Identifying Casualty Changes in Software Patches

Adriana Sejfia
sejfia@usc.edu
University of Southern California
California, USA

ABSTRACT

Noise in software patches impacts their understanding, analysis,
and use for tasks such as change prediction. Although several ap-
proaches have been developed to identify noise in patches, this
issue has persisted. An analysis of a dataset of security patches for
the Tomcat web server, which we further expanded with security
patches from five additional systems, uncovered several kinds of
previously unreported noise which we call nonessential casualty
changes. These are changes that themselves do not alter the logic
of the program but are necessitated by other changes made in the
patch. In this paper, we provide a comprehensive taxonomy of
casualty changes. We then develop CASCADE, an automated tech-
nique for automatically identifying casualty changes. We evaluate
CasCADE with several publicly available datasets of patches and
tools that focus on them. Our results show that CAsCADE is highly
accurate, that the kinds of noise it identifies occur relatively com-
monly in patches, and that removing this noise improves upon the
evaluation results of a previously published change-based approach.

CCS CONCEPTS

« Software and its engineering;

KEYWORDS

Software Patches, Change-based Analysis, Noise in Patches

ACM Reference Format:

Adriana Sejfia, Yixue Zhao, and Nenad Medvidovi¢. 2021. Identifying Casu-
alty Changes in Software Patches. In Proceedings of the 29th ACM Joint Eu-
ropean Software Engineering Conference and Symposium on the Foundations
of Software Engineering (ESEC/FSE °21), August 23-28, 2021, Athens, Greece.
ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/3468264.3468624

1 INTRODUCTION

Software patches change a system to address security flaws, fix an
algorithm’s implementation, add features, boost code maintenance,
etc. Beyond these immediate effects, patches are a useful source of
information for software researchers and developers. They are par-
ticularly helpful in understanding the causes of past problems and
providing insights for solving new ones. For instance, patches have
been used to identify root-causes of bugs [33], to infer patterns of
past bugs [15, 17, 18], including for specific types such as security

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ESEC/FSE °21, August 23-28, 2021, Athens, Greece

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8562-6/21/08...$15.00
https://doi.org/10.1145/3468264.3468624

Yixue Zhao
yixuezhao@cs.umass.edu
University of Massachusetts, Amherst
Massachusetts, USA

Nenad Medvidovié
neno@usc.edu
University of Southern California
California, USA

vulnerabilities [28, 29], and to make recommendations to developers
about what to change next during a coding session [34, 35].

Patches are an important source of information, but may contain
noise. Noise refers to changes that are nonessential or trivial in the
context of the issue being addressed by a patch. The relevant problem
or feature may thus be obfuscated in noise-containing patches.

Noise in patches has been studied previously. Past work has
attempted to identify low-significance changes [12]. Diffcat [14]
implemented an initial approach to classify and automatically de-
tect several types of changes that are merely noise, referred to as
nonessential changes. Nonessential changes include renaming of
variables, methods, or classes, or trivial changes such as adding a
this keyword in programs written in Java. Changes like these may
lead to wasted effort when manually analyzing patches. They have
also been shown to lead to less accurate learning models in systems
that use patches for further analysis [14].

Despite the availability of Diffcat for nearly a decade, noise and
imprecision persist in patches [19], and researchers still identify
the presence of noise as a notable concern (e.g., [15]). This has led
us to hypothesize that there are likely additional types of changes
that introduce noise in patches, beyond those handled by prior work.
An added motivation was a recent empirical study [29] in which
we observed frequent presence of noise in the security patches of
Tomcat [22], an open-source web server implementation.

To look deeper into our hypothesis, we conducted an initial, semi-
automated analysis of the Tomcat dataset from [29]. This analysis
uncovered that a substantial number of patches contain previously
unreported noise that we have termed nonessential casualty changes.
Casualty changes do not themselves alter the logic of a program;
however, they form part of the patch to accommodate other changes
which, in turn, can refactor the program or modify its logic.

To illustrate the concept of casualty change, consider the exam-
ple in Figure 1, from a Tomcat patch that addressed the CVE-2014-
0230 [6] security vulnerability. Note that in this paper we make use

Revision 1603781

Jump to revision: 1603781 Go a‘
Author: markt
Date: Thu Jun 19 09:31:43 2014 UTC (7 years, 1 month ago)

Changed paths: 15

Log Message:
Add a new limit, defaulting to 2MB, for the amount of data Tomcat will swallow
This is the fix for CVE-2014-0230

Changed paths

Path
Q tomcat/tc7.0.x/trunk/
£l tomcat/tc7.0.x/trunk

g/apache/coyote/http11/AbstractHttp11Processor.java

Figure 1: Partial listing of files changed in the patch that
addressed vulnerability CVE-2014-0230 [6] in Tomcat 7.

https://doi.org/10.1145/3468264.3468624
https://doi.org/10.1145/3468264.3468624

ESEC/FSE °21, August 23-28, 2021, Athens, Greece

Adriana Sejfia, Yixue Zhao, and Nenad Medvidovi¢

1 (a) int maxSSize (c) 1
2 ChunkedInputFilter (int maxTSize, int maxESize) { ChunkedInputFilter (int maxTSize, int maxESize, [fiifaxsSize) { 2
3 o this.maxSSize = maxSSize;]
4} } 4
1 initFilters (int maxTSize, int maxESize) { (b) initFilters(int maxTSize, int maxESize, [fifffiaxssize) { (d) 1
2 new ChunkedInputFilter (maxTSize, maxESize); new ChunkedInputFilter (maxTSize, maxESize, [axSSizZe);

3} }

3

Figure 2: Fix of vulnerability CVE-2014-4320 [6] in Tomcat, with partial pre-patch (a,b) and post-patch (c,d) revisions shown.

of the National Vulnerability Database (NVD) [8] and its identifier
for vulnerabilities (CVE). The fix from Figure 1 spans 11 Java files.
However, a deeper look reveals that the functionality of only one
method was changed, shown in Figure 2. The highlighted portions
on the right side of Figure 2 refer to code that was added, while
irrelevant code has been elided. Specifically, the change shown in
Line 1 of Figure 2c introduced a global variable maxSwallowSize,
which is set in the constructor ChunkedInputFilter (lines 2 and 3)
and subsequently used in the class (not shown). This change “cas-
caded” to the remaining ten files encompassing the patch. We see
an example in Figure 2d: the only updates made were to accommo-
date the changed signature of ChunkedInputFilter’s constructor.
A developer or tool analyzing the changes to the program’s logic
made by this patch would have to go through all 11 files, only to
ultimately disregard most of the changes as nonessential or trivial.
Our observation of a number of such casualty changes in Tomcat
motivated us to analyze five additional systems: Zookeeper [24], Of-
biz [21], Commons Collections [25], Commons Compress [26], and
Commons Email [27]. In our analysis, we inspected 1,400 patched
methods, of which 22% contained only casualty changes. This di-
rectly motivated us to study these changes in a more systematic
way. In particular, previous work in this area has two notable gaps
that we needed to address. First, while the types of noise targeted by
past work [14] at times intersected with the ones we encountered,
in the majority of cases the casualty changes we uncovered were
not reported previously. Second, prior work focused on grouping
related changes in a patch (e.g., the changed constructor and the
corresponding changed callsite in Figure 2) to help code reviewers
with understanding a patch better [10] but did not classify noise.
We set to fill these gaps by approaching the problem from two
directions. First, we uncovered several flavors of casualty changes,
each with its own characteristics. This new knowledge needed
to be defined, organized, and put into perspective when compared
to the previously known types of noise. Second, we needed to
develop mechanisms for automatically identifying casualty changes
in patches. Our analysis indicated that the pervasiveness and, at
times, subtle presentation of casualty changes renders their manual
identification cumbersome, time-consuming, and error prone.
The paper makes the following contributions:

(1) the first taxonomy of casualty changes in software patches,
identified and organized for a broad range of systems, with
an initial focus on statically typed OO languages;

(2) CasCADE (Casualty Change Automatic DEtector), an ap-
proach and accompanying tool that automatically identifies
casualty changes with high accuracy;

(3) a manually curated dataset of security patches in which
casualty changes are identified and labelled. This set includes
358 patches spanning six open-source systems; and

(4) an empirical analysis of datasets and tools used in two ex-
tensively referenced prior studies, to confirm the presence
and analyze the impact of casualty changes.

Section 2 summarizes prior work and our preliminary analysis of
noise in open-source systems. Section 3 details our taxonomy of ca-
sualty changes. Section 4 describes CASCADE, our approach for de-
tecting casualty changes. Section 5 presents our evaluation results,
Section 6 the limitations of our work, and Section 7 our conclusions.

