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ABSTRACT

In a Multistage Manufacturing Process (MMP), multiple types of sensors are deployed to collect
intermediate product quality measurements after each stage of manufacturing. This study aims at
modeling the relationship between these quality outputs of mixed profiles and sparse effective
process inputs. We propose an analytical framework based on four process characteristics: (i) every
input only affects the outputs of the same and the later stages; (ii) the outputs from all stages are
smooth functional curves or images; (i) only a small number of inputs influence the outputs; and
(iv) the inputs cause a few variation patterns on the outputs. We formulate an optimization prob-
lem that simultaneously estimates the effects of process inputs on the outputs across the entire
MMP. An ADMM consensus algorithm is developed to solve this problem. This algorithm is highly
parallelizable and can handle a large amount of data of mixed types obtained from multiple
stages. The ability of this algorithm in estimations, selecting effective inputs, and identifying the
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variation patterns of each stage is validated with simulation experiments.

1. Introduction

Contemporary Multistage Manufacturing Processes (MMPs)
are usually equipped with advanced sensing systems that
collect both a large number of process input variables and
intermediate product quality measurements from each stage
of an MMP. Examples of inputs include the process parame-
ters set by the engineers, the environmental variables, and
the external events that occurred to the process. The vari-
ation of the process output, the intermediate product quality
measurements in every stage, is potentially caused by the
variation of certain inputs of the processes. This article per-
forms a root cause analysis of the variability in the outputs
of MMPs by associating them with specific process inputs in
all stages. Specifically, we aim at answering three inter-
related questions: (i) which effective inputs relate to the var-
iations of the outputs? (ii) what are the variation patterns of
the outputs caused by these inputs? (iii) how each individual
process input affects the manufacturing process? Answering
these questions leads to a better understanding of the pro-
cess variabilities.

The statistical analysis of MMPs has been conducted for
decades (Shi, 2006; Li and Shi, 2007; Jin and Shi, 2012).
However, there are two major limitations of the existing
analytical methods. First, they are unable to be applied to
intermediate product quality measurements of mixed types
of data in an MMP, which are increasingly common in
data-rich manufacturing environments. Here, “mixed types
of data” means that the data collected from different stages

have different dimensions and distinct characteristics. As an
example, a semiconductor manufacturing process consists of
hundreds of stages, including deposition, lithography,
plasma etching, ion-implantations, chemical-mechanical pol-
ishing, etc. (Nishi and Doering, 2000). In different stages,
the corresponding outputs can be of image types (e.g., spa-
tial data such as film thickness of each layer at multiple
locations on the wafer (De Witte et al., 2003), multivariate
random fields such as the alignment error at hundreds of
positions on a wafer’s surface (Huang et al, 2008), and
images of the etched trenches captured by a scanning
electron microscope (Lee et al., 2006)), and/or assorted
functional curves (e.g., the temperature, pressure, and radio-
frequency curves during the reaction processes). As will be
discussed in the next section, Stream of Variation (SOV)
modeling approaches (Shi, 2006) based on a state-space
model is generally not suitable for an MMP with mixed type
of data. There is a lack of appropriate analytical methods for
MMPs where output sensing data contains mixed types of
data, such as images or functional curves.

Second, existing analytical methods for MMPs cannot
handle a large number of inputs associated with each stage
of an MMP. In the example of semiconductor manufactur-
ing, tens of control variables adjust the exposure system in a
lithography step. For one thing, a large number of inputs
calls for efficient and parallel implementation of the model
estimation algorithm. For another, we need to identify the
inputs that are truly related to the outputs and establish the
connections between them.
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In this article, we propose a system-level modeling frame-
work to solve the diagnostic problem for MMPs that gener-
ate intermediate product quality measurements of mixed
types and different dimensions and sparse effective inputs.
Based on the characteristics of an MMP, we propose the fol-
lowing assumptions that facilitate our modeling approach:

1. Cascading assumption: An input in one stage only
affects the outputs generated from that stage and the
downstream stages. The cascading assumption is rooted
in the directional error propagation among stages: the
input variation from one stage not only affects the qual-
ity measurement of the current stage, but its effect can
propagate to the next stage, and further downstream
stages. However, the input from one downstream stage
cannot affect the quality measurement of its
upstream stage.

2. Mixed data types: The outputs generated from different
stages of a process may be collected through different
metrology systems, have different dimensions, and thus
have different characteristics. We illustrate our model-
ing approach by assuming that each stage generates one
of two types of outputs: smooth functional curves and
smooth images. Our idea has the potential to be applied
to measurements with different structural assumptions
(see the discussion in Section 3.4).

3. Sparsity assumption: The potential root causes of the
variability of the output is driven by a small number of
effective inputs. We assume that the effective inputs are
sparse: they compose a very small portion of all inputs
from an MMP.

4. Low-rank assumption: In reality, the measurements
from each stage of an MMS may have multiple sources
of variations. Within a short period of time, the poten-
tial root causes in an MMP is limited, and thus only a
small number of dominant variation patterns signifi-
cantly impact quality and system performance.

Leveraging these assumptions, we propose a holistic mod-
eling framework for MMPs. The word “holistic” means that
the model describes the entire manufacturing system com-
posed of all stages, and we estimate the process parameters
that represent the relationships between all process inputs
and outputs simultaneously. An optimization problem is for-
mulated for the estimation process, and its objective func-
tion contains the magnitude of the predictive error of each
stage, the smoothness of the functional curves or image out-
puts, the sparsity of the effective inputs, and the number of
variability patterns caused by the inputs. From the estima-
tion procedure, we can solve three diagnostic problems for
MMPs: identify the effective inputs, identify the variation
patterns of the outputs, and describe how each input affects
the output of each stage. In Section 4, an illustrative
example is provided via simulation studies on how the pro-
posed method effectively solves the above three problems.

To our knowledge, this study is the first one that pro-
poses a holistic modeling and analysis framework for an
MMP that generates assorted types of data. It simultaneously

answers three questions involving the effective inputs, the
variation patterns in the outputs, and their connections. The
idea behind the proposed method is extendable to a wide
range of MMPs that involve: (i) a comprehensive set of
inputs, and (ii) process outputs of mixed types of data with
limited variation patterns from each stage. Also, our model
estimation method based on an Alternating Direction
Method of Multipliers (ADMM) is highly parallelizable, and
thus guarantees high computational efficiency for an MMP
with more stages.

The remaining parts of this article are organized as fol-
lows. In Section 2, we review related literature to highlight
the necessity of this research. In Section 3, we present the
mathematical description of our problem, formulate the
optimization problem, and propose the algorithm for solving
this problem. In Section 4, the methods proposed in Section
3 are validated through simulation experiments. Section 5
concludes the article.

2. Literature review

The modeling and statistical analysis of an MMP have been
investigated for decades. Since the mid-1990s, state-space
models have been proposed to describe the SOV in MMPs
for assembly and machining processes (Shi, 2006). Based on
the state-space model, estimation-based diagnostics methods
have been proposed to find the connection between the
product quality measurements from each stage and the sour-
ces of errors (Apley and Shi, 1998). In most of the existing
literature, the product quality measurements are 3D coordi-
nates of a set of critical points on a fabricated part. Based
on the engineering design and physics principles (Ding
et al., 2000), the proposed state-space model can accurately
describe the error propagation between stages in an MMP.
For modeling complex MMPs with mixed profile outputs,
two issues make the state-space modeling approach infeas-
ible. First, the state-space model describes the status of the
manufacturing process by using a state vector. The state vec-
tor cannot be defined when the product quality measures
are represented by functional curves or images. Second, the
state-space model assumes that the state at stage k is solely
determined by the state at stage k — 1, and not related to
previous stages k—2,k—3,... However, in MMPs that
resemble semiconductor manufacturing processes, the out-
put from one stage may relate to the inputs from more than
one previous stage. Therefore, we do not adopt the state-
space modeling approach, but instead propose a regressive
approach that directly represents the relationship between
the output of each stage and the inputs from all previ-
ous stages.

