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ABSTRACT

Obtaining accurately calibrated redshift distributions of photometric samples is one of the great
challenges in photometric surveys like LSST, Euclid, HSC, KiDS, and DES. We combine the
redshift information from the galaxy photometry with constraints from two-point functions,
utilizing cross-correlations with spatially overlapping spectroscopic samples. Our likelihood
framework is designed to integrate directly into a typical large-scale structure and weak lensing
analysis based on two-point functions. We discuss efficient and accurate inference techniques
that allow us to scale the method to the large samples of galaxies to be expected in LSST.
We consider statistical challenges like the parametrization of redshift systematics, discuss and
evaluate techniques to regularize the sample redshift distributions, and investigate techniques
that can help to detect and calibrate sources of systematic error using posterior predictive
checks. We evaluate and forecast photometric redshift performance using data from the Cos-
moDC2 simulations, within which we mimic a DESI-like spectroscopic calibration sample for
cross-correlations. Using a combination of spatial cross-correlations and photometry, we show
that we can provide calibration of the mean of the sample redshift distribution to an accuracy
of at least 0.002(1 + z), consistent with the LSST-Y1 science requirements for weak lensing
and large-scale structure probes.

Key words: keywordl — keyword2 — keyword3

1 INTRODUCTION

With ongoing and future large area photometric surveys like the
Dark Energy Survey (DES; e.g., Abbott et al. 2018b), the Kilo-
Degree Survey (KiDS; e.g., Hildebrandt et al. 2017), the Hyper
Suprime-Cam (HSC; e.g., Aihara et al. 2018), the Rubin Observa-
tory Legacy Survey of Space and Time (LSST; e.g., Ivezic¢ et al.
2019), the Roman Space Telescope (e.g. Spergel et al. 2015) and
Euclid (e.g. Laureijs et al. 2011) modern cosmology has entered
the era of precision cosmology, where it becomes increasingly im-
portant to accurately account for sources of systematic bias and
uncertainty (e.g. Mandelbaum 2018). Large area photometric sur-
veys constrain cosmological parameters and the growth of structure
using two-point statistics of galaxy and shear fields (see e.g. Hilde-
brandt et al. 2017; Uitert et al. 2017; Abbott et al. 2018a; Joudaki
et al. 2018; Hikage et al. 2019; Heymans et al. 2020). Using only
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the broadband photometry of galaxies allows for a limited accuracy
in the estimated redshifts. In photometric surveys, we therefore typ-
ically consider two-point statistics of density fields that have been
projected along the line-of-sight, i.e., in the redshift direction. They
are then subsequently compared with the corresponding weak lens-
ing (WL) and large scale structure (LSS) theory predictions in a
likelihood framework. These theory predictions have to account for
the line-of-sight projection, and therefore depend on the redshift
distribution of the galaxies in the sample that have to be accurately
modelled and calibrated (see e.g. Huterer et al. 2006; Hoyle et al.
2018; Tanaka et al. 2018; Hildebrandt et al. 2020; Joudaki et al.
2020).

A primary goal of large area photometric survey programs is to
map the growth of structure and expansion history of the Universe,
and thereby constrain the dark energy equation of state via the
distance-redshift and growth-redshift relations (see e.g., Albrecht
et al. 2006, p. 31) which both enter the WL and LSS modelling.
Note that these fundamental relationships within our cosmological
model are redshift dependent, as are some key sources of theoret-
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ical uncertainty, such as the galaxy-dark matter bias model (see
e.g. Matarrese et al. 1997; Clerkin et al. 2015; Chang et al. 2016;
Simon & Hilbert 2018; Prat et al. 2018). The inferred ensemble
redshift distributions for samples of galaxies can therefore exhibit a
degeneracy with cosmological or astrophysical parameters. Inaccu-
rate distance, or redshift, measurements based on the photometry of
the galaxies are therefore important modelling systematics in these
surveys (e.g. Ma et al. 2006; Bernstein & Huterer 2010). We there-
fore must exploit all data sources that have the potential to break
these degeneracies to perform efficient and accurate inference.

The two methods available to constrain the redshift of galaxies
in the absence of accurate spectroscopic measurements are ‘tem-
plate fitting’ methods and empirical methods that ‘learn’ the map-
ping between photometry and redshift (for a recent review, see
Salvato et al. 2019). SED fitting methods fit the galaxy photome-
try with models of the galaxy spectral energy distribution (SED;
e.g., Arnouts et al. 1999; Benitez 2000; Ilbert et al. 2006; Feld-
mann et al. 2006; Greisel et al. 2015; Leistedt et al. 2016; Malz &
Hogg 2020). Machine Learning-based methods infer photometric
redshifts by constructing a density estimate for the conditional dis-
tribution of the galaxy redshifts given their photometry (Tagliaferri
et al. 2003; Collister & Lahav 2004; Gerdes et al. 2010; Carrasco
Kind & Brunner 2013; Bonnett 2015; Rau et al. 2015; Hoyle 2016).
Combinations of both these techniques have also been investigated
(Speagle & Eisenstein 2015; Hoyle et al. 2015). Unfortunately the
accuracy of these techniques is limited since they suffer from differ-
ent sources of systematic error. Template fitting approaches can be
systematically biased, if fits are constructed using sets of spectral
energy distributions that are not representative of all galaxies in the
sample. In contrast, photometric redshift techniques that require a
training set can produce systematically biased results due to incom-
plete spectroscopic training samples. It is particularly difficult to
obtain representative spectroscopic data due to the long exposure
times that are necessary to obtain accurate spectroscopic redshifts
for faint sources (see e.g. Huterer et al. 2014; Newman et al. 2015).

Instead of inferring photometric redshifts by fitting models
for the spectral energy distribution, we can also infer photometric
redshift infromation using spatial cross-correlations between pho-
tometric samples and spectroscopic samples (e.g. Newman 2008;
Ménard et al. 2013; McQuinn & White 2013; Scottez et al. 2016;
Raccanelli et al. 2017; Morrison et al. 2017; Davis et al. 2017; Gatti
et al. 2018). Cross-correlation methods measure the spatial cross
correlation between a reference sample with accurate redshift infor-
mation, typically spectroscopic galaxy catalogs, and photometric
samples that do not have accurate redshift information. Ignoring
cosmic magnification effects (see e.g. Scranton et al. 2005) the
expected spatial cross correlation is only nonzero for samples at
the same redshift. By cross correlating subsamples of spectroscopic
samples that are selected in thin redshift slices with these photomet-
ric catalogs and comparing the resulting signals, we can reconstruct
the redshift distribution of the unknown photometric sample.

It is important to highlight the different sources of systematic
uncertainty in these two approaches: the measurement of spatial
cross correlations requires that the sample with unknown redshift
information and the reference sample overlap spatially and cover the
same redshift range. However, the spectroscopic calibration sample
does not have to cover the same color/magnitude space as the un-
known photometric sample. It is, however, important to accurately
model the redshift-dependent galaxy-dark matter bias of the photo-
metric sample and the spectroscopic calibration sample, since the
redshift-dependent ratio between these two functions is completely
degenerate with the photometric redshift distribution to be inferred.

In contrast, template-based redshift inference requires a complete set
of templates but no calibration sample. Checking a fitted model can
also, in principle, use the color space alone, by comparing the pho-
tometry generated by the fitted templates with the measurements. In
practice this approach has limitations. The generation of SED model
templates is challenging and often requires spectroscopic reference
data for some galaxies. Furthermore, degeneracies between galaxy
type and galaxy redshift can make the aforementioned color-based
approach ill-defined. Thus, while template fitting does not require
spectroscopic data to infer redshifts of galaxies, in practise it is of-
ten necessary for building and evaluating models. Finally, empirical
techniques that construct photometric redshift estimates by ‘learn-
ing’ from a spectroscopic calibration dataset require reference data
that does not have to spatially overlap, but needs to be representative
in color-redshift space.

Besides spatial correlations of galaxy clustering, we can also
use other two-point statistics from e.g., weak gravitational lensing
(e.g. Benjamin et al. 2013; Stolzner et al. 2020). There also exists
a considerable literature in how photometric redshift uncertainty
can be treated in the individual cosmological probes (McLeod et al.
2017; Hoyle & Rau 2019) or how one can combine template fitting
and cross correlation measurements (Alarcon et al. 2020b; Sdnchez
& Bernstein 2019; Jones & Heavens 2019; Rau et al. 2020). Shortly
before this paper was submitted for publication Myles et al. (2020);
Gatti et al. (2020); Cawthon et al. (2020) presented the redshift
inference scheme for the DES Y3 analyses, that combines a cross-
correlation and shear ratio data vector with redshift information
derived using an empirical mapping of broad band ‘Wide field’
photometry to spatially smaller calibration fields with narrow-band
photometric and spectroscopic redshift information.

This paper presents a composite likelihood approach to jointly
constrain photometric redshift distributions using information from
both the available photometry and the clustering of galaxies. We
focus on statistical challenges in this inference. In particular, the
parts of the model that utilize the photometry of galaxies can pose
computational challenges, since the likelihood depends on mea-
surements of all galaxies in the sample. We therefore derive an effi-
cient methodology that facilitates inference of redshift distributions
within this computationally expensive part of the model. Redshift
inference based on noisy photometry is an inverse problem and the
inference scheme requires careful regularization to achieve good
probability coverage. We therefore describe several regularization
techniques and evaluate their respective merits in numerical exper-
iments. Information from the spatial distribution of galaxies can
then be incorporated within the composite likelihood framework
by efficient MCMC sampling. We test our methodology using data
from the CosmoDC2 (Korytov et al. 2019) simulated extragalac-
tic catalog. While some of the inference techniques developed in
this paper can also be used in the context of an empirical mapping
to a small-area calibration field, our primary goal is to facilitate
inference using physical SED modelling that utilizes a likelihood
that jointly describes photometry and spatial information for all ob-
served galaxies. Inference under spatial variations in photometry or
redshift information will be addressed in the course of the paper
and in § 10.

The paper is structured as follows: § 2 describes the simu-
lated galaxy samples used in this work, while § 3 gives a brief
introduction into inverse problems and deconvolution by discussing
a simple toy model for photometric redshift inference. The fol-
lowing sections describe our inference methodology in detail: § 4
starts with a description of the photometric likelihood, where we
also discuss several regularization schemes, and § 5 formulates the

MNRAS 000, 1-22 (2015)



cross-correlation likelihood. Both of these parts are then combined
in a composite likelihood framework in § 6. § 7 discusses aspects
of model evaluation and parametrization of systematics. We then
apply our methodology to the simulated data in § 8. § 9 summarizes
our findings. § 10 closes the paper with a discussion of future work.

2 SIMULATED GALAXY SAMPLES

We use data from the CosmoDC2 simulated extragalactic catalog
(Korytov et al. 2019) in this work. CosmoDC2 is a mock extragalac-
tic catalog based on a trillion particle N-body simulation with a box
size of 4.225 Gpc3, the ‘Outer Rim’ run (Heitmann et al. 2019). The
simulated catalog covers 440 deg2 of sky area and spans a redshift
range 0 < z < 3. Galaxies are assigned to the halo catalog and
supplemented with additional galaxies based on the assumption of
a power law extrapolation of a power law sub-halo mass function at
lower masses. The resulting catalog exhibits a number count slope
consistent with that of the Hyper SuprimeCam Deep survey (Aihara
et al. 2018) down to an r-band magnitude of r ~ 28, well beyond
the apparent magnitudes that will be utilized in this paper. The
galaxy catalog uses a combination of empirical and semi-analytic
modelling, utilizing the Galacticus (Benson 2012) and GalSampler
codes (Hearin et al. 2020). For more details on the catalog genera-
tion and properties we refer the reader to Korytov et al. (2019).

In § 2.1 we will describe the particular selection of photometric
data and the photometric redshift catalog used in this work. § 2.2
describes the generation of the reference spectroscopic sample.

2.1 Photometric Sample and Photometric Redshift Catalog

The photometric sample consists of mock galaxies from the LSST-
DESC “CosmoDC2" synthetic sky catalog (Korytov et al. 2019).
The catalogs do not contain stars or AGN, so star-galaxy separation
and non-thermal contamination are not an issue in this data set.
Observations consist of magnitudes in the six ugrizy Rubin Ob-
servatory filters. Simulated photometric errors were added to the
six bands using a simple model designed to match the expected
photometric S/N due to depth, seeing, airmass, and sky brightness
at the completion of the full 10-year Wide Fast Deep survey (Ivezi¢
et al. 2019). All galaxies are assumed to be isolated, i.e. blending
effects are not modeled. We restrict the sample to galaxies with
an i gsT-band magnitude of if gst < 25.0 that corresponds to a
point source i} gsT-band signal-to-noise (S/N) of ~ 20. We make
this cut because redshift estimates for lower S/N objects degrade
rapidly below this S/N level. We reserve a small set of ~ 100000
galaxies for training of the photo-z algorithms; this training set is
a random subset of the i ggT < 25.0 sample, and thus completely
representative of the underlying galaxy distribution, so no modeling
of spectroscopic incompleteness effects is necessary.

