= /X /X o IS = Tl ) )
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< B(t) + Coxp(—d5Tw 1) /X /X o PalE @)~ ) ) )
< B(t) + AW(ct), (17)

where A is a constant that can be made as small as we desire by making d large enough. We choose
§ so that A < . Observe that with ¢ = c=("*1) (17) gives

U= H)) < B¢ FDY 4 AW (™). (18)

Now suppose f € BV (X). Then limsup, ,o+ [y My f(y)du(y) < oo and therefore there is M’
s0 sup,>; @ (¢7") < M’ < +oo. For M = max{M’, ¥(c™ 1)} it is easily checked by induction
from (18) that ¥(c™") < (1 — A"). This implies Var,(f) = liminf, ,o+ U(¢) < co. On the
other hand, from Lemma 4.12 one has ¥(t) < C'Var,(f). Hence the estimate in (17) yields

U(t) < B(t) + ACVar,(f).

Fixing § such that AC < 1 and taking liminf;, ,y+, one deduces CyVar,(f) < Var(f).

4.3 Co-area formula

From computations of the previous section, we may immediately deduce several other properties
of Var.

Lemma 4.14. If f € LY(X,u) has Var(f) = 0 then f = 0. Moreover there is C > 0 so for
f,9 € BV(X)

Var(f + g) < C(Var(f) + Var(g)),
Var(fg) < C(IIfll oo (x,uyVar(g) + llgll Lo (x,) Var(f)).

Proof. Let f € L'(X,u) such that Var(f) = 0. By Theorem 4.9, one has 1 £1l1,1=r/dy = 0 and
thus f is constant. We conclude the first point by recalling that f € L'(X, u1). In light of Theorem

4.9 it suffices to establish the stated inequalities for [| - |11 _=, but we recall
w
1
1hfl11- 5 = sup 4— pe(x,y)|h(x) — h(y)| du(x) du(y)
w t>0 ¢t dw JX JX

and when h = f + g write |h(x) — h(y)| < |f(z) — f(y)| + |g(x) — g(y)| while for h = fg write
[h(z) = h(y)| < [f(@)llg(@) — 9| + lgW)IIf (@) — f(y)]
from which the result is immediate. O

The next result plays the role of a co-area formula.

Theorem 4.15 (Co-area Formula). For f € LY(X,p), f >0 a.e., let Ei(f) = {zx € X : f(x) > t}.
There are constants C7,Cy > 0 such that

C’l/ Var(1g,(f))dt < Var(f) < 02/ Var(1g, () )dt.
0 0

In particular, if f € BV(X) then for almost every t, 1,y € BV(X). Conversely, if for almost
every t >0, 1g,(p) € BV(X) and [;* Var(1g,(y))dt < co, then f € BV (X).
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Proof. The first bound C [;° Var(1g,(s))dt < Var(f) follows from Lemma 4.13 and Lemma 4.11.
For the second bound, we use Lemma 4.10 with g = 1 and the definition of the || - [|1 ;_,/q,, norm
to obtain

1,1—r/dyy b

/ / pe(, )| (@) — () du(x)dpu(y) < 2 / / (Pe=D)1 gy py| dpedt < 251/ / 150
X X 0 X 0

Dividing by s'~*/% and taking lim inf, .o, bound Var,(f). The result then follows by dominating
the integrand on the right using Lemma 4.12. O

4.4 Sets of finite perimeter

Using the BV seminorm we can use the standard approach to define the perimeter of measurable
sets.

Definition 4.16. Let E C X be a Borel set. We say that E has a finite perimeter if 1y € BV (X).
In that case, the perimeter of E is defined as P(E) = Var(1g).

The locality of the BV seminorm permits an improvement of the crude bound used in Lemma 2.7
to determine that a set had finite perimeter. In essence, we can replace the upper Minkowski
content used there with a corresponding (dy — k)-codimensional lower Minskowski content defined
as follows:

Ciyy—r(E) = liminf

r—0+ rdw=—r

n(07E),
with O F as in (8).
Theorem 4.17. Under Assumption 4.6 we have

P(B) < CC,, _,(E).