In order to model the MMPs that generate profile data
(e.g., functional curves or images) in each stage, we extend
the literature on modeling the relationships between profile
inputs and outputs. Regression between smooth profile data
and scalars is a part of functional data analysis (Ramsay,
2005), and studies such as Li et al. (2020) tailor this tech-
nique for engineering applications. Recently, some studies
(Yan et al., 2014; Gahrooei et al., 2020; Yue et al., 2020) use



tensors to describe the profile of the same size and use ten-
sor regression techniques to model the relationship between
profile inputs and outputs. Many studies that apply func-
tional and tensor regression penalize the parametric vectors
and matrices for promoting certain characteristics of the
input and output profiles, including sparsity (Tibshirani,
1996), continuity and smoothness (Ramsay, 1988), low-rank
(Yuan et al., 2007), and the flatness among neighboring ele-
ments (Tibshirani et al, 2005). They are used collectively for
anomaly detection (Yan et al., 2017), multiple change point
detections based on sparse signal dependency (Zhang et al.,
2018a), and so forth, to improve the estimation accuracy
and identify the effective inputs and the variation patterns
caused by them. This article also applies penalizations to
represents the characteristics of the mixed profile discussed
in Section 1.

To solve the diagnostic problems of the MMPs that gen-
erate mixed profile outputs, we need to integrate the above
profile data modeling techniques into a model that specifies
how the inputs from one stage propagate to the follow-up
stages. There is no well-established theory for modeling and
analysis of MMPs with mixed profile outputs and a large
number of inputs that answers all three questions in the
Introduction, given the complex input-output interactions.
Specifically, if we use existing profile data analysis
approaches to build separate models for the relationship
between the output of every stage k and the inputs from
stage 1,...,k, these models may result in different sets of
effective inputs, and thus may result in different effective
inputs. Another common practice of analyzing these MMPs
nowadays is to adopt a two-step procedure: we first extract
a set of features from the process output profiles in every
stage and then perform the analysis of the process based on
these selected features. For example, Zhang et al. (2018b)
followed this procedure to perform anomaly detection from
data from a single stage. However, the second step is usually
sensitive to the set of features selected.

Our model estimation process involves solving an opti-
mization problem with multiple penalization terms. We use
an ADMM consensus algorithm for this purpose. Its general
framework is introduced in Parikh and Boyd (2014) and
Boyd et al. (2011). We cast our problem into an appropriate
form and adopt the ADMM consensus method to solve it.

3. Holistic modeling and analysis framework for an
MMP generating profiles and images

In this section, we first describe the data generated from an
MMP, then propose a holistic modeling and analysis frame-
work for the MMP. We present how to solve the modeling
and estimation problem using an ADMM consensus algo-
rithm. We also discuss the selection of the tuning parame-
ters and the possible variation of the problem formulation.

3.1. Data scenario and problem description

We assume that the process outputs from each stage either
includes multiple functional curves of the same length or an
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image. The process output of stage k can be written as Y, €
R™>" If the output from stage k is an image, Yy represents
an image of size my X my. If stage k generates functional
curves, Y, represents my curves of length ;. The set J
includes the indices of stages that generate image data, and
8 ={1,...,K} — T represent the stages that generate func-
tional curves. All outputs for product n are thus described

by yim = (Yi"} Y ) Throughout this article, we use
curly brackets {-} to identify the product number.

Note that the structure of Y™ describes the general data
structure for the intermediate product quality data generated
from an MMP of multiple data types and their dimensions.
This structure is similar to a C struct or MATLAB® cell: the
data generated from all stages are of different dimensions. If
the size of matrices Yy, ..., Yx are the same, ‘j{”} can be seen
as tensor data (Yue et al., 2020). We assume that the data
generated from all stages have different structures, in the
sense that they may represent either images or functional
curves, so that special considerations in data analytics are
required. Finally, we note that in other applications, the pro-
cess outputs can be even more complicated. For example,
the data from each stage may include multiple images of
different sizes, groups of functional curves of different sizes,
or other structured data types such as spatial measurements
or point clouds. It will become clear in Section 3.4 that the
methodology proposed in this article can potentially be
extended to such scenarios.

We further assume that there are ¢q; inputs from stage
k that may affect the process, represented by u; = (u,
- Uk, )s k =1,..,K. For simplicity, we assume that the effect
of the inputs on the outputs is always linear. The treatment of
nonlinear effects is briefly discussed in Section 3.4.2. Based on
a linear model, the effect of the process inputs on the process
outputs can be described by equation (1):

k 4
Yi =B+ Y Y B+ Er. (1

i—1 j—=1

In model (1), the parametric matrix Bj; x is of size R™". It
is referred to as an effect matrix, as it describes the effect of
the input u; on the process outputs measured from stage k.
The collection of effect matrices is denoted as B =
{Bjx:1<i<k<K1<j<g;}. The matrices By are
called offset matrices, and the set of all offset matrices is
denoted by By = {Bg: 1 < k < K}. Here E; is a matrix
representing the modeling error of the stage k, and we
assume that every entry of E; is with mean 0, and variance
07 - The cascading effect of the process inputs is inherently
reflected from this model, as the input variable u; from
stage i affects the output from stage k, Yy only if i <k.
Other three assumptions discussed above can be cast into
specifications on the model parameter B, and B:

1. As By and By represent the effect of parameter u;; on
such process outputs, they share the same characteristic
as the curve or image data in stage k. Specifically, if the
process outputs from stage k are multiple smooth
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Identify the inputs ul-j’s that affect the MMP (j =1, ...,q;,i = 1, ...

u, = (ull, ...,ulq‘)T u? = (u21, ...,quz)T

uz = (“311--~"“‘3#4)T

,K)

uK = (uKl, ...,quK)T

BBz ,
ki Bk | Describe how
......... each u;;
By 550/ Big |
h . . B affect each Yy,
11,2+ B1g,,2 "an‘.,.‘B:‘;‘J A - -
s B
Y, € R™M1%Xn » Y, € R™M2X12 > Y; € RM¥M3 e > Y, € RMK*nk

/};ﬁ\ o —

[ »

Identify the limited variation patternsineach Y, k = 1, ..., K

Figure 1. The illustration of the model (1).

curves, every row in By« and By corresponds to a
curve, and thus two elements whose indices are close in
each row should have similar values. If the stage k gen-
erates smooth images, any two elements whose indices
are close in By ; or By should have similar values.

2. The sparsity assumption indicates that most u;
(1<i<K and 1<j<g;) are associated with effect
matrices B;;x = O foralk=1,..,K.

3. The low-rank assumption indicates that the variation
patterns caused by all effective u; lie in a low-dimen-
sional subspace. Therefore, the matrix B. ; is of low
rank, where

B. = [vec(Biyk)vec(Bigk)s--»Vec(Bug, k), - vec(Bg, k)

R(mk"k>>< (Z:;lqi)

Here, B.. ) constitutes the effects of Zf;l q; inputs from the
first k manufacturing stages. The vectorization operator
vec(:) transforms the my x np matrix to vectors of
size myng X 1.