Template Fitting Redshifts We use the publicly available Bayesian
photometric redshift code BPZ! (Benitez 2000) to compute redshift
estimates for our simulated galaxies. BPZ is a template-based red-
shift estimation code that estimates redshift by computing model
fluxes from a set of template SEDs and evaluating the resulting x>
when compared to observed fluxes. BPZ includes the optional ap-
plication of a bivariate Bayesian prior over the joint distribution of

I available at: http: //www.stsci.edu/~dcoe/BPZ/
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type/SED and apparent magnitude in the redshift estimation, though
we do not employ the prior in this investigation.

To construct a template set we begin with the empirical SED
catalog of Brown et al. (2014). We then use the ESP software pack-
age (Kalmbach & Connolly 2017), which constructs a principal
component basis set from the empirical SEDs and uses photomet-
ric training data to construct the final SED template via Gaussian
Processes. The final training set used by BPZ consists of the 129
empirical templates and 100 additional templates output from ESP.
These templates roughly, but not perfectly, span the observed range
of colors for the sample. We compute the likelihoods for all SEDs by
comparing the observed fluxes to model fluxes evaluated on a grid of
redshift spanning 0 < z < 3. The 1-dimensional marginalized (over
template type) posterior distributions for each galaxy comprise our
final template fitting redshift estimate.

Machine Learning-based Redshifts We use the python version of
the publicly available FLExCope? (Izbicki & Lee 2017) combined
with the XGBoosT algorithm (Chen & Guestrin 2016) to compute
photometric redshifts which we will refer to by the name FLExZ-
Boost. FLEXZBoosT estimates the conditional density in redshift
for each galaxy by fitting to an orthonormal set of basis functions
(in this case cosines) via regression with XGBoost. To further re-
fine the estimates, 25 per cent of the training data is reserved as
a validation set to determine optimal values for trimming extrane-
ous low-level peaks in the likelihood, and a “sharpening" parameter
of the form p(z) « p(z)® that adjusts the overall width of the
density estimates to best match the data. For this analysis we use
35 cosine basis functions, and a sharpening parameter, chosen via
cross-validation, of 1.4. Given the representative training data used
in this experiment, we expect very accurate redshift estimates from
the FLExZBoosT algorithm.

2.2 Spectroscopic Sample

The simulated reference spectroscopic sample is selected to mimic,
in broad strokes, the sample selections of the Dark Energy Spec-
trosopic Instrument (DESI, DESI Collaboration et al. 2016, Zhou
et al. 2020a, Zhou et al. 2020b). This consists of a set of four sam-
ples with increasing mean redshift: a magnitude-limited sample to
resst < 19.5; a Luminous Red Galaxy (LRG) sample; an Emis-
sion Line Galaxy (ELG) sample; and finally a high-redshift Quasar
(QSO) sample. We show the redshift and iy ggT-band magnitude dis-
tributions of these subsamples in Fig. 1. The LRG, ELG, and QSO
samples are selected such that their density per redshift matches
that of the DESI samples (priv. comm. Rongpu Zhou and Jeffrey
Newman). This sample is distinct from the redshift calibration data
mentioned in the previous section.

‘We construct a magnitude-limited sample, by imposing a mag-
nitude cut of r ggT < 19.5. To approximate the LRG, ELG and QSO
galaxy samples, we use the values of the stellar mass, star forma-
tion rate, and black hole mass times Eddington ratio as proxies for
objects that are LRG, ELG, and QSO-like respectively. Our goal
with these samples is to select galaxies that will have differing bias
properties and mimic the complexities of the DESI sample in this
regard, while matching the density and signal-to-noise we would
expect with a DESI-like sample. We thus use these simple truth
quantities from the simulation rather than recreate the full color
selection of a true, simulated DESI sample. The QSO, ELG, and

2 available at https://github.com/tpospisi/flexcode
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Figure 1. Left: Redshift probability density functions of the galaxy populations that constitute the DESI-like spectroscopic reference sample. Right:

Corresponding i-band magnitude distributions.

LRG samples are all selected with ri ggT > 19.5, to be independent
of the magnitude-limited sample. Additionally, QSOs and ELGs are
selected to have ry gsT < 23.4 and LRGs have the cut z; gsT < 23.0
applied to them. QSOs are selected by ordering the candidate QSOs
in a redshift bin by the product of their black hole mass and black
hole Eddington ratio, cutting on the value when the density of QSOs
matches the expected DESI density for a given redshift range. This
process is repeated for ELGs using their star formation rate in the
simulation as a proxy for “ELG-ness”. We also impose the condition
that the candidate ELGs have a black hole mass times Eddington
ratio below what we cut on for the QSOs, to assure that the sam-
ples are independent. This process of rank-ordering and selecting
the top galaxies until we achieve the expected DESI density is re-
peated again for the LRGs, this time with stellar mass as our proxy
value. Both the ELG star formation and QSO selection are excluded
from the LRG selection, ensuring that the samples are independent.
We calculate values for these cuts on a ~50 deg2 test area in the
CosmoDC?2 simulations and apply them to the full 300 deg2 area.

3 INTRODUCTION TO DECONVOLUTION PROBLEMS

As we will see in detail in the following sections, the photometric
redshift problem is a deconvolution problem, where the redshift
distribution of a sample of photometrically observed galaxies is
inferred from their noisy photometric measurements. To give the
reader an intuitive understanding of deconvolution problems, we
present a short introduction into the classical deconvolution prob-
lem. A similar description in the context of photometric redshift
estimation can be found in Padmanabhan et al. (2005). We close this
section by discussing the limitations of the toy model considered
here and motivate the likelihood inference framework presented in
the following.

3.1 A Toy Model

Consider three vectors of random variables Z, Z” and € with di-
mension Ng,j, which denotes the photometric sample size. Z and
ZP denote the true and photometric redshifts of the galaxies in the
sample and e the residual error between both quantities. The addi-
tive noise model that connects these random variables is given as:

7’ =Z+e€. (1

The probability densities® associated with these random variables
are:

Zj~ pz )
zf ~pt 3)
Ej ~ pE ’ (4)
where j € {1,..., N8} and ‘~* connects the realization of a ran-

dom variable on the left hand side with the probability density
function (PDF) on the right hand side from which this realization is
drawn.

The random variable €; is assumed to be identically and in-
dependently distributed, as well as independent of Z;. These as-
sumptions do not hold in the photometric redshift scenario, as the
noise very clearly depends on the color, and therefore redshift, of
the galaxy. However, in the following toy model, we adopt these as-
sumptions for simplicity. The theory can be easily extended towards
input-dependent noise (see e.g. Meister 2009) without changing the
intuition presented in this section.

In order to derive an estimator for p, we use the convolution
theorem* that connects the PDF of the sum of independent random
variables with the convolution of their densities. We can therefore
write:

Py =pzepe :/Pz(ZP_Z)Pe(Z)dZ:/Pe(ZP_Z)Pz(Z)dZ’
)]

3 Note that the probability densities p and pf are both redshift distribu-
tions of samples of galaxies. They differ since (pf, p.) denotes the sample
distribution of (photometric, true or spectroscopic) galaxy redshifts. Thus
pf would be broader, since the error in the redshift, drawn from pe, is
convolved with the true redshift.

4 A Fourier-based approach is not necessary. Concretely, the likelihood
framework presented in the following section works in real space. A Fourier
description for the classical deconvolution problem is, however, analytically
tractable and provides a clear picture of the nature of the problem and the
importance of regularization.
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The Fourier transform of a probability distribution is the char-
acteristic function. We will denote the characteristic functions of
(pz, Pz ,Pe)as (pz , pZ p.ft s pe) Given a sample drawn from a PDF,
e.g., the sample of photometric redshifts of Ng, galaxies, we can

estimate pg’ﬁ as’

N, gal

Z exp (itZ;’) : (6)

gal -

Ap f[(t)

The argument ¢ of the characteristic function could be interpreted
as a kind of redshift-frequency if we treat the redshift of a galaxy as
a ‘time parameter’. Under the assumption of independence between
Z and € we can write:

fi A~ A
Pe () = pE0PE®) = pLpL(r). @)
Therefore an estimator for p Y(¢) is given as:

N, gal

P 1 .
ft()—mzexp(nzj’?), 8)

J=1

where we assume pr‘ (#) is known and nonzero everywhere. We note
that this estimator is consistent and unbiased (Meister 2009). The
error term pe L(¢) here acts as a ‘filter’ to weight down small scale
modes in the d1str1but10n However, we note that this term 1/ plt can
become large when p'! is small.

As a consequence the inverse Fourier transform

1 .
pe@ =5 [ew it pl . ©

is neither integrable nor square integrable. Loosely speaking this
implies that the parameter space that describes the shape of p;(z)
does not have to be bounded. We will see this effect also for the more
complex model considered in the later sections of this work. We
reiterate that while the estimator of p p !has very desirable properties,
the inverse transformation is not well defined, hence deconvolution
problems are part of a larger class of ‘inverse problems’.

In order to obtain well-defined results, we therefore have to per-
form regularization either by regulating the shape/parametrization
of pZ (e.g. using Kernel methods), projecting p, onto a suitable
basis like wavelet functions or by directly restricting the 1/pf " term,
as implemented in a Ridge method (e.g. Meister 2009, § 2.2.3).
We will not discuss the details of these methods and refer to the
literature for a more detailed explanation (e.g. Meister 2009). It is,
however, instructive to study the functional form of one of these reg-
ularized estimators. Making the ansatz of a kernel density estimate
for the photometric redshift PDF, one can show that the deconvolved
density p, can be estimated as (e.g. Meister 2009):

Ngai
K@) 1 L
ft( )) Z xp (izz}” )dl’
Pe (t) Nga] j=1

pe@) =5 [ ew(-ira)

(10)

where b denotes the bandwidth and K the fourier transform of
the kernel function that enters the kernel density estimation ansatz
for pf . We see that by restricting the shape of the density pf
to a kernel density estimate whose smoothness is governed by the
parameter b, we regularize the 1/p" p't(¢) term by a multiplicative fac-
tor, that renders the inverse Fourier transformation both integrable
and square integrable assuming bounded, compactly supported and

5 Here, denotes an estimator for the respective function.
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non-vanishing K ft The bandwidth parameter governs the tradeoft
between the bias, or ‘smoothness’, of the density estimate, and its
variance. Choosing a larger bandwidth washes out small scale noise
in the reconstructed density. In the limit of vanishing bandwidth,
we would again obtain an ill-posed inverse Fourier transformation.

In the following sections, we will apply regularization tech-
niques that restrict the functional form of the redshift distribution,
following a similar idea as presented in closed form in Eq. (10) for
the classical deconvolution problem.

3.2 Towards the Photometric Redshift Problem

We note that inverse problems like the classical deconvolution prob-
lem also appear in several other scenarios like the measurements
of shapes, where the point-spread function (PSF) of galaxies con-
volves the galaxies’ light profiles and leads to a loss of information.

While the considered toy model of the photometric redshift problem
is analytically tractable, it does not describe the realistic situation.
Besides the relatively simple extension towards a galaxy-dependent
photometric noise, the noise distribution p ¢ is, in photometric red-
shift estimation, given as a joint likelihood between the photometry
of all galaxies in the sample, that depends on the additional pa-
rameters that enter the SED modelling. The redshift of each galaxy
is a parameter that enters its likelihood and the sample redshift
distribution is its prior. Furthermore, the model does not properly
account for the spatial distribution of galaxies. The clustering of
galaxies does not only constrain their redshift distribution, but con-
nects to SED modelling, with nuisance parameters that describe,
e.g., galaxy-dark matter bias.

We structure the discussion of the likelihoods used in this work
in practice based on the following roadmap: we first describe our
likelihood framework for the photometry of galaxies given a set of
templates in § 4. We reiterate that in contrast to the classical de-
convolution problem, the ‘error distribution’ in the full photometric
redshift problem is based on the joint photometric likelihood. We
will therefore base our estimator and inference on this likelihood
instead of the characteristic function. Despite these methodological
differences, we note that the necessity for regularization is the same
as in the analytically tractable classical deconvolution problem. The
considered regularization schemes are described in § 4.2. A partic-
ular challenge in the context of large area photometric surveys is
the necessity to scale the inference to a large number of galaxies. In
Appendices § A and § B we derive an efficient inference framework
based on the Laplace approximation that facilitates fast probabilistic
deconvolution. We will use this deconvolution methodology in the
following sections § 4 to § 8.

4 PHOTOMETRIC LIKELIHOOD

The spectral energy distributions of distant galaxies are a complex
superposition of spectral components from their stellar populations.

The SED of the galaxy can be uniquely mapped to a given
redshift z, which allows us to predict the galaxy flux as a function
of redshift in a given optical filter band ¥ (1) by

fi(z,a)=/T(/I)SED/1(/l,z,a)d/l. a1

where SED (4, z, @) is the Spectral Energy Distribution template
in units of erg /cm? /s / A. The parameter o denotes additional free
parameters in the SED template models, such as galaxy age, type, or
red continuum slope. For a given set of photometric filters # (1) we



6

obtain a mapping between the redshift z of the galaxy and a vector
of fluxes f. We will denote this mapping as 7 (z, @).

