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Abstract
We present a stochastic descent algorithm for unconstrained optimization that is 
particularly efficient when the objective function is slow to evaluate and gradients 
are not easily obtained, as in some PDE-constrained optimization and machine 
learning problems. The algorithm maps the gradient onto a low-dimensional ran-
dom subspace of dimension � at each iteration, similar to coordinate descent but 
without restricting directional derivatives to be along the axes. Without requiring 
a full gradient, this mapping can be performed by computing � directional deriva-
tives (e.g., via forward-mode automatic differentiation). We give proofs for conver-
gence in expectation under various convexity assumptions as well as probabilistic 
convergence results under strong-convexity. Our method provides a novel extension 
to the well-known Gaussian smoothing technique to descent in subspaces of dimen-
sion greater than one, opening the doors to new analysis of Gaussian smoothing 
when more than one directional derivative is used at each iteration. We also provide 
a finite-dimensional variant of a special case of the Johnson–Lindenstrauss lemma. 
Experimentally, we show that our method compares favorably to coordinate descent, 
Gaussian smoothing, gradient descent and BFGS (when gradients are calculated via 
forward-mode automatic differentiation) on problems from the machine learning 
and shape optimization literature.
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1 Introduction

We consider optimization problems of the form

where f ∶ ℝd → ℝ has �-Lipschitz gradient but ∇f (�) is costly to evaluate. We also 
consider additional restrictions on f such as convexity or �-strong convexity, which 
will be made clear as required. The main idea is straightforward and has a long his-
tory: descend along directions in input space rather than along the gradient.

Directional derivatives can be obtained exactly by forward-mode automatic differ-
entiation, as discussed in [53], at a cost of approximately one function evaluation per 
direction. The gradient can be obtained by performing d such calculations in orthogo-
nal directions. Reverse-mode automatic differentiation would enable calculation of 
the gradient at a cost of roughly four function evaluations [53] but it has a potential 
explosion of memory when creating temporary intermediate variables. For example, 
in unsteady fluid flow, the naive adjoint state method requires storing the entire time-
dependent PDE-solution [54]. Hybrid check-pointing schemes [67], designed to reduce 
memory-overhead, are the subject of active research but the issue has not yet been satis-
factorily resolved. We desire methods that can make progress towards the optima after 
fewer than d function evaluations per iteration, while still providing convergence guar-
antees similar to those of traditional methods. To this end, we approximate ∇f (�k) with 
� directional derivatives determined by a random matrix �k ∈ ℝd×� . Such a choice 
amounts to descending in an �-dimensional subspace of gradient space and results in 
the following recursion,

where 𝛼 > 0 is fixed, �k ∈ ℝd×� is a random matrix with the properties � �k�
⊤
k
= �d 

and �⊤
k
�k = (d∕�) �

�
 . Note that when �k�

⊤
k
 is diagonal (2) reduces to randomized 

block-coordinate descent. In this document we show that randomized block-coordi-
nate descent is suboptimal for algorithms of the form (2) due to its strong depend-
ence on both the ambient dimension of the problem and the structure of the gradient. 
Using a variant of the Johnson–Lindenstrauss lemma we provide non-asymptotic, 
probabilistic convergence results with spherically symmetric random matrices �k , 
results that we show do not hold for coordinate descent.

For concreteness consider the matrix � comprised of columns �1,… ,�� . Then 
an �-dimensional subspace approximating the gradient can be obtained using 
finite-differences

(1)min
�∈ℝd

f (�),

(2)�k+1 = �k − 𝛼�k�
⊤
k
∇f (�k),
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By using exact directional derivatives obtained with forward-mode automatic dif-
ferentiation, (3) reduces to ∇f (�) ≈ ��⊤∇f (�) , resulting in the form for (2). In 
this paper we analyze the effect that the choice of matrices � can have on the con-
vergence of (2). This is accomplished, in part, by analyzing how well ��⊤∇f (�) 
approximates the gradient.

A particular case of (1) is Empirical Risk Minimization (ERM) commonly used 
in machine learning, where f (�) = (1∕n)

∑n

i=1
fi(�) and n is typically very large. 

Hence an ERM problem is amenable to iterative stochastic methods that approxi-
mate ∇f (�) using S randomly sampled observations, (is)Ss=1 ⊂ {1,… , n} , at each iter-
ation with fS(�) = (1∕S)

∑S

s=1
fis(�) where S ≪ n . While the methods we discuss do 

not require a finite-sum structure, they can be used for such problems.
There are important classes of functions that do not fit into the ERM framework 

and therefore do not benefit from stochastic gradient descent which is tailored to 
ERM. Partial Differential Equation (PDE) constrained optimization is one such 
example, and except in special circumstances (such as [33]), a stochastic approach 
leveraging the ERM structure (such as stochastic gradient descent and its variants) 
does not provide any benefits. This is because in PDE-constrained optimization 
the cost of evaluating each ∇fi(�) is often identical to the cost of evaluating ∇f (�) . 
Problems outside of the ERM framework are not limited to parameter estimation 
for PDEs. For example, parameter estimation of Gaussian processes, specifically the 
sparse Gaussian process framework of [63, 66] does not benefit from an ERM struc-
ture but can benefit from our methodology.