3.1.1. Interpretation of the model and its use for root
cause diagnostics

The model (1) we proposed above can be illustrated by
using Figure 1. In this figure, we can see that every input u;
from stage i only affects the output in stage i and the fol-
lowing stages i+ 1,..,K, indicated by the effect matrices
Bj; x and the arrows that point from an input to an output.
Although we do not explicitly model how the output from
stage k affects the output of stage k + 1 as in the SOV mod-
eling approach (shown as dashed arrows in Figure 1), we
acknowledge that the error propagation between the output
stages exists, and embed this consideration into the cascad-
ing assumption: The effective input from stage i may not
only affect stage i itself, but it may further influence the out-
puts of downstream stages i+ 1,i+ 2, etc. The proposed
regressive approach has several benefits. First, it enables
existing multilinear regression and functional regression
techniques applied to the MMP. Second, it gives an explicit

description of how the input from one stage influences the
outputs of downstream stages. Third, it can be easily
extended for other types of process outputs with different
characteristics, as specified in Section 3.4.2.

We can use the proposed model (1) to solve the diagnos-
tic problem of the MMP. After we obtain the inputs

-

and the outputs Yyl for samples n =1,...,N,
we can estimate the effect matrices in B in the model (1)
such that the cascading assumption, mixed data type
assumption, sparsity assumption, and low-rank assumption
are satisfied. After the estimation is obtained, three ques-
tions of the diagnostics can be readily answered. Specifically,

we can:

1. Identify the effective inputs (e.g., root causes): the input
u;; is identified as an effective input if Bjjx # O for
some k € {i,i+1,...,K}.

2. Identify the output variation patterns: the variation
driven by all inputs in stage 1,...,k for the output of
stage k is described by the linear subspace spanned by
all Bjjx: 1 <i<k1<j<gq; whose dimension is given
as the rank of B..,;

3. Determine the effect of a specific inputs on the outputs:
how each input u; affects the output of stage k is
described by By x.

From the model, we can see that there are many parameters
to be estimated in the modeling efforts. However, the over-
fitting problem can be avoided by the penalties applied to
these parameters based on our model assumptions, as
detailed in the next section. If we know that the possible
causal structures between input variables and quality meas-
urements in advance from domain knowledge, we may fur-
ther limit the number of parameters to be estimated. For
example, if we know that the inputs u; may only affect the
output from stage i, i+ 1,...,kj;, we can add another con-
straint Bj x = O for all k > k;.

In the following sections, we describe how to formulate
an optimization problem to solve the parameters in B, and
B, and how to solve them numerically.



3.2. Problem formulation

The objective of this study is to describe how the inputs

Ui, ..., Ugg, affect the outputs (Yi"},...,Y}{("}> in all stages.
It is achieved by obtaining an estimation of B and B, with
the characteristics described in the previous subsection. To
obtain the estimation, we solve an optimization problem
that minimizes the sum of the prediction error of the pro-
cess outputs and the penalties specified by each assumption.
These terms are detailed as follows.

Prediction error of the process outputs. From the model
(1), the prediction error for the process outputs of product
n from stage k can be represented as

E{”} Y{"} By — Zzu{ }Blj o
i=1 j=

and the prediction accuracy can be represented as ||E]£”}||§,
where || - || is the Frobenius norm. The prediction accuracy
across all K stages is then represented as

ZMZ“W%:ZZ

n=1 k=1

_BkO_E E ul] Bij
F

i=1 j=

L(B, Bo) Y

2)

In this expression, we sum up the loss ||E,{<"}H12; correspond-
ing to all stages 1,...,K, to determine the effective inputs
and estimate their effects using the information from all
stages. Note that every effective input affects the outputs in
all later stages. Thus, we need to incorporate the informa-
tion from all stages to identify them. Taking different mag-
nitudes of the error and different numbers of elements of all
stages into consideration, one may incorporate a weight

1/ (6%’ kmknk) to the term corresponding to stage k, where

the parameter 6125,,( is a rough estimation obtained through
smoothing the outputs of a subset of samples from every
stage k and calculate the mean-squared error. Under this
setting, the formulation is only slightly modified, and the
solution framework remains the same.

The effects of each input are smooth. Assume that stage
k € & generates functional curves. According to Section 3.1,
the elements on every row of Bj i should form a smooth
function. To enhance the smooth property of the curves and
thus increase the estimation accuracy, we propose the fol-
lowing penalization for these stages, similar to the smooth
component in Yan et al. (2017):

> ik {leDsBko [k

ke§

+ZZiW%k IE]

i=1 j=1 m=

1(B,By) =
3)

In this term, By x(m, :) describes the effect of u;; on the mth
functional curve generated from stage k. Dg is a modified 1D
second-order difference matrix for smoothing curves, with
modified Neumann boundary condition (O’Sullivan, 1991):
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The expression DsBj; x(m, :) gives a discretized approxima-
tion of function norm |f”(x)||; (Ramsay, 1988), where
f(x) =Bjx(m,x). As we will see in Algorithm 2 and
Algorithm 3, the choice of the boundary condition (the first
and the latest row of Dg) enables efficient computation.
Here /; is selected to control the degree of smoothing for
the signals in stage k. Motivated by thin-plate splines
(Wahba, 1990), similar penalization term is defined for the
stages that generate a smooth image:

p2(B,Bo) = Z Jak {Vec(Bko)TRlvec(Bko)
kel

k 4
S ey R |

i=1 j=1
Here vec(+) transforms the image to a m; x n; vector, and
R; is a discretized version of the operator:

2 2
B 0 g) 2 &g g
:R(g) = JRZ (@ +2 axay + 8_)/2 dxdy,

that defines the “roughness” of bivariate function g
(Buckley, 1994). The closed-form expression of the rough-
ness matrix R; for an m x n image is derived and repre-
sented in Section 3 of Buckley (1994):

(4)

R =(C,®C,) (M, ®L,+2M, ®M, + 1, ® M2)(C, ® C,),

where C, is discrete cosine transform of order n, I, is an
identity matrix of order n, M, is a diagonal matrix whose
diagonal elements are ;, = 2[1 — cos{n(i — 1)/n}],
I,...,n, and “®” represents the Kronecker product.
However, we will see later that the image R; does not need
to be constructed explicitly.

The effects of the inputs are sparse. In model (1),
“Bjj,x = O for all k” is satisfied for most (i,j) pairs with 1 <
i<k and 1 <j<g; Motivated by the Group lasso algo-
rithm (Yuan and Lin, 2006), an ¢, penalty is applied to all
elements in B that involve the input u;. Specifically, for wu;
we define a long vector:

1 1 1
B, =(— ———=vec(B;i i+1); ...;—=—Vvec(B;; ,
v (\/ G VCit (Biiiv1); VG ( U’k)>
that constitutes all elements in B, characterizing how u;
affects the outputs. Here, the parameters C; = m;n;, ..., Cx =
mgng are the number of elements in Bjj ;, Bjjit1, ..., Bjj x that
adjust the weights of the components to make the effects of

each stage have comparable norms. The penalization term is
then defined based on the [|B;;_||,, given as

K qi
= 12y 1By I, |- (5)

i=1 =1

i:

Vec(B,-j,,-);
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Here /3,; controls the level of the sparsity of effective inputs
from stage i. With more effective inputs from stage i, 43 ;
should be selected smaller.

Variation caused by inputs is of low rank. As presented in
Section 3.1, the matrix B.. ; should be of low rank. A heuris-
tic for solving rank minimization problems is by minimizing
the nuclear norm of a matrix (Fazel et al, 2001), and the
nuclear norm penalization has been proposed for reduced-
rank regression (Yuan et al, 2007). We borrow this idea
and apply the following penalization term to limit the num-
ber of variation patterns of each stage, resulted from all
inputs that affect it:

K
= JaklBill,. (6)
k=1

The overall objective function is given as the sum of the
prediction error of the process outputs and four regulariza-
tion terms pl(B), p2(B), p3(B) and py(B) listed in (3)-(6).
Therefore, our objective is to solve the following optimiza-
tion problem:

L(B,Bo) + p1(B, Bo) + p2(B, Bo) + p3(B) + pa(B) .
(7)

minimize
B, By

3.3. Problem solution

Note that formulation (7) is a convex problem, lower
bounded by zero. Therefore, it has an optimal solution. This
problem has two characteristics. First, the problem has
many decision variables, and thus a highly parallel algorithm
is desired. Second, its objective function contains multiple
non-differentiable additive components. For this reason, we
apply an ADMM consensus algorithm to solve this problem
(Parikh and Boyd, 2014).