In particular, any set for which N0} E has finite (dw — k)-codimensional lower Minskowski content
has finite perimeter.

Proof. The following inequality was shown in the proof of Lemma 2.7
[ 5@ =150 dut dute) < o33,
Dividing both sides of the inequality by r¢# 9w =% and taking lim inf as 7 — 0% yields the result. [

4.5 Sobolev inequality

It is well known that in the Euclidean space R"”, there is a continuous embedding of BV into
LY (R™), where 1% =1- % is the critical L'- Sobolev exponent. In our setting, using the results of
our previous paper [4], one can prove a continuous embedding of BV (X) into L' (X, 1) where the
critical Sobolev exponent 1* is given by the formula

1 dw — K

e
1* dy

The relevant theorem is the following.
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Theorem 4.18. Assume dy — x < dg. Then BV(X) C LY (X, u) and there is C > 0 such that
for every f € BV (X)),
[l (x ) < CVar(f).
In particular, there exists a constant C' > 0 such that for every set E of finite perimeter,
dp—dyy +r

WE) @ < CP(B).

Proof. From the heat kernel upper bound (3), one has the ultracontractive estimate py(z,y) <

HH%W' Moreover, from Theorem 4.9, one has for every f € Bl’l_W(X ),

£l < Climint = [ PAIF = F0)D()duto).
w s dw JX

s—0t

This verifies a condition denoted by (Py,;— =) in Definition 6.7 of [4], putting us in the framework
w

of [4, Theorem 6.9] with p=1, aa=1— ﬁ and 8 = g—vf;. So we have
1A ey < Ol e
and the result follows from Theorem 4.9. O

Remark 4.19. On the product space of nested fractals (X™, dxn, u®"), one has k = dy — dy(X).
Thus the Sobolev exponent 1* is given by
1 _dw — (dw — du(X)) 1

Bal —1_=
1* dH(X") ’

3

and the isoperimetric inequality becomes

These coincide with the Euclidean space R™.

For the case k = dy —d g that corresponds to the situation in Theorem 3.7, one has the following
result. For f € L>®(X, u), we use Osc(f) to denote the essential supremum of | f(z)—f(y)|, z,y € X.

Proposition 4.20. Assume k = dyw — dyg > 0. Then BV (X) C L*®(X,u) and there exists a
constant C > 0 such that for every f € BV (X),

Osc(f) < CVar(f).

Proof. Let f € BV (X). Without loss of generality, we can assume f > 0 almost everywhere. For
almost every ¢ > 0 we define the set Ei(f) = {x € X : f(x) > t}. Since k = dw —dg > 0,
according to [4, Corollary 6.6], there is ¢ > 0 such that for every set E of finite perimeter and
positive measure, one has P(F) > c¢. However, from Theorem 4.15, there is C' > 0, such that

/OO P(E(f))dt = /00 Var(1g,y)) dt < C'Var(f) < +o0.
0 0

Therefore the set X(f) of t values for which pu(E:(f)) > 0 has finite Lebesgue measure. So from
Fubini’s theorem,
| [ tep@atda) = [ a(En)a=o
X JR\Z; R\
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and fR\Ef 1g,(f)(z)dt = 0 almost everywhere. Thus for almost every x,y € X

+oo
) - f(@)] = /0 L) (2) — Ly (9)]dt = /E () = L o)
1

<o [ p@wa s Svap. O
¢ J%(f) ¢

4.6 BYV measures

Recall that for f € L'(X, i) we set

B 1
—rdwru(B(y, )

Definition 4.21. Let f € BV(X). A BV measure vy is a Radon measure on X such that there
exists a sequence rn, \ 0, such that for every g € Co(X),

M. f(y)

[ 1) - fwlduta).
B(y,r)

lim [ gM,, fdu = / gdyy.
X X

n—-+o0o

In other words, a BV measure is a cluster point of the family of measures M., fdu, r > 0, in
the vague topology on the space of Radon measures.