PDE-constrained optimization Partial differential equations are frequently used to 
model physical phenomena. Successful application of PDEs to modeling is contin-
gent upon appropriate discretization and parameter estimation. Parameter estimation 
in this setting arises in optimal control, or whenever the parameters of the PDE are 
unknown, as in inverse problems. Algorithmic and hardware advances for PDE-con-
strained optimization have allowed for previously impossible modeling capabilities. 
Examples include fluid dynamics models with millions of parameters for tracking 
atmospheric contaminants [25], modeling the flow of the Antarctic ice sheet [40, 
58], parameter estimation in seismic inversion [1, 12], groundwater hydrology [9], 
experimental design [34, 38], and atmospheric remote sensing [16].

Gaussian processes Gaussian processes are an important class of stochastic pro-
cesses. In this paper we use them to model an unknown function in the context of 
regression. The celebrated representer theorem of Kimeldorf and Wahba [42] allows 
the modeling of functions from an infinite-dimensional reproducing kernel Hilbert 
space using only machinery from finite-dimensional linear algebra. However, the 
applications of Gaussian processes are somewhat hamstrung in many modern set-
tings because their time complexity scales as O(n3) and their storage as O(n2) . One 
recourse is to approximate the Gaussian process, allowing time complexity to be 
reduced to O(nm2) with storage requirements of O(nm) , where m ≪ n is the number 

(3)∇f (�) ≈ �

⎛
⎜⎜⎜⎝

f (�+�1h)−f (�)

h

⋮

f (�+�𝓁h)−f (�)

h

⎞
⎟⎟⎟⎠
.
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of points used in lieu of the full data set. Methods have been developed to place 
these m inducing points, also called landmark points, along the domain at points 
different from the original inputs [63, 66]; optimal placement of the landmarks is a 
continuous optimization problem with dimension equal to the number of inducing 
points to be placed in addition to the number of parameters to be estimated. Such 
a framework places a great burden on the optimization procedure as improperly 
placed landmark points may result in poor approximations.

1.1  Related work

Despite being among the easiest to understand and oldest variants of gradient 
descent, subspace methods (by far the most common of which is coordinate descent) 
have, until recently, attracted relatively little attention in the optimization literature.

Coordinate descent schemes The simplest variant of subspace descent is a deter-
ministic method that cycles over the coordinates. This method is popular because 
many problems have structure that makes a coordinate update very cheap. However 
convergence results for coordinate descent require challenging analysis and the class 
of functions for which it converges is restricted; indeed, [60, 68] provide simple 
examples for which the method fails to converge while simpler-to-analyze methods 
such as gradient descent converge.

Choosing the coordinates randomly can lead to results on par with gradient 
descent [51, 61]. Much emphasis has been placed recently on accelerating coordi-
nate descent methods [3, 37], but the improvements require knowledge of the Lip-
schitz constants of the partial derivatives of the functions and/or special structure 
in the function to make updates inexpensive and to choose a sampling scheme. See 
[71] for a survey of recent results.

A generalization of coordinate descent for linear systems is provided by [30] 
wherein the goal is to solve the dual problem. The idea proposed in [30] of descend-
ing in a random direction according to some pre-specified distribution that is not 
uniform makes it more similar to ours than other algorithms that focus on solving 
the dual problem such as, e.g., [62].

Zeroth-order optimization Our methods use directions �⊤∇f (�) , where � is d × � 
with � ≪ d , which is equivalent to taking � directional derivatives of f at � . Observe 
that as our methods do not use gradients they fall into the class of gradient-free opti-
mization, however since we use exact directional derivatives the methods are not 
derivative-free. To be clear, when ∇f (�) is readily available, zeroth-order optimiza-
tion methods are not competitive with first- or second-order methods. For example, 
if f (�) = ‖�� − �‖2 , with � ∈ ℝn×d and � ∈ ℝn then evaluating f (�) and evaluating 
∇f (�) = 2�⊤(�� − �) have nearly the same computational cost, namely O(nd) . In 
fact, such a statement is true regardless of the structure of f: by using reverse-mode 
automatic differentiation (AD), one can theoretically evaluate ∇f (�) in about four-
times the cost of evaluating f (�) , regardless of the dimension d [31]. In the context 
of PDE-constrained optimization, the popular adjoint-state method, which is a form 
of AD applied to either the continuous or discretized PDE, also evaluates ∇f (�) in 
time independent of the dimension. However, there are many situations when AD 
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and the adjoint-state method are inefficient or not applicable. Finding the adjoint 
equation requires a careful derivation (which depends on the PDE as well as on ini-
tial and boundary conditions), and then a numerical method must be implemented 
to solve it, which takes considerable development time. For this reason complicated 
codes that are often updated with new features, such as weather models, rarely have 
the capability to compute a full gradient. There are software packages that solve for 
the adjoint automatically, or run AD, but these require a programming environment 
that restricts the user, and may not be efficient in parallel high-performance comput-
ing environments.