To cast the formulation (7) into the ADMM consensus
framework, we introduce four copies of parameter B,
namely g ‘B @ ,B(3 and BY, and two copies of parame-

ters By : 0 ) and B . Then the formulation (7) is equiva-
lent to the formulatlon (8) below:

minf(B) 4 g(B). (8)

<2>,B<3>,B(4>)

collection of augmented parameters,

( (0 3 ) (B(2>’:B(2))+
( @), The function g(B)=
(@) specifies that the copies are

In formulation (8) B = <Bél),B(()2),B<l>
represents the
the function
Pz( >
Igm:B(z):B(a):B@) (B)- I

of the same values, where

)+p3( )

_J 0 xe€A
IA(x)_{—l-oo if x¢A

is the indicator function. The formulation (8) is solved with
a general framework of ADMM listed in Algorithm 1.

Algorithm 1. General framework of ADMM

Initialize Z and U as structs with the same shape as B.
Set all elements to 0.
Do:

Set @prev — @, Zprev « Z and ﬂprev —U
B — proxnf[i —ul (Step 1)
pa prox,, [@ + ﬂ] (Step 2)
U—U+B—2Z (Step 3)

Until [|[U — Uprey|| < € and [|Z — Zprey || < €.

In this algorithm, the summation and subtraction of two
structs are naturally defined as adding and subtracting each
corresponding element. The parameter 5 specifies the step
size, and prox,(x) is the proximal operator, defined as

. 1 2
prox;,(x) = argmin {h(y) + 5 [[vec (x — y)||2},
¥
where the operator vec (+) in the second term transforms the
struct to a long vector.
To perform this optimization algorithm, we evaluate the

proximal operator in Step 1 and Step 2 in the following two
subsections.

3.3.1. Evaluating the proximal operator in Step 1

The function f(B) is the summation of four components,
and the elements involved in every component do not over-
lap. The separable property of the proximal operator (Parikh
and Boyd, 2014) states that:

Prox;, (X1, X;) = (proxy, (x1), prox;, (xz)), 9)
if h(x1,%2) = hy(x1) + hy (x2). Therefore, the proximal oper-
ator of prox,, [B] is determined by that of the each compo-
nents, evaluated as follows.

The proximal operator ofL( (1 B(l)) .The first term

k
HCE DI 9 9L R 9 S UL

n=1 k=1 i=1 j=
K mp  ng
S (310,
k=1 v=1 w=1
where
m o~ (i} m SR () ’
Skvw(Bio ) = Z(Yk” (v.w) — By (v.w) — ZZuij" B, (v, w)) ,
- -

(10)
is the summation of least square components that involve
disjoint sets of elements

ﬁ,(izyw: {B}(O)(V w)}U{Bfﬁ(v,w):i:1,...,k;j:1,...,qi},
k=1, .,K; v=1,..,my, and w=1,...,n;.

Therefore, prox,, [B(()U,B(l)} can be represented by the

proximal operator of each component S, ,(-). Each addi-
tive component S ,,,,(-) is a quadratic function of the ele-

(1)

ments in B, |, whose proximal operator can be calculated



using Proposition 1 given in Parikh and Boyd (2014). As
each set 'Bfizw

ters, the inversion of the matrix therein is performed rapidly
with little difficulty.

. K
contains no more than » ;" g; + 1 parame-

Proposition 1. If q(x) =1x'Ax + b'x + ¢, with A being a

positive semidefinite matrix:

(I+nA)"' (v — nb),

where I is an identity matrix with the same size as A.
The proximal operator of p; (B(()z)

(2)) + p2 (‘Béz),
B(Z)). Note that

p1<3(()2),3) Z(xlkstBko |2>

ke§

233 (S matioon).

proxﬂq(‘)(v) = (11)

kes i=1 j=1

N (B (()2)’3(2)) -3 <lz)kvec (B,%)) "Rivec (B,(j))) )

kel

+ Zizq: (lz,kvec (BEJZJZ) TRfvec (B,(f,)() ) .

ked i=1 j=1

They are both the summation of multiple components
involving disjoint sets of parameters. Each component
corresponds to one parametric matrix, either an offset

matrix B%) or an effect matrix ijzac In the summations

involving “k€8,” every term is represented as
2

Jak ok IDST (v o)l = 2o0%, ps(T(v, 1)) where  pg(x) =

J1,/[Dsx|)3. In the summation involving “k € J,”
is then represented as p;(T) = A, rvec (T)TRlvec (T).
Therefore, it is sufficient to evaluate the proximal operator
of ps(x) and p;(T), due to the separable property of the
proximal operator (9). We derive the efficient evaluation of
these proximal operators in Propositions 2 and 3. The
proofs are given in Section A of the online supplement.

every term

Proposition 2. Given a d-dimensional signal x € R?, Algorithm

2 evaluates X = prox,  (x), where ps(x) = ,||Dsx]|3.

nps

Proposition 3. Given an m x n signal T = (t;) € R™",
Algorithm 3 evaluates T = proxnpl(T), where p;(T) =

Jovee (T) " Ryvec (T).

Algorithm 2. Calculate x = prox,, (X)

1: Calculate x* = DCT(x), where DCT represents the 1D
discrete cosine transform (Ahmed et al, 1974).

2: Set X; «— x; /[1 + 4&111(1 — cos ( y n))z] fori=1,2,....d,
where x; is the ith element of x*.

3: Calculate X =IDCT(x"), where x* = (], ...,&Z)T and
IDCT represents the inverse discrete cosine transform.

IISE TRANSACTIONS (&) 7

Algorithm 3. Calculate T = prox,, (T)
1: Calculate T* « DCT2(T), where DCT2 represents the
2D discrete cosine transform.
) ) 2
2 Set fy et/ [1 +4/1211(2 — cos (5L ) — cos (%n)) }
»n, where t; is the (i)

for i=1,..,m and j=1,...

element of T".

*

3: Calculate T — IDCTZ(T*), where T = (El]) and
mxn

IDCT?2 represents the inverse 2D discrete cosine transform.

The proximal operator of p, (B9). The penalty

P3(3(3>) = ZII; [/13,1' ||B;] | }

is also the summation of multiple components, each involv-
ing Bf]3> By Equation (9), the proximal operator of p3(-) can
be evaluated by the proximal operators of each term

/13,Z-||BE]??||2, given in Proposition 4 (Parikh and Boyd, 2014).

(1 ” AII >x if x|, > 2
1

0,if [|x[|, <4
(4

Proposition 4.
prox; ., (%) =

The proximal operator of p4( )). The separable property
of the proximal operator (9) can be invoked again to calcu-
late the proximal operator of

K
@) =3 duilBYL.

The closed-form expression for the proximal operator of
Jakll - |l, in Proposition 5 is also from Chapter 6.7.3 of
Parikh and Boyd (2014). With this expression, the proximal

operator of py (B™) can be evaluated.