2 BACKGROUND

This section overviews prior work in identifying noise in software
patches. We then describe our analysis of six-open source systems,
conducted to better understand this phenomenon. This analysis
directly motivated our taxonomy and development of CASCADE.

2.1 Related Work

A sizable body of prior work has studied ways of improving the
quality of software patches. In some cases, authors have sought
to weed out noise [12, 14]. In others, their goal has been to better
organize groups of changes, to aid code reviewers [10]. Yet others
have considered the quality of patches from a broader perspective,
analyzing past patches and the numbers of issues that are addressed
in each [19]. Specific types of patches and their quality have also
been studied [16]. Lastly, prior research has provided suggestions
on how to write better patches [30].

Our goal of detecting noise in patches is most closely aligned with
Diffcat [14]. The definition of noise in Diffcat partly overlaps with
our definition of casualty change. For instance, certain changes that
stem from variable updates can potentially lead to casualty changes.
One such case is an update to a variable’s name, a scenario handled
by Diffcat [14]. However, Diffcat also targets a set of more trivial
changes, such as adding a this keyword in Java programs, replacing
the simple name of a type with its fully qualified name (e.g., from
List to java.util.List), or updating comments. These types of
noise do not stem from other changes and are thus different from
casualty changes. As such, they are outside our scope. On the flip
side, most casualty changes stem from system updates other than
variable or method renamings, and are not considered by Diffcat.

Fluri and Gall detail a taxonomy of low-significance changes [12].
This taxonomy does not deal with changes that cascade from others,
but rather stand-alone changes and their impact in the code. It thus
has a different scope and complements our taxonomy.

Our approach is also similar to the work of Barnett et al. [10].
However, their end-goal is different: They aim to group changes via
program analysis so that code reviewers can consider each change
in a patch and decide whether to approve it. We also use program
analysis for the auxiliary purpose of exposing dependencies be-
tween different changes in a patch, but our goal is to isolate noise.

Identifying Casualty Changes in Software Patches

Grouping of related changes in patches and their improved pre-
sentation has also been the focus of the research work by Huang et
al. [13]. They predefine five scenarios, referred to as links, which
designate changes that should be grouped. Those scenarios are sim-
ilar in nature to our casualty changes. However, our work presents
a more extensive taxonomy and corresponding detection approach
that essentially extends the five links.

Patches and their quality have garnered the interest of researchers
because numerous tools and techniques rely on patches. They
have been used for bug finding/understanding [28, 33] and for
recommender systems [34, 35]. Additionally, patches have been
employed as a learning basis for automated program repair tech-
niques [15, 17, 18]. A number of these publications cite the quality
of patches as a concern. Several have restricted to at most two-line
patches in their datasets, in part due to the cost associated with
the noise in patches [15]. We anticipate that our approach will
help this line of work. To illustrate that, we use publicly available
datasets from two of the previous studies [14, 33], and investigate
the presence of casualty changes therein and their impact.

2.2 Preliminary Analysis

To obtain a better understanding of noise in patches, we conducted
a preliminary analysis of several open-source systems. Our initial
analysis focused on noise present in security patches (recall Sec-
tion 1). We subsequently verified our findings with other types of
patches, as discussed in other sections.

We extended the original Tomcat-based dataset [29] with data
from five additional systems: Commons Compress [26], Commons
Email [27], Commons Collections [25], Zookeeper [24],and Of-
biz [21]. As with Tomcat, we selected these systems because their
vulnerability data is publicly available and use NVD’s nomencla-
ture [8] to specify the patches that fixed vulnerabilities (CVEs).

We implemented crawlers to collect the necessary information
from the six subject systems: the IDs of the CVEs, the patches that
fixed each CVE, and the relevant files involved in each patch. We
then had to manually analyze the changes in patches, to determine
whether they are noise and, if so, what kind of noise. This manual
analysis was conducted by one of this paper’s authors, who has ex-
tensive familiarity with the NVD spanning multiple large projects.

The six subject systems yielded a total of 358 security patches
which contained a total of 1,400 changed methods. For each of the
methods, we manually explored the rationale behind the change
and labeled any instances of noise we found. This step uncovered
noise in a number of patches that was different from that reported
by prior work. These were changes that developers had to make
as “casualties” of the changes actually required to patch a problem.
Our analysis uncovered different types of casualty changes. We for-
mally define these changes in Section 3. Each identified method was
explored at least twice to ensure consistency in labeling. We have
made the labeled dataset publicly available [9], to facilitate indepen-
dent confirmation of our results and subsequent studies in this area.

Our manual analysis uncovered that 75 out of the 358 patches
(21%) contained casualty changes. Moreover, 22% of the methods
that were updated, added, or deleted included only casualty changes,
i.e., the changes in these methods consist entirely of noise.

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

3 TAXONOMY OF CASUALTY CHANGES

Casualty change

As introduced above, nonessen- !)
—Behavior-altering root

tial casualty changes are defined —API-based
Proximity

as changes that happen as a |»Direct

result of and to accommodate segpndirect
cope

other changes, but that them- Singular

. Add argument
selves do not alter the logic of a Eoeme argument
: : Update type
program. Our analysis of the six Compound

open-source systems uncovered
a range of casualty changes. We
have organized these changes,

I:Overload method

Variable-based
Embodiment

augmenting them with their pos- hssigner
. etriever
sible, although not always ob- Proximity
: . irect
served in our subject systems, I:,Dnd"ect
variations. Scope
. . Singular
The transition from the in- Add reference
dividual 1 b di Delete reference
ividual examples observed in Update Type
Compound

the subject systems to the tax- .
Update operation
Update container

onomy occurred iteratively. We) _

first collaboratively analyzed the *ﬁ?)&;’;’ﬁi@i{,‘:&;"“
collected examples. In each in- —Variable/constant-level
stance, one of the authors would
propose a taxonomy category
and possibly its further break-
down. This initiated a discussion
and, as needed, refinement of
each category, which was ter-
minated only after all authors

—Method-level

Break down method
lone method body

—Class-level

Renaming
Variable/constant-level

—Method-level
reached a consensus. In the final
stage, we analyzed the taxonomy | Classlevel
[

for completeness. In this stage,
we added further categories in-
spired by related literature and
our experience, even if we had
not observed the corresponding
examples in our dataset.

This yielded the taxonomy
presented in Figure 3. We believe that, while not necessarily com-
plete, the taxonomy is reasonably comprehensive and will be useful
both conceptually and in practice: conceptually, the types and nature
of casualty changes differ across categories, and so does the ratio-
nale behind classifying them as such; in practice, these differences
influence the ways in which casualty changes can be automatically
identified and thus impact an approach such as ours. Although it is
inspired by findings from a dataset of statically-typed OO systems,
our taxonomy is applicable for, more broadly, systems written in
procedural languages.

Next, we first explain several concepts related to casualty changes
and then use such concepts to detail our taxonomy.

Figure 3: Taxonomy of
casualty changes. Ele-
ments handled by prior
work or not found in our
dataset are greyed out.

3.1 Concepts Underlying Casualty Changes

A pre-patch revision is the revision of a software system immediately
before a given patch is applied. Conversely, a post-patch revision is
the revision immediately after a patch is applied.

A code element is a program portion changed in a patch. Code ele-
ments can be expressions, statements, methods, classes, or packages.

ESEC/FSE °21, August 23-28, 2021, Athens, Greece

We classify code elements as simple (expressions, statements) and
composite (methods, classes, packages) elements. Composite code
elements contain simple elements and possibly other composite
elements (e.g., a class contains both statements and methods).

A change is the application of a single change type—move, update,
delete, or insert—to a code element. We associate each change with
the finest-grained code element involved in that change. For ex-
ample, this means that a change of type update is never associated
with methods, classes, or packages, since one can always isolate a
finer-grained, simple code element that was updated within them.
This decision is not arbitrary: identifying the simple code elements
(1) helps one pinpoint the location of a change while (2) allowing
coarser-grained changes to be represented at the level of a compos-
ite element if needed. A change set is a set of changes that happen
to one or more simple code elements within a composite element.

These concepts allow us to elaborate on the above definition of
casualty change: it is a logic-preserving change of a simple code ele-
ment within a program, necessitated by another change made else-
where in the program. Each casualty change is, by definition, con-
tained inside a single method, which we term the casualty method.

