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ABSTRACT
Availability of high fidelity timeseries data is imperative for crit-
ical power grid operational tasks such as state estimation, DER
scheduling, etc. However, the data obtained from the metering in-
frastructure is prone to disruptions due to communication outages
leading to missing values. State-of-the-art smart power grid Miss-
ing Data Imputation (MDI) algorithms either operate on individual
timeseries and are unable to capture spatial dependencies due to the
power grid topology or they operate on the entire dataset, requiring
complex models which lead to overfitting.

In this work, we develop a novel technique to perform spatio-
temporal missing data imputation. Using the power grid topology
and timeseries data obtained from themetering infrastructure in the
grid as input, we develop a Spatial-Temporal Graph Neural Network
based Denoising Autoencoder (STGNN-DAE) that performs MDI
by accounting for both temporal and spatial correlations. Using a
real dataset obtained from a distribution test grid in Midwest, Iowa,
we compare the proposed model with existing solutions for MDI.
We show that our GNN based autoencoder obtains an improvement
of 4.3% to 25.2% in error metrics such as Mean Absolute Error
compared to the state-of-the-art missing data imputation methods.
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•Computingmethodologies→Neural networks; •Hardware
→ Smart grid.
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1 INTRODUCTION
Operations such as estimation of the state variables (voltage, phase
angle, etc.), load/generation prediction, scheduling of generators or
Distributed Energy Resources (DER), load or solar curtailment etc.
are critical to smooth operation of power grids [3, 11, 12, 20, 24, 26].
The efficacy of these operations, and hence the grid stability [26], is
heavily dependent upon the quality of the real-time data obtained
from the metering infrastructure in the grid.

Modernmetering infrastructure such as AMI, SCADA, etc. enable
collection of fine-grained high frequency data in real-time [17].
However, they are prone to disruptions due to communication
outages, unexpected meter shutdowns, measuring errors, etc. [8]
Such disruptions lead to missing values in the dataset. The missing
values have the potential to significantly impact the effectiveness
(accuracy, optimality, etc.) of the downstream operations and may
even lead to catastrophic failures such as supply demand mismatch
due to improper scheduling or voltage violations due to improper
regulation.

In power grids, the underlying topology leads to strong spatial
correlations between the behaviors of the assets of the grid. For
example, a ≈ 3% voltage increase at a transformer will increase
the power consumption of all the loads connected to it by ≈ 6%,
assuming resistive only load. Thus, modeling these spatial correla-
tions in addition to temporal dependencies can improve the overall
accuracy of any data-driven model for the power grid.

State-of-the-art smart power gridMissing Data Imputation (MDI)
algorithms operate on individual timeseries [18, 19] or take the
entire (or a large portion of) the dataset and as input to perform
imputation [4, 22]. The former solutions do not capture spatial
dependencies while the latter ones require complex models leading
to overfitting and therefore, reduced accuracy. Recently, works such
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as [1, 10] have developed analytical models to estimate missing
data using information from the neighbors — thus capturing spatial
correlations. However, they rely on information such as impedances,
current flow, etc. whose reliable availability is difficult.

Recently, Graph Neural Networks (GNN) have gained popularity
as a technique to develop data driven deep learning models for
domains with an underlying graph structure [27]. The key idea
behind thesemodels is that the connection between two consecutive
layers of the neural network are modeled based on the underlying
graph structure, instead of the all-to-all connections of traditional
neural networks. Thus, the information flow between layers follows
the physical connections of the underlying power grid topology
and the number of layers models the number of hops of neighbors
to consider. In the context of power grid, the nodes of the GNN
can be used to represent the grid assets such as loads, buses, DERs,
etc. while the connections can be used to represent the feeder lines
(wires that carry electricity).

In this work, we develop a data-drivenmodel for Spatio-Temporal
missing data imputation. Using the power grid topology and time-
series data obtained from eachmeter in the grid as input, we develop
a Spatial-Temporal Graph Neural Network based Denoising Autoen-
coder (STGNN-DAE) that performs MDI by accounting for both
temporal and spatial correlations. Using a real dataset obtained
from a distribution test grid in Midwest, Iowa, we compare the
proposed model with existing solutions for MDI. We obtain an im-
provement of 4.3% to 25.2% in error metrics such as Mean Absolute
Error compared to the state-of-the-art methods for missing data
imputation.