Proposition 5. Let A be an m x n matrix with singular

value decomposition A = me{m " o v . Then

prox;, ., (&) = Zl-nm{m’n} (01 = 24.6) v/,

i=1

{x,xzo
X+: .

where

0,x<0

3.3.2. Evaluating the proximal operator in Step 2
According to Parikh and Boyd (2014), the proximal operator
prox,,[-] involved in Step 2 is a projection onto the subspace

{@ W
update of Z = (Zm, 2,23 2@, Z.(()1>, Z(()Z)) is given by

=3 =0 =W Bl = 935)”} and thus the

pad — B+U,i=1,2,3, and 4;25)") — Bo+Ugpi=1 and 2,

where @::i(%m+B(2)+3(3)+'B(4)), @0;:%(381)—1-382)),
and U, U, are defined accordingly. With the above specifica-
tion of Step 2, U, U, will remain constant during iterations

of the algorithm (though u®W,.u“ and U u change
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during iterations), according to Step 3 of Algorithm 1. If
U, U, are initialized at zeros, the Step 2 of Algorithm 1 fur-
ther reduces to 2 —B,2) —B,.

3.3.3. Summary of the proposed ADMM consensus algorithm
Now we put together the components listed in the above
subsections and give a comprehensive optimization proced-
Ere in Algorithm 4. The notations B, , . EkO)Eij,k) Bi)j, and
B. ; are vectors or matrices, composed of elements in
(@,@0), according to how 3(1)

k, v, w

ments in (B(l),B(()I)>, how B,(j))

selects a subset of ele-
and Bl(f;( select subsets of
elements in (3(2),3(()2>>, how BS) selects a subset of ele-
ments in (3(3),383)), and how B(4L selects a subset of ele-

ments in (B<4>,Bé4)), respectively. All notations involving

the letter “U” corresponds to their counterparts involving

(1)

the letter “B.” For example, notation U in line (la)

kv, w
refers to the subset of elements in U, according to how
3,(:)%“, selects a subset of elements in BV

Algorithm 4. The complete optimization procedure

Initiate B=B"=B?=B0) =@y =y =y =y®=
O of the same shape as B.

Initiate EO:B(()U:B(()Z):U(()I):ugz):O of the same shape
as By.

Do:

(1) Save Bo, prev < Bo and Brey < B.

(2a) Fork=1,...K,v=1,...m,w=1,...,n, do:

Update ‘B]((’lz,’w by ’Bl(if/,w  PTOXys, () (gk, vw U,(:)V, W)

according to Equations (10) and (11).
(2b) For k=1,...,K,i=1,..,kj=1,...,q; do:

If ke€J: update B,(j)) — prox,, (Eko — U,(f)), ijzz< —

prox,, (Ej) k— Ul(f)k) based on Proposition 3.

If ke §: update B,(j))(v,:) —prox,, (ﬁko(v,:) —U,i?))(v,:))

and Bfﬁ,i(v, 1) <= prox,, (B k(Y1) — v

ij)k(v,:)) for all v=

1,...,my based on Proposition 2.
(2c) Fori=1,..,Kandj=1,...,q; do:

Update B — prox,;, i”‘HZ(Eij" - Uff)) based on

ij, -
Proposition 4.
(2d) For k=1, ...,K do:

Update B(4L — ProX,; . (E‘,k - U“D based on
Proposition 5.

(3) Update B and B, via B — 1 (B 4 3@ L B L gW)

and By — 1 (B{) + 3.

(4) Update UY —UY+BY _B for t=1,.,4 and
UY — Ul + BY — By fort =1, 2.

Until max |B—B"||, max|Bo—B|, max ||B—Bpell

i=1,...,4 i=1,2 i=1,...,4

and max |Bo—Bo, prev|| are below e.
1=1,

In Algorithm 4, all updating operations within the four
“for loops” in step (2a)-(2d) can be performed in parallel, as
they involve distinct groups of elements in B. This notable
feature significantly improves the computational efficiency.
The variables in the optimization problem include the offset
matrices By and the effect matrices B listed in the cells of
Table 1, which contains 2115:1 gk columns and K rows. In
essence, the step (2a)-(2d) of the algorithms updates

(B(()l),B(l)), (Béz>,3(2)>, B and BY through operating
on multiple groups of elements in parallel. In step (2a),
(Bél),3(1)> is divided into 25:1 myng groups. Each group
corresponds to a triple (k,v,w) where k€ {1,...,K},v €

{1,...,m,} and we {1,..,m}, and it consists of the
(v w)-element of By and all (vs w)-element of matrices

listed in the kth row of Table 1. In step (2b), (Béz),B(z)) is

updated by breaking them into S &, (k+1—i)g+K
groups according to the cells of Table 1 and the matrices in
B((f). In step (2c¢), B is divided according to Zfil gqi col-
umns of Table 1. In step (2d), B is divided according to K
rows of Table 1.

In Section 3.1.1, we discussed how to answer the
questions of the diagnostics based on the estimation of
B,By. When the algorithm terminates, however, such
sparsity and low-rank property cannot be observed from
0
zeros for many pairs of (i,j) given appropriate values of
tuning parameters, as it is obtained from the proximal
operator for an /¢;-norm. Therefore, we may identify
whether each u;; affects the output quality measurements

B, due to the numerical error. However, B\?’ can be all

by observing whether ij3> = O. Similarly, the B(4>k is of
low-rank, and its rank specifies the number of variation
patterns on stage k that all inputs cause. Finally, By,
the effect of the input u; on stage k can be visualized
through heat maps or multiple curves corresponding to

B, to give a visualization of smooth curves or images.
As the algorithm converges, note that the difference
between B(U,...,
close to B.

The convergence of the ADMM algorithm is guaran-
teed in the literature (Boyd et al, 2011). However, the
existing theory on the convergence rate of a consensus
ADMM algorithm relies on the strong convexity
assumption of component functions, which does not
hold for py(Bo, B), p3(B) and ps(B). Section B of the
online supplement gives a comprehensive analysis of the
computation complexity of each iteration of the
algorithm. We leave the illustration of the empirical
convergence behavior of the algorithm in the simula-
tion study.

B s very small, and all of them are

3.4. Discussion

Here we discuss the selection of the tuning parameters and
possible variations of the problem formulations.



Table 1. Effect matrices estimated in formulation (7).
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B, Big,1
B2 Big,,2 By,2
Bk Big, By«

Bag,,2

Bag,. k Byg,, k

3.4.1. Selection of tuning parameters

In our formulation (7), the values of the tuning parameters
{21,k --» A4,k } need to be specified. The literature often sug-
gests setting the tuning parameters through a Cross-
Validation (CV) procedure, although our simulation study
shows that it under-smoothes the signals and the images,
and leads to a larger number of effective parameters and
variation patterns. The same finding was highlighted by Yan
et al. (2017), and they adopted Otsu’s method based on
maximizing inter-class variance. However, this method can-
not be extended in our application, as classes are not
well-defined.

In general, a large value of A, leads to smoother
response signals of stage k, and a large value 4, leads to
smoother image responses of stage k. A larger value of 43
leads to a fewer number of effective inputs from stage i,
and larger value of A4k leads to a fewer number of variation
patterns in stage k. According to the algorithm in Section
3.3, A4,k aims to threshold the singular values of the matrix

B% of size myny x Zle qi» and the variance of the error of

(4

every entry of B 3( is proportional to o} ;. According to

>

Yuan et al. (2007), if an p x q matrix is the summation of a
rank-r matrix and a matrix of N(0,4?) error, the (r + 1)th
singular value is of magnitude o(,/p + ,/q). It motivates us
to take

, [Nk
A4k = C4,kOE k (\/mk”k + 1 %‘))

where ¢, is a prescribed constant, to make the magnitudes

of shrinkage applied on the matrices B(4)k comparable, even

if their shapes differ.

The selection of 43; and ¢4 should be regarded as a
decision driven by engineering need. For example, if the
practitioners solve the model for identifying a wide range of
inputs and output variations for root cause diagnosis, A3 ;
and ¢4 should be set to smaller values, which will lead to
identifying more effective inputs and variation patterns. If
the practitioners are only interested in the inputs that have
major effects on the output variation patterns, larger values
of A3,; and ¢y are preferable.

