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Abstract How cells with different genetic makeups compete in tissues is an outstanding

question in developmental biology and cancer research. Studies in recent years have revealed that

cell competition can either be driven by short-range biochemical signalling or by long-range

mechanical stresses in the tissue. To date, cell competition has generally been characterised at the

population scale, leaving the single-cell-level mechanisms of competition elusive. Here, we use high

time-resolution experimental data to construct a multi-scale agent-based model for epithelial cell

competition and use it to gain a conceptual understanding of the cellular factors that governs

competition in cell populations within tissues. We find that a key determinant of mechanical

competition is the difference in homeostatic density between winners and losers, while differences

in growth rates and tissue organisation do not affect competition end result. In contrast, the

outcome and kinetics of biochemical competition is strongly influenced by local tissue organisation.

Indeed, when loser cells are homogenously mixed with winners at the onset of competition, they

are eradicated; however, when they are spatially separated, winner and loser cells coexist for long

times. These findings suggest distinct biophysical origins for mechanical and biochemical modes of

cell competition.

Introduction
Cell competition is a fitness control mechanism in which less fit cells (the losers) are eliminated from

a tissue for optimal survival of the host (Vincent et al., 2013; Levayer and Moreno, 2013). First dis-

covered in the Drosophila wing disc (Morata and Ripoll, 1975), cell competition has since been

observed in many other physiological and pathophysiological contexts, especially in embryogenesis

(Amoyel and Bach, 2014) and the development of tumours (Chen et al., 2012; Madan et al.,

2019). While there have been extensive population-scale studies of competition (Moreno et al.,

2002; Wagstaff et al., 2016), the competitive strategies and their underlying mechanisms at the

level of single cells remain poorly understood.

Two broad conceptual classes of cell competition have been described. Mechanical competition

arises because loser cells are more sensitive to crowding than winners (Shraiman, 2005). Losers are

thought to die cell-autonomously because the overall cell density is increased by the growth of win-

ners and, as a result, loser cells far from the interface with winners may die (Wagstaff et al., 2016;

Levayer et al., 2016). By contrast, during biochemical competition, signalling occurs at the interface

between cell types leading to apoptosis of loser cells only when in direct contact with winners

(Moreno et al., 2002; Yamamoto et al., 2017). Here, the probability of elimination depends on the
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extent of contact a loser cell has with the winners (Levayer et al., 2015; Dı́az-Dı́az et al., 2017). As

a result, perturbations affecting the strength of intercellular adhesions strongly affect the outcome

of competition, suggesting that cell mixing is an important factor in biochemical competition

(Levayer et al., 2015).

One challenge in understanding cell competition from experimental data is that it takes place

over several days, making the tracking of a cell’s environment and its eventual fate challenging. The

emergence of automated long-term microscopy and advanced image analysis for segmentation and

cell state recognition enables hypotheses to be formulated regarding the mechanisms of cell elimi-

nation (Gradeci et al., 2020). For example, recent work has shown that loser cell death in an experi-

mental model system for mechanical competition is strongly influenced by local cell density as

expected, but that, in addition, division of winner cells appears favoured in neighbourhoods with

many loser cells, something reminiscent of biochemical competition (Bove et al., 2017). Therefore,

multiple modes of competition may be at play simultaneously and which of these determines the

outcome remains unclear.

One way of gaining conceptual understanding into a complex multi-variate biophysical process is

through computational or mathematical modelling. While population-scale models of competition

based on ordinary or partial differential equations capture the overall behaviour of the tissue (Shrai-

man, 2005; Bove et al., 2017; Nishikawa et al., 2016), they do not provide insights into the influ-

ence of local tissue organisation, mechanics and cell-cell signalling on the outcome of competition.

Cell-resolution computational models are well suited for describing how the behaviour of single cells

and cell-cell interactions leads to population-scale dynamics (Tsuboi et al., 2018; Lee and Morish-

ita, 2017). Although cell-scale models of cell competition have been developed (Tsuboi et al.,

2018), they have not yet been used to test different competitive strategies or investigate the physi-

cal and topological parameters that are important in competition. This is partly due to the lack of

high time-resolution experimental data to allow a robust comparison of models with experimental

evidence as well as challenges in computationally implementing basic biological phenomena thought

to be central to competition, such as the ability of epithelia to maintain a constant cell density (their

homeostatic density) by attaining a balance of cell death and cell division.

Here, we develop a multi-scale agent-based computational model to gain conceptual under-

standing of the single-cell mechanisms that govern cell competition. Our modelling study is

informed by our own experimental work in which we characterised single-cell mechanical competi-

tion using automatic annotation of movies lasting up to 4 days (Bove et al., 2017). Following analy-

sis, these movies provide the fate and position of all cells over time, allowing for rigorous

comparison of simulation to experiments. After calibrating the behaviour of winner and loser cells

based on movies of pure cell populations, we show that we can replicate competition when the two

distinct cell types are mixed and investigate the impact of each interaction and kinetic parameters

on the outcome of mechanical cell competition. We then implement a model of biochemical compe-

tition based on contact-dependent death that can replicate all current experimental observations

and uncover the key parameters influencing its outcome. We find that mechanical competition

appears to be controlled by the difference in homeostatic density between cell types, whereas bio-

chemical competition is governed by tissue organisation.

Results

Experimental pipeline
In our experiments, we examined competition between wild-type Madin–Darby Canine kidney epi-

thelial cells (winners, MDCKWT) and cells depleted for the polarity protein scribble (losers,

MDCKScrib) (Norman et al., 2012). To allow for simple image analysis, each cell type stably

expressed a histone marker fused to a different fluorophore (MDCKWT:GFP and MDCKScrib:mRFP).

Cells were seeded in various ratios of loser:winner cells (10:90, 50:50, 90:10) as well as colonies and

imaged for up to 96 hr at 4 min intervals (Figure 1A). Cell segmentation and tracking allowed to

determine population measurements (such as the evolution of cell count, the number of mitoses,

and the number of apoptoses) as well as cellular-scale measurements (such as local cell density, num-

ber of neighbours, identity of neighbours, and cell state) for each cell type (Bove et al., 2017).

These data provided the metrics to compare simulations to experiments (Figure 1B, C).
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Figure 1. Experiments and simulations of cell competition. (A) Experimental snapshots of competition between MDCKWT cells (winner, green) and

MDCKScrib cells (loser, magenta) at the population scale (top) and the single-cell scale (bottom). Over the course of the experiment, the winner cells

outcompete the loser cells whose area and number decreases (top) through apoptosis of individual cells (bottom). The arrowhead indicates the

position of the dying cell examined in the bottom snapshots. The dashed line indicates the extent of the loser cell colony at the beginning of

Figure 1 continued on next page
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A multi-scale agent-based model for cell competition
To understand the emergence of cell competition, we implemented a multi-scale agent-based

model that simulates mechanical interactions between cells and with their underlying substrate

(Figure 1B, Figure 1—figure supplement 1, grey shaded area) and implements cell-autonomous

decisions for growth, mitosis, and apoptosis (Figure 1B, Figure 1—figure supplement 1, pink

shaded area). In contrast to existing computational approaches (Rejniak and Anderson, 2011;

Zhang et al., 2009), our model includes the coupling between cellular mechanics and decision-

making.

In our simulation, epithelial cells are modelled using a cellular Potts model (CPM) (Graner and

Glazier, 1992), which enables physical interactions at the cell-cell and cell-substrate interfaces to be

simulated (Figure 1—figure supplements 1 and 2, Materials and methods). This implementation

was preferred to the less computationally costly vertex model (Fletcher et al., 2014) because we

compare our model to our in vitro competition experiments (Bove et al., 2017) that start from a

sub-confluent state.

