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a b s t r a c t 

Three new fluorescent 2,7-alkynyl(aryl)-3,6-dimethoxy-9,9-diphenylsilafluorenes have been synthesized 

using a Pd-catalyzed Sonogashira coupling reaction to incorporate alkynyl(aryl) groups at the 2,7- 

positions of the ring. The substituents include 9-ethynylcarbazole, 4-ethynylbenzaldehyde, and 3- 

ethynylphenanthrene. These new compounds were characterized utilizing X-ray crystallography as well as 

multinuclear NMR, mass spectrometry, UV-Vis, and fluorescence spectroscopic techniques. These silaflu- 

orenes, which are yellow crystals in the solid state, showed high quantum yields with moderate molar 

extinction coefficients in dichloromethane and strong blue emission. Key words: silafluorene, lumines- 

cence. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

Silafluorene ring systems, also known as dibenzosiloles and the 

elated silacyclopentadienes (silole), are a class of molecules that 

emonstrate intense fluorescent emission that arises from the σ ∗- 
∗ conjugation between the exocyclic groups at the silicon center 

nd the butadiene unit of the ring resulting in a low-lying LUMO 

nergy level [ 1 , 2 ]. Theoretical studies on 9-heterofluorenes with 

i, Ge, N, P, O, S or B in the 9-position of the ring showed that

hese molecules are highly aromatic and electrooptically active 

3] . Silafluorenes have been shown to exhibit fluorescence both 

n solution and in the solid state making them useful molecules 

or a number of applications. For example, silafluorenes have been 

eported as host materials for a blue phosphorescent OLED, a red 

hosphorescent OLED, and a blue to deep-blue OLED, respectively 

4–6] . Silafluorene based compounds have also been used as 

hemical sensors, such as in the detection of explosive materials 

uch as TNT [7] . 

Silafluorenes have also been studied extensively in applications 

or photovoltaic cells. A silafluorene and a related spirosilafluo- 

ene compound containing substituted triphenylamine groups at 

he 2,7-positions have been studied for photovoltaic applications 

s a hole transporting material in perovskite solar cells [8] . Three 

ovel dibenzosilole D- π-A sensitizers were synthesized for com- 
∗ Corresponding author. 

E-mail address: wilkingj@umsl.edu (J. Braddock-Wilking). 
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onents in dye-sensitized solar cells [9] . Also, a push-pull red- 

mitting 2-amino-7-acceptor-9-silafluorene fluorophore was syn- 

hesized and found to be highly efficient for solar concentrators 

10] . A 2,7-bis-aryl(alkoxy)silafluorene and a related spiro-bridged 

ilafluorene were reported and found to exhibit high thermal sta- 

ility and liquid crystal behavior [11] . 

There have been a few reports of the involvement of silaflu- 

renes in biochemical related applications. A silafluorene linked 

o a [FeFe]-hydrogenase was prepared for photolytic [FeFe]-H 
2 ase 

imic where the silafluorene moiety serves as a photosensitizer 

12] . A silafluorene molecule with a hexafluoro-2-hydroxypropyl 

roup on the aromatic ring was synthesized and studied as a novel 

OR inverse agonist [13] . Poly(2,7-dibenozosilole) was studied as a 

uorescent label for biomolecules for antibody-based flow cytome- 

ry [14] . These examples demonstrate the broad applications of op- 

ically active silafluorenes and their tunability due to various sub- 

tituted groups. 

Related 2,7-dibromosilafluorene derivatives with different sub- 

tituents at the silicon center have been synthesized [15] . A num- 

er of new synthetic routes have been reported for the synthe- 

is of fluorescent silafluorene molecules. Yamanoi and Nishihara 

eported the cyclic double intramolecular arylation reaction of 

 2,2’-diiodobiaryl with a secondary silane, an added base and 

 Pd catalyst to form a series of silafluorenes and germafluo- 

enes in high yield [16] . Takai et al. reported a rhodium-catalyzed 

eaction of biphenylhydrosilanes to prepare a series of silafluo- 

enes and related silicon ring systems [17] . Holthausen and Lerner 

t al. synthesized substituted silafluorenes using diethylsilane and 

https://doi.org/10.1016/j.jorganchem.2020.121514
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jorganchem
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jorganchem.2020.121514&domain=pdf
mailto:wilkingj@umsl.edu
https://doi.org/10.1016/j.jorganchem.2020.121514
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Fig. 1. Molecular structure of 2a . Hydrogen atoms and solvent molecules have 