2 RELATEDWORKS
Several works have explored ways to perform missing data imputa-
tion. Works such as [4, 16] include matrix operation and machine
learning based models which operate on the entire input matrix to
perform imputation. For example, the denoising autoencoder devel-
oped in [4] takes the entire matrix with corrupt entries as input to
reconstruct an uncorrupted version. The scalability (at deployment
time) of the matrix operation based models is limited while the
machine learning based models suffer from sample inefficiency as
they try to model all-to-all correlations. On the other hand, works
such as [9, 14, 18, 19] work on individual time series data and may
not be able to capture the spatial correlations. For example, the
autoencoders developed in [14, 19] take the daily load profile as
input to perform imputation. These works differ from each other
based on the choice of the neural network structure used in the
autoencoders, [19] used variational autoencoders, while [14] used
LSTM networks. [9] uses a k-nearest neighbor based approach to
search for past situations similar to the current time series with
missing values and uses that to estimate the missing values. Au-
thors in [21] develop a GNN based technique for Missing Data
Imputation. However, their technique is not tailored towards time
series data and thus does not capture temporal dependencies.

Recently, works such as [1, 10] have developed analytical models
to estimate missing data using information from the neighbors —
thus capturing spatial correlations. Our proposed technique is a

data-driven version of these methods which only needs the con-
nectivity information and forgoes other hard to obtain information
such as impedances, current flows, etc.

3 PROBLEM DEFINITION
3.1 Problem of Missing Data in Smart Grids
Smart grids consist of assets such as load consumers, electricity
producers, and grid management infrastructure. At any given mo-
ment, the matching of the supply of electricity with the demand
is critical to ensure smooth operations of the grid [17]. To enable
this, grid operators need to constantly monitor the activity of the
asset (power injected or consumed) in the grid and take mitigating
actions (votage regulation, supply scheduling, etc.) when necessary.
This requires accurate and timely data collection from the grid.
The task of data collection is performed by the Advanced Metering
Infrastructure (AMI) [6]. AMI meters are connected to every asset
that needs to be monitored. These meters record the real and reac-
tive power consumed over time by these assets. The meters then
transmit the meter readings for every fixed interval through the
communication network to a database storage [6].

However, the presence of missing entries in the collected data
is a key challenge. Missing data occurs due the following reasons:
(a) Intermittent failure of one or a sub-set of AMI meters or the
communication network - This introduces single or short sequence
of missing entries. (b) Prolonged failure of communication network
of AMI meters - This leads to blocks of missing values. A study
carried out by [19] shows that in one particular dataset containing
about 5 million 15-minute intervals of data, approximately 420𝑘
intervals are missing. Within these missing intervals, 47.14% are
single missing entries while 51.26% are missing blocks under half a
day length and about 1% are longer than half a day. These statistics
are shown in Table 1.

Table 1: Statistics of missing values borrowed from [19]

Type Period Intervals No. Percentage
Single Entry 1 missing interval 1 47.14%

Block < half day (1,12] 51.26%
Block < one day (12,24] 1.05%
Block < one week (24,192] 0.53%
Block > one week (192 0.02%

Presence of missing values has a severe impact on downstream
applications which are critical to grid operations such as load fore-
casting or optimal power flow which rely on the fidelity of the
data [15]. For example, for an artificial neural network trained on
a complete data, testing on a dataset with less than even 10% of
missing data led to a significant drop in the ROC curve [15]. There-
fore, development of accurate missing data imputation methods
will significantly improve the reliability of grid operations.

3.2 Problem Definition
The missing data imputation problem is to find a model that is
able to estimate missing entries in a given dataset. Suppose y =

{𝑦1, 𝑦2, ..., 𝑦𝑇 } is a timeseries of length 𝑇 with missing entries in a
set of time intervalsM, that is, 𝑦𝑡 is missing for 𝑡 ∈ M. A missing
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Figure 1: Illustration of time series with single missing en-
tries and block missing entries

data imputation model is a function 𝑔 on y such that ỹ = 𝑔(y),
where ỹ has its missing entries in time intervals M recovered.

We can train a missing data imputation model as follows. Given
a timeseries of length 𝑇 denoted as x = {𝑥1, 𝑥2, ..., 𝑥𝑇 } with no
missing data. We want to use x as training data to train a function
𝑓 that replaces missing values in another timeseries x̂ of length
𝑇 . We denote x̃ = 𝑓 (x, x̂) as x̂ with its missing values replaced
using the trained function 𝑓 . The objective is then to minimize an
error function 𝐸 (x, x̃) that defines the difference between the two
timeseries.