In the CPM, each cell sk possesses a cell type t (winner or loser) and is represented by a set of

pixels (i,j). The free energy of a group of N cells sk is given by the Hamiltonian H:

H ¼
<i;j>

X

J t s
k
ij

� �
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The energy function represents energetic contributions due to intercellular adhesion, cell adhe-

sion to the extracellular matrix, cell elasticity, and active cell movement. The first term in the Hamil-

tonian describes the adhesive interactions between cells at their shared interface, where d

represents the Kronecker delta function and Q is the Heaviside theta function (see Materials and

methods). When a cell interacts with other cells, it engages in either homotypic adhesion if they are

of the same cell type or heterotypic adhesion if they are not. The respective adhesion energies are

given by Jhomotypic and Jheterotypic. From a biological perspective, J is the difference between the sur-

face tension and intercellular adhesion. Therefore, higher J implies lower intercellular adhesion. Cells

can also interact with the substrate at their periphery via integrin binding to the extracellular matrix,

parametrised by an adhesion energy Jcell-substrate. The second term describes an elastic energy with

an elastic modulus l arising from the cytoskeleton. This energy scales with the difference between a

cell’s actual area A s
k

� �

and its target area AT s
k

� �

, which it would occupy in the absence of crowding

due to other cells. The actual area is determined by the height and volume of a cell. The third term

reflects energy due to cell motion and is parametrised by a kinetic energy lm and a unit polarity vec-

tor m s; tð Þ that defines the direction of cell motion and undergoes rotational diffusion. An empirical

conversion between computational time and experimental time was obtained by comparing the

mean square displacement of isolated cells in experiments and simulations.

In addition to the CPM that determines cell shapes based on mechanical equilibrium, a second

computational layer based on cell automata rules regulates changes in cell size due to growth and

implements changes in cell fate (division and apoptosis) (Figure 1B, Figure 1—figure supplement

Figure 1 continued

competition. (B) Framework of the multi-scale agent-based model used to simulate cell competition. The model consists of a Potts model and a cell

automaton acting sequentially. The cellular Potts model first determines the cell shapes and position based on mechanical properties, such as

intercellular adhesion and cell compressibility. Then a cell automaton decides whether cells grow, divide, or die based on a set of probabilistic rules

that are algorithmically executed for each cell at each time point. These decisions are used to update the physical and geometrical properties of each

cell before running the Potts model again. Further details about the cell behaviours included, the parameters, and the variables can be found in

Figure 1—figure supplements 1 and 2. (C) The model outputs the time evolution of the organisation of the winner and loser cell types. These outputs

can be quantitatively compared to experimental data.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Physical and decision-making components of the multi-layered computational model.

Figure supplement 2. Simulation workflow.

Figure supplement 3. Computational implementation of the adder model of growth followed by MDCKWT cells.

Figure supplement 4. Density-dependent apoptosis.

Figure supplement 5. Contact-dependent apoptosis for biochemical competition.
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1, pink shaded area). It is in this layer that cellular decision-making is implemented at each

time point based on a set of probabilistic rules that we determine from our experimental data (Mate-

rials and methods). We now briefly describe these rules and the calibration of their associated

parameters (Figure 1—figure supplement 2A).

Experimental work has shown that MDCK cells maintain cell size homeostasis by following an

‘adder’ mechanism, in which each cell cycle adds a set volume to the cell (Cadart et al., 2018; Fig-

ure 1—figure supplement 1B). Following the adder model, we increase each cell’s target area AT(t)

at each time point t and cells divide when a threshold area DAtot has been added since the start of

their cell cycle (Figure 1—figure supplement 3). The target area of cells at birth AT(0), the threshold

area added at each cell cycle DAtot, and the maximum growth rate G were all calibrated from movies

of isolated cells to reflect the cell cycle time and size distribution measured in experiments (Fig-

ure 1—figure supplement 2A). Above a certain cell density, proliferation ceases – a phenomenon

known as contact inhibition of proliferation (Abercrombie, 1979; Lieberman and Glaser, 1981).

Arrest in proliferation is accompanied by a decrease in protein synthesis due to a drop in ribosome

assembly and downregulation of the synthesis of cyclins (Azar et al., 2010). We incorporated con-

tact inhibition of proliferation (Figure 1—figure supplement 1E) by making the target area growth

rate dAT tð Þ=dt dependent on the difference between the actual cell area A(t) and the target area

AT(t) as dAT tð Þ=dt ¼ Ge�k A tð Þ�AT tð Þð Þ2 , where G is the growth rate in the absence of crowding and k is a

heuristic parameter that quantifies the sensitivity to contact inhibition. As a result, cellular growth

rate slows down exponentially as crowding increases, leading to an increase in cell cycle time.

We implemented two separate rules for cell apoptosis in mechanical and biochemical competition

(Figure 1—figure supplement 1C). First, under crowded conditions where mechanical competition

is dominant, the probability of apoptosis papo increases with local cell density � following a sigmoid

curve (Figure 1—figure supplement 4A). Our experimental data suggested that winner cell apopto-

sis followed the same law as losers except shifted towards higher local densities (Bove et al., 2017).

Second, in biochemical competition, experimental data indicates that the probability of apoptosis of

loser cells depends on the percentage of their perimeter in contact with the winner cells (heterotypic

contact, Figure 1—figure supplement 5A; Levayer et al., 2015). This was implemented as a Hill

function as a function of percentage of perimeter occupied by heterotypic contact (Materials and

methods). In the absence of experimental measurements, we chose a maximum probability papomax of

death per frame of a similar magnitude to that measured in mechanical competition. This is justified

by the fact that mechanical and biochemical competition takes place over comparable durations in

MDCK cells ~2–4 days (Hogan et al., 2009; Kajita et al., 2010).

In experiments, cell elimination can also occur through live cell extrusions when the cell apical

area decreases substantially compared to the population average (Eisenhoffer et al., 2012;

Kocgozlu et al., 2016). In our simulations, cells delaminated when their actual area A(t) became

smaller than <Ai>
2
, with <Ai> the average area of all cells in the simulation at time t (Figure 1—figure

supplement 1D).

Taken together, the combination of cellular mechanics and decision-making strategies provides a

multi-scale agent-based model to investigate how the interplay between short-range and long-range

competitive interactions determines tissue composition. Many parameters are used to describe each

cell type’s behaviour, some can be measured directly from experiments while others must be empiri-

cally determined based on comparison of the output of the simulations and the experimental data

(Figure 1—figure supplement 2A, Supplementary files 1 and 2). We sought to fix as many param-

eters as possible to restrict the parameter space explored.

Growth and homeostasis of pure cell populations
To validate the predictive power of our model, we first simulated homeostasis in pure cell popula-

tions of winner and loser cells undergoing proliferation and apoptosis. To calibrate our model

parameters (Figure 1—figure supplement 2A), we compared simulations to experiments on the

basis of the temporal evolution of population metrics, such as cell count and average cell density

(Figure 2C, D, F, G). In addition, as experimental and theoretical work has shown that cell organisa-

tion in monolayers can be described by the distribution of number of neighbours each cell possesses

(Gibson et al., 2006) and their area relative to the population mean (Farhadifar et al., 2007), we
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also used these cell-scale metrics for confluent

epithelia (Figure 2E, H, Figure 2—figure supple-

ment 1).

At the start of our experiments, many isolated

cells can be observed (t=0h,

Figure 2B, Figure 2—figure supplement 2A–C).

In pure populations, MDCKScrib cells spread

markedly more than MDCKWT (Figure 2—figure

supplement 2B, D, compare MDCKWT in Video 2

to MDCKScrib in Video 3), consistent with

Wagstaff et al., 2016. Interestingly, in mixed

populations dominated by WT cells, MDCKScrib

cell area diminished compared to pure popula-

tions even prior to confluence (Figure 2—figure

supplement 2C–E). We used these measure-

ments to set the distribution in cell areas at birth

AT(0) and the area added at each cell cycle DAtot

for each cell type in pure and competitive condi-

tions. Transcriptomic data comparing both cell

types indicates that MDCKScrib do not express more integrins than MDCKWT (Wagstaff et al., 2016).

Therefore, we assigned the same value of Jcell-substrate to both cell types.

The maximum growth rate G was parameterised based on the measured distribution of cell cycle

durations prior to confluence (Bove et al., 2017), which showed that losers grew significantly slower

than winners (mean cell cycle times: MDCKScrib ~21.6 hr vs. MDCKWT ~18 hr). Therefore, we assigned

a smaller G to losers than to winners.