been removed for clarity. Thermal ellipsoids are drawn at the 50% proba- 

bility level. Selected bond distances ( ̊A), bond angles (deg), and angles be- 

tween bonds (deg) for 2a: Si1-C1 = 1.8600(19), Si1-C24 = 1.8630(18), Si1- 

C47 = 1.868(2), Si1-C53 = 1.870(2), C1-C2 = 1.415(2), C2-C3 = 1.392(3), C3- 

C4 = 1.392(3), C4-C5 = 1.418(3), C5-C6 = 1.397(3), C5-C7 = 1.439(3), C7- 

C8 = 1.172(3), C8-C9 = 1.439(3), C9-C10 = 1.451(3), C10-C11 = 1.409(3), C11- 

C12 = 1.360(3), C1-C6 = 1.388(2), C12-C13 = 1.404(3), O1-C4 = 1.355(2), O1- 

C23 = 1.435(2), O2-C27 = 1.363(2), O2-C46 = 1.426(2), C13-C14 = 1.370(3), C17- 

C18 = 1.380(3), C25-C26 = 1.398(2), C1-Si1-C47 = 115.16(9), C24-Si1-C47 = 114.98(9), 

C1-C2-C25 = 114.38(16), C1-C6-C5 = 121.61(17), C47-Si1-C53 = 108.62(9), C1-Si1- 

C24 = 91.52(8), C4-O1-C23 = 117.48(15), C27-O2-C46 = 116.74(15), C19-C10-C15-C14 

= 178.38(18), C15-C16-C21-C20 = -177.30(18). Angles between bonds C29-C28 and 

C32-C45 = 119.3 deg; Angles between bonds C6-C5 and C9-C22 = 120.3 deg. 

4

c

f

d

f

c

o

iphenylenes in the presence of a nickel catalyst [18] . Chen, Lei, 

nochel, and coworkers carried out cyclolanthanation reactions to 

ynthesize polyfunctionalized diiodobiaryl derivatives which were 

sed to prepare new silafluorenes, fluoren-9-ones, phenanthrenes, 

nd other related heterocyclic compounds [19] . Nozaki and Shin- 

ani et al. reported a Rh-catalyzed asymmetric synthetic route to 

ibenzosiloles via an enantioselective [2 + 2 + 2] cycloaddition re- 

ction [20] . A series of 13 new 9-silafluorenes as well as several 

elated ring systems were synthesized utilizing a base-promoted 

omolytic aromatic substitution [21] . Dibenzosiloles functionalized 

t one or both aromatic rings were prepared from ortho-silylated 

iphenyls via an intramolecular electrophilic aromatic substitu- 

ion pathway [22] . A series of silafluorenes and silaindenes were 

repared by an intramolecular homolytic aromatic silylation reac- 

ion involving biphenyl-2-hydrosilanes and silyl radicals [23] . Mu- 

ata and co-workers carried out Pt-catalyzed intramolecular dehy- 

rogenative cyclization reactions of 2-(dialkylsilyl)biaryls to pro- 

uce a series of silafluorene derivatives [24] . He and cowork- 

rs investigated the preparation of several silafluorene derivatives 

nd related ring systems by a rhodium-catalyzed route involving 

n intramolecular C-H silylation step with silacyclobutane [25] . A 

ouble sila-Friedel-Crafts reaction was utilized by Kuninobu and 

oworkers in the Lewis acid-catalyzed preparation of silafluorenes 

tarting from biphenyl ring systems and dihydrosilanes [26] . A se- 

ies of 9,9-dimethyl-9-silafluorenes silafluorenes were synthesized 

nd functionalized through a sequence of reactions involving bo- 

ylation, bromination and nitration [27] . A group of silafluorene 

erivatives were prepared by a Lewis-acid catalyzed reaction in- 

olving dihydrosilanes and aminobiphenyl derivatives in the pres- 

nce of a borane catalyst [26] . 