Assuming that the measurements of photometry for different
galaxies are independent® we can make the ansatz for the joint
likelihood of fluxes of a galaxy sample I

Ngul

p(Flz.a) = [ [NRIT (@i ). Z0) (12)
i=1

Here, X; denotes the measurement covariance matrix of the flux
measurements f;, and I denotes the set of all flux measurements
of the galaxies. We assume Gaussian uncertainties here, where
N (x, u,X) denotes the Normal distribution. The parameter a can
either be a galaxy-specific index that selects a certain template from
apre-specified number of models, or a physical property of galaxies.

The prior on the parameters z and @ must account for their
correlation. An example for a possible parametrization in the case
of a galaxy-specific template index would be a two-dimensional
histogram. However, other parametrizations are possible, especially
if additional parameters that change the shape of the base templates
are included in the template set. In this work, we will consider the
simplest case, where we use a multidimensional histogram prior
where each histogram cell denotes a combination of redshift bin
and discretized « parameter value, that for example could indicate
a template selection. The histogram index i runs over all histogram
bins {i : 0 < i < Ny}, where Niot = Nping X Nparameters- The
prior on the corresponding histogram heights, denoted as nf; cor-
responding to the interval I; in the z — o parameter space, reads:

Niot

p(z,a) = Z

i=1

nB(z.a) € I]. (13)

Here [ K] denotes the Iverson bracket, that is (0, 1) if the proposition
K is (false, true). We note that n® parametrizes the joint distribution
of redshift histograms and « parameter. For simplicity we will in
the following omit the marginalization over @ and refer to n® as the
parameters of the sample redshift distribution. The reason is that in
this paper we do not add additional parameters to parametrize the
SEDs over which we need to marginalize. In applications like weak
gravitational lensing and galaxy clustering we are mainly interested
in estimating the redshift distribution of a sample of galaxies, here
referred to as the base sample and parametrized by the vector nB.
It is therefore useful to marginalize over the redshifts of individual
galaxies. We note that if the posterior of individual galaxy redshifts
is important, we can always post-sample using the final posterior
on nB, based on Eq. (34), that then also includes information from
galaxy clustering. The posterior distribution of the sample redshift
distribution given F is then:

gd]

i) p [ ] [ aanmt NaiT Gz as

Discretizing the integral and using Eq. (13) we obtain

Neal Nig;

p(BI#) o« pm®) [ ] Z

i=1 j=

A ]
v [ i) as)
L

The histogram heights n? = nLB / Az can be expressed as the ra-
tio between 7 and the histogram width Az, assuming equal-sized

6 This assumption can be violated due to effects such as blending of nearby
galaxy light profiles on flux calibration errors..

redshift bins. The vector w8 has the properties ZN o B =1 and
0< nf < 1, and therefore lies on the simplex. Our ﬁrst choice

for a distribution on the simplex for p(x®) (and therefore p(n?))
was the Dirichlet distribution’ . During the course of this project we
have applied a mean field variational inference scheme that uses the
Dirichlet as the variational distribution as well as a Gibbs sampling
scheme based on the Dirichlet-Multinomial cojugacy for posterior
inference. We found that the variational inference scheme yielded
underestimated error bars, likely due to the restricted covariance
structure of the dirichlet. Moreover, the sampling approach did not
scale well to the large galaxy samples expected for the first-year
LSST observations. Specifically, the computational workload to up-
date redshift variables for 10° — 10'0 galaxies seems very large, and
while subsampling techniques provide a possible mitigation, they
can lead to biased inferences (Quiroz et al. 2018). Furthermore the
application of sampling techniques requires a sufficiently large trace
to ensure convergence. This can be difficult to ensure in this case.
In order to provide a more flexible distributional ansatz than the
dirichlet, while still maintaining the computational advantages of
a mean field variational inference scheme, we decided to develop
a scheme that is based on the logit-normal distribution (Atchison
& Shen 1980), as explained in the following section. While these
considerations motivate our choice of method, we note that this
should not discredit alternative approaches based on sampling or
variational inference in general. We will perform a more detailed
analysis of convergence and probability coverage of multiple infer-
ence techniques in future work.

4.1 Photometric Redshift inference

The problem specified by Eq. (14) is a deconvolution problem that
extends the simple toy model considered in § 3. The ‘noise’ PDF is
now given by a joint likelihood that can depend on a complex set
of parameters. Furthermore, while the discussion in § 3 focused on
deriving an estimator for the deconvolved density, the focus here is
to infer posteriors using efficient inference techniques. We present
the detailed description and derivation of the inference pipeline in
Appendices A and B. The final form of Eq. (14) is then given in the
form of a logit-normal posterior:

p(nPB|F) ~

1 1
\/|27T2y| AZNbins Hf\i"l"“ nlB

1 mes B —Nbins
exp| -5 |log n— — sy | 2y [log —E | My
Nbins Nbins

16)

where Az denotes the histogram bin width. The estimation of the
covariance Xy and mean vector gy \p, are detailed in Appendices
A and B. However, we note that this formalism derives the hessian
H=-I, ~1 and obtaining the covariance matrix Xy requires matrix
inversion. The subscript ‘y’ here refers to the variable transforma-
tion:

y(m) = [log (m1 /7Ny, - - 10g (TN -1 /TN, )] amn

7 The Dirichlet is the conjugate prior to the multinominal distribution, which
can make sampling and inference easier. Concretely, if a Dirichlet prior is set
on the probabilities of the multinomial likelihood (which are its parameters),
the posterior over these probabilities is again a Dirichlet. However conjugacy
does not imply that the prior is ideal in all circumstances.
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that we discuss in more detail in Appendix B. The vector nB_ Noins
denotes here the vector of n® excluding the last entry nﬁbin , where
we assume equal sized redshift histogram bin width. ’

Like the classical deconvolution problem, the inference of
Eq. (14) is an inverse problem. We can therefore expect that there
exists a parameter vector m € A, where A denotes the simplex
space, that has a high likelihood (relative to the maximum likeli-
hood value), but a large distance from the true mopt.

Furthermore, as we have seen in § 3, the solutions of inverse
problems do not have to be bounded?® (or even well defined), which
implies that uncertainties can be arbitrarily large (see, e.g., Kuusela
2016). Regularization, detailed in the following section, is therefore
a key aspect in our inference pipeline.

4.2 Regularization

In this section we describe techniques that we employ to regularize’

the deconvolution problem. As instabilities arise when the histogram
width is of the same order as the uncertainty in the redshift of the
individual galaxies, picking broader bins reduces these artifacts
(see e.g. Kuusela 2016). Considering our toy model in Eq. (10), we
see that if Kt(¢b) is narrower than pr‘ (), there can be values of ¢
where their ratio, and therefore the integrand in Eq. (10), can become
large or even unbounded. Subject to the aforementioned limitations,
this behaviour generalizes to the deconvolution problem considered
here. In the following, we will denote this scheme as the ‘Wide
Bin’ method. As will be seen in the following section, this simple
scheme can lead to posteriors that can be biased and too narrow. We
therefore consider alternative approaches.

4.2.1 Merging Bin Regularization

The ‘Merging Bin Regularization’ scheme (Kuusela 2016) uses a
very thin initial histogram binning. This will likely result in the
aforementioned typical instabilities of inverse problems, but can
avoid biases of the Wide-Bin regularization (or other smoothing)
schemes. However, we must ensure that the optimization of the
maximum-likelihood solution converges to a global maximum. We
therefore run multiple optimizations with different initial conditions
and pick the best solution. Furthermore, the hessian H can have a
very high condition number. Even though it is possible to sam-
ple from the resulting posteriors without the matrix inverse using
MCMC sampling (only the inverse covariance enters the y2), sam-
pling is more efficient using the standard Box-Mueller method (Box
& Muller 1958), which requires an inverse.

Tikhonov Regularization We perform the matrix inversion of the
hessian H using Tikhonov regularization (see e.g. Kress 1998, pp.
86-90). Here, we treat the matrix inversion as a system of linear
equations constructed from the hessian and the column-wise inverse
hessian/unit matrix respectively. The instability of the problem can
lead to very small entries in the hessian that imply large entries (in

8 In our case we note that all parameter values 7 € A are bounded, because
A (with a chosen metric) is a bounded metric space. However these solutions
in logit space (see § B) do not have to be bounded.

 We will use the term ‘regularization’ not only in the context of Bayesian
statistics, where it’s often implemented in the form of a prior, but in general
to describe methods that restrict the complexity of parameters or functions.
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Figure 2. Illustration of the impact of the ‘Merging Bin’ regularization
on the posterior of the sample photometric redshift distribution. We show
1 o intervals. The x-axis shows the redshift value z, the y-axis the value of
the n® parameters. The errorbars are the [16, 84] percentiles, which would
correspond to 1o intervals for a normal distribution. The black dashed
curve shows the spectroscopic redshift distribution. The red contour shows
the result of the ‘Merging Bin’ regularization with 30 bins applied to the
‘Fiducial’ contours that are binned using 50 bins. We refer for a detailed
explanation to § 8 and Fig. 7, which shows and discusses the ‘Fiducial’ case
as ‘Small Sample (50k)’.

absolute values) in its inverse. As a regularization, one can add a
penalty term and reformulate the problem as a minimization

min {|[Ha; - 1,113 + (a3} (18)

where i denotes column 7 of the inverse hessian and the unit matrix
respectively. The matrix A" = a1 is the Tikhonov matrix, o the
regularization parameter and 1 the unit matrix. The regularization
term penalizes large values for a;, which regularizes the inversion
and reduces the condition number. The analytic solution to this
minimization problem is given as:

-1
¢ = (HTH + 'I‘TT) H'1;. (19)

We note that we introduce the Tikhonov regularization here
predominantly as a way to regularize the matrix inversion of the
hessian. We recommend selecting the parameter « to be just as large
as necessary to perform this inversion accurately. Tikhonov regular-
ization can be used as the main regularization in inverse problems;
however, we find that the merging bin regularization scheme per-
forms much better in terms of producing well-calibrated probability
n® posteriors. We reiterate that the idea of the merging bin reg-
ularization scheme proposed by Kuusela (2016) is to deliberately
start with histogram bins that are too small and lead to a noisy de-
convolved density. We then exploit the characteristic noise pattern
in the deconvolved distribution, where bins that overshoot, i.e. are
larger than the true value, are immediately followed by those that
undershoot. This results in an alternating or ‘zig-zag’ pattern of the
deconvolved density. Merging these neighboring bins then helps to
‘stabilize’ the deconvolved distribution. We therefore sample from
a posterior obtained assuming a finely binned histogram and merge
neighboring bins, which compensates the noise effect. We can then
in principle directly use these samples in the cross-correlation like-
lihood. Nonetheless, it is computationally more efficient to remap
these samples to a regular grid with the same or very similar resolu-
tion than the binning used for the cross-correlations, since treating
the finely binned histogram heights as free parameters would not
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add more information due to the resolution loss. We found that the
template fitting posterior after merging bin regularization can again
be well-described by a logit normal distribution that we fit using
Assumed Density filtering.

Assumed Density Filtering To fit the logit normal distribution to
the sampled and merged posterior samples, we work in logit space
and make a gaussian ansatz

q(y) =N (ylp. ) . (20

We can directly generate samples from the true distribution by
sampling from the original, finely binned, logit-normal distribution
with subsequent merging, i.e. averaging, of neighboring bins, and
then transforming back to logit space. We will denote this true
distribution as pirye (y). Assumed density filtering then commences
by minimizing the Kullback-Leibler divergence between our ansatz

q(y) and p(y),

KL(pIIq)=/dy (p(y) log p(y) — p(y) logq(y)) . 21

After optimizing KL(p||q) for g and X, we can show that the
optimium is reached if

/dyp(y)y=u, (22)
and
r= / dyp(y) y -y -7 (23)

We see that assumed density filtering reduces to moment matching
in logit space, when we apply the sample mean and sample covari-
ance estimators to samples from pyye(y). We note that this is in
general true for distributions of the exponential family (see, e.g.,
Ranganathan 2004).

To summarize, we perform the inference scheme described in
the previous section using a fine histogram binning. Subsequently
we sample from the posterior after regularizing the inverse hessian
using Tikhonov regularization. We merge neighboring bins from
each posterior draw until the noise is reduced and we obtain a smooth
probability distribution. We illustrate this process in Fig. 2, which
illustrates the impact of the ‘Merging Bin’ regularization scheme
on the posterior of the sample photometric redshift distribution.
Comparing the grey contours (‘Fiducial’) that uses 50 bins with
the red contours (‘Merging Bin’) that merges neighboring bins to
a binning of 30 bins, we see the much smoother shape and the
elimination of the ‘zig-zag’ pattern present in the grey contours.
We defer a more thorough explanation of the methodology and
sample to § 8 and Fig. 7, which discusses the result shown in the
grey contours under the abbreviation ‘Small Sample (50k)’.

Based on our experience we propose to initially merge neigh-
boring bins until we obtain a bin size of the order of the average
+20 range of the individual galaxy redshift distributions. Subse-
quently we merge fewer bins until the aforementioned character-
istic ‘zig-zag’ noise pattern appears. This can be identified as the
limiting resolution we can obtain. We note that it is important to
distinguish patterns due to ‘real’ line of sight structure and due to
the aforementioned noise in the deconvolution. If the pattern ap-
pears gradually with increasing resolution (merging fewer bins),
it is indicative of statistically significant line-of-sight structure. If
the deconvolved density suddenly becomes unstable in a ‘zig-zag’
pattern when fewer bins are merged, we have reached a resolution
limit. Using assumed density filtering under the ansatz of a logit

normal distribution, we finally reparametrize our model on the final
redshift grid.