The original change to a program that causes casualty changes
is the root change. In cases when this change is contained within a
method (as opposed to, e.g., a change to a class variable), we refer to
such a method as the root method. Specifically, a casualty change is
introduced in the code when the changed code element has a control,
data, or call dependency with the code element of the root change.
A casualty change can occur in three different ways: (1) to accom-
modate the root change directly; (2) as a result of a call to a casualty
method whose API changed, which renders the calling method a
casualty, too; or (3) by cascading through another casualty change
within a single casualty method. In the third case, the code element
of the cascaded casualty change has a forward control or data de-
pendency with the code element of the initial casualty change. We
thus refer to the cascaded change as a casualty dependent.

Casualty changes additionally differ based on the type of root
changes from which they stem. As reflected in Figure 3, root changes
can be behavior-altering or behavior-preserving. A behavior-altering
root change is one that modifies the program’s logic in order to
patch a problem. We have identified two types of such root changes:
changes in APIs and in variables. By contrast, behavior-preserving
root changes are introduced to improve the structure, readability,
and/or maintainability of a program. These can be code refactorings
or changes that rename code elements. We further categorize each
casualty change based, as appropriate, on its embodiment (dimen-
sion of Variable-based in Figure 3), proximity to the root change,
(dimension of API-based and Variable-based), scope of analysis (di-
mension of API-based and Variable-based), or purpose of the under-
lying activity in the root change (dimensions of Refactoring-based).

We elaborate on three of the principal casualty change types
next: API-, variable-, and refactoring-based. As discussed above,
renaming changes are more straightforward and have been handled
by prior work [14]. We thus do not focus on them in this paper.

3.2 API-Based Casualty Changes

Casualty changes in this category occur when at least one parameter
is inserted or deleted, or one or more of the existing parameters’

Adriana Sejfia, Yixue Zhao, and Nenad Medvidovi¢

Pre-patch Post-patch @ Legend

@ root method

casualty method
: [] method body

calls : calls O text method signature

[.", | casualty change
root change

ParserUtils(boolean,

ParserUtils(boolean) boolean)

processWebDotXml(...)| :| processWebDotXml(...)
ParserUtils(boolean,
boolean)

ParserUtils(boolean)

Figure 4: Partial fix of CVE-2013-4590 [5], showing an API-
based casualty change.

types are updated, in a method’s signature. The involved method is
the root method with respect to the change.

A change to root method’s API mandates changes all of its call-
sites, by adding, removing, or updating the arguments that corre-
spond to the parameter(s) in the root change. We categorize such
callsite changes as API-based casualty changes. Moreover, any ca-
sualty dependents—occurring when an added, removed, or updated
argument is declared in the casualty method and then passed to
the callsite—are also categorized as API-based casualty changes.

For example, consider a portion of the patch that fixed CVE-
2013-4590 [5] in Tomcat, schematically depicted in Figure 4 with
the code irrelevant to our discussion elided. The constructor of the
ParserUtils class changed in the post-patch revision. Specifically,
the API of this constructor was altered by adding a new boolean pa-
rameter — the root change in this case. The effect of the root change
cascaded to the callsites of the constructor. One of the callsites is
contained in the method processWebDotXml and the change to it
is considered an API-based casualty change.

In general, API-based casualty changes can take several different
forms (Figure 3), depending on (1) proximity to the root change
and (2) scope of analysis. We discuss these two dimensions next.

1) Proximity considers the distance of the casualty method from
the root method. In the context of API-based changes, casualties
can follow the root change directly or indirectly. A direct casu-
alty change is induced by the root change without intervening
program elements, i.e., the casualty method in which they are con-
tained calls the root method. For instance, in Figure 4 the callsite
in processWebDotXml was changed because the ParserUtils con-
structor invoked there changed its API and is a root method. An
indirect casualty change is one in which the casualty method is sep-
arated from the root method by more than one edge in the callgraph.
This happens when the APIs of the methods along the path between
the casualty and root methods are changed to reflect the root change.
These intermediate methods can be thought of as root proxies.

A method is a root proxy when it contains an API-based casualty
change that modifies said method’s own API. This happens when
the root proxy’s API has a data dependency to the code element
of another casualty change in the method, making the API change
a casualty dependent. With the API change, the callsites of the
root proxy have to be changed as well; those changes are indirect
casualty changes with respect to the original, i.e., root change.

For example, consider the partial depiction of the Tomcat patch
that addressed CVE-2013-4322 [4] in Figure 5. The root change is the
API change of the ChunkedInputFilter class’s constructor. That
change induced direct casualty changes in the initializeFilters

Identifying Casualty Changes in Software Patches

Pre-patch Post-patch

: [chunkedinputFittergint, | 9™
N int) @ root method

casualty method
[] method body

ChunkedinputFilter(int) ‘

calls . calls ~

initializeFilters(int) |n|t|a||z€F.|I!ers(lnt, te.x-t method signature
[,l!ﬂ_)_|—* [."." | casualty change
D e . root change
ChunkedinputFitter(inty | : | [hunkedinputFiter(inty | £% root proxy
. int) —y dependency
calls : calls go
Http11AprProcessor(int) | - H"F"AP’E:’)FFSSO"U"(,

lizeFilters(int)

int)

initializeFilters(int, ‘

Figure 5: Partial fix of CVE-2013-4322 [4], depicting direct
and indirect API-based casualty changes.

method: the change in the callsite as well as in the method’s AP In
this case, there is a data dependency between the parameter added
in the APl of initializeFilters and the argument in the initial
casualty change (the callsite to ChunkedInputFilter). Hence, the
API change is a casualty dependent and is caused by the root change
as well. As explained above, the change to initializeFilters’
API renders it a root proxy since its callsites now have to be changed
as well. One such updated callsite is inside Http11AprProcessor.
This change is an indirect casualty change: the casualty method
housing the change (Http11AprProcessor) reaches the root method
(ChunkedInputFilter) in the system’s callgraph through an inter-
mediate node (initializeFilters) that acts as a root proxy.

Observe that Ht tp11AprProcessor’s APl was also changed. That
change is a casualty dependent with respect to the callsite’s casu-
alty change, due to a data dependency. Http11AprProcessor is
therefore also a root proxy, and its own callsites will experience
further indirect casualty changes. The casualty methods including
those callsites will be separated from the root method by two nodes
in the callgraph (Http11AprProcessor and initializeFilter).
The prospect of indirect casualty changes with an arbitrary number
of intermediate nodes induces complexity in an approach aiming
to identify API-based casualties of a given root change.

2) Scope refers to the portion of a program that needs to be
analyzed to identify a root change, and can be singular or com-
pound. The singular case was illustrated above: a method’s API is
changed via parameter addition, deletion, or update. To detect the
API change, it is sufficient to check just that one root method and
to employ call, data-flow, and/or control-flow analyses to identify
the root’s casualties. The examples in Figures 4 and 5 represent
singular API-based casualty changes: each root change involved
adding a parameter and each casualty method altered its callsite
with a corresponding added argument. The cases in which parame-
ters are deleted or updated in the root method analogously involve
the deletion or update of corresponding arguments.

By contrast, in the compound case, the root change involves mul-
tiple methods. Such cases occur when an API is changed through
overloading a method within a class or overriding a method in
classes related through inheritance. This can happen when an over-
loading or overriding method is inserted, or when such methods are
deleted. In the former case, a patch results in two or more methods

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

Pre-patch Post-patch Legend
: [custObjinput(Stream, @) root method

. Loader,
CustObjlnput(Stream, | -) O casualty method

Loader) . [] method body
i . overloads text method signature

. [."." | casualty change
. | CustObjinput(Stream, root change
Loader, Log, Pattern,

boolean)

calls O

doLoad()

calls

doLoad()

CustObjlnput(Stream,
Loader, Log, Pattern,
boolean)

Figure 6: Partial fix of CVE-2013-4590 [5], an example of a
compound API-based casualty change.

CustObjlnput(Steam,
Loader)

that share names but differ in arity, parameter types, or implemen-
tations. In the latter case, at least one method in the patch has the
same name as the deleted method(s), but different parameters or
implementations. Finding the root change in the compound case
requires identifying all overloaded methods within a class or over-
riden methods across classes in the inheritance hierarchy, and then
analyzing their callsites for the presence of casualty changes.

To illustrate compound casualty changes, consider a partial Tom-
cat fix of CVE-2013-4590 [5] in Figure 6. As part of the fix, the
constructor for CustomObjIn (method name abbreviated for space)
was overloaded. The class has retained the original constructor, but
now has a second constructor with three additional parameters.
The method doLoad, which initially called CustomObjIn’s original
constructor, calls the overloaded one in the post-patch revision.