Blue hyperfluorescent systems that exhibit thermally acti- 

ated delayed fluorescence (TADF) are of interest as nondoped 

rganic OLEDs. A similar framework to the compounds pro- 

osed here was investigated by Rao and coworkers that had a 

,9-dimethylacrinidine and fluorene-based donor-acceptor with a 

hioxanthene dioxide blocking unit [28] . Their compound showed 

oderate quantum efficiency and achieved solid state TADF due 

o the blocking unit. Two spiro-linked benzosilole moieties have 

een demonstrated in the literature by Xu and coworkers as 

 silicon containing PLED with a photoluminescence quantum 

ield of 0.84 [29] . Xu and coworkers also reported the synthe- 

is of a deep-blue emitting polymer with a spiro-dibenzoazasiline 

ystem that was linked to a poly(dibenzosilole) moiety result- 

ng in deep-blue emission for applications in power-efficient 

LEDs [30] . 

. Results and discussion 

We previously reported the synthesis of a series of six 2,7- 

is-alkynyl(aryl)-3,6-dimethoxy-9,9-diphenylsilafluorenes utilizing 

he precursor, 9,9-diphenyl-2,7-dibromo-3,6-dimethoxysilafluorene 

 [31] . Herein, we report the synthesis and characterization of 

hree new silafluorene compounds containing alkynyl(aryl) sub- 

tituents at the 2,7-positions of the silafluorene ring using a Sono- 

ashira coupling reaction. The new aryl groups used in the current 

tudy are based on phenanthrene, benzaldehyde, and carbazole. All 

ilafluorenes were observed to have strong blue emission in solu- 

ion, with tunability conferred by the alkynyl(aryl) groups. These 

ew compounds were characterized using X-ray crystallography, 

ultinuclear NMR, mass spectrometry, UV-Vis, and fluorescence 

pectroscopic techniques and are discussed herein. 

.1. Synthesis and characterization 

The precursor compound needed to make the required 

,7-dibromo-3,6-dimethoxysilafluorene described herein was 
2 
,4‘-dibromo-2,2’-diiodo-5,5’-dimethoxy-1,1’-biphenyl. The latter 

ompound was prepared in two steps in high yield starting 

rom commercially available o -dianisidine [32] . Reaction of 4,4‘- 

ibromo-2,2’-diiodo-5,5’-dimethoxybiphenyl with n BuLi in THF 

ollowed by addition of diphenyldichlorosilane afforded the 

orresponding 2,7-dibromosilafluorene ( 1 ) in 76 % yield [ 15 , 31 ]. 

Moderate yields of 2a-c were obtained using the procedure 

utlined by Hammerstroem et al. (2016) where silafluorenes 2a - c 
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Scheme 1. 
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Table 1 

Crystallographic and Data Collection Parameters for 2a - c . 

2a a 2b 2c 

Formula C 58 H 38 O 2 Si C 44 H 30 O 4 Si C 66 H 44 Cl 3 N 2 O 2 Si 

fw 794.97 650.77 925.12 

cryst syst Triclinic Orthorhombic Triclinic 

space group P1 Pbca P1 

a , Å 12.0986(15) 21.582(3) 11.1852(5) 

b , Å 12.5130(15) 8.3972(9) 12.9545(6) 

c, Å 14.4986(18) 40.443(5) 19.5039(9) 

α, deg 102.235(4) 90 109.285(3) 

β , deg 101.989(4) 90 101.023(2) 

γ , deg 98.442(4) 90 97.587(2) 

V , Å 3 2056.1(4) 7329.6(15) 2559.5(2) 

Z 2 8 2 

d calc , g/cm 
3 1.284 1.179 1.200 

μ, mm 
−1 0.125 0.105 0.094 

R1, b wR2 c 0.0496, 0.1337 0.0608, 0.1668 0.0524, 0.1329 

goodness-of-fit on F 2 1.007 1.295 1.022 

CCDC Deposit # 2015348 2015350 2015349 

a λ, = 0.71073 Å (Mo), T = -100(2) K. 
b R1 = ( �|| F o | - | F c ||)/ �|| F o |. 

c wR2 = [( �w( F o 
2 - F c 

2 ) 2 )/ �w( F c 
2 ) 2 ] 1/2 . All crystals 

were yellow needles. 