Missing data in x̂ can either be single missing entries or blocks
of missing entries. Fig. 1 illustrates the two types of missing data,
where the× symbol represents missing data in the timeseries. Single
missing entries refer to a single interval of missing points between
intervals with known values. Blocks of missing entries refers to
consecutive chunks of missing data. The length of this consecutive
block is called the block size. We define "missingness" as a mea-
sure of the percentage of data in x̂ that is missing. For example, a
missingness of 1% means 1% of the data is missing.

In the context of smart grids, x is typically a large historically
collected timeseries dataset which is used to train the model 𝑓 . x̂
is typically a recently collected timeseries dataset which needs to
be pre-processed before using it as an input in a downstream grid
management task such as load forecasting or optimal power flow
calculation.

We also make the following assumptions when solving the prob-
lem in this paper:

(1) The datasets x and x̂ are timeseries in nature.
(2) x does not have any missing entries.

4 METHODOLOGY
In this work, we develop a Spatial-Temporal Graph Neural Network
based Denoising Autoencoder (STGNN-DAE) that performs MDI
by accounting for both temporal correlations due to the timeseries
of the dataset and spatial correlations imposed due to the power
grid topology. We first describe the STGNN-DAE model and then
describe how it is applied to the problem ofMissing Data Imputation
(MDI).

4.1 Spatial-Temporal GNN based Auto-Encoder
(STGNN-DAE)

An autoencoder is a neural network architecture that aims to learn
a concise representation of input data. The output of the autoen-
coder is a representation of the input data with significantly less
dimensions. An autoencoder consists of two components, the en-
coder 𝑒 (x) and decoder 𝑑 (x). The encoder should reduce the di-
mension of the input data, while the decoder attempts to recover
the original data from the reduced data. Denoting the recovered
data x̂ = 𝑑 (𝑒 (x)), the network is trained by minimizing the error
between x and x̂. However, there is a problem with autoencoders
where the identity function is learned, that is, the network simply
maps data points to the reduced form and vice versa. This is pre-
vented by introducing noise to the input x during training, this
variation is called denoising autoencoder.

A Graph Convolution Layer performs convolution on a graph.
This convolution aggregate data points of neighboring nodes. As a
result, there is a passage of information between neighbors of the
graph. Mathematically, it can be written as:

H(𝑙+1) = 𝜎 (D̃− 1
2 ÃD̃− 1

2H(𝑙)W(𝑙) ) (1)

whereH(𝑙) ∈ R𝑁×𝐷𝑙 denotes the 𝑙𝑡ℎ layer of the network andW(𝑙)

is the weight parameters of the 𝑙𝑡ℎ layer. A denotes the adjacency
matrix of the graph 𝑔, which is used to compute Ã = A + I𝑁 by
adding self-connections to A. I𝑁 is the identity matrix. D̃ is the
degree matrix calculated by D̃𝑖𝑖 =

∑
𝑗 Ã𝑖 𝑗 . This kind of layer is

useful for data where data points on the graph are more likely to be
correlated if they are close neighbors, as it can learn these spatial
correlations.

To capture temporal correlations, that is, correlations among
values of intervals of a customer that happen near in time, gated
1D convolutional layers can be used. A 1D filter of length 𝐾 is
used to compute a convolution operation on each daily load profile
timeseries x of length 𝑇 of each customer. Denote the filter as Θ ∈
R𝐾 and the convolution operation as ∗. Θ ∗x performs convolution
on x such that its length is reduced from R𝑙 to R(𝑙−𝐾+1) . A Gated
Linear Unit (GLU) is then used as the activation, which is defined
as

𝐺𝐿𝑈 = (Θ ∗ x) ◦ 𝜎 (Θ ∗ x) (2)
where ◦ is the element-wise product operator and 𝜎 is the sigmoid
function.

In ourmodel, wemake use of Spatial-Temporal Blocks (ST Blocks)
[25], the structure consists of a gated convolutional layer followed
by a graph convolutional layer then one more gated convolutional
layer. Both spatial correlations and temporal correlations are learned
from these ST Blocks. This is illustrated in Fig. 2. To capture both
spatial and temporal correlations of the data with an autoencoder,
we propose a Spatial-Temporal Graph Neural Network (ST-GNN)
based autoencoder architecture. Both the encoder function 𝑒 (𝑥)
and decoder function 𝑑 (𝑥) are each an ST Block.