We consider each such new constructor a root method of the
API-based change. If a patch involves overloading or overriding a
constructor with more than one method, all of the added methods
would, together, comprise the compound root of the API-based
change. Uncovering the casualty changes in such cases requires
locating and distinguishing the (unchanged) callsites of the original
constructors from the (casualty) callsites of the new constructors.
Conversely, if an overloading or overriding method is deleted, the
remaining method(s) comprise the root method. Uncovering casu-
alty changes then requires distinguishing the cases where a callsite
is deleted from those in which it is updated to a remaining method.

3.3 Variable-Based Casualty Changes

This category deals with changes to local variables of a method or
member variables of a class. Casualty changes can occur both when
existing variables are modified (i.e., deleted or updated) and when
new variables are added. When an existing variable is modified
in a patch, all code locations in which it is referenced need to be
modified as well; the former change is the root change, while the
latter ones are potential casualty changes. When the root change
is an added variable, that change is usually accompanied by new
code that implements some needed functionality referencing the
variable; parts of this new code may constitute a casualty change.

Previous work [14] addressed several scenarios involving vari-
ables local to a method. With a couple of exceptions, we will thus
focus our discussion on more extensive changes stemming from
member variables of a class; the exceptions will zero in on local
variable-based changes omitted from [14]. Our taxonomy includes

Pre-patch

ESEC/FSE °21, August 23-28, 2021, Athens, Greece

Post-patch

Legend
class ByteChunk class ByteChunk O casualty method
: Charset] method body
. charset text method signature
. references O [." " | casualty change
setEncoding(String e) ;| setCharsef(Charset ¢) root change
: i ¢ (O variable
.............. —» dependency
this.enc=e this.charset = ¢ ‘ % root proxy
references c references
getEncoding() [getCharset(]
calls . calls
find() find()
getEncoding() getCharset()

Figure 7: Partial fix of CVE-2012-0022 [3], showing direct
and indirect variable-based casualty changes.

additions, deletions, and updates of variables including their types,
variable assignment and retrieval methods (“setters” and “getters”,
respectively), as well as changes to container data structures and/or
methods that manipulate such structures.

As an illustration of variable-based casualty changes, consider
the patch that fixed CVE-2012-0022 [3] in Tomcat, partially depicted
in the top portion of Figure 7. As part of this fix, in the class named
ByteChunk, a member variable named enc of type String was
updated to Java’s type Charset and renamed to charset. The vari-
able’s setter method also had to be updated: its name was changed
from setEncoding to setCharset, the lone parameter was changed
inits API, and assignment to the member variable was updated in its
body. These updates represent a variable-based casualty change set.

As shown in Figure 3, we categorize variable-based casualty
changes along three dimensions: (1) embodiment, (2) proximity,
and (3) scope. We elaborate on them next.

1) Embodiment is concerned with the manner in which variable-
based casualty changes are manifested. In the case of individual
methods, changes to a variable may result in casualty changes in
the variable’s local references within the method’s implementation.
Prior work [14] addressed a number of cases where casualties are
caused by variable additions and removals; it did not deal with
variable updates that may cause changes such as type casting.

Beyond changes to local variables, our taxonomy also encom-
passes member variables of a class. Specifically, changes to member
variables may induce casualties in methods that assign or retrieve
the variables’ values. A method that acts only as the retriever of a
variable’s value is typically referred to as a “getter”, and one that acts
only as the assigner a “setter”. For example, getCharset in Figure 7
is the getter and setCharset the setter for the charset variable.

It is possible for methods acting as retrievers or assigners to serve
purposes other than specifically getting/setting a variable’s value
and to include additional, arbitrarily complex functionality. For
example, a method that initializes one or more variables in a system
is also an assigner; a method that logs the values of certain variables
for offline analysis is also a retriever. An example of a more complex
retriever is Tomcat’s find method partially depicted in Figure 7:
find’s non-trivial functionality includes code that retrieves and
returns the values of certain variables without using them in its

Adriana Sejfia, Yixue Zhao, and Nenad Medvidovi¢

own internal computations; any changes to such variables will be
root changes and will need to be reflected as casualties inside find.

2) Proximity refers to the distance of a casualty change from
a variable-based root change. Casualty changes can flow directly
or indirectly from a root change. In the direct case, a change to a
variable results in changes to methods that reference the variable.
Most often such methods are the variable’s getters/setters, but they
can be any methods that assign values to and/or retrieve values
from the variable. Updates to these methods do not modify the logic
of the system, but are necessitated because the variable itself has
changed. Changes to the setter method from Figure 7 discussed
above are examples of direct casualty changes. Also note that, by
definition, casualty changes stemming from a method’s own local
variables are direct casualty changes.

By contrast, indirect variable-based casualty changes are caused
by a sequence of one or more calls in the system’s callgraph, end-
ing with a method that underwent a direct variable-based casualty
change to its API, making this last method a root proxy. Any meth-
ods that include calls to the root proxy must have their correspond-
ing callsites updated. Note that indirect variable-based casualty
changes apply only in cases of class member variables, and not
local method variables whose scope is limited inside a method.

An example indirect variable-based casualty change can be seen
in the bottom portion of Figure 7. The method getEncoding was
changed to getCharset because of the change to the class variable
(recall the above discussion), and is thus a direct casualty change
and root proxy. In turn, the corresponding callsite inside the method
find had to be updated and is an indirect casualty change.

3) Scope refers to the intricacy of analysis required to unearth the
casualty change. Specifically, the analysis can take two forms: singu-
lar and compound. The singular case includes casualty changes in
which the type in a reference to a variable is modified to reflect the
change in the root. The analysis required to uncover such changes
thus has to perform a singular check: whether the two changes
match. Figure 7 shows an example of a singular variable-based ca-
sualty change, where both the type and the name of a class variable
are updated, and that is reflected in the setCharset method.

The compound case involves changes to variables of complex
types, typically containers. Such changes occur in at least two dif-
ferent scenarios. In one scenario, the class member or local method
variable may be of a simple type, but it is used to populate a con-
tainer elsewhere in the system, e.g., by applying operations that
manipulate the variable and store its values. If this variable’s type is
updated as the root change in a patch, all corresponding operations
may need to be updated to reflect this, resulting in a variable-based
casualty change. In another scenario, the class member or local
method variable is itself a container. Then, updates to this con-
tainer’s type in a patch (the root change) will need to be reflected
throughout the system, including the manner in which individ-
ual container elements are accessed (the casualty change). In both
scenarios, discovering whether the portions of the system that
represent and manipulate the variables in question after the ap-
plication of a patch are functionally equivalent to their original
implementations may require sources of knowledge beyond the
code alone - another reason we refer to these changes as compound.

Identifying Casualty Changes in Software Patches

Pre-patch Post-patch Legend

O casualty method

[] method body

text method signature

[." " | casualty change
root change

O variable

class Parameters
ArrayList
'<String> stArr”
. references’ O

getParameter()

class Parameters

references’ l

getParameter()

return stArr[0]

Figure 8: Partial fix of CVE-2012-0022 [3], a depiction of a
compound variable-based casualty change.

For illustration, Figure 8 depicts another portion of CVE-2012-
0022’s fix. The root change modified the type of the container class
variable stArr from String[]to ArrayList<String>.In turn, this
induced the change in the method getParameter, which references
the class variable. However, establishing this fact requires under-
standing the types of the involved variables pre- and post-patch.
While these two types are similar, they are indexed in different
ways: arrays are indexed directly, while array lists rely on the get ()
method. A human knowledgeable about the two types, would know
from Figure 8 that, despite the change, the functionality remains
the same since the first element in the container is retrieved both
pre- and post-patch. The change to the getParameter method is
thus a compound variable-based casualty change.

3.4 Refactoring-Based Casualty Changes

Refactoring-based casualty changes result from restructuring the
code while preserving its behavior. Sometimes such activities cause
additional restructuring changes in the code, which are casualty
changes. We categorize refactoring-based changes at the level of
(1) variables/constants, (2) methods, and (3) classes.

Note from Figure 3 that several of the dimensions of refactoring-
based changes—extracting non-local variables and constants, in-
lining a class, and extracting a superclass—have been greyed out.
For the most part, this is because we did not encounter them in
our dataset. We will thus not focus on them in this section. One
exception is constant extraction, which we did encounter but which
has been handled by prior work [14]. Nonetheless, we will briefly
describe and illustrate it below. We will then describe the two di-
mensions of method-level refactoring changes that have not been
handled previously: breaking down and cloning method body.