C

a

a

1

C

C

2

a

c

C
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s

s

i

t

F

ere prepared using Sonagashira cross-coupling conditions shown 

n Scheme 1 [31] . Compound 1 does not exhibit fluorescence in 

he solid state or in solution, however compounds 2a - c exhibit flu- 

rescence in the reaction mixture after stirring for 30 minutes at 

0 °C. Upon purification and recrystallization, the silafluorenes are 
ellow crystalline powders with moderate yields (23-34%, based on 

ompound 1 ). Compounds 2a - c were characterized by 1 H NMR and 
3 C{ 1 H} NMR where the spectra showed good agreement with re- 

ated literature values for expected peaks. All three compounds 2a - 

 were characterized by X-ray crystallography, multinuclear NMR 

pectroscopy, mass spectrometry, UV-Vis and fluorescence spec- 

roscopy, quantum yield, and melting point. 

.2. X-ray Crystal Structures 

X-ray quality crystals of silafluorenes 2a-c were obtained as yel- 

ow needles. Several solvents were attempted for recrystallization 

f 2a and small weakly diffracting crystals were obtained. X-ray 

ata for 2a were obtained from the Advanced Light Source (ALS) 

t the Lawrence Berkeley National Laboratory. Compound 2b crys- 

allized from slow evaporation from chloroform and some resid- 

al ethanol. Compound 2c was crystallized from dichloromethane. 

he crystal structure contained a probable molecule of CH 2 Cl 2 that 

ould not be modeled well. Table 1 provides some crystallographic 

nd data collection parameters for compounds 2a - c . 

Compounds 2a and 2c crystallized in the space group P1 

hereas compound 2b crystallized in the space group Pbca 

 Table 1 ). The molecular structures are shown in Figures 1 , 2 , and

 for compounds 2a, 2b , and 2c , respectively along with selected 

ond distances and angles. The new compounds display similar X- 

ay structural data with respect to bond distances and angles to 

hose previously reported [ 30 , 33 ]. The bond lengths for the Si-C

onds of the ring ranged from 1.855-1.871 ̊A. The exocyclic silicon- 

arbon bond distances to the phenyl substituents were found to 

ange from 1.862-1.871 Å. The carbon-carbon bond lengths in the 

ve-membered silicon-containing ring ranged from 1.399-1.487 Å. 

he triple bond of the alkynyl unit for compounds 2a-c were found 

o be in the range of 1.172-1.198 Å. 

The X-ray crystal structures all exhibit a non-coplanar arrange- 

ent with respect to the central silicon-containing ring system and 

he aryl(alkynyl) substituents at the 2,7-positions ( Figures 1-3 ). For 

ompound 2a the angles between bond sets C29-C28 and C32-C45 

as found to be 119.3 degrees and angles between bonds sets C6- 
3 
5 and C9-C22 was similar at 120.3 degrees. For compound 2b the 

ngles between bonds C21-C20 and C29-C24 was 111.6 degrees and 

ngles between bonds C6-C5 and C9-C14 was significantly larger at 

35.4 degrees. Compound 2c had angles between bonds C6-C5 and 

9-C14 of 118.9 degrees and angles between bonds C31-C32 and 

40-C35 of 110.1 degrees. 

.3. Electronic Transitions 

Absorbance spectra of compounds 2a-c in dichloromethane 

ppear in Figure 4 (top panel) and are plotted at the same 

oncentration so differences in extinction coefficient are reflected. 

ompound 2b absorbs most strongly, followed by 2a . Compound 

a exhibits sharper features than those exhibited by 2b and 2c . 

ompound 2b exhibits the broadest spectra and could reflect 

olvent interactions between the polar benzaldehyde group and 

olvent. Finally, compound 2c is the most blue-shifted. This could 

ndicate that this compound self-associates in a way that protects 

he molecules from polar and/or solvent effects. 