The merging process described above is largely based on in-
specting when the instabilities vanish. There are certainly more
principled alternatives. In a classical deconvolution problem, like
the one presented in § 3, one could use a bootstrap estimate of the
bias and variance of the reconstruction with respect to the over-
smoothed photometric redshift distribution. This is consistent with
the approach taken by Padmanabhan et al. (2005) based on the rec-
ommendation in Craig & Brown (1986). We use a joint likelihood
between the photometry and spatial information to produce posteri-
ors for the photometric sample redshift distribution and not a ‘point
prediction’. Furthermore our ‘measured data’ is the photometry and
spatial information of galaxies. Accordingly our model selection, of
which regularization is a part, must reproduce the measured pho-
tometry and spatial distribution, e.g., measured by the correlation
functions of galaxies. In the Bayesian context, this would trans-
late into the usage of posterior predictive checks (PPC) discussed
in § 7.1. While the path to development of a more principled se-
lection of the hyperparameters of regularization is known, it will
require a thorough investigation. We defer this to future work, us-
ing the aforementioned ‘rule-of-thumb’ methodology as an interim
solution.

5 CLUSTERING LIKELIHOOD

In order to include information about the spatial distribution of
galaxies into the likelihood, we consider spatial cross-correlations
between photometric and spectroscopic samples. Spatial correla-
tions measure the excess probability over random to find two galax-
ies separated by a certain distance. This can be exploited to extract
redshift information for galaxy samples (see e.g. Newman 2008;
Meénard et al. 2013; McQuinn & White 2013; Scottez et al. 2016;
Raccanelli et al. 2017; Morrison et al. 2017; Davis et al. 2017; Gatti
et al. 2018) for which we do not have accurate redshift informa-
tion, i.e. photometric galaxy samples, using spatially overlapping
spectroscopic catalogs.

The idea is to select the spectroscopic samples in thin redshift
slices and estimate the cross-correlation between these redshift-
selected samples and the full photometric galaxy sample. As dis-
cussed in the following, the resulting signal will then be proportional
to the photometric redshift distribution at that redshift.

Fig. 3 illustrates the basic idea of cross-correlation redshift
inference. We consider two galaxy samples: a reference sample
‘R’ and a base galaxy sample ‘B’. The reference sample contains
galaxies with accurate, often spectroscopic, redshift measurements;
the base galaxy sample consists of galaxies observed in broad band
photometric filters. As the base/reference samples are typically pho-
tometric/spectroscopic samples, we use these terms interchangably
in text!0. The redshift distribution of the base sample is illustrated
by the red distribution, while the binned reference sample redshift
distributions for simplicity are shown as tophat functions (unlike
the simulated samples we use to test our methodology). A sin-
gle cross-correlation is then obtained by cross-correlating a single
tophat selection with the full base sample. Multiple measurements

10 we note, however, that the reference sample does not have to be a spectro-
scopic dataset, as multi-band, narrow filter photometric observations (Alar-
con et al. 2020a), or photometric redshifts of redMaGiC samples (see e.g.
Gatti et al. 2018), also allow for reasonable redshift accuracy.
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Figure 3. Tllustration of the construction of the cross-correlation data vector.
A ‘Reference Sample’ that can be precisely selected in redshift is moved over
a ‘Base Sample’, which can either be a sample without redshift information
(photometric sample) or the ‘Reference Sample’ itself. In this illustration
10 cross-correlations would be estimated, constituting the cross-correlation
data vector.

therefore ‘slice’ through the redshift distribution of the base sample,
illustrated here by the arrows and the grey hatched tophat slices.

As described in detail in Schmidt et al. (2013), Morrison et al.
(2017) and Ménard et al. (2013), we measure the over-density, com-
pared with a spatially random distribution of points, of photometric
galaxies around each galaxy in the spectroscopic sample, within
an annulus of physical scale Ay = [ Xmin» ¥Ymax]- The theoretical
model for a cross-correlation function between the spectroscopic
reference sample in tophat bin i and the photometric base sample is
given as:

RB P
g TcL

Here, b 1R and blB denote the value of the redshift-dependent galaxy-
dark matter bias of the reference (R) and base (B) samples. The
normed histogram bin heights of the base, or photometric, sample
redshift distribution are denoted as 7rl.B , where }}; 7rlB =1, and the
size of a redshift bin is given as z% - zi. The term wpy ; denotes
the contribution of dark-matter clustering to the cross-correlation
signal, which depends on the cosmological model.

We see that the modelling of the cross-correlation signal de-
pends on the product of two redshift-dependent galaxy-dark matter
bias functions that are completely degenerate with the set of pa-
rameters 78 that parametrizes the redshift distribution of the base
sample. Furthermore, since wpy; depends on the cosmological
model, it will be computationally expensive to sample over these
parameters.

To reduce the impact of the cosmological model, we want to
combine the cross-correlations wRB with the correlations wRR of
the spectroscopic sample. We therefore correlate the spectroscopic
sample with itself in a manner analogous to what was just described,
i.e., by correlating tophat selected spectroscopic samples with the
full spectroscopic sample. The corresponding theory prediction then
reads

RR R\2 rf
wit o (b)) (l—ll WDM,i (25)
‘g ~%L

where ﬂ'lR is the normalized histogram height of the spectroscopic
(full) sample redshift distribution. Both correlation function mea-
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surements (WRB and wRR) just described are assumed to individu-
ally follow a Gaussian likelihood!! .

Based on these definitions and approximations and the consid-
erations in the previous section, we construct a likelihood based on
the ratio between WRB and WRR. Under the assumption of a diag-
onal covariance matrix'2 for WRB and WRR, we can construct the

random variable I" for bin i with components

~RB
[meas — Wi (26)
l WRE | -

1

We reiterate that both WLRB and v?/feR are described by a Gaus-
sian Likelihood. Their respective means and standard deviations
are given as IR i, MRR,i» ORB,i» ORR,i Tespectively. The theoretical
prediction for the transformed random variable I']"*** is then

bB 1B
T bl bR, 2B, xk) = SRR 27
i T
and its likelihood:
the the
p(rmeaslrgheO) _ b(Fi eo)d(ri ) 1 «
' ' a3(T%)  \2roRp ioRR,i
b(rtheo b(Ttheo
) M —® _M (28)
a ( I-*EheO) a (r‘:_hCO)

N 1 c
exp |- )
a? (') ogp joRR,i riheo

Here ®(z) denotes the cumulative distribution function of the zero
mean unit variance normal distribution and

1 1
a(rthee) = \/—2 ()2 + —— (29)
IRB,i IRR, i
p(rireo) = ERBAp, | AR (30)
ORB,i IRR,i
b(l—*t.he())Q _ Ca(rt_hCO)Z
theoy _ i i
d(I';™°) =ex ( 2a(ITe0)2 31
L
2 2
HRB,i | HRR,i
c=—F—+—>5—. (32)
RB,i  7RRi
For the following discussion we definen = ~ T i.e. the variables
H~—ZL

7, n refer to histogram heights normalized to sum to unity and to
unit area respectively. The variable nB and nR refer to the histogram
heights of the base and reference samples. This likelihood assumes
independence between neighboring redshift bins. We can, however,
expect a degree of correlation especially for lower redshift bins due
to magnification effects.

Eq. (28) is approximately independent of the modelling of the
wpM term, assuming that we pick sufficiently thin redshift bins to
‘divide-out’ the redshift-dependence of the dark matter clustering
term wpy. Based on the aforementioned independence assumption

1 In reality, we expect that the likelihood will deviate from the Gaussian
assumption (see e.g. Hahn et al. 2019).

12 While the covariance matrix will be dominated by the diagonal, we
can expect, that the cross-correlation measurements in different bins will
be correlated. Thus the assumption of a diagonal covariance matrix is an
approximation.
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between redshift bins, the joint likelihood for all bins i/ now reads:

Nbins
p(CB®, bR, nR nB) = [T p(Cilb?, b8, nf,nP) (33)

i
i=1

The function that describes the set of ratios sz / bf will be denoted
as C(z,Ayx.) and depends both on redshift and the size of the
annulus Ay. For a selected annulus size we will use the abbreviation
C(2).

6 THE COMPOSITE LIKELIHOOD

To formulate a joint likelihood for the data vector of both galaxy po-
sitions and photometry, we use the composite likelihood ansatz (e.g.
Varin et al. 2011) that uses the product of marginal likelihoods for
both the photometry I and the vector of cross-correlation functions
I:

p(B,T[0B 18 0%, C(2)) = p(Fn®)¥1 p(rB>*,C(2)) 22,
(34

where v are weights that can be selected to improve the efficiency of
the estimation (see e.g. Varin et al. 2011) by increasing the influence
of one part of the composite likelihood over the other. Furthermore
the composite likelihood can be conditioned on auxiliary parameters
such as the field. For simplicity we consider here only the simple
case of v = 1 and refer for an additional discussion to § 10.

We note that measurements of LSS and weak lensing often
use galaxy samples that are selected by increasing redshift, to form
tomographic bins. This analysis methodology can be incorporated
into Eq. (34) by replacing F and I' with the joint data vectors of the
selected galaxy samples, which would include covariances between
the I' measurements for different tomographic bins. Furthermore
the quality and number of available photometric bands can change
for different spatial areas. Similarly we need to construct a joint data
vector of F and I that incorporates these covariances. This can be
modelled either analytically (e.g. Stoyan & Stoyan 1994; Sdnchez
et al. 2020) or by using spatial resampling techniques. In this work
we will concentrate on the composite likelihood as given in Eq. (34)
and refer extensions of the method to future work.

7 MODEL EVALUATION AND PARAMETRIZATION OF
SYSTEMATICS

Parameter inference is only a single step in a full statistical analysis
and needs to be combined with additional analysis steps. We need
to ensure that parameters can be uniquely inferred and the posterior
does not exhibit flat regions or strong degeneracies, which can make
the application of MCMC techniques difficult (see e.g. Rothenberg
1971; Raue et al. 2013). Furthermore, one needs to investigate the
sensitivity of the results against changes in the prior and likelihood.
Finally, one has to judge if the inferred posteriors are sensible in
the context of the cosmological/astrophysical model and evaluate if
the fitted model is a good representation of the observed data. The
last step will be the topic of this section. § 7.1 describes posterior
predictive checks as a means to evaluate the goodness of fit of the
model and in § 7.2 we propose a method to parametrize systematics
due to biased photometric likelihoods.

7.1 Model Evaluation: Posterior Predictive Checks

The idea of posterior predictive checks (PPC) is to simulate syn-
thetic data from a fitted model, that is then compared with the
original measurements to serve as an internal consistency check.
For example there exist several approaches that allow us to estimate
the quality of probability calibration based on the distribution of
posterior predictive p-values (e.g. Gelman et al. 1996). This paper
will only provide a short discussion of posterior predictive testing,
which is still an area of active research. The basic idea of model
checking is to investigate if data predicted by the fitted model is
representative of the observed data. The classical approach, for ex-
ample developed for linear regression, uses an analytical probability
distribution for the test statistic (for example the Xz distribution) and
evaluates the tail probability to test how much of an ‘outlier’ the
observed data is, given the fitted model. This approach can be prob-
lematic if the model is complex '3, which makes it difficult to derive
an analytic sampling distribution for a suitable statistic given a fitted
model. Further problems arise due to significant influence of out-
liers, or if parameters are subject to boundary conditions. Posterior
predictive checks are extensions to this classical approach in the
Bayesian framework.

Starting from the composite likelihood defined in Eq. (34), the
posterior predictive distribution reads

P(Drep| D) = // dn® dC(z) p(DP [P, C(2))p(n®, C(2)| D) .
(35)

where D = {T'(wBR, wRR) I} and D™P denote the replicated, or
predicted, measurements sampled from the fitted model. We note
that our model specifies only the ratio between wRB and wRR How-
ever, we can always sample replications for one of these quantities
using the measurement of the other via the data transformation
specified in Eq. (26).

Posterior predictive checking is particularly useful as it allows
us to access model calibration quality and predictive accuracy with-
out spectroscopic (or accurate multiband photometric) validation
data. This is a decisive advantage of specifying the photometric
likelihood over empirical approaches based on machine learning
or, more specifically, conditional density estimation. By modelling
the data generating process of SED evolution and redshifting, we
can generate new photometry using a fitted physical model, giving
us the opportunity to develop statistical tests based on the predic-
tive distribution to probe the quality of the photometric likelihood
calibration.

To avoid confusion, it is important to clarify that posterior
predictive checking and model comparison, while often method-
ologically similar, have different goals. Posterior predictive checks
aim to provide internal consistency tests for a given model and in-
ference framework. Model comparison/combination has the goal to
compare/combine multiple models based on some measure of fitting
accuracy. However, model comparison and combination can also be
based on posterior predictive accuracy (see e.g. Gelman et al. 2013).
In the development of new models and the evaluation of directions
for improvement, both of these concepts work together.