After confluence, cell shape is controlled by the interplay between intercellular adhesion energy

Jhomotypic and the stiffness modulus l. The value of Jhomotypic was adjusted such that, at confluence,

the distributions in apical area, number of neighbours, and area relative to the population mean

matched experiments (Figure 2—figure supplement 1A, B), as done by others (Farhadifar et al.,

2007). An accurate replication of sidedness of cells is particularly important for simulating biochemi-

cal competition because the probability of apoptosis of loser cells is linked to the fraction of their

perimeter contacting winner cells (Levayer et al., 2015). Previous experimental work showed that,

in competition experiments, the area of loser cells became significantly smaller than that of winners

when monolayers reached high densities post-confluence (Wagstaff et al., 2016; Bove et al.,

2017). Therefore, we assigned losers a smaller value of l than winners.

Video 2. Representative growth of a pure MDCKWT

epithelium over 66 hr (Figure 2B). The nucleus of

MDCKWT cells is labelled with H2B-GFP. Scale bar 25

mm.

https://elifesciences.org/articles/61011#video2

Video 3. Representative growth of a pure MDCKScrib

epithelium over 79 hr (Figure 2F–H). The nucleus of

MDCKScrib cells is labelled with H2B-mRFP. Scale bar

25 mm.

https://elifesciences.org/articles/61011#video3

Video 1. Simulation of the growth of a pure winner cell

epithelium (Figure 2A).

https://elifesciences.org/articles/61011#video1
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Figure 2. Model simulations capture the dynamics of growth and homeostasis in pure cell populations. (A) Simulation snapshots of the growth of a

pure population of winner cells (Video 1). Cells are initially separated by free space (black). Each image corresponds to one computational field of view,

representing 530 mm � 400 mm. (B) Experimental snapshots of MDCKWT (winner) cells expressing the nuclear marker H2B-GFP (Video 2). Each image

corresponds to 530 mm � 400 mm and is acquired by wide-field epifluorescence using �20 magnification. The timing of each image is indicated

between the two image rows. (C) Normalised cell count as a function of time for winner cells in simulations (blue) and MDCKWT experiments (green). (i–

iv) indicate the time points at which the snapshots in (A, B) were taken. (D) Average local cellular density as a function of time for the same data as (C).

(E) Distribution of sidedness of cells post confluence. The curves indicate the proportion of cells as a function of number of neighbours. (C–E) Green

curves represent experimental data and blue curves simulated data. (F–H) are same as (C–E) for pure populations of loser cells (MDCKScrib). Magenta

curves are experimental data (Video 3), and black curves represent simulated data. (C–H) Data are pooled from three biological replicates imaging four

fields of view each and from 12 simulations. The solid line indicates the mean, and the shaded area indicates the standard deviation. Parameters used

for the simulations in this figure are listed in Supplementary file 1.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Comparison of epithelium organisation in simulations and experiments for pure populations.

Figure supplement 2. Cell area in pure and mixed populations prior to confluence.

Gradeci, Bove, et al. eLife 2021;10:e61011. DOI: https://doi.org/10.7554/eLife.61011 7 of 26

Research article Cell Biology Physics of Living Systems

https://doi.org/10.7554/eLife.61011


The strength of contact inhibition, k (Materials and methods), was adjusted empirically such that

the average local cell density at long time scales in simulations reached a plateau that matched the

one observed in experiments (Figure 2D, G).

In mechanical competition experiments, loser cells undergo apoptosis when they are in crowded

environments. Therefore, we implemented a relationship between probability of apoptosis per cell

per unit time (papo) and the local cell density � parametrised by fitting our experimental data with a

sigmoid function (Materials and methods, Figure 1—figure supplement 4A; Bove et al., 2017). The

local cell density � was defined as the inverse of the sum of the area of the cell of interest and its first

neighbours (Materials and methods, Figure 1—figure supplement 4B). While papo saturates at high

densities for loser cells, experimental data was not available for the highest densities for winner cells

(data points, Figure 1—figure supplement 4A). Therefore, we assumed that the maximum probabil-

ity of apoptosis papo max was the same for winner and loser cells (Figure 1—figure supplement 4A).

When the simulations were initialised with the calibrated parameters and the same initial cell

number as in experiments, cell count and density in the simulations qualitatively reproduced our

experimental observations (Figure 2A, B, Videos 1 and 2). MDCKWT cell count increased for ~70 hr

before reaching a plateau at a normalised cell count of 5.5, indicative of homeostasis (Figure 2C).

The temporal evolution of the average local cell density and the distribution of number of neigh-

bours at confluence were also faithfully replicated by our simulations (Figure 2D, E). Similarly, our

parametrisation of MDCKScrib accurately replicated the temporal evolution of cell count and density,

as well as the distribution of the number of cell neighbours (Figure 2F–H, Video 3). In particular, the

loser cell count and density stayed fairly constant throughout the whole simulation and experiment.

Model epithelia maintain a homeostatic density
The maintenance of an intact barrier between the internal and the external environment is a key

function of epithelia. This necessitates exact balancing of the number of cell deaths and divisions.

Failure to do so results in hyperplasia, an early marker of cancer development. Previous work has

revealed that epithelia possess a preferred density to which they return following perturbation, signi-

fying that they seek to maintain a homeostatic density (Eisenhoffer et al., 2012; Marinari et al.,

2012; Gudipaty et al., 2017). In the experiments performed in Eisenhoffer et al., 2012, cells were

grown to confluence on stretchable substrates and subjected to a step deformation in one axis.

When deformation increased cellular apical area, the frequency of cell division increased

(Gudipaty et al., 2017), while a decrease in apical area resulted in increased live cell extrusion and

apoptosis (Eisenhoffer et al., 2012). Therefore, the existence of a homeostatic density is an essen-

tial property of epithelia that relates to their sensitivity to crowding – a key factor in mechanical com-

petition. However, current models of epithelia do not implement this.

In our model, we implemented two mechanisms shown experimentally to decrease cell density:

cell extrusions and density-dependent apoptoses (Figure 1—figure supplement 1C, D, Materials

and methods). We simulated the response of a confluent epithelium to a sudden 30% increase in

homeostatic density. In experiments on confluent MDCKWT epithelia (Eisenhoffer et al., 2012), a

sudden increase in crowding was followed by a gradual decrease in cell density resulting from a

combination of apoptoses and live cell extrusion, before returning to the initial homeostatic density

after ~6 hr (green data points, Figure 3A).

In our simulations, we allowed MDCKWT cells to reach their homeostatic density before suddenly

increasing the cell density by a percentage similar to experiments. In response to this, cell density

decreased gradually over a period of 6 hr with dynamics similar to those determined experimentally

(solid black line, Figure 3B). Thereafter, cell density remained at the homeostatic density for long

time periods (Figure 3B). Thus, our model implementation and parametrisation replicate the return

to homeostasis of pure populations of MDCKWT cells. As the relationship between papo and � was fit-

ted using the data from our competition experiments, this also raises the possibility that cell apopto-

sis in response to crowding is a cell-autonomous process rather than specific to cell competition.

Density-mediated apoptosis is sufficient to explain experimental
observations in mechanical competition
Our experimental work indicated that, in competitions between MDCKWT and MDCKScrib, two pro-

cesses might be at play, a density-dependent apoptosis of MDCKScrib and an upregulation of
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division of MDCKWT in MDCKScrib-dominated neighbourhoods (Bove et al., 2017). The former is

central to mechanical competition, while the latter implies that contact between cell types may con-

trol division rate. To determine which process was dominant, we tested whether cell-type differences

in density-mediated apoptosis alone were sufficient to explain competition.