1) Constant extraction is a refactoring activity through which a
literal constant is assigned to a named constant and then replaced
throughout the system. One such example is the root change high-
lighted in Figure 9, where the literal constant 1024 is assigned to

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

Pre-patch Post-patch Legend
© root method
expand(input, O casualty method
file [method body
text method signature
expand() [."" | casualty change

root change

calls O t_—f}method body subset

expand()

Figure 10: Partial fix of CVE-2012-0022 [3], showing a
method breakdown casualty change.

READ_BUFFER in the post-patch revision of Tomcat that fixed CVE-
2016-6817. All subsequent updates in which 1024 is replaced with
READ_BUFFER are casualty changes. One such casualty change is
the call to BBuffer.allocate, shown at the bottom of Figure 9.

2) Method breakdown consists of extracting one method from
another by (1) introducing a new method, moving a subset of the
original method’s code into it, and (3) adding a call inside the origi-
nal method to the new method. This added call is a casualty change
since its entire purpose is to preserve the original functionality. The
extracted method is the root method since it contains the intended
changes. In the example depicted in Figure 10, a subset of the body
of method expand has been extracted into a new method, with the
same name but different parameters. The added call to the extracted
method in the original method is the casualty change.

3) Cloning method body happens when a method is deleted and
then the code from its body added to all its previous callsites. In
this case, the method deletion is the root change, while the cloning
of the method’s body is the behavior-preserving casualty change.
An example of this type of casualty change is depicted in Figure 11:
the method log is called in the pre-patch revision by the method
handleQueryParameters; log is deleted by the patch and the call
to it is replaced with its actual body.

4 APPROACH

CasCADE is our approach for automatically identifying casualty
changes. CAsCADE can be tailored to produce different kinds of
information about such changes. It can identify a casualty change at
various levels of granularity, starting from a line of code. Further, it
can pinpoint the root change that induced a given casualty. Finally,
it can determine whether entire change sets within methods con-
tain solely casualty changes. This can be particularly useful with
sanitizing the datasets of change-based analyses that frequently
treat method change sets as a single unit in their models [14, 35].

Pre-patch Post-patch Legend

Pre-patch Post-patch Legend

class Constants casualty method
. [] method body

- (READ_BUFFER=1024) text method signature
. [."."| casualty change
. references O root change

O variable
Http2Parser() Http2Parser()

BBuffer.allocate(1024)

" ‘BBufferallocate
(READ_BUFFER)

Figure 9: Partial fix of CVE-2016-6817 [7], representing a
constant extraction casualty change.

)

calls

@ root method

:|handleQueryParameters()

yPara
log()

0]

Figure 11: Partial fix of CVE-2009-2693 [2], an example of a

O casualty method

[] method body

text method signature

[." " | casualty change
root change

casualty change caused by cloned method body.

ESEC/FSE °21, August 23-28, 2021, Athens, Greece

. Detect changes Input set

Identify root changes

- API-based Root changes

Source code “FMem var-based

nliE oy

All casualty | Casualty /ntraprocedgral Casualty changes IZterprz;cedt_Jral
changes | dependents dependencies lependencies

AST-patches

Changed
files

Identify casualty changes

Figure 12: CAsCADE’s workflow.

CasCADE currently handles the casualty changes identified in
our taxonomy from Figure 3, with some exceptions. As mentioned
above, for practical reasons we have focused on casualty changes
encountered in our datasets, and particularly the types of changes
not handled by previous work. Thus, for example, we have not
included simple renamings of code elements or changes to local
variables. Similarly, CASCADE currently focuses on identifying
changes by analyzing source code alone. This excludes the com-
pound variable-based changes, update operation and update con-
tainer, whose identification would require additional information,
e.g., about data type similarity in a given programming language.

CasCADE’s high-level workflow is depicted in Figure 12. We
describe it next. We then detail the manner in which CAsCADE
determines both direct and indirect casualty changes. Finally, we
overview the implementation of CASCADE’s prototype.

4.1 Overview of CAsCADE

CasCADE takes as input two revisions of a system related by a
patch—the pre- and post-patch revisions—and the set of files that
have changed in that patch. It first compares the abstract syntax
trees of the two revisions to identify the differences between them.
We refer to the discovered differences as the input set to CAsCADE’s
analysis. CAsSCADE then scans the input set for changes affecting
a method’s AP, a member variable of a class, and any refactored
(e.g., extracted or “inlined”) portions of a method. If it finds such
a change, it marks it as a potential root change and searches for
any of the root’s dependents among the changed code elements
in the input set. For the type of changes CAsCADE focuses on, the
direct dependents of a root change span method boundaries (re-
call the examples in Section 3). Specifically, CASCADE leverages
inter-procedural data flows (for variable root changes) and call
dependencies (for API and refactoring root changes) for this step.

If any root-change dependents are found in the input set, Cas-
CADE determines whether the change affecting the dependent
element was induced by the root and, if so, marks the change as
a casualty. Specifically, CASCADE first checks for a match in the
change type (move, insert, delete, or update) between the root
and the change under investigation. Such a match is the first in-
dicator that the changes may be related. If a match is found, Cas-
CADE checks for the evolution of the dependency between the
two changes across the two revisions. If the dependency has been
preserved, CASCADE concludes that the change under investigation

Adriana Sejfia, Yixue Zhao, and Nenad Medvidovi¢

would not have happened without the root change and thus is a
potential casualty change. We detail this process in Section 4.2.
At this point, CAsCADE attempts to isolate casualty dependents
of the initial casualty change by further traversing intra-procedural
forward dependencies to the code element of the initial casualty
change; any code element in that traversal with a matching change
type as the initial casualty is also marked as a casualty change.
In the case of API-based changes, CASCADE marks any casualty
method whose API has been changed due to a casualty dependent as
a potential root proxy (recall Section 3) and repeats the above steps
to find indirect casualty changes. CAsCADE also repeats the above
steps in cases when a variable-based change affects the API of its
assigner or retriever. We discuss this process further in Section 4.3.

4.2 Identifying Casualty Changes

A change is tagged as a casualty following the above flow. However,
each casualty change category entails certain distinct steps.

In API-based changes, the key distinction is how CasCADE de-
termines that the dependency has been preserved between the root
change and the candidate casualty change. For singular API-based
changes, CAsCADE simply checks whether a callsite that is the
casualty-candidate code element existed in both the pre- and post-
patch revisions. The analogous check for compound API-based
changes is more involved. CAsCADE must isolate from the input
set all methods that have been inserted in the post-patch revision or
deleted from the pre-patch revision. It then marks all methods in the
pre-patch revision that share names with the above methods. These
methods are separated by name into sets that represent candidates
for compound API-based changes. In each such set, all methods
inserted by a patch are overloading methods, whereas the origi-
nal, pre-patch method is the overloaded method; when a method is
deleted by a patch, it is the overloaded method, while any remaining
methods with the same name are overloading.! CASCADE tags each
overloading method as a potential root method, and checks each
callsite of the original, overloaded method to determine whether it
has changed. If the callsite has changed to reflect an overloading
method’s API, CAsCADE marks the callsite as a casualty change.

In member variable-based changes, there are two distinct sce-
narios for casualty change identification. Variable additions and
deletions require CASCADE only to check for matching change
types between the root and candidate casualty changes. For exam-
ple, the addition of a member variable would result in the addition
of an assigner-retriever method pair. In the case of variable up-
dates, CAsCADE must additionally ensure that the dependencies
between the root and its potential casualty are preserved. In both
cases, CAsCADE further needs to confirm that the code element
of the candidate casualty change strictly assigns or retrieves the
member variable that is the root change. CASCADE does so by build-
ing a program dependence graph (PDG) for the candidate casualty
method. If the method contains an assignment to the member vari-
able, CASCADE ensures that there are no forward control and data
dependencies of the code element in the change; if such dependen-
cies were to exist, the code element would be involved in a program
logic-modifying functionality. If the member variable is referenced

!Method overriding (recall Figure 3) would be handled similarly, but we have not
encountered it in our dataset.

Identifying Casualty Changes in Software Patches

but not assigned in a given code element, CASCADE ensures that
(1) there is a return statement to which the code element has a for-
ward data dependency and (2) that the member variable is not used
or defined in between. If the above conditions hold, then CASCADE
marks the change under investigation as a casualty change.
Finally, in refactoring-based changes, CASCADE employs a spe-
cialized notion of dependency preservation. In the case of method
breakdown, it checks whether a call to the extracted method is
added in the original method. In the case of cloned method body,
CasCADE checks if the pre-patch revision of the method that re-
ceives the body contained a call to the now-deleted method. In
essence, in the first case, CASCADE “migrates” the dependency
from the PDG to the call-graph, and vice-versa in the second case.