An important prerequisite for the fitting of complex statis-
tical models is the evaluation of model parameter degeneracies.
We have discussed the fact that the parameters that describe the

13 An example are models that do not have the form of a generalized linear
model (see, e.g., Gelman et al. 1996).
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redshift-dependent galaxy-dark matter bias and the sample redshift
distribution enter the clustering likelihood in a completely degener-
ate way. Accordingly, completely different n®-C(z) combinations
will produce the same data distribution. This therefore limits the
information that can be obtained on n® depending on the prior in-
formation imposed on C(z). A combination with the photometric
likelihood can help to break these degeneracies, as long as the SED
modelling itself does not exhibit strong degeneracies, e.g. between
the SED type and the redshift of galaxies. A dedicated study of
model checking in color space is left for future work.

7.2 Parametrizing Systematics: Smoothing Kernel

In §8.3, we will discuss how miscalibrated likelihoods can lead to
systematic biases and uncertainties in the deconvolution operation.
Our goal in this section is to include a simple transformation into the
model that parametrizes these systematics. A simple choice is the
Gaussian convolution kernel, which modifies the sample redshift
distribution as

p(enB¥) = / dr p(7) / eIz 7)p(InP) &z 36)

Here nB-%$ denotes the parameters that describe the sample red-

shift distribution after the convolution is applied to the original
sample redshift distribution p(z|nB), where the convolution ker-
nel is a gaussian with standard deviation and shift in the mean
T = (Au,Ao):

p(zlz,7) = 37

2 Ao

1
——————¢eXp
\2rAc)? [ 2

Assuming the same histogram parametrization for p(Z|nB) as for
p(z/n®5Y5), we see that this implies an affine transformation n® —
A(7) - nB where the matrix A is given as

1 (z—Z+Au)2

|- -

Agj=® Z/HT+A/1,AO -®|z) T+A,U,AC")
. B__B ) B__B
Z;_I_(ZHZZL)_A“ Zi_(%)_AIJ

=—|erf —erf

Ac\2 Ac\2

(33)

where @ denotes the cumulative distribution function of a nor-
mal distribution and erf the error function. We choose a Gaussian
smoothing kernel since it has been shown that unbiased cosmologi-
cal inference from measurements of weak lensing and LSS critically
depends on accurate recovery on the mean and standard deviation of
the photometric sample redshift distribution. Biases in both of these
statistics can be parametrized using this kernel. In contrast to the
normal distribution, which exhibits a closed form solution under an
affine transformation, the logit-normal does not have this property.
However we empirically find that we can approximate the shape
of the distribution after an affine transformation as a logit-normal
distribution to good accuracy. For a given set of T, we can find the
updated parameter values by assumed density filtering.

While marginalization using sampling techniques is possible,
we choose a computationally efficient approximation and marginal-
ize over a discrete model set that consists of different smoothing
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Figure 4. Directed graphical representation of the statistical model de-
scribed in this paper. Empty/filled circles denote random variables that
are latent/observed. Ny denotes the dimensionality of the random vari-
able. Boxes encapsulate random variables with the same dimensionality.
Solid/dotted lines indicate random/deterministic relationships between ran-
dom variables.

sizes Aoy and Ay =0

p(nz®,C(@)|0,F) = )" p(Aci|L,F) p(nz®, C(2)|T, F, Ac) .
AO‘,‘

(39)

This assumes that there is no systematic shift in the sample redshift
distribution, and deviations from the true underlying distribution are
due to miscalibrated but on average unbiased individual galaxy like-
lihoods. Furthermore, we will assume that p(Ac;|T, ) = p(Aoy),
i.e., the smoothing size is a prior choice independent of the data that
can be calibrated on simulations. For simplicity we will use a flat
prior p(Ao) here.

7.3 Complete model summary

Here we review and summarize our complete model. We review
the structure of all components in § 7.3.1 and review the inference
strategy in § 7.3.2.

7.3.1 Model Structure

Fig. 4 summarizes the joint inference strategy presented in the previ-
ous sections in a directed graphical model. Each random variable is
denoted as a circle, probabilistic/deterministic relationships are de-
noted as solid/dotted lines. Boxes around random variables denote
the dimensionality of the random variable. For example the color
vector f; is an Ngjeer dimensional random variable for Nggjaxjes in
Niomo tomographic bins. Filled circles denote observed random
variables, in our case the photometry F and the cross correlation
ratios I'.

The graphical model is structured into three parts: the left
part represents the photometric likelihood, the middle bullets de-
scribe our treatment of systematics, and the right part describes the
clustering redshift likelihood, which depends on the spectroscopic
redshift distribution and the redshift-dependent galaxy-dark matter
bias ratio.

The structure of the graph illustrates the construction of the
model via the composite likelihood ansatz discussed in § 6. It sep-
arates the two data sources ¥ and I in the left and right part of
the graph. As we are mainly interested in performing inferences on
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the nB variables, we marginalize over the z variables, which pro-
vides significant computational advantages. The mapping between
nB and nB-5YS takes the form of a deterministic transformation and
is therefore indicated by a dotted line.

While nR is here treated as a random variable, its ‘shot noise’
uncertainties are very small for the considered sample sizes of the
spectroscopic sample. We therefore decided to fix its value to the
maximum likelihood value, i.e., the histogram height.

7.3.2  Model Inference

The presented model consists of two likelihood terms and a de-
terministic transformation nB — nB-$YS_ Starting with the pho-
tometric likelihood, we employ the inference scheme detailed in
Appendices A and B that results in a posterior p(nBIF) de-
fined in Eq. (16). We then employ the transformation detailed in
§ 7.2 to parametrize systematics in the inferred posterior from
biased photometric likelihoods. This yields a systematics cor-
rected posterior p(nBSYS|k) using the methodology described in
§ 7.2. The final combination with the clustering likelihood term
p(nB-5¥s C(2)|F,T) « p(I'nBYs, C(z)) p(nB-¥5|F) is then per-
formed using a Monte Carlo Markov chain (MCMC) sampling ap-
proach.

We update the parameters (nBY5,C(z)) in two sampling
blocks: the set of parameters that describe the redshift distribu-
tion of the base sample n®5YS and the parameters ¢ that describe the
evolution of the redshift-dependent galaxy-dark matter bias ratio
C(z).

Concretely, we iteratively sample from the conditional distribu-
tions p(nB-$Y8|F, T, ¢) and then from p(c|F, I', nB-Y%). This means
that we iteratively sample each parameter block in turn, while hold-
ing the other parameter block fixed. The sampling method that can
be employed to update each parameter blocks is flexible!4. We use a
Metropolis-Hastings sampling scheme to sample the ¢ parameters.
To sample from the conditional p(n®S¥|, T, ¢) we also employ a
Metropolis scheme, however we perform the sampling not in terms
of the nB-%Y$ parameters, but in logit space, i.e. in terms of the
y parameters that are connected with nB-SYS_ or their normalized
analog %%, via Eq. (B1). In this way we can utilize proposal dis-
tributions that are defined in real space to sample a distribution
defined on the simplex. We reiterate that the posterior p (nB|F) has,
in our framework, an analytical form and sampling is therefore very
efficient. However if we include a treatment of systematics or a
clustering redshift likelihood into the inference, we need to employ
sampling approaches because the posterior has no longer a closed
form solution.

8 FORECAST USING SIMULATION DATA

To demonstrate the effectiveness of our inference methodology, we
consider an idealized setup which allows us to forecast the con-
straints on the sample redshift distribution that we can expect from
a DESI-like spectroscopic survey overlapping with the LSST Y10
footprint. We assume in this section that the composite likelihood
is well calibrated, both in the clustering and in the template fit-
ting part. This assumption will likely not hold in practice and we

14 We tried several approaches like Hamiltonian MCMC or Elliptical Slice
sampling. All approaches work well; we discuss here the structurally simplest
scheme.
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Figure 5. The top three panels show cross-correlation measurements be-
tween the photometric base sample and the spectroscopic reference sample
wRB and correlation function measurements of the spectroscopic reference
sample wRR for 3 different annuli (see § 5) as a function of redshift. The
errorbars correspond to the +10- measurement errors of the correlation
function measurements. The lowest panel plots the true sample redshift
probability density function of the spectroscopic reference sample (‘Spec.”)
and the photometric base sample (‘Phot.”).

therefore study the impact of likelihood mis-specification on the
inference in § 8.3. In particular we will evaluate the performance
of our methodology by comparing with science requirements of the
first year (‘LSST Y1°) and the 10th year (‘LSST Y10’) of the LSST
data release defined in The LSST Dark Energy Science Collabora-
tion et al. (2018). We note that we will utilize a mock simulation of
galaxy photometry likelihoods in § 8.2 instead of SED likelihoods
constructed on the simulated photometry, because the simulated
photometry of the DC2 simulations showed a discontinuous color-
redshift mapping, which induced an unrealistically large error in
our template fitting results. In § 8.3, which will discuss aspects
of model checking and will not interpret results in the context of
LSST science requirements, we will use both Machine Learning
and Template Fitting methods described in § 2.1.

8.1 Measuring Cross-Correlations

We use the software package ‘the-wizz’ 15 (Morrison et al. 2017) to
measure cross-correlations between the reference (spectroscopic)
and base (photometric) samples wRB and correlations of the refer-
ence sample wRR in 20 equally spaced redshift bins from z € (0, 3),
corresponding to 3042 Mpc comoving distance at the mean redshift
of (z) = 0.88. Fig. 5 shows these measurements in the three top pan-
els for three annuli (see § 5) of 0.01 — 0.1 Mpc, 0.1 — 1.0 Mpc and
1.0—10 Mpc. In the lowest panel we show the sample redshift proba-
bility density functions for the reference and base samples. The cor-
relations wRR are larger than the cross-correlations wRB in all three
panels, implying on average a lower than unity ratio b8 (z)/bR (z).
The errorbars increase with redshift due to the decreasing number
of galaxies, leading to a larger shot noise error. Consider the shape
of wRR and wRB for the largest annuli [1.0 — 10.] Mpc, in the low
redshift range of z < 1.0. We see that the measurements of wRB

15 https://github.com/morrisch/the-wizz
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and wRR roughly resemble the shape of the reference and base sam-
ple redshift distributions (lowest panel), implying a roughly linear
ratio 58 (z)/bR(z) in this redshift range (compare with Fig. 6).
For smaller annuli, the change in slope around z = 0.5 is less pro-
nounced, producing a step around z = 0.5 in the galaxy-dark matter
bias ratio. At the high-redshift tail, where the redshift distribution
of the reference sample flattens out, we see that wRB and wRR are
approximately equal. Here, the sample redshift distribution of the
base sample is larger than the one of the reference sample. Since
the QSO sample will have a larger galaxy-dark matter bias than the
base sample, we can expect bB(z)/bR(z) < 1.0 at high redshift.

In order to represent a 5000 de:g2 overlap between DESI and LSST
Y10, using measurements obtained on the the 300 deg2 CosmoDC2
simulations, we scale the error on these measurements by a factor
of 4 in the following analyses.

We would like to generate a cross-correlation likelihood that
allows us full control over the imposed redshift-dependent galaxy-
dark matter bias ratio model and that has roughly16 the correct
width of the full DESI area. Furthermore, since the mean of the
ratio distribution depends on both the mean and the variance of
wRB and wRR, scaling the measurement error will induce biases
in the mean of this ratio and therefore in the reconstructed sample
photometric redshift distribution.

To correct for possible biases that would occur when the mea-
surements errors are naively scaled and allow for better control over
the redshift dependent galaxy-dark matter bias ratio, we first fit the
galaxy-dark matter bias ratio C(z) to the original data within these
20 bins. We show the results of this fit in Fig. 6 for different ranges
in physical distance and indicate the redshift range of the differ-
ent spectroscopic samples by vertical lines, where these limits are
meant to guide the eye and do not constitute sharp breaks (com-
pare with Fig. 1). We see that within these redshift ranges, C(z) is a
smooth function and can be fitted by a 3rd degree Chebychev polyno-
mial C(z) = Z?:l ¢iT;(z). Here, T; (z) denote Chebychev functions
and ¢; denotes the expansion coefficients. Within the three redshift
ranges {[0.0,0.5], [0.5,0.8], [0.8,3.0]}, we perform a regression
fit to the median of the C(z) posterior due its heavy tails. For the
following analysis we select the median annuli of 0.1—1 Mpc, which
provides good signal-to-noise, while being less sensitive to small
scale effects, than the 0.01 — 0.1 Mpc bin, for which accurate mod-
elling of galaxy-dark matter bias will be more difficult. However,
we are still considering the non-linear regime, in which more work
is needed to model the galaxy-dark matter bias.

We scale the correlation functions wRR and wRZ defined in
Eq. (26) and forecast a new data vector for wR%, while holding the
measurement of wRR fixed. This amounts to multiplying the ratio
wRB /wRR by 4 constant for each redshift bin that compensates for
the difference in the mean of the reconstructed sample photometric
redshift distribution before and after we impose the fitted redshift
dependent galaxy-dark matter bias model and perform the scaling.
In this way we ensure that our ratio distribution is self-consistent
with the photometric sample redshift distribution. We then use
these adjusted measurements in the composite likelihood (Eq. 34).
This correction is necessary because we would otherwise merely
use noisy measurements with wrongly decreased errorbars, which
will lead to biases in the probability calibration of any inference.