Lemma 4.22. If f € BV(X), there exists at least one associated BV measure .

Proof. Let pr be the measure dyy := M, f du. Note that for every r > 0, pur(X) < C|fl[11- =,
w
thus there is a sequence r, — 07 and a Radon measure vy on X, such that p,, converges vaguely

to ’7f.
O

Remark 4.23. On certain fractal spaces it is known that the heat kernel has oscillations which
preclude existence of a limiting density for a Weyl asymptotic [55, 58, 63,64, 68, 72,713, 82, 83, and
references therein/. Given the connection between Var(f) and Var,(f), this suggests that measures
of the type vy may fail to be unique, but we do not study this phenomenon here. In the absence of
uniqueness it is natural to consider upper and lower envelopes, which are discussed under certain
extra assumptions in section 4.7, see in particular (20) and Theorem 4.31. Upper envelope BV
measures can be defined in a similar manner to (20), but are omitted for the sake of brevity.

In the following, we denote by D the following class:
D={Pu:e>0,uecCX)}.

Since the semigroup P; is Feller, D is dense for the supremum norm in Cy(X). We note that from
wBE(k), functions in D are k-Holder continuous.

Theorem 4.24. There exist constants ¢,C > 0 such that for every f € BV (X) N L>(X,u) and
associated BV measure vy we have for every g € D, g > 0,

clim sup /X 9(y) Qe f(y)du(y) < /X 9(y)dvs(y) < Climinf /X 9(y) Qe f(y)du(y),

t—0t t—0t

27



where

Q1) = == [ mle.n)If@) ~ [l (o)

t w

In particular, all the BV measures associated to a given f are mutually equivalent with uniformly
bounded densities.

The proof of the theorem is rather long and will be divided into several lemmas.
Lemma 4.25. There exists a constant C > 0 such that for every f € BV(X) N L>®(X,u) and
every g € D,

lim sup ——— ! = 1f9 = P(fo)llprx <C’hm(1]nf/ 9(y) Qs f(y)du(y).

t—0t t dw X

Proof. As in the proof of Proposition 3.10

t
‘/X(fg — Pt(fg))hdu' < 1iTrggr+1f/0 |&-(fg, Psh)| ds. (19)

Recall ¢ = P.u for some u € C.(X) and € > 0. Then, from a standard energy calculation
followed by using the wBF(k) estimate and (4) as in the proof of Proposition 3.10, we may write

|Ex gPh f)+ & (fPsh, g) — & (fg, Psh)]

pT z,y)(f(z) — f(y)(g(x) — g9(y)) Psh(x)du(z)du(y)

< Ol (2) 7 1 / / Per ()| £ (2) — )l dp(x)d(y)

< CllhllooIIUIloo8

Almost the same argument, now also using g > 0, shows

|Ex gth +&r(fg, Psh) = & (fPsh, )|

pT z,y)(f(x) = f(y)(Psh(x) — Psh(y))g(x)du(x)du(y)

< ol (2)" ™ / / Per () () — F()lg()dpa(z) duy)
=0Hhuoos*“/dw /X 9(y) Qer f(4) du(y).

Taking the difference of these expressions, integrating with respect to s and taking liminf, _,o+ we
find

t
lim inf 2 / & (fg, Puh) — &, (fPsh, g)| ds
0

T—=0t

< Ctllllaclelloe™ ¥l sy + ot~ timin [ 9()@- o) dito)

However g is in the L' domain of L so lim, o+ &-(fPsh,g) = [y (Lg)fPsh and thus |E,(fPsh, g)| <
2| f Pshl| oo (x,)lI L9l L1 (x,) for all sufficiently small 7, independent of s. In particular

T—07F

t
timing 2 [ |E; (7. P ds < Ol = (11w ceanll Elnce g + €/ el 1)
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Mt mint [ 9(0)Qr 1) du(w)
=0t Jx
Comparing this to (19), dividing by t1=r/dw and taking lim sup,_,o+ complete the proof by L!-L>®
duality. O

Remark 4.26. The conclusion of Lemma 4.25 also holds for f = fy + ¢, where fo € BV(X) N
L*(X,p) and c is a constant. Indeed, note that ||flli1—x/ay = lfollii—r/ay and Q- f(y) =
Q. fo(y), the above argument then applies.