4.2 STGCN-DAE based MDI
In this section, we describe the training workflow for our proposed
STGNN-DAE model for Missing Data Imputation (MDI). First, we
explain how a DAE is applied for MDI. Given a daily load timeseries
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Figure 2: Structure of a Spatial-Temporal Block

Figure 3: Overall training workflow

Algorithm 1: Autoencoder Training Workflow
Input: x - Input timeseries
Calculate corrupted data x̂ from x
For each epoch:

Compute output through autoencoder x̃ = 𝑑 (𝑒 (x̂)
Compute error function 𝐸 (x, x̃)
Backpropagate error to update autoencoder parameters

with no missing data x, it is first corrupted by replacing some of
its missing values to form x̂. Next, we define an encoder 𝑒 (x) and
decoder 𝑑 (x) such that it outputs x̃ = 𝑑 (𝑒 (x̂)). The encoder and
decoder are trained by minimizing the error between the ground
truth x and the output x̃. The overall workflow is summarized in
Figure 3 and Algorithm 1.

As described in Section 4.1, the encoder and decoder functions in
STGNN-DAE is an ST Block structure. Since the graph convolution
layer performs convolution on all nodes connected via graph edges,
the input needs to contain timeseries from all nodes. Therefore, the
input X = {x1, x2, ..., x𝑁 } is the collection of all daily loads from
all customers where x𝑖 is the daily load of customer 𝑖 and 𝑁 is the
total number of customers.

4.2.1 Data preprocessing. To prepare the dataset for MDI model
training, we need to introduce missing values in each daily load
timeseries of each customer for both real and reactive powers. Miss-
ing values are either introduced by single intervals or by blocks
following the observations in Table 1. We define "missingness"
as the percentage of missing values in each timeseries. For single
missing intervals, a set of intervals is picked randomly so that the
number of intervals picked is equal to the missingness percentage
of the total number of intervals. These picked intervals are then
replaced as missing values. For blocks, we first pick a block size 𝐵
and then a set of intervals according to the missingness just like
single intervals. Afterwards, each picked interval and 𝐵−1 intervals
following it are replaced as missing values. This creates blocks of
missing data similar to the bottom example in Fig. 1.

4.2.2 Missing Data Configurations. We evaluate MDI models based
on the comparison of their performance on 9 different missing data
configurations. We use 3 single missing intervals configurations
and 6 block missing configurations. Each configuration differs by
the missingness and block size choice. The configurations is sum-
marized in Table 6.

Table 2: Missing Data Configurations

Config. Type Missingness Block Size
C1 Single 0.2 -
C2 Single 0.3 -
C3 Single 0.5 -
C4 Block 0.45 3
C5 Block 0.6 3
C6 Block 0.4 4
C7 Block 0.6 4
C8 Block 0.48 8
C9 Block 0.64 8
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4.3 Deployment of STGCN-DAE for MDI
In Section 4.2.2, we train a model using only a single type of missing
data configuration (Table 6). Thus, models that are trained and
evaluated in each configuration may be specialized in MDI for each
specific missing data type. However, in real-world the dataset may
consist of several different missing data configurations and using
a model trained on a single configuration may lead to reduced
accuracy. To mitigate this issue, a potential deployment scenario
for missing data imputation is as follows:

• Train an ST-GCN model for each configuration described in
Table 6.

• When a dataset x̂ needs to be process for missing data impu-
tation, do the following:

(1) Identify the blocks of missing data.
(2) For each block, select the model whose block sizes is the

closest to the size of the missing block.

However, as we show in Section 5.5.2, a single ST-GCN model
is able to obtain high accuracy on a wide range of missingness
configurations. Thus, in practice only one (or a few) model which
obtains high accuracy over most of the configurations described in
Table 6 can be chosen for deployment.

5 EXPERIMENTS AND RESULTS
5.1 Baselines
We consider the following Missing Data Imputation models as
baseline for comparison.

5.1.1 Linear Interpolation (LI). Linear Interpolation is a data impu-
tation method that fits a linear model using the two values from
before and after each missing data block [18]. Each value within
the missing data block is then estimated from the linear model.

Mathematically, we can express the method as follows. Given a
timeseries x = {𝑥1, 𝑥2, ..., 𝑥𝑇 } in which the values between intervals
𝑡 to 𝑡 +𝑊 − 1 are missing, where𝑊 is the missing block size, the
missing values are computed by the equation below.