Fluorescence spectra in dichloromethane appear in 

igure 4 (bottom panel) at identical concentrations. Trends 
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Fig. 2. Molecular structure of 2b . Hydrogen atoms and solvent molecules have been removed for clarity. Thermal ellipsoids are drawn at the 50% probability level. Selected 

bond distances ( ̊A), bond angles (deg), and torsion angles (deg) for 2b: Si1-C1 = 1.855(3), Si1-C16 = 1.858(3), Si1-C33 = 1.865(3), Si1-C39 = 1.865(2), C1-C2 = 1.407(3), C2- 

C3 = 1.393(3), C3-C4 = 1.383(4), C4-C5 = 1.410(4), C5-C6 = 1.393(4), C7-C8 = 1.198(4), C8-C9 = 1.424(4), C9-C10 = 1.388(4), C10-C11 = 1.389(4), C11-C12 = 1.383(5), 

C1-C6 = 1.381(3), C2-C17 = 1.482(3), O1-C15 = 1.216(5), O2-C4 = 1.355(3), O2-C31 = 1.426(3), C13-C14 = 1.379(4), C20-C22 = 1.427(4), C22-C23 = 1.195(4), C1-Si1- 

C16 = 91.47(11), C1-Si1-C33 = 114.07(11), C1-C2-C17 = 114.5(2), C12-C11-C10 = 120.6(3), C16-Si1-C33 = 112.50(12), C34-C33-Si1 = 121.5(2), O4-C30-C27 = 126.2(3), C4- 

O2-C31 = 117.1(2), C2-C17-C18-C19 = -177.8(2), C17-C2-C3-C4 = 177.1(2). Angles between bonds C21-C20 and C29-C24 = 111.6 deg; Angles between bonds C6-C5 and 

C9-C14 = 135.4 deg. 

Fig. 3. Molecular structure of 2c . Hydrogen atoms and solvent molecules have been removed for clarity. Thermal ellipsoids are drawn at the 50% probability level. Selected 

bond distances ( ̊A), bond angles (deg), and torsion angles (deg) for 2c: Si1-C1 = 1.857(2), Si1-C55 = 1.862(2), Si1-C61 = 1.871(2), Si1-C27 = 1.871(2), C1-C2 = 1.404(3), 

C2-C3 = 1.394(3), C3-C4 = 1.389(3), C4-C5 = 1.407(3), C5-C6 = 1.396(3), C7-C8 = 1.175(3), C8-C9 = 1.441(3), C9-C10 = 1.392(3), C10-C11 = 1.383(3), C11-C12 = 1.377(3), C1- 

C6 = 1.390(3), N1-C15 = 1.396(3), O1-C4 = 1.354(3), O1-C53 = 1.432(3), O2-C30 = 1.360(3), O2-C54 = 1.424(3), N2-C52 = 1.388(3), C13-C14 = 1.383(3), N2-C38 = 1.422(3), 

C21-C22 = 1.399(3), C1-Si1-C55 = 115.73(10), C1-Si1-C27 = 91.83(10), C1-Si1-C61 = 110.65(10), C1-C2-C28 = 114.83(19), C10-C9-C8 = 121.5(2), C32-C27-Si1 = 132.68(18), 

C61-Si1-C27 = 115.19(10), C4-O1-C53 = 116.52(17), C30-O2-C54 = 117.51(18), C2-C3-C4-C5 = -0.2(3), C15-N1-C12-C13 = -130.2(2). Angles between bonds C6-C5 and C9- 

C14 = 118.9 deg; Angles between bonds C31-C32 and C40-C35 = 110.1 deg. 
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imilar to the absorption spectra are observed. Compound 2b 

as the broadest spectrum, and 2c is the most blue-shifted. As 

ummarized in Table 2 , quantum yields in DCM are high but com- 

arable to those published previously for other 2,7-disubstituted 

ilafluorenes [31] . The quantum yields follow the trend 2a > 

c = 2b , most likely due to the high amount of conjugation in 2a .

oncentration dependent fluorescence spectra for compounds 2a-c 

re shown in Figure S4-6 in Supplementary Materials. 