We used our model of winner and loser cells with different sensitivities to crowding parametrised

from experiments on pure cell populations (Figure 2, Supplementary file 1). We initialised our simu-

lations by seeding a 90:10 winner-to-loser cell ratio, as in experiments. Our simulations were able to

quantitatively reproduce the experimental data for competition dynamics, with no further adjust-

ment in parameters. As in the experiments, simulated winner cells (green) rapidly proliferated while

loser cell numbers (red) increased weakly until ~50 hr before diminishing (Figure 4A, B, Videos 4

and 5). Furthermore, the evolution of cell count was quantitatively replicated over the entire duration

of the experiment for both winner and loser cells (Figure 4C). Cumulative divisions and apoptoses in

simulations closely matched those observed in experiments (Bove et al., 2017; Figure 4—figure

supplement 1B, C). One of the most striking features of experimental data is that the local density

of loser cells in competition increases dramatically compared to pure populations

(approximately fivefold increase, Figure 4—figure supplement 1D for comparison), while the local

density of winner cells in competition follows the same trend as in pure populations (Figure 4—fig-

ure supplement 1E for comparison) (Bove et al., 2017). The sharp increase in local density of loser

cells is replicated in our simulations (red curve, Figure 4D) and likely arises from their lower stiffness

modulus l. In addition, the probability of apoptosis and division as a function of density computed

from simulation data matched the experimentally measured ones for both cell types (Figure 4E, F).

While the former is an input to our simulation, the latter is an output. Finally, when we compared the

probability of division of winner cells in contact with at least one loser cell to that of winner cells in

contact with only winner cells, we found that the probability of division of winner cells increased

when they were in contact with loser cells (Figure 4G). This was consistent with our experimental

observations and occurred despite the fact that we did not implement any aspect of biochemical sig-

nalling in our simulations, signifying it represents an emergent property.

Figure 3. Model epithelia return to homeostasis in response to a sudden increase in local density. (A) Winner cells grown to confluence on a stretched

silicon substrate are subjected to a sudden increase in density after stretch release. The monolayer returns to its homeostatic density over time through

extrusions and density-mediated apoptoses. Top row: cartoon diagrams depicting the experiment. Bottom row: snapshots of simulations. Cells

eliminated by live cell extrusion are shown in red and by apoptosis in blue. (B) Evolution of cell density as a function of time in response to a step

increase in cell density at t = 0 min. Density in simulations is indicated by the black line, and experimental data from Eisenhoffer et al., 2012 are

shown by green diamond markers. The shaded region around the black line indicates the standard deviation of n = 5 simulations. The whiskers around

the diamond markers indicate the standard deviation of the experimental measurements. The dashed horizontal line denotes the initial cell density.
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Figure 4. Cell competition in co-cultures of cells with different homeostatic densities. (A) Simulation snapshots of competition between 90% winner

(green) and 10% loser cells (red) (Video 4). Cells are initially separated by free space (black). Each image corresponds to 530 mm � 400 mm. (B)

Experimental snapshots of competition between 90% MDCKWT cells (winner, green) and 10% MDCKScrib cells (loser, red) (Video 5). MDCKWT express

the nuclear marker H2B-GFP, while MDCKScrib express the nuclear marker H2B-RFP. Each image corresponds to 530 mm � 400 mm and is acquired by

Figure 4 continued on next page
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Overall, differences in density-dependent apoptosis alone are sufficient to replicate the evolution

of cell count and density observed in competition between MDCKWT and MDCKScrib as well as the

upregulation of MDCKWT division in MDCKScrib-dominated neighbourhoods (Bove et al., 2017), sug-

gesting that mechanical competition represents the dominant mechanism of population change in

these experiments.

Differences in homeostatic density and cell stiffness control the
outcome of mechanical cell competition
To understand the mechanistic origin of density-mediated cell competition, we varied the growth

rate G, the intercellular adhesion Jheterotypic, the stiffness l, and the contact inhibition parameter k

for the individual cell types starting from an initial set of values that gave rise to mechanical competi-

tion (Supplementary file 2). We reasoned that, in a competition setting, the values of each parame-

ter in one cell type relative to the other were likely more important than their absolute values.

Therefore, we varied each parameter in only one of the two cell types.

We first varied the growth rate G of loser cells (Supplementary file 2). G controlled the time

required for elimination and the peak loser cell

count but did not affect the outcome of competi-

tion with losers being eliminated for all growth

rates examined (Figure 5—figure supplement

1A, B), consistent with simulations of population

dynamics based on ordinary differential equa-

tions (Basan et al., 2009).

Second, we varied the heterotypic adhesion

energy, Jheterotypic, between the winners and the

losers between ±50% of the value of the homo-

typic adhesion Jhomotypic (Supplementary file 2).

When Jheterotypic is larger than Jhomotypic, cells

preferentially adhere to cells of their own type. In

our simulations, Jheterotypic did not appear to

change the kinetics or the outcome of competi-

tion (Figure 5—figure supplement 1C). Note

that varying Jhomotypic in one of the cell types only

would have similar effects to a variation in

Jheterotypic.

In our simulations, sensitivity to contact inhibi-

tion k was chosen to be the same for both cell

types. This parameter constrains how far cells can

Figure 4 continued

wide-field epifluorescence using �20 magnification. The timing of snapshots is indicated in between rows A and B. Scale bars represent 50 mm. (C)

Temporal evolution of normalised cell count for winner cells (simulations: blue line; experiments: green line) and loser cells (simulations: red line;

experiments: purple line) in experiments and simulations initiated with a 90:10 ratio of winner:loser cells. Data are pooled from three biological

replicates imaging four fields of view for the experiments and from 12 simulations. (i–iv) indicate the time points at which the snapshots in (A, B) were

taken. (D) Temporal evolution of the local cell density for the simulations and experiments shown in (C). The local density is defined in Figure 1—figure

supplement 4B. (C, D) Solid lines indicate the average of the data, and the shaded area indicates the standard deviation. (E) Probability of division per

cell per frame as a function of local density predicted from simulations. Markers indicate probability of division for each density bin, and solid lines

indicate moving average. (F) Probability of apoptosis per cell per frame as a function of local density predicted from simulations compared to the

theoretical input functions implemented in the model. Markers indicate probability of apoptosis for each density bin, and solid lines indicate moving

average. Dashed lines show the input functions implemented in the model based from experimental data in Bove et al., 2017; Figure 1—figure

supplement 4A. (G) Probability of division per cell per frame for winner cells in contact with winner only (green bar) and in contact with at least one

loser cell (red bar). Whiskers indicate the coefficient of variation cv calculated for each. The number of cells observed N and number of divisions n were

respectively N = 4.3�106 and n = 6246 for winner contact only and N = 1.6 105 and n = 292 for winners in contact with losers. Data was gathered from

10 simulations. Parameters used for the simulations in this figure are in Supplementary file 1.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Comparison between simulations and experiments for mechanical competition.

Video 4. Simulation of mechanical competition

between 90% winner cell types and 10% loser cell types

for default parameters (Figure 4A, C, D). The different

shades of green represent the different generations of

winner cells, and the different shades of red represent

the different generations of loser cells.

https://elifesciences.org/articles/61011#video4
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deviate from their target area AT before their growth rate G(t) approaches 0 and they stop growing

(Materials and methods, Supplementary file 2). In pure winner cell populations, the average local

density reached a plateau after confluence defining a homeostatic density (HD), which decreased

with increasing contact inhibition k (Figure 5A, blue line). However, this effect was not observed in

pure loser populations (Figure 5A, red line) because their probability of apoptosis is high even for

densities below the homeostatic density dictated by k (Figure 1—figure supplement 4A). Indeed,

under normal growth conditions, we predict that loser cells never reach densities where contact inhi-

bition parametrised by k becomes active. In all cases, the homeostatic density of winner cells was

higher than in loser cells but the difference in homeostatic density, DHD, decreased with increasing k

(Figure 5A). Thus, in winner cells, homeostatic density is controlled by a decrease in growth con-

trolled by the contact inhibition parameter k, while in loser cells it is controlled by density-dependent

apoptosis (Figure 1—figure supplement 4A).

In competitions, when we varied the homeostatic density of the winner cells (by changing k,

Supplementary file 2), we found that, after 80 hr, loser cells were completely eliminated for high

values of DHD but they survived when DHD was lower (Figure 5B, C, E). In addition, the time

required for elimination of 50% of loser cells increased with decreasing DHD and increasing k

(Figure 5A, F). Interestingly, loser cell count appeared to converge towards a non-zero plateau for

values of k larger than 0.1 at long time scales (Figure 5—figure supplement 1D). Therefore, the dif-

ference in homeostatic density, DHD, between the winner and loser cells governs the kinetics and

the outcome of mechanical competition for the durations examined in this study (Figure 5A, C ,F,

Figure 5—figure supplement 1D).