4.3 Indirect Casualty Changes

Recall from Section 3 that casualty changes can be indirect, when
caused by changes to a method that is itself a casualty. Their root
changes can be API-based or variable-based.

In the case of API-based indirect changes, CAsCADE first groups
root proxies with their root methods. To do so, CAsCADE selects
all methods whose APIs have changed. It constructs a callgraph
between these methods, adding only the edges for calls that preserve
the dependencies for API-based changes as described in Section 4.2.
Note that this callgraph need not be connected, e.g., if it contains
multiple API-based casualty changes that involve disjoint methods.

To find each root method and its proxies, CASCADE starts the
traversal at a random node. At each node, it identifies the callsites
to the nodes accessed via its outgoing edges. For each callsite, Cas-
CADE checks whether the node’s corresponding API has changed
and is a casualty dependent of the change in the callsite. If so, Cas-
CADE marks the current node as a casualty method and transitions
to the next node, following the appropriate outgoing edge. If the
next node has no outgoing edges corresponding to the API in ques-
tion, it is the root; otherwise, CASCADE marks the current node as
aroot proxy and the above process repeats. Once CASCADE reaches
the root, it continues by randomly selecting an unvisited node until
all nodes in the callgraph have been processed.

Note that a previously unvisited node may be an API-based ca-
sualty of a node that is itself already marked as a casualty; in that
case, the latter is additionally tagged as a root proxy. We illustrate
this with the example from Figure 5. If CASCADE starts the call-
graph traversal at initializeFilters, it will originally mark that
method as a casualty and ChunkedInputFilter as the root method.
However, CASCADE would eventually visit Ht tp11Processor. Cas-
CADE would mark it as initializeFilters’s API-based casualty,
and would tag initializeFilters as a root proxy. Finally, note
that any identified root proxy may have callsites that were not
part of the callgraph described above—when the APIs of the meth-
ods that enclose such callsites do not change. Those callsites are
submitted to the checks described in Section 4.2.

CasCADE approaches variable-based indirect casualty changes
differently. After identifying casualty dependents as described in
Section 4.1, CASCADE checks whether any of them affect the API
of their enclosing method. If the API has changed, CAsCADE builds
a callgraph of all identified changed methods from the input set.
It traverses the graph, searching for methods that call the affected

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

casualty and checks for changes affecting the corresponding call-
site. Note that, even though they stem from a variable, indirect
variable-based casualty changes ultimately affect callsites. As such,
CasCADE applies the same check as it would for a singular API-
based change, described in Section 4.2.

4.4 CasCADE’s Implementation

We implemented an extensible and configurable CAsCADE pro-
totype in Java. CASCADE uses the Gumtree [11] tool for obtain-
ing AST-represented patches, and Soot [32] for intra- and inter-
procedural program analysis. Lastly, CASCADE uses RMiner [31] for
identifying refactoring activities. CAsCADE integrates these tools
and provides its own capabilities with an additional 11 KSLOC.

Our prototype implements tasks for identifying each type of
casualty change in separate modules, with the objective of making
it extensible to include additional types. Further, the tool is config-
urable: a user can choose what types of tasks should be carried out
at each step, e.g. identify methods that contain API-based casualties.
CasCADE’s implementation is available online [9].

5 EVALUATION

Our evaluation aims to establish (1) the viability and accuracy of
automatically detecting casualty changes with CAsCADE, (2) the
prevalence of casualty changes in real patches obtained from three
different datasets, and (3) the usefulness of explicitly considering
casualty changes in real development scenarios supported by a
previously published technique. Due to space constraints, in this
section we summarize the key evaluation results. All of our datasets
and complete results of our evaluation are available online [9].

5.1 CasCADE’s Accuracy

We evaluate the accuracy of CAsCADE based on its ability to iden-
tify the presence of casualty changes in patches. To this end, we rely
on two commonly used metrics, precision and recall. Specifically,
we aim to isolate the methods within which casualty changes are
contained. The security dataset described in Section 2.2 comprises
our ground truth. The dataset totals 1,709 changed methods. Ta-
ble 1 presents the breakdown of those methods that were marked
by CasCADE as containing casualty changes (“CC-C”) and those
whose change sets comprised only casualties (“CC-O”). Note that
one method may contain casualty changes of multiple categories.
We evaluate how accurately CASCADE identifies both CC-C and
CC-O methods. Our results are presented in Table 2. CAsCADE

Table 1: Casualty change-containing (CC-C) and casualty
change-only (CC-0O) methods identified by CaAsCADE.

Total | API | Var | Ref
CC-C | 386 106 248 | 39
CC-0 | 313 85 199 | 29

Table 2: Accuracy (Precision and Recall) of CAsCADE.
Cc-C CC-O0

API | Var | Ref | API | Var | Ref

Precision | 0.97 | 0.77 | 0.98 | 1.0 0.88 | 1.0

Recall 0.9 0.93 | 1.0 1.0 0.86 | 1.0

ESEC/FSE °21, August 23-28, 2021, Athens, Greece

mm Casualty Change-Containing N Casualty Change-Containing
30 Casualty Change-Only 0 e Casualty Change-Only
2
5 5 2
0 i 4
2 8
F=avli] 220 18
] T
o E
21 . E15 5
s 1 =
& 10 ®2 10
5 5
0]
Security General Security General

Figure 13: Casualty-containing patches (left) and changed
methods (right).

yields high, and in several instances perfect, precision and recall.
The accuracy tends to be slightly lower for CC-C methods, since
they contain both necessary and casualty changes, and the latter
require finer-grained detection. Variable-based changes have the
lowest accuracy across the board. This is due to CAsCADE’s diffi-
culty in identifying more intricate assigner- and retriever-method
scenarios due to the limitations of its employed static analyses.

5.2 Prevalence of Casualty Changes

Sections 2.2 and 5.1 discussed the prevalence of casualty changes
in a dataset of security patches from six open-source systems that
we assembled. We expanded this with two previously published
datasets that contain a range of other kinds of software patches. The
first dataset [33] contains 231 ZXing [36] patches, 504 Aspect] [1]
patches, and 3,163 Tomcat [22] patches.? The second dataset [14]
contains 3,832 Ant [20] patches and 2,597 Xerces [23] patches. In
total, the two latter datasets combined include 10,327 patches
resulting in changes to 31,679 methods.

To understand the prevalence of casualty changes across these
datasets, we use CAsCADE to compute (1) the fraction of patches
that have at least one CC-C (resp. CC-O) method, and (2) the fraction
of CC-C (resp. CC-O) methods within a patch. The first measure
indicates the “breadth” of casualty changes across patches, while the
second measure indicates the “depth” of casualty changes in a patch.

The results from our original (“security”) and new (“general”)
datasets are shown in Figure 13. Casualty changes exhibit both
breadth across patches and depth within individual patches. The
patches from our security dataset and the individual methods within
them both have higher proportions of casualties than their coun-
terparts from the general dataset. On the one hand, these results
indicate that casualty changes may be more prevalent in security
patches. This can be explained by the fact security patches often
have to add or modify checks in the code, e.g., to fend off XSS or
input validation attacks. In turn, these checks are implemented via
member variables that need to be accessed across classes, hence
increasing the reliance on and frequency of changes to assigner
and retriever methods. Furthermore, we often encountered checks
that regulate permissions to access certain data, and those kinds
of checks tend to be passed through method parameters.

On the other hand, the prevalence of casualty changes in the gen-
eral dataset is still significant: of the 10,327 patches, 1,240 contain
at least one casualty change and 1,136 contain at least one method
that comprises only casualty changes. Furthermore, of the 31,679

2This is a different set of patches than Tomcat’s patches in our security dataset.

Adriana Sejfia, Yixue Zhao, and Nenad Medvidovi¢

modified methods in this dataset, 5,702 contain at least one casu-
alty change and 3,801 contain only casualty changes. This strongly
suggests that CAsCADE will have significant utility and will benefit
existing tools that focus on entire patches (e.g., to make recommen-
dations to developers [14] or to pinpoint the source of a bug [33]).