In conclusion, three 2,7-disubstituted silafluorenes with 

lkynyl(aryl) substituents including phenanthrene ( 2a ), ben- 

aldehyde ( 2b ), and carbazole ( 2c ) were successfully synthesized 

tarting from the 2,7-dibromosilafluorene precursor 1 followed by 

d-catalyzed Sonogashira coupling reactions to form products 2a - 

c . All three compounds were confirmed by X-ray crystallography 
p

4 
nd exhibit high quantum yields in organic solvent (above 85%) 

ith blue emission maxima. 

. Experimental 

.1. General Procedures 

Reactions were carried out under argon atmosphere us- 

ng standard Schlenk techniques with solvents dried and puri- 

ed by standard methods. Chloroform, dichloromethane, pentane, 

thanol, and hexane were used as received. The compounds 3- 

thynylphenanthrene, and 4-ethynylbenzaldehyde were purchased 

rom Millipore Sigma and 9-(4-ethynylphenyl)-9H-carbazole was 

urchased from TCI America and used without further purifica- 
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Table 2 

UV −Visible and Fluorescence Spectral Data for Silafluorenes 2a-c. 

Compound λmax absorbance (nm) ɛ (M 
−1 cm 

−1 ) λmax fluorescence (nm) 	f 
a 

2a 393 43,600 421 0.94 ± 0.018 

2b 394 57,100 435 0.85 ± 0.003 

2c 383 39,600 416 0.86 ± 0.019 

a All measurements performed in CH 2 Cl 2 . Excitation at 350 nm with Coumarin 102 in ethanol as a 

standard. The 	F is the average value of repeated measurements with a 95% CI. 

Fig. 4. top) Normalized UV/Vis and (bottom) fluorescence spectra of 2a - c at 4 mi- 

cromolar in CH 2 Cl 2 . Slits were 0.6 and excitation wavelength at lambda max as per 

Table 2 . 
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(

1

1

ion. All NMR spectra were collected on an Agilent 600 MHz ( 1 H 

ecorded at 600 MHz, 13 C at 151 MHz,) or on a Bruker Avance- 

00 MHz ( 1 H recorded at 300 MHz and 13 C at 75 MHz) at am-

ient temperature unless otherwise noted. Chloroform-d was pur- 

hased from Cambridge Isotopes, Inc. Mass spectral data (ESI) were 

ollected on a Bruker Maxis Plus (maXis HD) quadrupole time-of- 

ight mass spectrometer. 

Melting point determinations were obtained on a Mel-Temp 

elting point apparatus and are uncorrected. UV-vis and fluores- 

ence spectra were measured on Shimadzu UV-1800 spectrometer 

nd a Horiba Spectrofluorometer. Emission spectra were measured 
5 
sing the λmax value for each compound as determined by the ab- 

orption spectra. A Bruker Maxis Plus Mass spectrometer was used 

or Electrospray MS measurements. 

.2. General procedure for preparation of 2,7-alkynyl(aryl)- 

,6-dimethoxy-9,9-diphenylsilafluorenes 

To a flame-dried 15 mL three-necked flask equipped with a 

eflux condenser and magnetic stirrer under argon, 2,7-dibromo- 

,6-dimethoxy-9,9-diphenylsilafluorene, Pd(PPh 3 ) 4 , and CuI were 

dded, followed by piperidine and the arylalkyne. The reaction 

ixture was stirred at 80 °C overnight, then concentrated and pu- 
ified by silica gel chromatography using dichloromethane:hexane 

1:1 ratio) as the eluent. The product was then recrystallized 

rom dichloromethane/hexanes (1:1), then rinsed with hexanes, 

nd dried by rotorary evaporation. 