16 The uncertainty in the correlation function measurements will likely
differ from this factor of four scaling in the real data. Our treatment of the
cross-correlation data vector here is approximate and will be complemented
in future work.
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Figure 6. Galaxy-dark matter bias ratio as a function of redshift for different
scales. We show here the [16, 84] percentiles, that correspond to 1o for
a Normal distribution. The redshift ranges of the different spectroscopic
subsamples are plotted by vertical lines. Within these ranges, the bias ratio
is a relatively smooth function of redshift, indicating a smooth redshift
dependence of the galaxy-dark matter bias of the photometric sample. At
the borders of these ranges, the bias ratio curves are discontinuous.

Furthermore we want to have control over the underlying redshift
dependent galaxy-dark matter bias model to eliminate any additional
specification error. It should therefore merely be seen as an approx-
imate forecast of the constraining power that cross-correlations will
add to the composite likelihood and a demonstration of the inference
methodology. It is not an accurate treatment of galaxy-dark matter
bias or the correlation function measurements expected in the final
LSST measurement. For this we would require a more realistic sim-
ulation of the DESI-like spectroscopic sample, the final area and a
much better understanding of the galaxy-dark matter bias of each
galaxy population, all of which are subjects of active investigation
in the field.

8.2 Applying the Model

For the photometric part of the composite likelihood we assume a
redshift scaling of o-(z) = 0.02 (1 + z), where z denotes the true, or
spectroscopic, redshift. This scaling is a photometric redshift perfor-
mance benchmark for LSST frequently adopted in the literature (e.g.
Graham et al. 2020) and defined in the LSST science requirements
document!”. We then generate a mock catalog by sampling values
from the true sample redshift distribution and generate a catalog of
mock likelihoods by scattering these values within this redshift error
model. We reiterate that we assume here that the redshift likelihoods
constructed from the galaxies’ photometry, mimicked here by the
aforementioned redshift error model, is perfectly known. We note
that this is an idealized assumption that we impose to demonstrate
the methodology described in the previous sections.

Tab. 1 summarizes the different configurations we use in this
work. In particular we investigate posteriors obtained using several
different sample sizes and regularization techniques. In particular,
the first and second columns show the abbreviation used in the
text and the corresponding figure. The generated sample size of the
mock catalog is shown in the third column. The columns ‘Tikhonov

17 https://docushare.lsst.org/docushare/dsweb/Get/LPM-17
(page 4)
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Figure 7. Left panel: Posteriors of the sample redshift probability density function p(z) of the photometric sample (short: photometric redshift distribution)
parametrized by the parameters n® for different setups listed in Tab. 1. The x-axis shows the redshift value z, the y-axis the value of the n® parameters. The
errorbars are the [16, 84] percentiles, which would correspond to 1o intervals for a normal distribution. The black dashed curve shows the spectroscopic
redshift distribution in the binning used by the cross-correlation measurements. We consider four cases, and refer to Tab. 1 and § 8 for details on the experimental
setup. We highlight a variance-dominated posterior ‘Small Sample (50k)’, which shows a characteristic alternating, or ‘zig-zag’ pattern, as well as a comparison
between the cyan ‘Medium Sample (500k)’ and ‘Medium Sample (500k), Fid. Setup + WX’ posteriors. Here, the latter includes a cross-correlation ‘WX’ data
vector in its likelihood. This reduces the error especially in the high-redshift tail of the distributions. Right panel: The y-axis shows the relative difference
between the posterior of the photometric redshift distribution parametrized by the ngosl parameters and the spectroscopic redshift distribution nﬁue (black
dashed curve in the left panel).

Abbreviation Sample Size  Figure  Tikhonov Reg. @  Initial Binning  Effective Binning WX
Small Sample (50k) 50k Fig. 7 0.1 50 50 -
Medium Sample (500k) 500k Fig. 7 0.08 50 31 -
Large Sample (5000k) Oversmoothing 5000k Fig. 7 0.0001 25 25 -
Medium Sample (500k), Fid. Setup & WX 500k Fig. 7 0.08 50 31 v
Tik. Regul. Low 5000k Fig. 8 0.0001 50 25 -
Tik. Regul. Medium 5000k Fig. 8 1 50 25 -
Tik. Regul. High 5000k Fig. 8 10 50 25 -
Oversmoothing 5000k Fig. 8 0.0001 25 25 -
Tik. Regul. Low + WX 5000k Fig. 8 0.0001 50 25 v

Table 1. Summary of the different configurations that we test in this work. The first column lists the abbreviations, the second refers to the Figure where the
setup is analysed. The next columns list the value of the Tikhonov regularization parameter « (see § 4.2.1), the number of initial bins, the effective bin number
after (potentially) applying merging bin regularization (see § 4.2.1) and an indicator if the composite likelihood includes the cross-correlation data (see § 5).

Reg. @’, ‘Initial Binning’ and ‘Effective Binning’ list the value of probability density function, the right panel the relative difference
the Tikhonov regularization parameter « (see § 4.2.1), as well as between these posteriors and the spectroscopic redshift distribution
the used initial and effective bin number'®, i.e., the histogram bin that is shown as the black dashed line in both panels. The error
number after the merging bin regularization scheme. The final col- bars are the [ 16, 84] percentiles, corresponding to a Gaussian +1o
umn indicates whether the cross-correlation data vector is included interval.

in the composite likelihood. Fig. 7 shows a selection of posteriors

using setups from Tab. 1. The left hand panel shows the obtained The “Small Sample (50k) setup highlights the noisy, i..,

variance-dominated deconvolution, where we clearly see the com-
paratively large and fluctuating errorbars in Fig. 7. We note that
imposing a smoothing method will reduce these features. How-

18 As an approximate rule, one can expect a noisy deconvolution if no . . R |
ever this can come at the expense of additional biases as discussed

prior is applied, if the size of the bins is smaller than =10 range of the

individual galaxy redshift likelihoods for moderate sample sizes of the order later, and the characteristic covariance structure in the posterior is
10% galaxies. For our redshift range and photometric redshift scatter this not a priori problematic, as long as draws from the posteriors are
would imply an effective number of bins of 30 — 40. bounded and well-defined. Merging bin regularization exploits this
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anti-correlation structure to provide an ‘objective’ regularization
without the need to carefully motivate an external prior or smooth-
ing model choice.

An alternative that provides additional physical motivation is
the inclusion of clustering redshift measurements into the compos-
ite likelihood. This can be seen by comparing the posteriors from
the ‘Medium Sample (500k)’ and the ‘Medium Sample (500k), Fid.
Setup & WX’ cases. The corresponding results in Fig. 7 show that
for the same regularization, the inclusion of the cross-correlation
data into the likelihood decreases the uncertainties, which is espe-
cially visible in the high-redshift tail. We note that these results are
dependent on the chosen galaxy-dark matter bias model. As dis-
cussed in the beginning of this section, the parametrization used
here is very flexible and the effective number of parameters can
likely be reduced, if a more physical model is chosen. In this regard,
we can view the presented reduction in the statistical error due to
clustering redshifts as conservative. As mentioned previously, bi-
ases due to ill-motivated regularization choices play an important
role, especially for large sample sizes, where the statistical error is
small. We illustrate this here in the ‘Large Sample (5000k) Over-
smoothing’ case, by deliberately choosing a coarser binning without
merging bin regularization. We clearly see that the statistical error
is quite small with the bias dominating.

In order to investigate the quality of probability calibration,
we consider the posterior distribution over the mean values of pho-
tometric sample redshift distributions drawn from the posterior of
nB .1 This is a reasonable choice, as it has been shown that accurate
modelling of weak lensing and LSS critically depends on accurate
recovery of the posterior mean.

Fig. 8 shows five boxplots that each visualize the distribution
of the posterior mean that corresponds to a different setup under
consideration. The box edges denote the [16, 84] percentiles, and
the definition of the whiskers, i.e., the thin vertical lines with short
horizontal edges represent the [2.5,97.5] percentiles. The horizon-
tal line within the box represents the medianZ?. The x-axis shows
several different scenarios, as listed in Tab. 1; the y-axis shows the
value of the posterior mean. The middle solid black line corresponds
to the mean of the true redshift distribution, shown as the dashed
black line in the left panel of Fig. 7. We reiterate that all results
have been obtained using a mock catalog containing 5000k galax-
ies. The (dashed/dotted), (grey/magenta) horizontal lines represent
the requirement values for (Y1/Y10), (LSS/WL) measurements as
given in the LSST DESC Science Requirements Document (DESC
SRD The LSST Dark Energy Science Collaboration et al. 2018).
We note that the LSST DESC Science Requirements Documents
considers a tomographic analysis and not a single bin, as we do
here. We therefore restrict ourselves to a qualitative comparison.
Furthermore it should be noted that higher order moments of the
photometric sample redshift distribution will also correlate with
cosmological parameters, especially for a clustering likelihood (see
e.g. Nicola et al. 2020; Hadzhiyska et al. 2020), and our metric
is therefore bound to be incomplete. Redefining these metrics and
requirements is the subject of ongoing work.

We consider three scenarios: ‘Tik Regul. Low’, ‘Tik. Regul.
Medium’ and Tik. Regul. High’. As can be seen from Tab. 1 these

19 Concretely, we draw a number of n® realizations that each parametrize
a photometric sample redshift distribution and evaluate the mean on each of
these distributions.

20 We note that the original definition of the boxplot uses a different defi-
nition of the box size and the whiskers. We refer to Wickham & Stryjewski
(2012) for more details.
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scenarios differ by their value of the Tikhonov regularization pa-
rameter o. With increasing a, the error bars decrease and the bias in
the results increases. When comparing this with the ‘oversmooth-
ing’ results, we see the same pattern. This similarity in behaviors
arises because both a large @ and choosing large bins reduces the
variance of each bin.

Finally we show the impact of including the cross-correlation
measurements into the data vector in the ‘Tik. Regul. Low + WX’
scenario, which adds clustering information to the ‘Tik. Regul.
Low’ scenario. When comparing these two cases, we see that the
distribution of the posterior mean is now symmetric and reasonably
centered within the science requirements. In particular we note
that the uncertainties are still much larger when compared with
the previously considered, strongly regularized cases. This shows
that while the effect of reducing the variance of the posteriors is
similar when using regularization or including cross-correlation
data into the composite likelihood, the posteriors can be much better
calibrated in the latter case. Using a smoothing, or regularization,
method essentially makes assumptions about the true shape of the
distribution without strict data evidence. In contrast, adding cross-
correlations to the composite likelihood adds this information in a
physical, data-driven way.

Another effect that needs consideration is the increase in the
intrinsic estimator bias due to the ‘downsampling’ of the probabil-
ity density function to a lower resolution, e.g., by picking larger
bin width or by imposing a different regularization or smoothing
scheme. This loss in resolution implies that we inadvertently limit
the accuracy with which small scale structure can be reconstructed
in the density field along the line-of-sight. As demonstrated and
studied in detail in Rau et al. (2017), this effect can lead to biases
in the cosmological parameter inference that are often small, but
that would need scrutiny for upcoming data analyses. Since we gave
a detailed description of this effect in Rau et al. (2017) including
schemes to detect and mitigate these effects, we do not focus on it
in detail here. However, this effect can be illustrated for the current
setup, since the merging bin regularization downsamples the reso-
lution to a relatively coarse grid of 31 bins. Furthermore consider
the redshift distribution of true redshifts discretized using the 20 bin
grid used to obtain the cross-correlation measurements. Since we
use this distribution, i.e. the black curve in Fig. 7, as a reference, we
also have to consider its intrinsic discretization error. Concretely,
when comparing the mean estimated from this curve with the sam-
ple mean, we obtain a difference in these values of 0.0079. While
this is of the same order as the Y1 science requirements in Fig. §,
Y10 requirements will necessitate an increase in sample size or
the inclusion of cross-correlation constraints that will allow us to
perform inference at a higher resolution. Due to the slow expected
convergence of deconvolution estimators with sample size (see e.g.
Carroll & Hall 1988), it is likely that several orders of magnitude
increase in sample size will be necessary. This is attainable for the
large numbers of observed galaxies in LSST Y10, and our method-
ology can scale to large sample sizes. However, in order to reach
the sample sizes that are expected for LSST observations, we need
to develop an implementation that optimizes storage space and uses
an efficient parallelization strategy, which is beyond the scope of
this work.

Alternatively, we could use a different scheme that employs a
continuous model like logistic Gaussian processes (Rau et al. 2020)
or Dirichlet processes. The convergence of these density estimators
will likely be better, however they will also require additional com-
putational overhead in the inference. A detailed study of estimator
convergence is needed to settle on a recommendation and prove sig-
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Figure 8. Boxplot illustration of the mean of the posterior sample redshift
probability density function of the photometric sample (short: posterior
mean) for different experimental setups listed in Tab. 1 and detailed in § 8.
The x-axis lists the different scenarios, the y-axis the value of the posterior
mean. The box shows the [16, 84] percentiles, the vertical lines with hori-
zontal edges (whiskers) show the [2.5, 97.5] percentiles, corresponding to
the 10~ and 20 intervals for the normal distribution. The horizontal line in
the box is the median. The (dashed/dotted), (grey/magenta) lines correspond
to the requirement on the uncertainty of the posterior mean as quoted in the
LSST DESC Science Requirements Document (DESC SRD, The LSST
Dark Energy Science Collaboration et al. 2018) for (Y1/Y10) (LSS/WL)
measurements. The central, solid grey line is the mean of the true redshift
distribution, shown as the dashed black line in the left panel of Fig. 7. All
results have been obtained using a mock catalog of 5000k galaxies with
photometric redshift scatter that is perfectly calibrated. We highlight the
decrease in the statistical error and potential increase in systematic bias for
larger regularization, going from the leftmost to the fourth case. The right-
most boxplot shows the impact of including clustering redshift information
into the likelihood.

nificant improvement over the simple histogram scheme employed
here; we will leave this for future work.