Lemma 4.27. There is C > 0 such that for f € BV(X) N L*(X,u), f > 0, we have for every
9€D, 920,

timsup [ 9()@uf(w)dn(y) < Climint [ 9()@ufw)du(y).
X X

t—0+ —0F

Proof. With M = || f|cc, use Lemma 4.10 and Lemma 4.25, Remark 4.26, the reverse Fatou lemma,
and the Fatou lemma to deduce

lim sup —— / / s )£ (@) — F)ldp(@)du(y)

s—0t 8

M
S/O thUP1<||P (1e,n9) — Lendlloxw + 1Ps(Ix\g(nHg) — 1X\Et(f)gHL1(X,,u))dt

s—0t s

M
<C /0 lim inf ——— / / v)ps(@,y) 15, () (@) = 15, (W) dp(z) dp(y) di

s—0t S

<Climinf - / [ [ atwp a5y @) = 1) )] dite) dut) e

s—07F

<Climinf 1, / / Wpe(, ) (@) — F()] dp() dpu(y) dt. 0

s—07t S Ay

Lemma 4.28. There is C > 0 such that for f € BV(X) and g € Co(X),g > 0, one has fort >0

/ 9(9)Quf (w)dp(y) > C / 9(0) M/ £ (5)dpi(y).
X X

Proof. For any t > 0, by the sub-Gaussian heat kernel lower bound we have p;(z,y) > Ct=H /dw
on B(y,tl/dw), S0

e / 7(2) — 1) lpeCe,y)dna)g y)dnty)
z@ /. / o 7@ = F@)lpi(ep)an()g ) dn(y)
w B(y,tt/*w)
s ~ F()9W)dnt) = C [ 90)Mp o S @)du(y). O
taw T B(ytl/dw X

Lemma 4.29. There exists a constant C' > 0 such that for every f € BV (X) N L*(X,pn) and
9€D,g20

iimint [ () Quf(0)dn(y) < Climint [ ()M, £w)duly).
X X

t—0t r—0t
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Proof. The proof is similar to that of Lemma 4.13. Let

(1) = e / / W)pi(, )£ () — £ ()| dial) da(y)

and estimate by dividing the region of integration and using the sub-Gaussian bounds to obtain,
as was done in (17),

dw

W, (t) < Colwrdn /X 9(0) My J (9)da(y) + exp( —c5™wT )Wy (ct).

The proof can then be completed in the same manner as Lemma 4.13. O
We are finally in position to prove Theorem 4.24.

Proof of Theorem 4.24. Without loss of generality, we can assume f > 0 a.e. From Lemma 4.27,

timsup [ 9()Quf(w)d(y) < Climint [ 9()@ufw)du(y).
X X

t—0+ t—07

Then, from Lemma 4.29,

lim inf / 9(y) Q1 f(v)du(y) < Climint / 9(9) My (9)duly).
X X

t—0+ r—0*

Finally, Lemma 4.28 implies

lim sup / g(4) M, f(y)du(y) < Climsup / (1) Quf () du(y).
X X

r—0t t—0t

4.7 Lower estimates and the relation between BV and energy measures

In this section, we compare the BV measures with energy measures for functions which are both
in BV (X) and the domain F of the form. For this, we recall the notion of lim inf measure used by
M. Sion in [75].