Finally, we note that depending on an actual physical sys-
tem, the tuning parameters {1, i, 2 % 23 6> Cak: k= 1,..,K}
corresponding to similar stages may be divided into multiple
groups. Each group of parameters can take the same values,
or be selected using the same policy to reduce the complex-
ity, as illustrated in the simulation study.

3.4.2. Variation of problem formulations based on process
specifications

We finally note that the analytical framework presented in
this section can be extended and configured based on the
specific layout of the MMP and sensing system. First, some
processes generate both functional curves and images in cer-
tain stages or generate curves and images of different sizes.
The problem formulation and optimization algorithm can
be applied with some minor modifications. Second, if the
curves and images have various smoothness properties, dif-
ferent roughness penalties may be applied by discretizing
the roughness penalties for functional data (see Section 5.3.3
of Ramsay (2005)). Third, certain manufacturing stages gen-
erate other forms of data, such as the spatial measurements
seen in lithography processes, point cloud data in machining
processes, as well as electrical signals that jump at discrete
time points. Associated penalties based on spatial coordi-
nates and point distance should be applied based on the
structure of such data, instead of using smoothness penalties
presented above. The ADMM consensus algorithm can be
adjusted accordingly with minor modifications.

As a limitation of the proposed model, we assumed a lin-
ear relationship between the process inputs and the process
outputs. If their relationship is not linear, we may include
quadratic terms of the input variables into the model. We
can also transform the process outputs from one stage into
a set of meaningful features that are linearly related to the
inputs. Furthermore, the interaction effect of two or more
process inputs can be studied in our analytical framework as
well, by including u;u; terms in the inputs.

Finally, we note that the least square loss function can be
replaced with other types of loss functions, such as Huber
or Tukey loss, to yield more robust solutions when the error
follows heavy-tail distributions or when outliers exist. If the
loss function is convex, and its proximal operator can be
evaluated effectively, the ADMM consensus framework can
still be applied.

4, Simulation studies for performance evaluation

In this section, we set up a simulation platform to validate
the methodology proposed in Section 3. We will demonstrate
how to use the proposed framework to specify the number of
variation patterns and effective inputs from the process inputs
and intermediate product quality measurements.

4.1. Engineering background

The manufacturers of semiconductors are interested in dis-
covering how process inputs relate to the intermediate prod-
uct quality measurements. However, there are no effective
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Table 2. The type and dimension of data from each stage.

Stage 1 2 3 4

Data type multiple functional signals multiple functional signals images images
Output dimension 3 signals of length 10 4 signals of length 20 10 x 10 20 x 20
Input dimension g1 =20 g, =20 gq; =20 gs =20

1

\ 2 2 4

0 0 4 2
-2 6

<1 8 0
P -4 10

0 5 10 0 10 20
(@ Yy (b)Y, (©) Y3 (d) Yy

Figure 2. The outputs of curves and images from four stages.

methods to identify the relationships between them. The
characteristics of the semiconductor manufacturing process
discussed in the Introduction motivates our simulation
setup. In practice, only a small number of variation patterns
in outputs present in a given time period. This is because
each variation pattern of quality data is typically driven by a
few root causes associated with process inputs. A well-main-
tained process should have limited variation sources in a
short period. As we introduced in Section 3.1, the number
of variation patterns for the outputs from stage k is repre-
sented by the rank of the parametric matrix B. ;. As only a
small portion of the inputs affect the quality data, estimation
of the effect matrices can be cast as a low rank, sparse esti-
mation problem.

In our simulation study, we: (i) evaluate whether the oft-
set matrices {By:k=1,...,K} and the effect matrices
{Bj;x} can be estimated accurately; (ii) identify the inputs
related to the outputs; and (iii) find the number of input-
driven variation patterns presented in the outputs. The
detailed setup of the simulation study is described in Section
4.2, and the results are discussed in Section 4.3.

4.2. Specifications of simulation settings

Our simulation testbed has a total of K =4 stages. Each
involves g; = 20 input variables. The type and dimension of
data generated from each stage are summarized in Table 2.
Our simulation is performed under a relatively low dimen-
sional setting compared with real applications, as it enables
us to conduct the simulation thoroughly with more replica-
tions and under a wider variety of problem settings.

We aim at simulating the system that satisfies the follow-
ing conditions: (i) 7, variation patterns present in the out-
puts of stage k, (ii) only the g effective inputs from stage 1
to k relates to the quality measurements of stage k, and (iii)

the image or multiple functional quality measurements are
smooth. We generate the true values of By and B, so that:
(i) the matrix of B.  has a rank of 7, (unless the number of
rows or columns of B. j is smaller than ry); (ii) Bjjx # O if
and only if u; is an effective parameter; and (iii) the rows of
By and By x form smooth curves if k € §, and the matrices
By and Bjj; form smooth images if k € J. For every stage
k=1,..,K, we first generate By, using multiple univariate
Gaussian processes (if k € 8) or a bivariate Gaussian process
(if k € J). Then we generate r; basis, using the same proced-
ure of generating Byy. We finally generate Bj;x correspond-
ing to all effective input u; using a random linear
combination of these r; basis, such that the rank of B. j is
rx. The detailed procedure of generating B, and B is given
in Section C of the online supplement. Given B and By, we
then generate the data corresponding to N = 500 products.
The process inputs u;; for each product are independent
standard normal random variables, and the process outputs
of each product are generated according to model (1) based

on the process inputs, where E,E"} are independent standard
normal random variables with variance ¢% = 0.2. Figure 2
illustrates the output data collected from one sample, where
the four subfigures are the multiple functional signals and
image data collected from each manufacturing stage.

In our simulation studies, we consider the four process
setups in which the number of potential root causes from
each stage (reflected by ri, the rank of B..x, k= 1,...K) and
the number of effective process inputs from each stage
(@eo k= 1,...,K) are varied: (i) rx = 2;qex = 3; (i) ¢ = 5;
Ge,k = 3; (iii) rx = 2; g,k = 6 and (iv) rx = 5; g,k = 6 for all
k=1,..,K. For each simulation setting, we perform the
estimation for 300 times, according to 30 different pairs of
offset matrices By and effect matrices B that define 30 spe-
cific manufacturing process. For each pair, we generated 10
datasets corresponding to different inputs wy,..,ux and



Table 3. Summary of the simulation settings.
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e Specifies ry and g« according to Setting (1)-(4).

o Given each specification of {r,gex : k =1,..,K} , generate 30 sets of {By, B} according to the procedure detailed in Section C of the

online supplement.

e Generate 10 sets of inputs {w, .., uc} whose elements are all independent and follow standard normal distributions, and generate the error

{Es, ..., Ex} whose elements are all independent and follow N<0, aék), k=1,..K.

e Given each specification of {By, B}, the set of {uy, ..., ux} and the error {Ej, ..., Ex}, simulate 10 datasets, each contains
yln — (Yﬁ”}, ...,Y,{("}),n =1,... N, based on Equation (1). The sample size N = 500.

e From each dataset, estimate @0 and B.

random errors E;...,Eg, representing process inputs and
outputs collected from the same process. These simulation
settings are summarized in Table 3.

4.3. Optimization procedure and results of
simulation studies

Based on each generated dataset with sample size N = 500,
we perform the modeling and estimation procedure
described in Section 3. Although the number of effective
inputs ¢, and the number of variation patterns ry differs,
we select the same set of tuning parameters: 4; = 1,4, =
1,73 =10.25 and 2§ = 0.2(VK + \/mgng), k = 1, ..., K based
on the discussion in Section 3.4.1. We fix the step size n =5
under all simulation settings.