Most importantly, however, it is likely that systematic errors
due to the miscalibration and mis-specification of the composite
likelihood, either by a suboptimal galaxy-dark matter bias model
or due to miscalibrated SED likelihoods, will lead to an error
budget that will dominate the aforementioned errors. If the mis-
specification can be parametrized and marginalized over, the vari-
ance of the parameter posteriors will be increased, otherwise they
will lead to biases in the resulting parameter posteriors. In the
following section we will discuss these sources of error. We will
showcase the usage of posterior predictive checks as a way to detect
miscalibration and suggest procedures for consistent model check-
ing and refinement.

8.3 Testing the Model

We discussed and showcased our inference methodology in the pre-
vious section using idealized data. To complement the discussion,
this section highlights how miscalibrated likelihoods can lead to
biases in the inferred sample redshift distribution and how posterior
predictive checks can be used to detect these issues.

To mimic well-calibrated photometric likelihoods we use con-
ditional density estimates from the FLEXZBoosT package (Dalmasso
et al. 2020). We note that these conditional densities are not photo-
metric likelihoods in the sense of Eq. (34). The free parameters in
the photometric likelihood are the redshifts of the galaxies and pa-
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Figure 9. We plot the residual between replicated and true scale-averaged
cross-correlation measurement wRB between a DESI-like spectroscopic ref-
erence (‘R’) and photometric base (‘B’) sample as a function of redshift.
The horizontal line with errorbars shows the uncertainties in the original
measurement. The green/magenta contours show the scenario where we
marginalize over all parameters ¢ that parametrize the redshift dependent
galaxy-dark matter bias ratio function C(z) (see § 8.1) without the sys-
tematics kernel for the unbiased/biased (f = 0.8) cases. The yellow/blue
contours consider the biased scenario (f = 0.8), but fix C(z) and do/do
not marginalize over the systematics kernel. The error bars and contours
show the [5, 95] percentiles. We see that the replicated measurements do
not show significant tension with the original measurements, if we either
marginalize over the systematic (‘Biased f=0.8 Sys. Marg.”) or if we use a
flexible redshift-dependent galaxy-dark matter bias model (‘Biased Marg.
Bias f=0.8"). Only if the form of the galaxy-dark matter bias is known to
good precision — in this case we hold its values fixed — are PPCs using
cross-correlations sensitive in detecting tensions.

rameters that describe properties of the Spectral Energy Distribution
(SED). In conditional density estimation, non-physical parameters
describe a flexible model that provides a mapping between photom-
etry and redshift. This flexible model is then fitted to known cali-
bration data. Thus while in SED fitting the distribution of redshift
constitutes a posterior distribution, conditional density estimation
treats it as a predictive distribution (often without marginalizing
over the modelling uncertainty). However since the goal of this
subsection is to demonstrate potential systematic biases and uncer-
tainties in the deconvolution operation, this difference is not of great
importance here.

In order to simulate the impact that a population of galaxies
with inaccurately calibrated photometric redshift likelihoods has on
the deconvolved redshift distribution, we consider a redshift range of
0.2 - 0.8 and a total of 500k galaxies. We randomly substitute 80%
of the FlexZboost conditional density predictions with photometric
likelihoods obtained using a template fitting run from the BPZ code
by employing a k-nearest neighbor substitution in redshift. The result
is a dataset in which a fraction of 80% (f = 0.8) of galaxies have a
likelihood from the BPZ code, and only 20% retain their conditional
density predictions from the FlexZboost code. We picked this setup
because the BPZ predictions within this redshift range, while be-
ing inferior to the FLExZBoosT predictions, still have an acceptable
quality. We perform this experiment by selecting a range in redshift
because we will perform posterior predictive checks (PPC) using
cross-correlations and need to control where we would expect sys-
tematics. This will allow us to disentangle model misspecification
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issues from the systematics, e.g. from the ‘noisy’ deconvolution,
described previously. We note that the quality of photometric red-
shift likelihoods does not sharply change with redshift in this way,
in real photometric samples. Instead photometric redshift quality
is a complex function in color space that strongly depends e.g. on
the quality of the photometry, the number of available bands, the
amount of calibration data and the template set. Modelling this ac-
curately is beyond the scope of this work and would require the
measurement of cross-correlations in color cells and the extension
of PPC to the full composite likelihood, that includes sampling the
photometry of galaxies in these color cells. Using the mean of the
FlexZboost conditional densities for the selection instead of the true
redshifts would ‘smooth-out’ the quality of the likelihoods as a func-
tion of redshift at the boundaries of the 0.2 — 0.8 redshift interval.
However this will also not be representative of the aforementioned
difficulties. We therefore choose an unrealistically simple case that
nonetheless illustrates the usefulness of PPC. Furthermore it allows
us to highlight difficulties in their application in a controlled man-
ner, by picking a fixed redshift range in which individual galaxy
likelihoods are biased.

In the spirit of PPC, we generate new cross-correlation mea-
surements using the joint posterior of the sample redshift distribu-
tion parameters n® and the parameters that govern the galaxy-dark
matter bias ratio evolution ¢, following the Chebychev basis ex-
pansion described in § 8.1. For simplicity we will deconvolve the
redshift distribution on the same 20 bin redshift grid used in the
cross-correlation data vector. For 500k galaxies, this leads to very
small statistical errorbars in the deconvolution. As a simplification
we can then fix the nB posterior to its maximum likelihood value.
As mentioned in the previous section, this oversmoothing will lead
to biases in the nB posteriors. However, since we will only perform
a posterior predictive analysis with respect to the clustering likeli-
hood, that is less constraining than the photometric likelihood, the
systematics incurred by these simplifications and the underestima-
tion of statistical error, are sub-dominant compared with the overall
statistical error budget from the correlation function measurements.

Fig. 9 shows the sampled cross correlation measurements from
the fitted joint model, in residual to the original measurements. We
showcase four scenarios. In the unbiased case we use FLEXZBoosT
PDFs and marginalize over all ¢ parameters. Due to the good cal-
ibration of these Machine Learning-produced conditional distribu-
tions, we obtain very similar results compared with the previous
section. The reason for this success is, of course, the representative
training set that would not be available in a practical application.
Furthermore we consider three scenarios with f = 0.8. The sce-
nario shown in yellow fixes the galaxy-dark matter bias parameters
(c), but marginalizes over the parameters of the systematics kernel.
The blue/magenta lines fix/marginalize over the ¢ parameters, but
do not include the systematics kernel correction.

As can be seen in Fig. 9, the treatment of galaxy-dark matter
bias has a profound impact on the consistency between the replicated
and original cross-correlation measurements. Within the errors, the
results are consistent for all scenarios except the one without sys-
tematics kernel correction that uses a fixed C(z) model. As shown
in the yellow line, these biases can be corrected by the systematics
kernel marginalization. This illustrates that if sufficient information
about C(z) is available, the clustering likelihood alone can allow for
powerful posterior predictive checks. If this is not the case, consis-
tency tests of redshift distributions with respect to clustering redshift
measurements can be misleading. Provided sufficient information
on the galaxy-dark matter bias, we can parametrize the biases in
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the deconvolved density estimate using, e.g., a convolution with a
kernel function as described in § 7.2. We show these results as the
yellow lines ‘Biased f = 0.8 Sys. Marg’. Here we perform a dis-
cretized marginalization as described in § 7.2, by convolving the n®
vector with a Gaussian kernel function of width Ao € [0.001,0.2]
in 40 steps. We see that this correction can compensate for the
misspecified likelihoods even in the case of a fixed C(z) model.
The degeneracy between the redshift-dependent galaxy-dark matter
bias ratio model and the n® parameters highlights the importance
of performing posterior predictive checks in color space to provide
additional information on the redshift distribution. However, this
requires careful modelling of SEDs and the development of a trans-
parent, reproducible analysis framework that additionally includes
tests for parameter degeneracies and a model comparison frame-
work. This is beyond the scope of this work, but will be addressed
in a future paper.

9 SUMMARY AND CONCLUSIONS

Accurate photometric redshift inference is one of the most impor-
tant challenges in large area photometric surveys like LSST, DES,
HSC, or KiDS. As discussed in detail in § 3, photometric redshift
inference is, from a statistical point of view, a deconvolution prob-
lem, where an underlying true redshift distribution is convolved
with an SED model-dependent error distribution given by the pho-
tometric likelihood. The deconvolution inference of sample redshift
distribution is not new (e.g. Padmanabhan et al. 2005; Leistedt et al.
2016; Malz & Hogg 2020), and spatial information has also been
incorporated into the inference (e.g. Alarcon et al. 2020b; Sdnchez
& Bernstein 2019; Jones & Heavens 2019; Rau et al. 2020). We ex-
tended these prior works by developing a fast approximate inference
scheme for deconvolution, that combines redshift information from
both the photometry and the spatial distribution of galaxies in terms
of a composite likelihood ansatz. We particularly provided a discus-
sion on regularization techniques and the tradeoff between bias and
variance in the Bayesian context for medium to large sample sizes.

In particular, our goal is to include the treatment of photomet-
ric redshift via the likelihood of the galaxies’ photometry into the
current cosmological inference framework, which is based on cor-
relation functions. The main reason for our likelihood choice is to
allow the easy integration into the likelihood inference framework
based on two-point statistics of galaxy density and shear fields. This
is more difficult for other approaches presented in Alarcon et al.
(2020b) and Séanchez & Bernstein (2019) since, in the currently
demonstrated form, the redshift information from cross-correlating
the overlapping spectroscopic sample is included via an estimator
and not using a likelihood (that would depend on cosmological
parameters). While the works of Padmanabhan et al. (2005); Leist-
edt et al. (2016); Malz & Hogg (2020) are structurally similar in
terms of the treatment of the photometric likelihood, they do not
discuss the effect of including clustering information. It is notewor-
thy that the early work by Padmanabhan et al. (2005) provides an
excellent, explicit discussion of regularization, which is the main
difficulty in the photometric redshift problem, although not in the
context of probability calibration and the aforementioned joint in-
ference framework. We summarized our approach to the challenges
that arise in the estimation of redshift distributions for samples of
galaxies in the context of photometric surveys. Concretely, we con-
sidered the combination of photometric information with two-point
statistics, the scalability and regularization of the deconvolution in-
ference in the large sample scenario, and investigate the impact of
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systematics from misspecified individual galaxy photometric like-
lihoods, proposing parametrizations for these systematics. These
achievements lay the foundations for future extensions that we will
discuss in the next section.

In § 4.1 we described our inference methodology that is de-
signed to facilitate inference on large galaxy catalogs to be expected
in LSST. The scheme uses a Laplace Approximation in logit space
and facilitates inference using an iterative scheme of expectation
maximization update equations. This provides computational ad-
vantages over sampling approaches. Additionally this methodology
facilitates fast joint inference with a cross-correlation data vector
(see § 5) that we included in a composite likelihood ansatz. As high-
lighted in § 6, this provides the possibility of additional extensions
that include two-point statistics from cosmological weak lensing
and galaxy-galaxy lensing measurements. As we discussed in § 3,
ensemble redshift distribution inference based on a photometric
likelihood is a deconvolution problem, which requires regulariza-
tion to yield bounded and well-defined results. In this context, we
discussed a regularization scheme that consists of a combination
of Tikhonov regularization with (more importantly) a scheme that
merges neighboring bins to exploit the characteristic covariance
structure in the deconvolved densities. In agreement with the find-
ings of the original paper by Kuusela (2016) that proposed and
applied this scheme to the Poisson inverse problem, we find that the
‘Merging Bin’ scheme leads to better calibrated results as compared
with Tikhonov regularization and with an oversmoothing scheme
that selects a coarser redshift binning for the sample redshift his-
tograms.

In order to test and discuss the quality of our posterior infer-
ence, we used data from the CosmoDC?2 simulations to generate a
spectroscopic DESI-like sample and a photometric mock catalog,
that uses an LSST-like photometric error model. This allowed us to
test the impact of a spectroscopic calibration sample with an inho-
mogeneous galaxy population as a function of redshift. We found
that the ratio between the redshift-dependent galaxy-dark matter
bias of the photometric and the spectroscopic sample is a smooth
function of redshift, if the spectroscopic calibration sample consists
of a single galaxy population, and is discontinuous if the galaxy
population strongly changes. We therefore employed a step-wise
smooth function based on a Chebychev polynomial expansion to
parametrize this ratio.