5.3 Impact of Casualty Changes

Noise has been shown to harm the accuracy of change-based analy-
ses [14]. We hypothesize that casualty changes, as a specific kind of
noise, have a similar negative impact. To measure that impact on an
existing tool’s accuracy we selected AssocChecker, the method-pair
association model used for Diffcat [14, 35]. This model recommends
to developers methods they should modify next based on a system’s
change history, and its accuracy was measured using real devel-
oper data. We also considered using Locus [33], another related
approach whose evaluation dataset we already applied in our anal-
ysis, in the same manner. However, Locus’s ground-truth data is
collected based on a third-party algorithm and it contains casualty
changes, which would bias our results and make them difficult to
interpret. For this reason, we restrict our comparison to Diffcat.

Given a changed method, Diffcat’s AssocChecker model recom-
mends and ranks up to n methods that should be changed next;
n = 10 in the model’s evaluation. AssocChecker’s accuracy is based
on the quality of the recommendations. First, AssocChecker collects
all past patches, with their corresponding sets of changed methods.
For each patch, AssocChecker is trained with the sets of changed
methods in all patches previous to it, and infers which methods are
often changed together. A recommendation is deemed helpful if it
involves a method actually changed by the developers.

As mentioned above, we obtained two of the software systems
used to evaluate AssocChecker by Kawrykow and Robillard [14].
We chose these two since the source code and patch information was
available. In total, we collected 3,832 patches in Ant [20] and 2,597
patches in Xerces [23]; this information was unavailable for the
remaining systems [14]. We ran CASCADE on these patches to iden-
tify methods that solely contain casualty changes. We used the same
number of recommendations, n = 10, per method [14]. We then
created two separate inputs for the model: one with all the changed
methods and one without those methods that contained only casu-
alty changes; since AssocChecker analyzes its data at the method
level, we had to include in the latter input all methods that contained
combinations of regular and casualty changes. We were thus able
to obtain a conservative measure of the impact of casualty changes,
via the difference in recommended methods between the two runs.

These results are presented in Table 3. The table shows the
originally used AssocChecker metrics [14]: Tot Rec refers to the
total number of recommendations the model made; Feedback refers
to the number of methods that received recommendations; Prec
refers to precision (no recall results are reported in AssocChecker);
Top 3 refers to the rate of changed methods for which there was

Table 3: Results when running AssocChecker with casualty
changes (All) and after they have been removed (CC free).

Tot Rec | Feedback | Prec | Top 3 | OE
All 3509 3061 0.22 | 0.44 0.25
CC free | 2515 2331 0.26 | 0.53 0.17

Identifying Casualty Changes in Software Patches

at least one helpful recommendation among the top 3; and Only
Error (OE) refers to the rate of methods for which there were no
helpful recommendations as reported by developers.

After removing casualty changes, the relative increase in pre-
cision was 18% (0.04 on the absolute scale). The relative increase
in the rate of helpful recommendations in Top 3 was 20% (0.09).
The rate of changed methods for which there are no helpful recom-
mendations fell by 32% (0.08). Interestingly, the rate of total helpful
recommendations (defined by AssocChecker as Prec X Tot Rec) de-
creased by 15%, from 771 to 653. However, this decrease is surpassed
by the more significant dip in false positives: the substantial in-
crease in Prec and Top 3, and the decrease in OE. In other words,
by removing casualty changes, developers will receive fewer but
better recommendations by AssocChecker.

We note that AssocChecher and CAsCADE ultimately provide
complementary analyses. Since AssocChecker uses historical data,
it may include in its recommendation a method #2 every time an-
other method #1 is changed because they were changed together
as a root-casualty pair at certain times in the past. However, this
approach cannot distinguish scenarios in which changes to method
#1 have no relevance to method #2. For example, AssocChecker
would not be able to distinguish between a change to a loop internal
to method #1, which would not impact method #2, and a change to
method #1’s API, which would impact method #2. We hypothesize
that augmenting AssocChecker’s analysis with the information
provided by CAsCADE would address such differences. Confirming
this hypothesis is part of our planned work.

6 LIMITATIONS AND THREATS TO VALIDITY

As indicated previously, for practical reasons we have made certain
assumptions and specific implementation choices in our work. In
turn, these assumptions and choices have induced several limita-
tions. We discuss the limitations in terms of threats they pose to the
validity our results and the corresponding employed mitigations.

1) Internal Validity — A primary threat to our work’s internal
validity stems from the reliance on manual steps in two parts of
our approach: obtaining the ground truth and deriving the taxon-
omy. Manual work is known to be error prone. To minimize errors
and inconsistencies, we performed several iterations of analyzing
the dataset when obtaining the ground truth. Moreover, we col-
laboratively derived and refined the taxonomy, terminating our
discussions when all authors agreed with a given categorization.

The implementation of our approach, CASCADE, relies on several
third-party tools. Despite their broad use, these tools have limita-
tions that our technique inherits. When feasible, we implemented
additional processing of these tools’ outputs (e.g., improving the
alignment of ASTs in Gumtree) to mitigate their limitations.

2) External Validity — The threats to our work’s external validity
are related to the taxonomy of casualty changes. First, our dataset,
used to derive the taxonomy, currently contains only programs writ-
ten in Java, an OO language. This leaves unproven the taxonomy’s
applicability to other paradigms. However, as discussed above, we
relied on the authors’ experience, which spans a large number of
programming languages, to refine the categories of the taxonomy.
While we do not have such example-systems in our current dataset,
our experience, as well as the taxonomy’s constituent elements

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

(e.g., statements, methods), strongly suggest that the taxonomy will
also be directly applicable to procedural languages.

We additionally acknowledge that the taxonomy is comprehen-
sive but not complete. Despite this limitation, the taxonomy has
served as a fruitful foundation for our work and has yielded high ac-
curacy in applying CASCADE to a representative set of open-source
systems. We aim for the taxonomy to be extended further via our
own on-going work and its adoption by the research community.

3) Construct Validity — The principal construct validity threats
are related to the definition of casualty changes. The foundations of
our work rest on correctly identifying changes that, both, cascade
from other changes and preserve the logic of a program. As already
discussed above, determining the preservation of logic may be
non-trivial. In most cases, our ground truth was determined via
multiple iterations through the dataset. In both the ground truth
and our automated approach, we classified a change as casualty if
and only if that change (1) had dependencies with a root or another
casualty change and (2) did not have any dependencies with other
(non-casualty and non-root) changes.

This approach does not account for certain cases, such as the pre-
viously discussed container data types, where the preservation of be-
havior is “masked” by semantically equivalent but syntactically dif-
ferent code. Such cases may require one-off solutions. Another strat-
egy we are exploring is leveraging implementation-level invariants
(e.g., in the form of assertions) to establish behavioral equivalence
of a change introduced in a patch with the original functionality.

7 CONCLUSION

Each of the four principal contributions of our work—(1) the tax-
onomy of casualty changes, (2) CAsCADE, (3) the curated dataset
of security patches, and (4) the casualty change-based analysis of
prior studies’ results—can be further extended and enriched. For
example, our taxonomy may include additional casualty changes
as they are identified, but also other similar phenomena studied
by existing work: noise, non-essential changes, low-significance
changes, and so on. Along similar lines, the existing datasets can
be expanded to include additional systems and to identify different
types of noise, possibly simultaneously.

CasCADE itself will also evolve, both by including capabilities it
has not needed to date (e.g., because the datasets we have access to
do not contain certain kinds of noise) and by integrating with exist-
ing tools. One particularly interesting aspect of such an integration
would leverage CAsCADE’s ability to identify noise at different
abstraction levels — a capability largely missing from previous ap-
proaches. In turn, this opens another research avenue: gaining an
understanding of the types of feedback and levels of detail that
developers prefer about patches. The exclusive focus of existing
approaches on methods may have been a missed opportunity.

ACKNOWLEDGMENTS

This work is supported by a Google PhD Fellowship, the U.S. Na-
tional Science Foundation under grants 1717963, 1823354, and
2030859 (the Computing Research Association for the CIFellows
Project), and the U.S. Office of Naval Research under grant N00014-
17-1-2896.