Definition 4.30 ( [75]). Let (ur)r>0 be a family of Radon measures on X. The liminf measure p
of the family (p,)r>o is defined as

uw(A) = inf sup  p*(K), 20
i< ) U open,ACU K compact, KCU ( ) ( )

where

- r—0+

p(K) = mf{thlnfur(Ui) : U; open, K C UUl}

-
It satisfies the following property: If (vy)r>o0 is a family of Radon measures such that
o U < Uy
e v, vaguely converges to some Radon measure v.

Then v < fhe
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We now recall that since € is assumed to be regular, for every f € FNL*(X, u), one can define
the energy measure vy in the sense of [28] through the formula

| vy = e(s6.0) = 5605, e FACUX).

Then v; can be extended to all f € F by truncation.

Theorem 4.31. If f € BV(X) N L*(X, u) is Holder continuous with exponent r, then f € F and
its energy measure vy is absolutely continuous with respect to any BV measure . Moreover, there
exists a constant C' > 0 independent from f such that

vy < CHfHOOﬁlfv

where || f|lcox denotes the k-Holder seminorm of f and or the lim inf measure of the family M, fdu,
r > 0.

Proof. Suppose that f € BV(X) is Holder continuous with exponent k. Then by (4), for g € Cy(X),

2 st @ = 10 Pate ) dutednty

<Al [ [ a0 1@) = 1)) dta)dto)
C

<oz [ [ s n)lfe) = @) dut)dnto)

The fact that o|f(z) — f(y)|?pe(z,y) du(z) converges vaguely to vy as t — 0F shows vy can be
dominated by the lim inf measure of Q; fdu, and thus, applying Theorem 4.24, by v 5 In particular,

we recover E(f, f) < C||f|loo,x Var(f). O

5 Examples

We conclude the paper with some results and conjectures about the BV class for two explicit classes
of examples, the nested fractals [37,66] and generalized Sierpinski carpets [10,15-17,20].

5.1 Fractional spaces

Nested fractals represent an important class of examples of finitely ramified, self-similar, fractional
metric spaces that support fractional diffusions in the sense of Barlow ( [12, Definition 3.2], and
see also Section 2.2). We omit the technical definition for the sake of brevity, but note that two
standard nested fractals that exemplify the behavior seen in this class are the Vicsek set and the
Sierpinski gasket shown in Figures 1 and 2.

Our BV theory applies to these examples in its entirety, i.e. Assumption 4.6 is satisfied. In
particular, we have a weak Bakry-Emery inequality wBE (k) with k = dw — dg > 0 by virtue of
Theorem 3.7. According to Theorem 3.11 we then have of < 81 =1 — k/dw = di/dw. However
the converse is established by the following theorem.

Theorem 5.1. If X is a nested fractal, then Bhdu/dw (X)) contains all indicator functions of cells
with finite boundary, so is dense in L' (X, u). Hence af = dy/dw .
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Proof. This result follows easily from Lemma 2.7 because 0} F consists of r-neighborhoods of the
finite number of boundary points so (97 FE) < Cré# for some C depending on the set. With
o = dp/dw it is then clear that r—%/% ;,(5* E) is bounded. O

We have thus established that k = dy (1 — af), so we are in the setting of Section 4.2, with
BV (X) = BYdu/dw (X)) and

.. 1 1
var(p) = imint o | s [ 1@~ @l dnty)
BV functions in these examples therefore have all of basic properties seen in this paper: locality of
BV norms, co-area estimate, control of perimeter measures by lower Minkowski content, Sobolev
inequalities, and BV measures. A detailed presentation of the theory in this setting will be given
in [2], to which we refer the reader for the proof of the following result about piecewise harmonic
functions that gives an indication of how different the BV theory on fractals may be to that on
Euclidean spaces. Piecewise harmonic functions are functions that are continuous and harmonic
except at a finite set of points. They are the analogue of piecewise linear functions on the real line.

Theorem 5.2 (See [2]).

1. On the Vicsek set any compactly supported piecewise harmonic function is in BV, and its BV
measures are equivalent to its energy measure.