.3. Preparation of 2,7-(3-ethynylphenanthrene)-3,6-dimethoxy-9,9- 

iphenylsilafluorene (2a) 

The compound was prepared following the general pro- 

edure, using 0.2051 g (0.371 mmol) of 2,7-dibromo-3,6- 

imethoxy-9,9-diphenylsilafluorene, 0.1871g (0.925 mmol) of 

-ethynylphenanthrene as the arylacetylene, 0.044 g (0.038 mmol) 

f Pd(PPh 3 ) 4 , 0.0148 g (0.078 mmol) of CuI, and 4.2 mL of piperi-

ine. The product was received as a bright yellow powder (0.0678 

, 23% yield). Mp: decomp. 355-357 °C. 1 H NMR (600 MHz, CDCl 3 ) 

8.76 – 8.63 (m, 6H), 8.10 (s, 2H), 8.03 (s, 2H), 7.88 (d, J = 7.8 Hz,

H), 7.77 – 7.69 (m, 8H), 7.67 (t, J = 7.7 Hz, 2H), 7.60 (t, J = 7.5

z, 2H), 7.50 – 7.36 (m, 8H), 4.20 (s, 6H). 13 C{ 1 H} NMR (151 MHz, 

DCl 3 ) δ 163.15, 150.36, 138.78, 138.68, 135.82, 135.69, 132.51, 

31.74, 131.68, 131.55, 131.44, 130.49, 130.30, 128.82, 128.71, 

28.50, 128.34, 127.56, 127.15, 122.84, 120.26, 113.32, 104.29, 

04.14, 93.42, 91.15, 56.37. MS (ESI): Calcd. For C 58 H 38 O 2 Si: 794.26, 

ound 794.2595. Figure S1 in Supplementary Materials shows the 
 H NMR spectra for 2a . 

.4. Preparation of 2,7-(4-ethynylbenzaldehyde)-3,6-dimethoxy-9,9- 

iphenylsilafluorene (2b) 

The compound was prepared following the general pro- 

edure, using 0.2559 g (0.463 mmol) of 2,7-dibromo-3,6- 

imethoxy-9,9-diphenylsilafluorene, 0.1465 g (1.13 mmol) of 4- 

thynylbenzaldehyde as the arylacetylene, 0.052 g (0.045 mmol 

f Pd(PPh 3 ) 4 , 0.0184 g (0.097 mmol) of CuI, and 5.2 mL of 

iperidine. The product was received as a bright yellow powder 

0.0903 g, 30% yield). Mp: decomp. 255 °C. X-ray-quality crystals 
ere obtained by slow evaporation of a dichloromethane solu- 

ion of the product at room temperature. 1 H NMR (300 MHz, 

DCl 3 ) δ 10.01 (s, 2H), 7.94 – 7.81 (m, 6H), 7.67 (dd, J = 11.8,

.3 Hz, 8H), 7.54 – 7.30 (m, 8H), 4.10 (s, 6H). 13 C{ 1 H} NMR 

75 MHz, CDCl 3 ) δ 191.56, 162.94, 150.67, 139.09, 135.58, 135.37, 

32.16, 132.13, 130.52, 129.94, 129.65, 128.67, 128.38, 112.39, 

04.20, 94.02, 90.62, 56.15. 29 Si NMR (119 MHz, CDCl ) δ -12.320. 
3 
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S (ESI): Calcd. For C 44 H 30 O 4 Si: 650.191, found 650.1908. Fig- 

re S2 in Supplementary Materials shows the 1 H NMR spectra 

or 2b . 

.5. Preparation of 2,7-(9-ethynylcarbazole)-3,6-dimethoxy-9,9- 

iphenylsilafluorene (2c) 

The compound was prepared following the general procedure, 

sing 0.2122 g (0.384 mmol) of 2,7-dibromo-3,6-dimethoxy-9,9- 

iphenylsilafluorene, 0.2524 g (0.944 mmol) of 9-ethynylcarbazole 

s the arylacetylene, 0.056 g (0.048 mmol) of Pd(PPh 3 ) 4 , 0.0159 g 

0.083 mmol) of CuI, and 4.1 mL of piperidine. The product was 

eceived as bright yellow needle-like crystals (0.1213 g, 34% yield). 

p: 295-300 °C. X-ray-quality crystals were obtained by slow evap- 

ration of a dichloromethane solution of the product at room 

emperature. 1 H NMR (300 MHz, CDCl 3 ) δ 8.15 (d, J = 7.7 Hz, 

H), 7.95 (s, 2H), 7.79 (d, J = 8.1 Hz, 4H), 7.70 (d, J = 7.0 Hz,

H), 7.57 (d, J = 8.2 Hz, 4H), 7.43 (dd, J = 7.8, 4.5 Hz, 16H),

.35 – 7.27 (m, 4H), 4.14 (s, 6H). 13 C{ 1 H} NMR (75 MHz, CDCl 3 )