As in our initial parameterisation the winner cells have a higher stiffness l, the loser cells are com-

pressed by the winners during competition. As a result, the average local density of loser cells is

larger than that of winners, which, combined with their greater sensitivity to crowding, leads to

increased apoptosis. To determine the impact of l on competition, we varied the loser cell stiffness

while maintaining winner cell stiffness constant. When the relative stiffness parameter

L ¼ lloser=lwinner was smaller than 1, loser cells were eliminated (Figure 5D, Figure 5—figure supple-

ment 1E, F). By contrast, when L was equal to or higher than 1, loser cells survived (Figure 5D, Fig-

ure 5—figure supplement 1E, G). Akin to DHD, changes in the ratio of winner-to-loser cell stiffness

altered the kinetics of competition and its outcome over durations considered in this study

(Figure 5E, Figure 5—figure supplement 1E). These results are consistent with experiments show-

ing that competition is decreased in the presence of an inhibitor of Rho-kinase (Y27632) that reduces

cell contractility in both populations (Wagstaff et al., 2016).

When DHD was low or L was larger than 1, the change in competition outcome occurred because

of a decrease in the local density of loser cells in

mixed populations, which in turn led to

decreased apoptosis. However, winners have an

extra competitive edge because when free space

becomes available due to cell death or cell area

compressibility, they take advantage of the free

space due to faster growth using a squeeze and

take or a kill and take tactic (Gradeci et al.,

2020). At very long times, this effect alone may

be sufficient for them to dominate in mixed

populations.

Tissue organisation predicts the
kinetics of biochemical competition
Our simulation can also be used to gain mecha-

nistic insights into biochemical competition.

Recent work has shown that, during biochemical

competition, apoptosis in loser cells is governed

by the extent of their contact with winner cells

(Levayer et al., 2016) and that perturbations

that increase mixing between cell types increase

competition (Levayer et al., 2015).

Video 5. Representative competition between 90%

MDCKWT and 10% MDCKScrib over 66 hr (Figure 4B–D).

MDCKWT nuclei are marked with H2B-GFP (green), and

MDCKScrib nuclei are marked with H2B-mRFP

(magenta). Scale bar 25 mm.

https://elifesciences.org/articles/61011#video5
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Figure 5. Cellular stiffness and homeostatic density control the outcome of mechanical competition. (A) Evolution of homeostatic density as a function

of the parameter k, quantifying the sensitivity to contact inhibition. Data are shown for pure populations of winner (blue) and loser (red) cells. (B)

Simulation snapshots of competition between 90% winner cells (green) and 10% loser cells (red). The top two panels show the population evolution for

a small difference in homeostatic density DHD between the two cell types. The bottom two panels show the population evolution for a large DHD

Figure 5 continued on next page
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To study biochemical competition in isolation from any mechanical effect, we assumed that both

cell types have identical stiffnesses l, equal sensitivities to contact inhibition k, and high but equal

homeostatic densities (Supplementary file 3). In both cell types, we modelled the dependency of

apoptosis on the proportion of cell perimeter p engaged in heterotypic contact by using a Hill func-

tion parameterised by a steepness S and an amplitude papomax:

papo pð Þ ¼
papomax pn

Snþpnð Þ , where n is the Hill coefficient (Figure 1—figure supplement 5A).

When S decreases, the probability of apoptosis increases rapidly with the extent of heterotypic

contact (Figure 1—figure supplement 5A). For winner cells, we chose a low papomax and high S

because we do not expect their apoptosis to show sensitivity to contact with loser cells. In contrast,

for loser cells, we chose papomax to be 10-fold higher than in winners, giving an amplitude similar to

the maximal probability of apoptosis observed in losers during mechanical competition and similar

kinetics of elimination, as observed in experiments (Hogan et al., 2009; Figure 1—figure supple-

ment 4A, Figure 1—figure supplement 5A, B). To investigate biochemical competition, we varied

parameters modulating contact between cells (the heterotypic adhesion Jheterotypic), apoptosis of los-

ers (the Hill function parameter S of loser cells), as well as tissue organisation.

First, we assumed a homogenous seeding of each cell type with a 50:50 ratio between winners

and losers. Competition depends on the relative probability of apoptosis papo in winners and losers

as a function of the fraction of their perimeter p in heterotypic contact (Figure 1—figure supple-

ment 1C, right). Therefore, varying papomax or S has a qualitatively similar overall effect on competi-

tion. We examined the dependency of competition outcome on SLoser with SWinner, papo max; winner, and

papomax; loser fixed (Supplementary file 3). For all

values of SLoser, loser cells first increased in num-

ber until overall confluence at ~60 hr, before

decreasing after that (Figure 1—figure supple-

ment 5B). When SLoser was low, losers were elimi-

nated because papo for losers was higher than for

winners for all heterotypic contact extents (Fig-

ure 1—figure supplement 5B, C, Video 6),

whereas when SLoser was high, winners and losers

had comparable papo when in heterotypic con-

tact, leading to coexistence because no competi-

tion took place (Figure 1—figure supplement

5B, C).

Next, we investigated the dependency of cell

competition on initial seeding conditions for val-

ues of SLoser that gave rise to competition

(SLoser = 0.3, SWinner = 0.5, Supplementary file

3). We examined three different initial seeding

conditions: fully mixed (Figure 6A, middle col-

umn), partially sorted with loser cells grouped

Figure 5 continued

between the two cell types. Winner cells are shown in green and loser cells in red. Each image corresponds to 530 mm � 400 mm. (C) Normalised cell

count for loser cells in competition simulations for different values of the contact inhibition parameter k in the winner cells. As k decreases, DHD

increases. Temporal evolution of cell count in longer simulations is shown in Figure 5—figure supplement 1D. (D) Normalised cell count for loser cells

in competition simulations for different values of the relative stiffness parameter L ¼ lloser=lwinner. Winner cells have a fixed stiffness of 1.0. Temporal

evolution of cell count in longer simulations is shown in Figure 5—figure supplement 1E. Snapshots of competition are shown in Figure 5—figure

supplement 1F, G for L = 0.3 and L = 2. (E) Loser cell survival fraction after 80 hr in simulations run with different parameters for relative stiffness L

(red line) and contact inhibition k (blue line). Shaded blue and red regions denote the standard deviation. The grey shaded region indicates the survival

fraction of loser cells observed in experiments after 80 hr. The x-axis scale is indicated on the top of the graph for L and on the bottom of the graph for

k. (F) Time to 50% elimination of loser cells as a function of the contact inhibition parameter. The solid line indicates the mean and the shaded regions

the standard deviation. Parameters used for the simulations in this figure are in Supplementary file 2.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Effect of simulation parameters on mechanical competition.

Video 6. Simulation of biochemical competition

between 50% winner cell types and 50% loser cell types

in an initial fully mixed configuration for a low value of

the steepness S = 0.1 (Figure 1—figure supplement 5C).

https://elifesciences.org/articles/61011#video6
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Figure 6. Tissue organisation governs the outcome of biochemical competition. (A–C) The middle panels show the initial configuration of a

competition between 50% loser (red) and 50% winner (green) cells for various seeding arrangements (A: fully mixed; B: partially sorted; C: fully sorted).