Our algorithm is implemented in MATLAB, and the
simulation study is conducted on a computing cluster. We
did not implement the parallel for-loops in the algorithm in
a parallel computing framework. To illustrate the speed and
convergence property of the algorithm, we perform the esti-
mation for one dataset, generated with rx =2 and g, = 3,
on a standalone mobile workstation with Intel Xeon E-
2176M 2.7GHz CPU and 16GB memory. The stopping cri-
terion is that both the primal residual

em = max { a5~ 7). max B0~ 5]

i=1,...
and the dual residual

nax B — Byres|l» max [Bo — Bo, prevll |

i=1,..

€dual — Max {

are below 107>, where || - || is the max norm. The algorithm
converges in 2133 iterations. On average, each iteration takes
0.61s. We observed that the major computational burden is in
step (2a), where each iteration takes an average of 0.51s. In
step (2a) we need to construct and solve m;n; = 30 linear sys-
tems of order 20, 80 linear systems of order 40, 100 linear sys-
tems of order 60, and 400 linear systems of order 80. However,
these linear systems could be solved in parallel. As for the con-
vergence speed, the change of log €,rim and log €4y, in all itera-
tions are illustrated in Figure 3. From this figure, we can see
that the primal and dual residuals are consistently dropping.
However, the algorithm has a sublinear convergence rate.
After the estimation of By, B are obtained, we observe that
the estimation of f},»j, . and By, are either multiple smooth
curves when k = 1, 2 or smooth images when k = 3, 4, which
are consistent with the true system parameters (see Figure 4 for
the illustration of the estimation of By, ..., B4y, for example).

All estimation of ]AB,-j,k in one run is shown in Section D of the
online supplement. We can see that the estimated parametric
matrices satisfy the corresponding smoothness property.

We then evaluate the effectiveness of the root cause ana-
lysis based on the estimations. Specifically, we: (i) evaluate
their estimation accuracies based on the difference between
each estimated parametric matrix ]AB,-j)k or Byo and their cor-
responding true value, By x or By; (ii) identify the effective

inputs from each stage by checking whether the entries asso-

o)
ij,-
(iii) identify the number of variation patterns of each stage
through the number of positive singular values of the esti-

mated ]A3(43c (Parikh and Boyd, 2014).

ciated with each u; of parameter set B;’ is non-zero; and

4.3.1. The estimation accuracy
From the estimation ﬁij,k obtained from each dataset, we

calculate:
1
dix =
qimpny

1 .
do = \/— I Bio — Bioll 7
minj

to evaluate the estimation error. These quantities correspond
to the rooted mean square error associated with every elem-
ent of the estimated matrices. Under settings (i) to (iv), let
d,-,k(npar, Mrep) and dko(npar) Mrep) be the values of d; x and dy

q 0 2
i1 Biik = Bijil

and

calculated from the dataset according to the n,,-th gener-
ation of {By, B} and n,-th generation of inputs and ran-
dom  errors  (Mpar € {1,...,30}, f1rep € {1,...,10}).  To
understand the average estimation accuracy within each set-
ting and the uncertainty of the estimation error, we further
calculate the following summary statistics:

1. The average error of the setting j=E

[di,k(npar: nrep)]~
2. The variability of the error caused by inputs and ran-
dom error uncertainty in replications:

6'rep = \/Enpar@nrep [di,k(”Par’ ”rep)] :

3. The variability of the error caused by different genera-
tions of parameters {B,, B}

nparE”rep
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Table 4. The estimation error d,?k(1 < i< k< 4) and the associated Orep and opg in brackets.

k=1 k=2

k=3 k=4

Setup 1: 1y =2, Gek =3

i=1 1.36e-04 (2.03e-10 / 2.63e-10) 1.37e-04 (8.39e-09 / 4.57e-09) 1.41e-04 (2.87e-08 / 6.98e-08) 2.78e-04 (5.42e-06 / 2.71e-06)
i=2 1.37e-04 (1.10e-08 / 7.70e-09) 1.45e-04 (1.74e-07 / 1.40e-07) 6.18e-04 (1.81e-05 / 1.12e-05)
i=3 1.54e-04 (7.16e-07 / 3.33e-07) 3.39e-03 (1.95e-04 / 8.61e-05)
i=4 1.14e-01 (2.57e-03 / 6.59e-03)

Setup 2:ry =5, Gex =3
i=1 1.36e-04 (2.77e-10 / 1.73e-10)

i=2 1.37e-04 (1.15e-08 / 6.93e-09)
i=3
i=4

Setup 3: 1y =2, Gek =6
i=1 1.36e-04 (2.23e-10 / 2.84e-10)

i=2 1.37e-04 (7.48e-09 / 6.30e-09)
i=3
i=4

Setup 4:ry =5, Gex =6
i=1 1.36e-04 (1.88e-10 / 1.65e-10)

1.37e-04 (3.67e-09 / 2.83e-09)

1.37e-04 (3.67e-09 / 2.91e-09)

1.37e-04 (2.56e-09 / 2.92e-09)

1.41e-04 (2.43e-07 / 4.81e-08)
1.45e-04 (1.75e-07 / 1.31e-07)
1.56e-04 (4.27e-07 / 2.01e-07)

2.83e-04 (5.06e-06 / 1.84e-06)
6.67e-04 (2.00e-05 / 9.90e-06)
3.46e-03 (2.64e-04 / 7.32e-05)
1.16e-01 (8.28e-03 / 5.54e-03)
1.41e-04 (1.09e-07 / 9.50e-08)
1.45e-04 (2.31e-07 / 1.78e-07)
1.56e-04 (5.69e-07 / 2.77e-07)

2.89e-04 (3.49e-06 / 2.35e-06)
6.59e-04 (3.27e-05 / 1.26e-05)
3.74e-03 (1.81e-04 / 1.10e-04)
1.46e-01 (7.72e-03 / 8.26e-03)
1.41e-04 (1.90e-07 / 4.65e-08)

2.93e-04 (1.45e-06 / 1.43e-06

( )
i=2 1.37e-04 (8.59e-09 / 5.00e-09) 1.46e-04 (2.46e-07 / 9.88e-08) 6.76e-04 (2.53e-05 / 8.24e-06)
i=3 1.57e-04 (5.00e-07 / 2.29e-07) 3.92e-03 (2.74e-04 / 7.30e-05)
i=4 1.52e-01 (5.43e-03 / 6.03e-03)

~ —~ stages k containing more elements and associated
Opar = £/ VaTn, En, [dik(Mpars firep) | stages ! Hning ' :
inputs, it also introduces larger biases for the estima-
tions in later stages.
where Enmp, Enw denotes the average of the following 3. When k is fixed, the estimation of By, become less

expression for #p = 1,...,10 or npyr = 1,...,30 respectively,
and var,,, var,, denotes the sample variance of the fol-
lowing expression for #, =1,..,10 or #py = 1,...,30
respectively. The summarizing statistics of fi,Grep and Gpar
of all d; in the four system settings are reported in Table 4
and Table 5, respectively. In each cell of this table, the num-
ber outside the bracket is the value of ji corresponding to
setup 1,...,4, and the two numbers separated by the slash in
each bracket are G and Gp, that respectively quantifies
the uncertainty caused by the inputs and error, and the
uncertainty caused by different generations of {B, Bo}.

From the results in the table, we can observe that the
errors are small in general. We summarize the follow-
ing findings:

1. Among all parametric matrices, the effects of the inputs
from stage 1 on the output of stage 1 are estimated
most accurately. The magnitude of the error is in the
order of 107*. The reason is that the outputs from stage
1 are only related to the inputs from stage 1, and there-
fore the relationship between them is clear. Also, the
smoothness penalty regularized the matrices of estima-
tion, and thus increase the estimation accuracy.