162.84, 150.35, 140.67, 139.01, 137.55, 135.66, 133.24, 132.37, 

30.49, 128.56, 128.39, 126.90, 126.18, 123.65, 122.61, 120.49, 

20.32, 112.80, 109.89, 104.14, 94.13, 87.34, 56.21. 29 Si NMR (119 

Hz, CDCl 3 ) δ -11.141. MS (ESI): Calcd. For C 66 H 44 Cl 3 N 2 O 2 Si:

24.32, found 924.3167. Figure S3 in Supplementary Materials 

hows the 1 H NMR spectra for 2c . 

.6. X-ray Structure Determination of (2a-c) 

X-ray quality crystals of appropriate silafluorenes 2a - c were ob- 

ained as yellow needles from slow evaporation from chloroform 

nd ethanol ( 2b ) or dichloromethane ( 2c ). Several solvents were 

ttempted for recrystallization of 2a . resulting in small weakly 

iffracting crystals of 2a . 

Crystals were mounted on MiTeGen cryoloops in random ori- 

ntations. Preliminary examination and data collection were per- 

ormed using a Bruker X8 Kappa Apex-II system single crystal X- 

ay diffractometer equipped with Oxford Cryostream LT devices 

or 2b and 2c . Data sets were collected using graphite monochro- 

ated Mo K α radiation ( λ= 0.71073 Å) from a fine focus sealed 

ube X-Ray source. Diffraction data for 2a were collected at 150K 

n a D8 goniostat equipped with a Bruker PHOTON100 CMOS de- 

ector at Beamline 11.3.1 at the Advanced Light Source (Lawrence 

erkeley National Laboratory) using synchrotron radiation tuned to 

= 0.7749 ̊A. Preliminary unit cell constants were determined with 

 set of 36 narrow frame scans. Typical data sets consist of combi- 

ations of ω and φ scan frames with typical scan width of 0.5 ° and 
ounting time of 1 to 30 seconds/frame. The collected frames were 

ntegrated using an orientation matrix determined from the nar- 

ow frame scans. Apex II and SAINT software packages [34] were 

sed for data collection and data integration. Analysis of the in- 

egrated data did not show any decay. Final cell constants were 

etermined by global refinement of reflections harvested from the 

omplete data set. Collected data were corrected for systematic er- 

ors using SADABS [34] based on the Laue symmetry using equiv- 

lent reflections. 

Crystal data and intensity data collection parameters are listed 

n Table 1 . Structure solution and refinement were carried out us- 

ng the SHELXTL- PLUS software package [35] . The structures were 

olved and refined successfully in the space groups, Pbca for 2b 

nd P-1 for 2c and 2a . Full matrix least-squares refinements were 

arried out by minimizing �w(F o 
2 -F c 

2 ) 2 . The non-hydrogen atoms 

ere refined anisotropically to convergence. All hydrogen atoms 

ere treated using appropriate riding model (AFIX m3). The final 

esidual values and structure refinement parameters are listed in 

able 1 . Platon-Squeeze [36] was used for removing solvent contri- 

utions which could not be modeled satisfactorily (CHCl and EtOH 
3 

6 
n overlapping sites) in 2b and CH 2 Cl 2 in 2c . Crystallization from 

arious solvents and different conditions only resulted in small and 

eakly diffracting crystals for the compound 2a . Therefore, diffrac- 

ion data had to be collected using a synchrotron source. 

Complete listings of positional and isotropic displacement co- 

fficients for hydrogen atoms and anisotropic displacement coef- 

cients for the non-hydrogen atoms, and bond lengths and an- 

les and torsion angles are listed as supplementary material. Tables 

f calculated and observed structure factors are available in elec- 

ronic format. These data can be obtained free of charge from The 

ambridge Crystallographic data Center via the link hMp:// www. 

cdc.cam.ac.uk/data _ request/cif using deposit numbers: 2015348, 

015350, and 2015349. 
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