The right panels show a representative outcome for biochemical competition. The left panels show a representative outcome for mechanical

competition. Cells are initially separated by free space (black). (D) Normalised loser cell count for the three configurations for biochemical competition

Figure 6 continued on next page
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into a few colonies (Figure 6B, middle column, Videos 7–9), and fully sorted with loser cells and win-

ner cells occupying opposite sides of the field of view (Figure 6C, middle column, Video 10). Strik-

ingly, in mechanical competition, the normalised count of loser cells reached a maximum around 60

hr before continuously decreasing thereafter, consistent with our experimental observations in fully

mixed (Figure 4B) and partially sorted conditions (Figure 6—figure supplement 2A–C, Video 9). By

160 hr, loser cells had been eliminated for all configurations (Figure 6A–C, left-hand column, E). In

contrast, in biochemical competition, the outcome of competition appeared strongly dependent on

initial seeding conditions with large differences in normalised count of losers after 100 hr

(Figure 6A–C, right-hand column, D). Indeed, loser cell normalised count was close to 0 for fully

mixed seeding but remained larger than 1 for partially and fully sorted seedings. By 200 hr, loser cell

count had dropped to 0 in partially sorted seeding but only decreased gradually for fully sorted

seeding (Video 10). This suggests that the kinetics of biochemical competition is sensitive to tissue

organisation. To quantitatively compare tissue organisations, we computed the evolution of mixing

entropy, a measure of local tissue organisation, in each competition (Materials and methods). We

found that, when cells reached confluence, entropy of mixing was highest in the fully mixed seeding

and lowest in the fully sorted seeding (Figure 6—figure supplement 1A). In the fully mixed and par-

tially sorted seedings, mixing entropy decreased after overall confluence as the competition pro-

gressed, whereas for fully sorted seeding, mixing entropy stayed constant because the interface

between winners and losers maintained its shape over time even though the number of loser cells

gradually decreased (Figure 6C, Figure 6—figure supplement 1A, Video 10). Loser colony size

and geometry may therefore determine the kinetics and outcome of biochemical competition. To

gain further insight, we systematically varied the size of the loser colony and determined the time to

elimination (Figure 6F). This revealed that the time to elimination monotonously increased with cell

number in the colony but that no true steady-state coexistence was reached.

As we found that the kinetics of biochemical competition was controlled by tissue organisation

and the intermixing of cells, we examined how

the relative magnitude of heterotypic versus

homotypic intercellular adhesion energy affects

competition. In our simulations, we varied the

heterotypic adhesion, Jheterotypic, while keeping Jho-

motypic constant. In the Potts model, J represents

a surface energy which is the difference between

the surface tension and adhesion. Therefore,

when J is high, intercellular adhesion is low. We

found that the normalised loser cell count after

100 hr decreased with decreasing Jheterotypic in fully

mixed and partially sorted tissue organisation

(Figure 6—figure supplement 1C, D). This is

because for low Jheterotypic, cell intermixing is fav-

oured and winner cells can invade colonies of

loser cells, consistent with experimental observa-

tions (Levayer et al., 2015). However, in the fully

sorted configuration, where the interface

between the two cell types is minimal

Figure 6 continued

(A–C, right-hand column). (E) Normalised loser cell count for the three configurations for mechanical competition (A–C, left-hand column). (D, E) Loser

cell count for each configuration was averaged over three simulations. (F) Time to elimination as a function of the size of loser cell colonies for

biochemical competition. Markers indicate the time determined in simulations for each colony size (N = 1 simulation for each colony size). The dashed

line is a fit to an exponential function of the form Ae-t/t, r2 = 0.73 and t ~ 60 hr. Parameters used for the biochemical simulations in this figure are in

Supplementary file 3.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Tissue organisation and heterotypic adhesion influence the outcome of competition in biochemical competition.

Figure supplement 2. Mechanical competition experiments in partially sorted starting conditions.

Video 7. Simulation of biochemical competition

between 50% winner cell types and 50% loser cell types

in an initial partially sorted configuration (Figure 6B).

https://elifesciences.org/articles/61011#video7
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(Figure 6C), changes in Jheterotypic only have a

weak effect (Figure 6—figure supplement 1B).

Thus, the kinetics of biochemical competition is

sensitive to changes in parameters that lead to

tissue reorganisation, such as the relative magnitude of homotypic and heterotypic adhesion energy.

In summary, our simple implementation of biochemical competition was sufficient to qualitatively

reproduce current experimental observations, although the precise experimental curves relating

probability of apoptosis to extent of heterotypic contact remain to be accurately determined

experimentally.

Discussion
In this study, we developed a multi-scale agent-based simulation to investigate of the interplay

between physical cell interactions and probabilistic decision-making rules in deciding the outcome

of cell competition. After parametrisation with experimental data, our model identified the physical

and geometrical parameters that influence the outcome of mechanical and biochemical cell competi-

tion. Our analysis reveals that the kinetics of biochemical competition is governed by tissue organisa-

tion and parameters affecting it, whereas the

outcome of mechanical competition is controlled

by the difference in homeostatic density of the

competing cell types together with energetic

parameters.

Calibration of our model parameters sepa-

rately for pure populations of winner and loser

cells allowed us to quantitatively reproduce the

experimentally measured kinetics of cell prolifera-

tion, mechanics of tissue homeostasis, the topol-

ogy of tissue organisation, as well as the

cumulative apoptosis and mitosis in each popula-

tion. Winners and losers differed in their stiffness

l, their growth rates G, and their probability of

apoptosis as a function of density. The latter is

directly measured in our experiments

(Bove et al., 2017) and is consistent with the

increased sensitivity to crowding in loser cells

due to interplay between stress pathways

(Wagstaff et al., 2016; Kucinski et al., 2017).

Video 8. Simulation of mechanical competition

between 50% winner cell types and 50% loser cell types

in an initial partially sorted configuration (Figure 6B).

https://elifesciences.org/articles/61011#video8

Video 9. Representative experiment of a competition

between MDCKWT cells and MDCKScrib cells in a

partially sorted initial configuration. MDCKWT nuclei are

marked with H2B-GFP (green), and MDCKScrib nuclei

are marked with H2B-mRFP (magenta). The movie

represents 66 hr. Scale bar 50 mm.

https://elifesciences.org/articles/61011#video9

Video 10. Simulation of biochemical competition

between 50% winner cell types and 50% loser cell types

in an initial fully sorted configuration (Figure 6C).

https://elifesciences.org/articles/61011#video10
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Our simulations showed that the growth rate G controls the kinetics of competition but not its out-

come. Overall, only two parameters governed the outcome of mechanical competition: the stiffness

l and the sensitivity to contact inhibition quantified by the parameter k (Supplementary file 4).

The contact inhibition parameter k regulates the rate of cell growth and, consequently, the cell

cycle duration (Materials and methods). In winner cells, contact inhibition of growth controls homeo-

static density, which is lower for high contact inhibition, k. However, k does not control homeostatic

density in loser cells due to their increased probability of apoptosis under even moderate crowding

conditions. As a result, when k is increased, the difference in homeostatic density between the win-

ners and losers, DHD, decreases. This slows the kinetics of mechanical competition, eventually abol-

ishing it. Thus, our simulations predict that DHD, which is related to the difference in homeostatic

density (Basan et al., 2009), is a good predictor for the outcome of mechanical competition and

therefore that perturbing the molecular mechanisms that participate in setting cellular homeostatic

density should alter the outcome of competition (Eisenhoffer et al., 2012; Gudipaty et al., 2017).

A further implication is that mechanical competition may actually represent a cell-autonomous phe-

nomenon where each cell type independently seeks to reach its homeostatic density in a dynamically

changing environment.

Our model parametrisation based on experimental data suggests that loser cells are typically

more compressible (or softer) than winners. As a consequence, in competition assays, loser cells

tend to decrease their apical areas more than winners after confluence, as observed in experiments

(Wagstaff et al., 2016). This higher local density, together with losers’ higher sensitivity to crowd-

ing, results in preferential elimination of loser cells. Conversely, when losers are stiffer than winners,

their local density does not increase dramatically and they survive. Thus, the relative stiffness param-

eter L emerges as a key control parameter for mechanical competition. Loser cells tend to be elimi-

nated if L<1, whereas they survive for L>1. Although by convention l is referred to as an area

expansion modulus, cells are 3D objects and their volume is tightly regulated even when subjected

to mechanical deformations (Harris and Charras, 2011; Harris et al., 2012). Thus, the decrease in

apical area of loser cells in competition implies a concomitant increase in their height, consistent

with experimental observations (Wagstaff et al., 2016). Therefore, l could be interpreted as a

height elastic modulus that may emerge from the ratio of apical to lateral contractility that governs

the height of epithelial cells in 3D vertex models (Latorre et al., 2018). Overall, both contact inhibi-

tion of proliferation and planar cell compressibility altered the outcome of mechanical competition

by changing the local density attained by the loser cells. Thus, mechanical competition appears to

be primarily regulated by parameters controlling the compressional mechanical energy stored in the

system.