2. As k increases from 1 to 4, the error associated with the
estimation ﬁij, « generally increases. One of the reasons
is that the total number of elements in By increases.
(Note that when k = 1, 2, 3 and 4, the number of ele-
ments in By is respectively 30, 80, 100, 400). Apart
from this, outputs from later stages are associated with
more input variables, and thus the estimation accuracy
decreases. Finally, later stages involve larger penalization
due to the ranks, as A44 > A43 > 442 > 44,1 in our
setup. Although such selection of the hyper-parameters
is necessary to reduce the ranks of B.. ; involving later

accurate when i increases.

4. Among the four settings, the estimation is more accur-
ate when r = 2 and less accurate when r = 5. The esti-
mation is also more accurate when g, =3 and less
accurate when g, = 6. This is because our penalization
works best when the number of variation patterns of
each stage and the number of effective inputs from each
stage is not high.

Except for the observations above, we can also see that
Greps Opar are typically much smaller than the error fi, which
indicates that the uncertainty of the estimation error is not
high and that the discoveries above are conclusive instead of
merely out of chance.

4.3.2. Effective inputs

Among simulation setups 1 to 4, the number of effective
inputs from each stage is either three or six. Of 30 x 10 =
300 replicates corresponding to the four setups, all inputs
are correctly identified as effective or ineffective ones from
stages 1, 2, and 3. In stage 4, on average 0.28 ineffective
inputs are falsely selected as effective one under setup 2,
0.18 ineffective inputs are falsely selected as effective one
under setup 3, and 0.28 ineffective inputs are falsely selected
as effective one under setup 4. This result indicates that the
proposed framework generally identifies the significant vari-
ables in early stages if the sample size is large enough, the
error is not so big, and the hyperparameters are appropri-
ately chosen. However, in later stages like stage 4, the pro-
posed framework is likely to select extra ineffective inputs,
because the total number of inputs that may affect this stage
is too big (including all input from the current stage and
the previous stages). Consequently, the algorithm is more
prone to selecting ineffective variables.
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Table 5. The estimation error of d,fo(1 < k < 4) and the associated Orep and opar in brackets.

Setup 1: r=2, ge =3
5.82e-03 (2.38e-04 / 1.12e-03)
Setup 2:r =15, ge =3
5.94e-03 (4.40e-04 / 1.06e-03)
Setup 3:r=2, g. =6
6.11e-03 (4.75e-04 / 9.40e-04)
Setup 4:r =25, ge =6
6.05e-03 (2.18e-04 / 9.78e-04)

6.11e-03 (7.79e-04 / 1.87e-03)
8.12e-03 (8.31e-04 / 2.93e-03)
7.57e-03 (8.80e-04 / 2.60e-03)

8.70e-03 (6.42e-04 / 2.13e-03)

9.58e-03 (1.48e-03 / 4.56e-03) 3.17e-02 (2.74e-03 / 1.58e-02)

1.02e-02 (1.02e-03 / 3.48e-03) 3.49e-02 (2.98e-03 / 1.32e-02)
8.88e-03 (1.34e-03 / 4.35e-03) 3.57e-02 (3.46e-03 / 1.92e-02)

1.31e-02 (1.02e-03 / 5.18e-03) 4.36e-02 (6.24e-03 / 1.92e-02)

0 2
E =0
< 5 5 2
o o
o S 4
-10 K
0 1000 2000 0 1000 2000
# iteration # iteration
Figure 3. The convergence of €pim and equal in all iterations.
Byg By
0
0.5 \ 2 .
-0.2 4
-0.05
0 6
-0.4
~—~ 8 -0.1
0.5 -0.6 10
0 5 10 0 10 20 2 46 810

Figure 4. An illustration of an estimation of ﬁlo,ﬁzo,ﬁm and l§40 from one dataset.

Table 6. Number of variation patterns and the associated o and opar
in brackets.

Setup T:ry =2, Gex =3

2(0/0) 2(0/0 2(0/0 2(0/0)
Setup 2:ry =5, Gek =3

3(0/0) 4.60 (0.548 / 0) 4.38 (0.522/0.141) 4.42 (0.814 / 0.287)
Setup 3:rx =2, ek =6

2(0/0) 2(0/0 2(0/0 2(0/0
Setup 4:ry =5, Gex =6

4.60 (0.548 / 0) 5(07/0 4.80 (0.447 / 0) 5(0/0

4.3.3. Number of variation patterns
Within four simulation setups, the number of variation pat-

terns from each stage is either two or five Within each

. (4
simulation setup, we calculate 7(Mpars Mrep ) the rank of B(L

corresponding to the ny, th generation of {B,B,} and
the #n., th generation of inputs and errors
(Mpar € {1,...,30}, 11ep € {1,...,10}). Similar to the report of
estimation accuracy, the average rank among 300 simulation
cases (fi,) and their uncertainties Gpqr,r» Grep,r are reported in
Table 6.

From the result, we observe that when the true number
of variation patterns for the output in each stage is r = 2,
the algorithm can always correctly identify two variation
patterns (because Gpar = Grep = 0 indicates that T (Mpar» Mrep )

are the same for all n1par, firep = 1,...,10). However, in setup

2 where g, = 3,7, =5, the average rank of B(43( is 3, 4.60,
4.38, and 4.42 for stages 1, 2, 3, and 4, according to Table
6. The number of the variation patterns for the output from
stage 1 is correctly given, as this stage is only affected by
three inputs from itself, and the number of variation pat-
terns cannot exceed three. The later stages 2, 3, and 4 are
influenced by 6, 9, and 12 inputs, respectively, but the
effects of them are restricted in a five-dimensional subspace.
However, the algorithm does not always identify the rank as
five. We guess that the reason is two-fold: (i) collinearity
may exist among the randomly generated five variation pat-
terns, and (ii) the number of inputs is small to reveal all
varjation patterns. Under setup 4, ¢.x =6 and thus the
number of inputs is larger. As a result, all replications in

setup 4 identify that rank of B(43< is five and thus the
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number of the variation patterns is correctly estimated in

stages 2 and 4. In stages 1 and 3, the average rank of B(A‘;(
are 4.60 and 4.80 across all replications. Although error
exists, the estimation is closer to the correct value five than
the results in setup 2.

5. Conclusion

In a data-rich manufacturing environment, an MMP generates
various types of data from different manufacturing stages,
which poses a great challenge for data analytics. In this article,
we propose a novel root cause diagnostic framework for an
MMP that satisfies four assumptions: (i) the input from one
stage only affect the down-stream stages (e.g., no re-work); (ii)
the process outputs satisfies smoothness properties; (iii) only a
small number of inputs affect the process outputs; and (iv) the
variation patterns caused by the inputs are limited. Based on
these assumptions, our approach identifies the effective inputs
that relate to the perturbation of the outputs, identifies the
variation patterns of the outputs caused by these inputs, and
determines how each individual process input affects the man-
ufacturing process.

The root cause diagnostic framework is based on a model for
MMPs that generates mixed profile data, such as functional sig-
nals or images. For estimating the model parameters, we pro-
posed a distributed computational scheme. The framework
proposed in this article is highly extendable: the practitioners
may customize it based on the special characteristics of the pro-
cess, by using appropriate loss functions and structural assump-
tions on various types of data generated from different stages.

We developed the simulation study based on the scenario of
a real semiconductor manufacturing process. In general, with
correctly specified tuning parameters, the proposed method can
perform well for three tasks of root cause diagnosis: it achieves
satisfactory estimation accuracy, can correctly identify the
inputs that affect the outputs, and provide a good estimation of
the number of variation patterns for the output from each stage.

In this study, our modeling of the MMP focus on the
application of root cause diagnosis. How to extend this
modeling technique to process control, optimization, and
sensor allocation are follow-up questions that need to be
studied in the future. We will also extend our current frame-
work to tensor inputs and outputs generated from each
stage and modeling the inter-relationship between heter-
ogenous intermediate quality measurement.
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