ESEC/FSE °21, August 23-28, 2021, Athens, Greece

REFERENCES
[1] [n.d.]. Aspect].
[2] [n.d.]. CVE-2009-2693. https://nvd.nist.gov/vuln/detail/CVE-2009-2693
[3] [n.d.]. CVE-2012-0022. https://nvd.nist.gov/vuln/detail/CVE-2012-0022
[4] [n.d.]. CVE-2013-4322. https://nvd.nist.gov/vuln/detail/CVE-2013-4322
[5] [n.d.]. CVE-2013-4590. https://nvd.nist.gov/vuln/detail/CVE-2013-4590
[6] [n.d.]. CVE-2014-0230. https://nvd.nist.gov/vuln/detail/CVE-2014-0230
[7] [n.d.]. CVE-2016-6817. https://nvd.nist.gov/vuln/detail/CVE-2016-6817
[8] [n.d.]. National Vulnerability Database. https://nvd.nist.gov/
[9] [n.d.]. Website With CasCADe and the data. https://asejfia.github.io/cascade.
github.io/
[10] Mike Barnett, Christian Bird, Jodo Brunet, and Shuvendu K Lahiri. 2015. Helping
developers help themselves: Automatic decomposition of code review changesets.
In 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering,
Vol. 1. IEEE, 134-144.
[11] Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc, Matias Martinez, and Mar-

[12

[13]

[14]

(15

[16

[17]

[18]

tin Monperrus. 2014. Fine-grained and accurate source code differencing. In
ACM/IEEE International Conference on Automated Software Engineering, ASE ’14,
Vasteras, Sweden - September 15 - 19, 2014. 313-324. https://doi.org/10.1145/
2642937.2642982

Beat Fluri and Harald C Gall. 2006. Classifying change types for qualifying
change couplings. In 14th IEEE International Conference on Program Comprehen-
sion (ICPC’06). IEEE, 35-45.

Kaifeng Huang, Bihuan Chen, Xin Peng, Daihong Zhou, Ying Wang, Yang Liu,
and Wenyun Zhao. 2018. CIDiff: Generating Concise Linked Code Differences. In
Proceedings of the 33rd ACM/IEEE International Conference on Automated Software
Engineering (Montpellier, France) (ASE 2018). Association for Computing Machin-
ery, New York, NY, USA, 6794AS690. https://doi.org/10.1145/3238147.3238219
David Kawrykow and Martin P. Robillard. 2011. Non-Essential Changes in
Version Histories. In Proceedings of the 33rd International Conference on Software
Engineering (Waikiki, Honolulu, HI, USA) (ICSE ’11). Association for Computing
Machinery, New York, NY, USA, 351?1A$360. https://doi.org/10.1145/1985793.
1985842

Xuan Bach D Le, David Lo, and Claire Le Goues. 2016. History driven program
repair. In 2016 IEEE 23rd International Conference on Software Analysis, Evolution,
and Reengineering (SANER), Vol. 1. IEEE, 213-224.

Haopeng Liu, Yuxi Chen, and Shan Lu. 2016. Understanding and generating
high quality patches for concurrency bugs. In Proceedings of the 2016 24th ACM
SIGSOFT international symposium on foundations of software engineering. 715—
726.

Fan Long, Peter Amidon, and Martin Rinard. 2017. Automatic inference of code
transforms for patch generation. In Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering. 727-739.

Fan Long and Martin Rinard. 2016. Automatic patch generation by learning
correct code. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages. 298-312.

Adriana Sejfia, Yixue Zhao, and Nenad Medvidovi¢

Stas Negara, Mohsen Vakilian, Nicholas Chen, Ralph E Johnson, and Danny
Dig. 2012. Is it dangerous to use version control histories to study source code
evolution?. In European Conference on Object-Oriented Programming. Springer,
79-103.

Apache Ant Project. [n.d.]. Apache Ant. https://ant.apache.org/

Apache Ofbiz Project. [n.d.]. Apache Ofbiz. https://ofbiz.apache.org/

Apache Tomcat Project. [n.d.]. Apache Tomcat. https://tomcat.apache.org/
Apache Xerces Project. [n.d.]. Apache Xerces. https://xerces.apache.org/
Apache Zookeeper Project. [n.d.]. Apache Zookeeper. https://zookeeper.apache.
org/

Commons Collections Project. [n.d.]. Commons Collections. https://commons.
apache.org/proper/commons- collections/

Commons Compress Project. [n.d.]. Commons Compress. https://commons.
apache.org/proper/commons-compress/

Commons Email Project. [n.d.]. Commons Email. https://commons.apache.org/
proper/commons-email/

Rebecca Russell, Louis Kim, Lei Hamilton, Tomo Lazovich, Jacob Harer, Onur
Ozdemir, Paul Ellingwood, and Marc McConley. 2018. Automated vulnerability
detection in source code using deep representation learning. In 2018 17th IEEE
International Conference on Machine Learning and Applications (ICMLA). IEEE,
757-762.

Adriana Sejfia and Nenad Medvidovi¢. 2020. Strategies for Pattern-Based Detec-
tion of Architecturally-Relevant Software Vulnerabilities. In 2020 IEEE Interna-
tional Conference on Software Architecture (ICSA). IEEE, 92-102.

Yida Tao, Donggyun Han, and Sunghun Kim. [n.d.]. Writing acceptable patches:
An empirical study of open source project patches. In 2014 IEEE International
Conference on Software Maintenance and Evolution. IEEE, 271-280.

N. Tsantalis, M. Mansouri, L. Eshkevari, D. Mazinanian, and D. Dig. 2018. Accurate
and Efficient Refactoring Detection in Commit History. In 2018 IEEE/ACM 40th
International Conference on Software Engineering (ICSE). 483-494. https://doi.

org/10.1145/3180155.3180206
Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and Vi-

jay Sundaresan. 1999. Soot - a Java Bytecode Optimization Framework (CASCON
’99). IBM Press, 13.

Ming Wen, Rongxin Wu, and Shing-Chi Cheung. 2016. Locus: Locating Bugs from
Software Changes. In Proceedings of the 31st [IEEE/ACM International Conference on
Automated Software Engineering (Singapore, Singapore) (ASE 2016). Association
for Computing Machinery, New York, NY, USA, 2624A$273. https://doi.org/10.
1145/2970276.2970359

Annie TT Ying, Gail C Murphy, Raymond Ng, and Mark C Chu-Carroll. 2004.
Predicting source code changes by mining change history. IEEE transactions on
Software Engineering 30, 9 (2004), 574-586.

Thomas Zimmermann, Andreas Zeller, Peter Weissgerber, and Stephan Diehl.
2005. Mining version histories to guide software changes. IEEE Transactions on
Software Engineering 31, 6 (2005), 429-445.

ZXing. [n.d.]. ZXing. https://zxing.org/

https://nvd.nist.gov/vuln/detail/CVE-2009-2693
https://nvd.nist.gov/vuln/detail/CVE-2012-0022
https://nvd.nist.gov/vuln/detail/CVE-2013-4322
https://nvd.nist.gov/vuln/detail/CVE-2013-4590
https://nvd.nist.gov/vuln/detail/CVE-2014-0230
https://nvd.nist.gov/vuln/detail/CVE-2016-6817
https://nvd.nist.gov/
https://asejfia.github.io/cascade.github.io/
https://asejfia.github.io/cascade.github.io/
https://doi.org/10.1145/2642937.2642982
https://doi.org/10.1145/2642937.2642982
https://doi.org/10.1145/3238147.3238219
https://doi.org/10.1145/1985793.1985842
https://doi.org/10.1145/1985793.1985842
https://ant.apache.org/
https://ofbiz.apache.org/
https://tomcat.apache.org/
https://xerces.apache.org/
https://zookeeper.apache.org/
https://zookeeper.apache.org/
https://commons.apache.org/proper/commons-collections/
https://commons.apache.org/proper/commons-collections/
https://commons.apache.org/proper/commons-compress/
https://commons.apache.org/proper/commons-compress/
https://commons.apache.org/proper/commons-email/
https://commons.apache.org/proper/commons-email/
https://doi.org/10.1145/3180155.3180206
https://doi.org/10.1145/3180155.3180206
https://doi.org/10.1145/2970276.2970359
https://doi.org/10.1145/2970276.2970359
https://zxing.org/

	Abstract
	1 Introduction
	2 Background
	2.1 Related Work
	2.2 Preliminary Analysis

	3 Taxonomy of Casualty Changes
	3.1 Concepts Underlying Casualty Changes
	3.2 API-Based Casualty Changes
	3.3 Variable-Based Casualty Changes
	3.4 Refactoring-Based Casualty Changes

	4 Approach
	4.1 Overview of CasCADe
	4.2 Identifying Casualty Changes
	4.3 Indirect Casualty Changes
	4.4 CasCADe's Implementation

	5 Evaluation
	5.1 CasCADe's Accuracy
	5.2 Prevalence of Casualty Changes
	5.3 Impact of Casualty Changes

	6 Limitations and Threats to Validity
	7 Conclusion
	Acknowledgments
	References