Our previous work revealed that division of MDCKWT cells is favoured in neighbourhoods with

many MDCKScrib cells, potentially indicating an inductive behaviour (Bove et al., 2017). However,

our simulations of mechanical competition based solely on differences in sensitivity to crowding also

revealed that winner cells are more likely to divide when in contact with loser cells. Therefore, the

upregulation of winner cell division in loser neighbourhoods represents an emergent property of our

simulation, likely arising from the combination of a higher growth rate and a lower sensitivity to

crowding in winner cells. However, the magnitude of this effect was smaller than in experiments,

perhaps pointing to a role for signalling mechanisms accelerating the cell cycle in response to free

space that was observed in experiments (Gudipaty et al., 2017; Streichan et al., 2014) but not

implemented in our simulations. Overall, our simulations suggest that the interaction between

MDCKWT and MDCKScrib cells in our experiments can be entirely explained by mechanical competi-

tion alone despite suggestions that signalling mechanisms such as active corralling of losers cells

may play a role (Wagstaff et al., 2016).

Biochemical competition depends on the extent of heterotypic contact between losers and

winners. As a result, the kinetics of biochemical competition strongly depends on tissue organi-

sation but is not affected by changes in cell compressibility or contact inhibition

(Supplementary file 5). Instead, two parameters controlled biochemical competition: the hetero-

typic contact energy and the initial organisation of the tissue. Indeed, tissue organisations with

greater mixing between the cell types resulted in more rapid elimination of the loser cells (Fig-

ure 6). This arises as a natural consequence of the probability of apoptosis of loser cells

depending on the extent of heterotypic contact. In other words, competition depends on the

extent of cell intermixing. Consistent with this, when the heterotypic contact energy was lower
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than the homotypic contact energy, this led to more mixing between cell types and more cell

competition. Interestingly, experimental evidence has revealed that perturbations that promote

cohesion of losers protect against elimination, while those that promote intercalation of winners

and losers lead to greater loser elimination (Levayer et al., 2015). Our study only examined

varying Jheterotypic in conditions where Jhomotypic was the same in both cell types. However, other

conditions can also occur. In particular, previous work has shown that clone shape and mixing is

set by the ratio of tension within and outside of the clone (Bosveld et al., 2016). This paints a

picture where loser cells can mix extensively with the winner cells as long as loser cell cohesion

is sufficiently strong to prevent intrusion of winner cells into loser cell colonies (i.e., Jhomotypic,

winner > Jhomotypic, loser and Jheterotypic). While cells did not possess high motility in our simula-

tions, we would expect this to affect the outcome of biochemical competition as motility would

increase cell intermixing. The initial organisation of the tissue strongly influenced the kinetics of

elimination, and our simulations revealed a steady increase in the time to elimination with

increasing number of cells in the loser colony but no steady coexistence. However, in practice,

above a certain colony size, the time to elimination will exceed the lifespan of the organism, sig-

nifying that coexistence takes place de facto. In our simulations, winner and loser cells had an

identical growth and therefore a higher growth rate in the loser cells could in theory be suffi-

cient to ensure a regime with coexistence of the two cell types. However, theoretical considera-

tions show that such a regime is unstable and will lead to elimination of one or the other cell

types in response to small perturbations in growth rate or colony size. Intriguingly, experiments

in vivo have revealed a regime of coexistence (Levayer et al., 2015). Many hypotheses could

explain this discrepancy, for example, a different probability of apoptosis function than the one

implemented here or the existence of additional signalling mechanisms not considered in our

simple simulation. An in-depth study of the conditions for coexistence will form an interesting

direction for future research as this occurs in many biological tissues and will be greatly

enhanced by experimental determination of the function relating probability of apoptosis to the

fraction of the loser cell perimeter in contact with winner cells.

In summary, our study revealed that mechanical competition is governed by factors that reduce

the stored mechanical energy in the system, while biochemical competition is favoured by factors

that increase cell intermixing and tissue reorganisation. Conversely, mechanical competition was not

affected by tissue organisation, whereas biochemical competition was not sensitive to parameters

that changed the stored mechanical energy of the tissue.

Materials and methods

Cellular Potts model
The CPM is implemented in Compucell3D (Swat et al., 2012). We chose a 2D lattice-based model,

where cells are composed of a collection of lattice sites (pixels). Cells interact at their interfaces

through predefined adhesion energies, and several different cell types can be implemented. Each

cell is then given attributes characterising their mechanical and adhesive properties. For example,

each cell is assigned a cell type t , which in turn has some value of surface contact energy Jcell�cell

with other cell types and adhesion energy Jcell�substrate with the substrate. Cells are also assigned a tar-

get area AT tð Þ (that represents the area a cell would occupy at time t if it were isolated) and an area

expansion modulus l (that represents the energetic cost of increasing cell area and originates from

the mechanical properties of the cytoskeleton). In the computational cell decision-making in our sim-

ulation, AT and l play important roles in the implementation of growth and division dynamics. In

addition, we also incorporate active cell motility. The free energy of the system is given by the Ham-

iltonian H:

H ¼
<i;j>

X

J t s
k
ij

� �

;t si
0
j
0

� �� �

1� d s
k
ij;si

0
j
0

� �� �

þl
s

X

A s
k

� �

�AT s
k

� �� �2

Q tð Þþlm
s

X

m̂ s; tð Þ � ŝ;

where the first term describes the interaction of lattice sites due to the adhesion energy between

the cell types or between cells and the substrate. The coefficient J is the surface energy between

cell type t of the target lattice site s
k and the cell type t si

0
j
0

� �

of its nearest-neighbour lattice
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points. By convention, for free space t = 0. From a biological perspective, J is the difference

between the surface tension and intercellular adhesion. Therefore, higher J implies lower intercellu-

lar adhesion. The multiplicative term 1� d s
k
ij;si

0
j
0

� �� �

prevents cells from interacting energetically

with themselves, where

d s
k
ij;si

0
j
0

� �

¼
1; s

k
ij ¼ si0 j0 ;

0; s
k
ij 6¼ si0 j0 :

(

The second term in the Hamiltonian describes an additional energy cost due to deviation of the

actual area A sð Þ of a cell from its target area AT sð Þ, specific to each cell at time t. In the second

computational layer of the simulation, AT is varied at each time point to reflect cell growth. The coef-

ficient l represents the area expansion modulus in 2D, which is related to planar cell stiffness or the

ratio between apical and lateral contractility that control cell height. We introduce the term Q tð Þ to

treat the free space pixels differently from pixels belonging to cells. In contrast to cells, the free

space does not have a target area, and hence no associated mechanical energy.

Qt ¼
0; t s

k
ij

� �

¼ 0 freespaceð Þ;

1; otherwise:

(

The final term in the Hamiltonian assigns active motility to the cells along a random unit vector m

(Li and Lowengrub, 2014). Here, s is the spin flip direction between the lattice site in question and

one of its neighbouring lattice sites.

Model parametrisation
To describe epithelial cell dynamics using the Potts model, we parametrised it using our experimen-

tal data (Bove et al., 2017). For simplicity, we chose the same length scale for pixels in our simula-

tion as in our experimental images of competition experiments. The lattice size and cell sizes are

chosen to match the experimental data. The lattice is chosen to be 1200 � 1600 pixels, where each

pixel is 0.33 � 0.33 mm2.

The target area and stiffness of each cell type were determined based on the average cell areas

measured from cells isolated from one another in brightfield images (Figure 2—figure supplement

2).

In the simulation, one Monte Carlo timestep (MCS) is defined by each lattice point being given

the possibility of changing identity. A conversion between experimental time and computational

time was derived empirically by comparing the mean squared displacements of isolated cells in

experiments to those in the simulations. We found that 10 MCS represented one frame of a time-

lapse movie in our experiments (4 min).