2. On the Sierpinski gasket any non-constant piecewise harmonic function is not in BV.

We believe that stronger results are true, namely that
Conjecture 5.3.

1. On a nested fractal that is a dendrite, such as the Vicsek set, the BV space can be completely
described using an analogue of Stieltjes integration along geodesics, and hence BV functions
may be described as having classical distributional derivatives that are finite Radon measures.

2. On the Sierpinski gasket, and certain other nested fractals, any non-constant continuous
function is of infinite variation.

We make a brief comment about fractional metric spaces that support a fractional diffusion
but are not nested fractals. The most basic examples of such spaces are generalized Sierpinski
carpets, for which there exist a unique Dirichlet form and diffusion process, see [20], and there is a
comprehensive description of properties of the heat operator due to Barlow and Bass [15,17]. It is
not difficult to use Lemma 2.7 to see that the critical exponent

o > (dg — dig + 1) /dw, (21)

where dyp is the topological-Hausdorff dimension defined in [9]. For the classical Sierpinski carpet
log 2

dir = lZi 3 +1 according to [9, Theorem 5.4]. However the Barlow-Bass theory only yields wBE(k)

for k = dw —dp, not for k = dyw —dg +diz —1. We believe equality holds in (21) for af and post an
open question about the weak Bakry—Emery estimate at criticality. Note that, if 1 < dg = 2571‘{/ < 2,
proving wBE(k) for £ > dw — dg would involve improving the Holder continuity estimates for
harmonic functions in [12,15,17]. Improved Hélder continuity estimates for harmonic functions on
the classical two dimensional Sierpinski carpet are strongly supported by numerical calculations
in [30].
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Conjecture 5.4. We conjecture that for generalized Sierpinski carpets and similar fractals
o] = (dg — dig + 1) /dw
and the condition wBE(k) is valid for some k > (dw — dg)+.

Note that this conjecture together with Theorem 3.11 implies that x < dw — dyg + dig — 1,
which makes the following question natural and important.

Open Question 5.5. Investigate under which conditions wBE(dw —dg +dig — 1) holds true and
Assumption 4.6 is satisfied.

5.2 BV functions in products of nested fractals

Further examples of spaces to which our theory applies can be constructed by taking products of
nested fractals. In some sense these are the most interesting class of examples because one should
expect that there are subsets with a non-trivial notion of curvature, however here we only discuss
the product spaces. Suppose X is a nested fractal of dimension dy on which the diffusion has walk
dimension dyy. The condition wBE(dw — dg) is valid by Theorem 3.7. The n-fold product X"
supports a heat kernel obtained by tensoring and discussed in Section 3.3, where it was established
that the walk dimension remains dy on the product and wBE(dw — dp) is still true. All that has
changed is that the Hausdorff dimension is now ndg.

Theorem 5.6. If X is a nested fractal, then for every n € N, the space BV (X") = BLdu/dw (xn)
is dense in L'(X™, u®") and Assumption 4.6 is satisfied.

Proof. Observe that the collection of sets E = [[} E;, where each E; C X is a cell, generates the
topology. Moreover the boundary of such a set F is a finite collection of faces of the form

(I15) * o)~ (I1%)

Each such face has (Hausdorff and, by self-similarity of the nested fractal, Minkowski) dimension
(n—1)dy, so there is C such that for each r > 0 it can be covered by Cr—(=14# halls of radius 7;
by doubling the radius of each ball we may ensure we cover an r-neighborhood of the face. Each
such ball has measure at most co(27)"@# by Ahlfors regularity, so the total measure involved in
covering an r-neighborhood of the face is Cca2% r?# . Summing over the finite number of faces we
find that u((0F),) < CréH, so the result follows from Corollary 2.8. It follows that af > j—”, and

w

since we know wBE(dy — dg) implies af < g—g/ we have af = j—H and the weak Bakry-Emery
condition is valid at the critical exponent, see Example 4.7 and Remark 4.8. ]
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