In § 8 we performed a forecast of redshift inference perfor-
mance on ideal data, assuming perfectly calibrated individual galaxy
redshift likelihoods. We found that using the aforementioned merg-
ing bin regularization, we were able to produce accurate posteriors
of ensemble redshift distributions. We reiterate that using other reg-
ularization schemes, like an overly large Tikhonov regularization
parameter, or an oversmoothing approach that picks overly wide
histogram bins, can lead to significant biases in the recovered pos-
terior mean.

When compared with the DESC science requirements for WL
and large scale structure measurements in terms of the mean of
the photometric sample redshift distribution, we found that we can
meet the DESC SRD Y1 goals and remain consistent with the DESC
SRD Y10 goals with 5000k galaxies, if cross-correlations are in-
cluded in the joint composite likelihood. In practical applications,
however, Spectral Energy Distribution (SED) templates for galaxies
will be subject to modelling biases that cannot be well calibrated
using spectroscopic data (see e.g. Hartley et al. 2020). We therefore
proposed to use posterior predictive checks (PPC) as a means to
evaluate the quality of our inference. Here, we compared replica-
tions of the data sampled from the fitted model with the original

measurement to evaluate model goodness-of-fit. Specifically cross-
correlation redshift inference is often used to calibrate photometric
redshifts obtained using photometry (Newman 2008; Johnson et al.
2016; Davis et al. 2017). In § 8.3 we demonstrated that PPC of
cross-correlation measurements can detect systematic biases in the
recovered sample redshift distribution if the galaxy-dark matter bias
of the photometric and spectroscopic samples is known to sufficient
accuracy.

In order to parametrize potential biases in the sample redshift
distribution posteriors caused by misspecified photometric likeli-
hoods, particularly over-deconvolution effects that lead to overly
narrow redshift distributions, we proposed a simple Gaussian filter
that, as demonstrated in § 8.3, was able to correct these biases.

10 FUTURE WORK

In future work, it will be important to extend the inference scheme
developed in this paper. We plan to consider a range of extensions,
e.g., iterated nested Laplace approximations (Bornkamp 2011) in
logit space, the usage of more flexible distributions that can be fitted
using variational inference schemes, as well as the development of
specialized subsampling MCMC schemes. The different techniques
will be evaluated in combination with regularization approaches
based on the quality of their probability coverage. Another exten-
sion, particularly to reduce the bias in the density estimation, is to
consider other parametrizations for the deconvolved density either
by employing density estimators with better mean squared error
scaling like Kernel Density estimators, basis function expansions or
using methods such as logistic Gaussian Processes (e.g. Rau et al.
2020). The combination of photometric and clustering information
can be extended by connecting the modelling of SEDs and redshift-
dependent galaxy-dark matter bias modelling via the luminosity
function as shown in van Daalen & White (2018). This also has
the potential to reduce the degeneracy between SED and redshift-
dependent galaxy-dark matter bias systematics. Finally, we note that
the data quality of the photometry will not be the same in all areas
on the sky. In order to include these field-to-field variations into the
composite likelihood framework, we can, for example, condition the
likelihood on the field and include a corresponding data covariance
into the likelihood by employing either resampling techniques (see
e.g. Davison & Hinkley 2013) or using theoretical modelling (e.g.
Stoyan & Stoyan 1994; Sanchez et al. 2020).

To conclude, we have presented an efficient photometric red-
shift inference framework that combines information from both the
photometry and the spatial distribution of galaxies. The methodol-
ogy is designed to scale well to large samples. We complement this
framework with methods for regularization, model checking and
redshift systematics parametrization. The forecasts we performed
using CosmoDC?2 data give us confidence that, with the additional
improvements described here, the methodology presented will en-
able accurate and well-calibrated redshift inference for LSST and
other ongoing and future large area photometric surveys.

SOFTWARE

Besides software referenced directly in the text, we performed the
analyses in this work using the following software packages: the
python language (van Rossum 1995), scipy (Virtanen et al. 2020),
numpy (Harris et al. 2020), jupyter notebook (Kluyver et al. 2016),
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ipython (Perez & Granger 2007), matplotlib (Hunter 2007) and
pandas (Wes McKinney 2010).

DATA AVAILABILITY STATEMENT

The cosmoDC2 extragalactic catalog is publicly available at
https://portal.nersc.gov/project/lsst/cosmoDC2/
_README.html. The ancillary catalogs (photo-z and DESI-like
selection for cosmoDC2) and other derived data underlying this
article will be shared on reasonable request to the corresponding
author. The source code that implements the algorithms presented
in this article will be made available via Zenodo.
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APPENDIX A: DERIVING THE E-M UPDATE
EQUATIONS

We start the discussion with an intuitive motivation for the theo-
retical foundation of the E-M algorithm. Assume a ‘system’ that
consists of hidden variables Y and observed variables Z. We wish
to find a set of parameters 6 that maximize the joint distribution of
both variables given 8. We know from statistical physics that the free
energy of this system F(p, 6) should be minimized and depends on
the distribution of hidden variables, or states, p(y) and the parame-
ters of the conditional p(y|z, 6). The E-M algorithm performs this
minimization iteratively, where we assume an initial choice for 6.
In the E-step, we choose a distribution p(y), while holding 6 fixed,
so that F(p, 6°'d) is minimized. In the subsequent M-step we hold
p fixed, but choose 6 in a way that F(p°4d, §) is minimized. This
procedure is iterated until the free energy does not change much
with additional iterations, i.e., the scheme converges. In practical
calculations, the connection with the variational free energy is not
often used, but it is a useful concept to build up an intuitive under-
standing of the method. We refer the interested reader to Neal &
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Hinton (1993) for a more detailed explanation. In the following we
will describe the derivation of the E-M algorithm in the concrete
context of finding the maximum likelihood solution of our photo-
metric likelihood. For that we will use a different notation, however
the intuition remains unchanged, if we associate the free energy (up
to a sign) with the term £(qg, 7r) in Eq. (A3).

To derive the Expectation-Maximization algorithm?!, we first
introduce the parameter vector ¢; for each galaxy i that is a Nyt
dimensional vector to indicate bin rnembership22 in the ‘1-hot en-
coding’ scheme. This means that for each galaxy, we have a Niot
dimensional binary vector, where (‘0°/1”) indicates that the galaxy
(resides/does not reside) in the respective redshift bin. For the re-
mainder of this section we will work with the normed histogram bin
heights 7 = nB Az that parametrize the prior distribution over z — @
as defined in Eq. 13. The prior distribution over £ 23 is then given
as

Nioy Neat

p@m) e[| [ ] (A1)
k=1 n=1

where Zfi"l‘ g8

tion of the measured photometry given £ as

= 1. Using ¢ we can write the conditional distribu-

N, gal Niot

.k
p(BZ, 7) o |_[ [ (/ dzg / dag p(£s1T (2, ap), zﬁ)) :

p=1k=
(A2)
It is important at this point to note that a marginalization over the
parameter vectors {; for all galaxies will yield the second, i.e. the
likelihood, term in Eq. (15).
To derive the iterative optimization scheme we first consider
the decomposition of the posterior as

log p(x|F) = L(g,7) + KL(ql|p) +log p(m) —log p(F),  (A3)

where

Lign®) = Y g@ log ’%) (A%
z

KL(gllp) = Zq(olo (”“E)")) (45)

This decomposmon implies an iterative scheme to maximize
log p(xr|E). Given an initial parameter vector 7°d, we first minimize
KL(q|lp) in the ‘E-step’ which directly implies ¢(¢) = p({|F, 7).
In the ‘M’-step we fix the distribution ¢(¢{) and maximize £(g, 7).
This maximization directive is then given as
L(g,m) =S (71', 7r°ld) = Z p (21, 79 log p(F, Z|7) + const. ,
¢
(A6)

which is the expectation of the data log-likelihood with respect to
Z. After a new parameter vector 7Y is obtained, we continue with
the ‘E’-step holding 7™ fixed. This process is continued until
convergence. In the following we will derive the corresponding
update equations.

21 The interested reader will find the following derivation in analogy to the
derivation to the E-M update equations for the Gaussian Mixture model (see
Bishop 2006).

22 'We are referring to bins as defined in Eq. (13).

23 Here, ¢ denotes the collection of ¢ vectors of all galaxies.
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E-step: Given an old parameter vector 7,q we evaluate

p(L[F o) o (A7)
Ngal Nyt Z,"é all”é
1_“_[ Tj,0ld /k dzp /k dag p(f]T (z5. ap). Zp)
B=1 j=1 2L ap

(A8)

M-step: In the maximization step of the algorithm we want to
maximize the expected data log-likelihood with respect to the pa-
rameter ¢. Given the updated posterior p (Z|F, 7ro;q) this expectation
is given as:

Neal Nyt

S (Tnew, Told) = Z Z E [(Bj] X
B=17=1

Zk (1/{Q
(log (nﬁj) +log (-/z’ dzg /af dag p(£3|7 (28, ap), Zp)
L L

(A9)
where
thl,k é’nkp(é’nk |F7 7"'()ld)
St Pk B, w01a)

T 0ld fZZR dzf f;R da? p(ts|T (25, ap), Zp)
"L L

E [p5] =

J J
2 Mj.old ij dzf fLZR daP p(g|T (25, ap), Zp)
"L L
(A10)

We optimize S (nZ ¢ new, NZ; 1 o1q) under the constraint Y, 7 = 1
using the Lagrange multiplier formalism:

S (Tnews Told) = S (Tnew Told) + 4 (Z T - 1) (AL1)
k

Equating VS (7rnew, old) == 0, performing a summation over ,
and using the summation constraint of 7r, we obtain

~A = Ngy - (A12)

This leads to the update equations for the E-M scheme that are
iterated until we reach convergence in w24

2R ag 5
Ngal & dz; fk da; p(§|7 (zi, @), Zi)

t _ _t—1
Ny =m Z N z;
i=1 101 3 lf Rle/ Rda,p(f |7 (zi, @i), %)

(A13)
t—1
) = L ) (A14)
SN

In appendix B we will derive a Laplace approximation to the
posterior based on this optimization scheme. We apply and discuss
this scheme in § 4 and § 8.

24 n practice we would iterate until the log-likelihood changes only by an
extremely small amount.
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APPENDIX B: DERIVING THE LAPLACE
APPROXIMATION

In the previous appendix we derived an iterative scheme to obtain
maximum likelihood estimates of the vector of normed histogram
heights myqr, based on the E-M algorithm. We note that the E-M
algorithm is guaranteed to produce a maximum likelihood estimate
L that lies on the simplex. The direct application of the Laplace
approximation will effectively estimate Gaussian errors on the val-
ues. Applying this approximation around mry;, will lead to posteriors
that reach to negative values, i.e. the posterior draws are not guar-
anteed to lie on the simplex. To extend the Laplace approximation
to random variables that lie on the simplex, we first consider a
mapping from simplex space to R™Mins=! This mapping is realized
by the additive logistic transformation. Assume y € RNoins =1 e
define the function

eyl ebeins’] 1
n(y) = N1 N —
1+ Zl.zbllns eYi 1+ Zi:blms eYi 1+ Zi:blms evi
(BD)
with its inverse
y(m) = [log (1 /7 Nyipg ) - - - log (ﬂNbim—l/ﬂNbins)] . (B2)

We see that the transformed variables y are now defined in real
space and we perform the Laplace approximation as usual. Assum-
ing a flat prior in logistic space, we can directly utilize the invariance
of the Maximum Likelihood estimate under variable transforma-
tions (see e.g. Pawitan 2001) and approximate the posterior

p(YIF) = Nyl B) (B3)

where

HymL = Y(MmL) 5 (B4)

and

To=-H| (BS)
y=ymL

Here H is the hessian of the log-likelihood (the second term in
Eq. (15)) as a function of y evaluated at y(srpp)-
The components of the hessian are given as

Nuot (07 Neot (97
N (25 (552 ) (2% (52) 1)

Haz=- ) (B6)
1 NtOl 2
i=1 (Zj:l ﬂjlij)
Ngal Niot 2
1 0 nj
+ T Z(a 3 )Iij, (B7)
i=1 (Z,-ff ”jlij) =1 \9Yad)z
where
g pa
= [ a7 darp @i . %) (B8)
7y al
The first and second order derivatives are then evaluated to
; mi(1 - m;), i=jAi<Np
gi =1 —mim, i#jAi<Np (B9)
yj - =
! l+2?;ll expy; i=Np
and
Sm _omGR,  i=jAi<Np
62 i _ an; L % . . .
o _ Fye T T Mgy i#JANi<Np (B10)
0ya0yj o 2
LT Ova i=Np
1+Z§_):’1l expy;

Transformed into probability, or simplex, space, this posterior is
then identified as a logit-normal distribution

1 1

VI2RZy] [T

TN ins - TN ins
exp (—0.5 (log (—b) - ﬂy,ML) Zyl (10g (ﬂ—b) - ﬂy,ML)) :

™ bins bins
(B12)

p(xlf) ~ (B11)

We note that the logit-normal is a probability distribution on the
simplex, just as the Dirichlet. In fact, the Dirichlet can be approxi-
mated well by a logit-normal (Atchison & Shen 1980). However the
logit-normal allows for a more complex covariance structure. The
scheme developed in this appendix is applied and analysed in § 4
and § 8.

This paper has been typeset from a TEX/I&TEX file prepared by the author.
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