𝑥𝑡+𝑤 = 𝑥𝑡−1 + (𝑥𝑡+𝑊 − 𝑥𝑡−1) ∗
𝑊 −𝑤
𝑊

(3)

The advantage of this method is that it is quick and deterministic.
The disadvantage is that the model is very simple and cannot model
complicated timeseries trends, especially when the missing period
is long.

5.1.2 Historical Average (HA). Historical Average makes use of the
intuition that timeseries data in smart grids has high regularity,
that is, it tends to show similarity over same times of the days, or
same days of the week and so on. We use the implementation from
[18] that imputes missing values by taking the average of intervals
that are within a certain range with respect to the missing value
timestamp (defined as [Day, Hour of day, Minute of hour]). For
the baseline in this paper, we use the range [±8 day, ± 1 hour, and
±1 minute]. This means that any interval which the timestamp
is within the defined range of the considered timestamp of the
missing interval, it will be included in the set of intervals used for
computing the HA.

In addition to these traditional methods, we use Denoising Au-
toencoder [23] based models which have been recently proposed for
Missing Data Imputation. These models learn to reconstruct origi-
nal dataset from the corrupted dataset. We consider the following
three versions of denoising auto-encoders.

5.1.3 ConvNN-DAE. A ConvNN-DAE is a Denoising Autoencoder
that only uses convolutional layers and fully connected layers in
the network architecture [19]. Authors in [19] develop a ConvNN-
DAE which consists of three layers of 1D convolution on a single
timeseries input, followed by a fully connected layer, followed
by three layers of 1D transposed convolution. For a dataset with
multiple nodes, the authors train a singlemodel which takes as input
a single daily load timeseries data, i.e. timeseries data corresponding
to 24 hour interval of a day for a single node, and performs missing
data imputation on the same. In other words, a single model is used
to perform missing data imputation for all the nodes of the grid.

5.1.4 Multiple Imputations Denoising Autoencoder (MIDA). Multi-
ple Imputations Denoising Autoencoder is also a denoising autoen-
coder approach [5] that uses only fully connected layers. Unlike the
other DAEs used in the baselines, the encoder function of MIDA
maps the inputs to a higher dimension, and the decoder function
maps the higher dimension representation back to the original in-
put. The model is trained while corrupting the inputs by randomly
removing certain values randomly for each iteration.

5.1.5 LSTM. We implemented the Long Short TermMemory(LSTM)-
based DAE propoced in [13]. In this DAE architecture, both encoder
and decoder functions are LSTM recurrent neural networks [7].
Recurrent neural networks (RNN) are neural networks that use
intermediate outputs at each layer as the input for the next step
in the sequence, this improves the abilitiy of the network to learn
correlations over sequential data. LSTM cells are popular construc-
tions used in RNNs as it solves the problem of vashing gradient
by using a forget gate structure. By using LSTM networks in the
autoencoder, it allows the autoencoder to specialize in analyzing
sequential data like timeseries.

5.2 Datasets
We use a dataset with data from 240 customers from Iowa covering
365 days [2]. The dataset contains real power consumption mea-
surements of each customer in 1-hour intervals. Additionally, it
contains simulated reactive power consumption of the customers.
The topology of the network is also provided in the dataset. We
split the dataset into training, validation, and testing as follows: day
1 − 275 for training, day 276 − 305 for validation and day 306 − 365
for testing.

5.3 Experimental Setup
For each baseline, we perform hyperparameter searching to find
the best model configuration. We train models by varying their
hyperparameters with the training dataset. We then evaluate each
model using the validation dataset. We choose the model that ob-
tains lowest validation error and test the model using the testing
dataset to compute the errors. The errors on the testing dataset are
reported.
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We use the six missing data imputation models described in Sec-
tion 5.1 as baselines in addition to our proposed STGNN-DAEmodel.
Each baseline is tested on nine different test datasets. The nine
different datasets are obtained by corrupting the original dataset
corrupted with the nine different configurations as shown in Table
6.