Cell growth and division
The agent-based part of the model requires the introduction of cellular behaviour in the form of

probabilistic rules for cell growth, division, extrusion, and apoptosis. In our simulations, cells grow

linearly by increasing their target areas AT(t) at a rate G, which was chosen to replicate the average

cell doubling time measured in experiments pre-confluence (Bove et al., 2017). In line with recent

experimental work (Cadart et al., 2018), we assume that MDCK cells follow an ‘adder’ mechanism

for cell size control, such that cells divide along their major axis once a threshold volume DAtot has

been added since birth (Figure 1—figure supplement 1, Figure 1—figure supplement 3). In our

simulations, the added cell volume at each time point was a random value distributed around the

mean experimental value G, so as to capture cell-to-cell variability. When the simulation was initial-

ised, cell areas had a homogenous distribution to mimic a uniform probability for cells of being in

any given stage of their cell cycle at the start of experiments.

Contact inhibition of proliferation
In our simulations, cells possess a target area, AT tð Þ, which they would occupy at that time if they

had no neighbours, and an actual area, A tð Þ, which they currently occupy. As AT increases at each

timestep due to cell growth, the difference between their target and actual area A increases. If this
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difference becomes too large, the second term of the Hamiltonian dominates, leading to energeti-

cally unfavourable swaps and a collapse of the network. To mimic reduced protein synthesis

reported due to contact inhibition of proliferation (Azar et al., 2010), we assume that the effective

growth rate depends on the difference between A and AT:

dAT

dt
¼Ge�k A�ATð Þ2 ;

where G is the growth rate for cells with no neighbours, AT the target cell area, A the actual area,

and k quantifies the sensitivity to contact inhibition. k parametrises how much deviation can be toler-

ated between the target area and current cell area before growth stalls. Note that this condition is

applied iteratively at every frame for each cell, such that, when free space becomes available, growth

can immediately resume nearby.

Apoptosis due to competition
In crowded conditions such as those present in mechanical competition, the probability of apoptosis

increases with local cell density (Wagstaff et al., 2016; Bove et al., 2017; Eisenhoffer et al., 2012).

To implement this, each cell was assigned a probability of apoptosis papo at each timestep that

depended on its local cell density �. In our simulation, r was defined as the sum of inverse of areas

of the cell of interest sk and its first neighbours s
i: � s

k
� �

¼ 1

A skð Þ
þ
Pn

i¼1

1

A sið Þ (Figure 1—figure sup-

plement 4B). Based on our experimental data, we decided to describe the relationship between

papo and � as: papo �ð Þ ¼
papo;max

1þe
�a ���

1=2ð Þ
� � (Figure 1—figure supplement 4A). papo,max was fixed to the

same value for both populations, and �1/2 was determined for each population separately based on

experimental data (Bove et al., 2017).

In biochemical competition, apoptosis occurs when loser cells are in direct contact with winner

cells. Recent work has shown that in Drosophila the probability of apoptosis of loser cells depends

on the percentage of the perimeter in contact with the winner cells (Levayer et al., 2015). Following

this, we chose to implement the probability of apoptosis as a sigmoid function (Hill function) follow-

ing the relationship papo pð Þ ¼ papo;maxp
n= Sn þ pnð Þ, where p is the percentage of perimeter in hetero-

typic contact, n is the Hill coefficient, papo;max is the maximum probability, and S is the steepness. We

chose a maximum probability papo;max of death per frame similar to that encountered in mechanical

competition and a Hill coefficient n ¼ 3 (Figure 1—figure supplement 5A). This is justified by the

fact that mechanical and biochemical competition take place over comparable durations in MDCK

cells ~2–4 days (Hogan et al., 2009; Kajita et al., 2010). For both mechanical and biochemical com-

petition, the execution of apoptosis was implemented by setting the target area AT of the cell to

0 and area expansion modulus l to 2. This allows for a quick but not instantaneous decrease of the

cell area until the cell is completely removed.

Live extrusion of cells
Under conditions where the local cell density increases rapidly, live cells can be extruded from

monolayers, likely because they have insufficient adhesion with the substrate to remain in the tissue

(Eisenhoffer et al., 2012; Kocgozlu et al., 2016; Figure 1—figure supplement 1D). We assumed

that cells underwent live extrusion when their area Ai was Ai � A tð Þh i=2 with <A(t)> the average area

of all cells in the simulation. Once this occurs, the cell is eliminated immediately from the tissue.

Unlike apoptosis, cell elimination via extrusion is implemented as an instantaneous removal of the

qualifying cell from the lattice to reflect the faster rate of live extrusions compared to programmed

cell death.

Acquisition and analysis of experimental data
All simulated data for mechanical competition were compared quantitatively to experiments

acquired in Bove et al., 2017 or performed specifically for this publication. Methods for cell culture,

image acquisition, segmentation, and analysis are described in detail in Bove et al., 2017. Briefly,

MDCK wild-type cells (MDCKWT) were winners in these competitions and their nuclei were labelled

with H2B-GFP, while MDCK scribble knock-down cells (MDCKScrib, described in Norman et al.,

2012) were the losers and labelled with H2B-RFP (Bove et al., 2017). MDCKScrib cells conditionally
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expressed an shRNA targeting scribble that could be induced by addition of doxycycline to the cul-

ture medium. All cell lines were regularly tested for mycoplasma infection and were found to be neg-

ative (MycoAlert Plus Detection Kit, Lonza, LT07-710).

MDCKWT cells were grown in DMEM (Thermo Fisher) supplemented with 10% fetal bovine serum

(Sigma-Aldrich), HEPES buffer (Sigma-Aldrich), and 1% penicillin/streptomycin in a humidified incu-

bator at 37˚C with 5% CO2. MDCKScrib cells were cultured as MDCKWT, except that we included tet-

racycline-free bovine serum (Clontech, 631106) to supplement the culture medium. To induce

expression of scribble shRNA, doxycycline (Sigma-Aldrich, D9891) was added to the medium at a

final concentration of 1 mg/ml.

For competition assays, winner and loser cells were seeded in the chosen proportion to reach an

overall density of 0.07 cells per 100 mm2 and left to adhere for 2 hr. Cells were then imaged every 4

min for 4 days using a custom-built incubator microscope and the appropriate wavelengths

(Bove et al., 2017). Movies were then automatically analysed to track the position, state, and line-

age of the cells using deep-learning-based image classification and single-cell tracking as detailed in

Bove et al., 2017. Single-cell tracking was performed using bTrack (github.com/quantumjot/

BayesianTracker; Lowe, 2021). Cell neighbours are determined using a Voronoi tessellation dual to

the Delaunay triangulation of nuclei.

In most experiments, knock-down of scribble was induced by addition of doxycycline 48 hr before

the beginning of the experiment to ensure complete depletion. However, for experiments examining

cell competition in partially sorted conditions, we first seeded the same number of MDCKScrib cells

as in 90:10 competitions and cultured them for 48 hr without doxycycline until they formed well-

defined colonies. Then, we added the number of MDCKWT cells that would be expected after 48 hr

competition, left them to adhere for 4 hr, and added doxycycline. We then started imaging the fol-

lowing day, signifying that scribble depletion was incomplete at the start of the experiment.

Cell fate analysis
For the analysis of experiments and simulations, fate information for each cell is dynamically

recorded to a file and analysed using a custom software written in Matlab (Bove et al., 2017).

Entropy of cell mixing
The entropy of mixing was calculated as the Shannon entropy of a two-state system, where the

states considered are the cell types (winner/loser). The entropy was then calculated as

s ¼ �P1 lnP1 � P2 lnP2 for each cell at each frame, where P1 ¼
# winner neighbors

total # neighbors
and P2 ¼

# loser neighbors

total # neighbors
.

The entropy of the whole system was then calculated as S ¼ <s>=
P

cells.

Probability estimation
To calculate the probability of apoptosis and division for each cell type, cells were binned appropri-

ately (by density or by time). Then, we determined the number of events n (apoptosis or division)

and the total number of cells of each type N (the observations) in each bin. The probability p was

then computed as p ¼ n
N
. Because we are examining rare events, we calculated the coefficient of vari-

ation cv that measures the relative precision of our estimator of probability as cv ¼
ffiffiffiffiffiffiffiffiffi

1�pð Þ
pn

q

.

Data and model availability
Our model has been deposited in Github (https://github.com/DGradeci/cell_competition_paper_

models; copy archived at swh:1:rev:55f8b189c6f5d998cc5b2819f672ad80b547c956;

Gradeci, 2021). The data used for model calibration will be deposited in doi: 10.5522/04/12287465.
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