5.4 Evaluation Metrics
We evaluate the MDI results using three different error metrics:
Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and
Normalized Absolute Error (NAE) [19]. When calculating the error,
we only consider the missing intervals of customer load timeseries
in the testing dataset, that is, the error between recovered missing
values with MDI compared to the ground truth. Denote𝐶 as the set
of customers in the testing dataset, 𝑇 as the total number of time
intervals, 𝑥𝑐,𝑡 as the output of MDI for customer 𝑐 at time 𝑡 , and
𝑦𝑐,𝑡 as the ground truth value for customer 𝑐 at time 𝑡 . A binary
matrix M indicates if interval 𝑡 for customer 𝑐 is a missing value
interval by setting 𝑀𝑐,𝑡 = 1, and otherwise 𝑀𝑐,𝑡 = 0. Each error
metric is defined as follows:

𝑀𝐴𝐸 =
1
𝑁

𝑡=0∑
𝑇

∑
𝑐∈𝐶

𝑀𝑐,𝑡 |𝑥𝑐,𝑡 − 𝑦𝑐,𝑡 | (4)

𝑅𝑀𝑆𝐸 =

√√√
1
𝑁

𝑡=0∑
𝑇

∑
𝑐∈𝐶

𝑀𝑐,𝑡 | |𝑥𝑐,𝑡 − 𝑦𝑐,𝑡 | |22 (5)

𝑁𝐴𝐸 =
1
𝑁

𝑡=0∑
𝑇

∑
𝑐∈𝐶

𝑀𝑐,𝑡
|𝑥𝑐,𝑡 − 𝑦𝑐,𝑡 |

𝑋𝑖
(6)

Where 𝑁 is the total number of missing intervals and 𝑋𝑖 is the
average load.

The errors in terms of each of the 3 metrics are computed for
each of the 9 configurations in Tab. 6.

5.5 Results and Discussion
5.5.1 Comparison with State-of-the-art MDI Models. Tables 3-5
summarize the experiment results of all methods with respect to
the three evaluation metrics MAE, RMSE, and NAE, respectively.

As evident from the table, STGNN-DAE outperforms all the
algorithms in terms of MAE, RMSE and NAE for most of the con-
figurations. The only exception is the configuration ’C1’ where
Linear Interpolation (LI) performs the best. In other words, for sin-
gle and sparse missing entries, simple linear interpolation using
neighboring values gives the best performance.

Specifically, the performance improvement in terms of the error
metrics range from 4.3% to 25.2% against the second best performing
model. LSTM and MIDA models performed the second best on
most of the configurations. MIDA tries to capture all to all spatial
correlations leading to overfitting of the model. On the other hand,
LSTM trains using only individual timeseries data, and fails to
consider spatial correlations. Thus, by using amodel which captures
only the relevant correlations, STGNN-DAE able to achieve the best
accuracy.

5.5.2 Performance of STGNN-DAE over Varying Block Sizes. To fur-
ther test the capability of STGNN-DAE in a scenario closer to real
life data, as described in Section 4.3, we test a STGNN-DAE trained
on configuration ‘C3’ on a wide range of missingness configurations
and block sizes. First, we test the trained STGNN-DAE on configu-
rations that include a wider range of block sizes that spans between
2 and 12. The results are shown in Tables 7 and 7. In terms of MAE,
RMSE and NAE, the range of error over the full range of config-
urations are [1.2227, 1.8367], [3.1722, 5.2271] and [0.3378, 0.4611]
respectively. We can see that despite the wider range of block sizes,
the errors of the model reside within a small range that is similar
to when a model is trained for each configuration. Next, we test the
trained STGNN-DAE on datasets with mixed block sizes. We define
7 different datasets where the block size for each missing period is
sampled from a Gaussian distribution with varying mean and vari-
ance of 9. Case numbers 2 − 8 of Table 9 describes these 7 datasets.
Case 1 is a dataset that randomly samples distributions of case 2− 8
with equal probability. Similar to the varying configurations exper-
iment, we see that the errors of the trained model reside within
a small range despite the varying block sizes. In terms of MAE,
RMSE and NAE, the range of error over the full range of test case
datasets are [1.5192, 1.8727], [3.7601, 5.1375] and [0.3658, 0.4506]
respectively. In particular, even when the block sizes vary greatly
in case 1, the model was able to perform satisfactorily.

Overall, we can see that STGNN-DAE adapts well to most miss-
ing block configurations. This is crucial as in the real world, missing
data have varying block sizes of sizes as shown in Table 1.
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7 CONCLUSION
In this work, we developed a data-driven model for spatio-temporal
missing data imputation. Using the power grid topology and time-
series data obtained from eachmeter in the grid as input, our Spatial-
Temporal Graph Neural Network based Denoising Autoencoder
(STGNN-DAE) performs MDI by accounting for both temporal and
spatial correlations.We compared our proposedmodel with existing
solutions for MDI using a real dataset obtained from a distribution
test grid in Midwest, Iowa and obtained 4.53-25.2% improvement
compared to the state-of-the-art methods on varying missing data
configurations.
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