There is a plethora of derivative-free optimization (DFO) algorithms, includ-
ing grid search, Nelder–Mead, (quasi-) Monte-Carlo sampling, simulated anneal-
ing and MCMC methods [43]. Modern algorithms include randomized methods, 
Evolution Strategies (ES) such as CMA-ES  [36], Hit-and-Run  [8] and random 
cutting planes  [17]. Textbook DFO methods ([15, Algo. 10.3], [55, Algo. 9.1]) 
are based on interpolation and trust-regions. A limitation of all these methods is 
that they do not scale well to high-dimensions (beyond O(102)).

Stochastic gradient-free methods Our stochastic subspace descent (SSD) 
method (2) has been previously explored under the names “random gradient,” 
“random pursuit,” “directional search”, and “random search”. The algorithm 
dates back to the 1970s, with some analysis (cf. [24, Ch. 6] and [27, 64]), but 
it never achieved prominence because zeroth-order methods are not competi-
tive with first-order methods when the gradient is available. Most analysis has 
focused on the specific case � = 1 [44, 53, 65]. More recently, the random gradi-
ent method has seen renewed interest. For example, [44] analyzes the case when 
f is quadratic, and [65] provides an analysis (assuming a line search oracle). The 
method of Gaussian smoothing introduced in [53] is similar to what we propose. 
We compare the analysis and performance of [53] to that of our method in Sects. 
2 and 3. Gaussian smoothing convolves the objective function with a Gaussian 
random variable to make the objective differentiable without changing its station-
ary points.

for h ≥ 0 and � ∼ N(�,�d) . It is common (e.g., [5, 6]), and simpler, to consider 
the case �d = �d . It is shown in [53] that (4) leads to the following finite-difference 
approximation of the gradient,

The obvious way to estimate ∇f h(�) is the single-sample unbiased estimator pro-
posed by Nesterov,

(4)f h(�) = ��f (� + �h),

(5)∇f (�) ≈ ∇f h(�) = ��

[
�
f (� + �h) − f (�)

h

]
.

∇f h(�) ≈ �
f (� + �h) − f (�)

h
.
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Naturally, such an estimator may have a large variance. Thus, to reduce the variance 
it is tempting to consider taking � > 1 and averaging the results as follows

where �1,… , �
�

iid
∼ N(�, �d) , as in, e.g., [6]. While independent directional deriva-

tives provide an estimate of the gradient with a reduced variance compared to 
Gaussian smoothing, independence comes with the undesirable property highlighted 
in [6]: even � > d directional derivatives are insufficient to recover the exact gradi-
ent. In this paper we consider an alternative to (6) for approximation of the gradi-
ent when � ≥ 1 and h → 0 , which is valid when using a derivative oracle such as 
forward-mode automatic differentiation. Rather than independent Gaussian vectors, 
we require the �i to be orthonormal; Eq. (10) provides a method for generating such 
vectors. This is discussed further in Sect. 2.2. The use of orthonormal �i enables the 
use of machinery that provides sharper and simpler analysis than previously avail-
able. Various proximal, acceleration and noise-tolerant extensions and analyses of 
Gaussian smoothing have appeared in [6, 22, 23, 29]. Another variant of random 
gradient has recently been proposed in the reinforcement learning community. The 
Google Brain Robotics team sampled orthogonal directions to train reinforcement 
learning systems [14] but treated it as a heuristic to approximate Gaussian smooth-
ing Similarly, [21] uses columns from Haar-distributed matrices and considers the 
case � = 1 , focusing on technical issues related to the small bias introduced by esti-
mation of directional derivatives by finite differences. The recent papers [6, 13] also 
investigate techniques similar to ours though like [21] they focus on the implications 
of the finite difference bias. Following [51] we assume that directional derivatives 
are available via an oracle such as forward-mode automatic differentiation so the 
finite-difference bias is of no concern. Analysis using finite-differences in place of 
exact directional derivatives is possible (see, e.g., [6]). In a forthcoming manuscript 
we show that in the case h > 0 , convergence of our algorithm is to within a ball of 
radius O(h2) of the minimum function evaluation where h can be on the order of 
10−8 ; h smaller than 10−8 incurs numerical instability errors and should be avoided. 
For the types of problems discussed in this work, in particular PDE-constrained 
optimization, precision of this order is often impossible; thus, the error attributable 
to a biased estimate of the gradient is subsumed by other sources of error such as 
measurement error or termination of the optimization algorithm prior to conver-
gence. For this reason we omit analysis of the finite-difference case and focus only 
on the setting of exact directional derivatives.

Alternatives As a baseline one could use O(d) function evaluations to obtain 
∇f (�) using forward-mode automatic differentiation, which is too costly when d is 
large and evaluating f (�) is expensive. Once ∇f (�) is computed, one can run gradi-
ent descent, accelerated variants [50], non-linear conjugate gradient methods [35], 
or quasi-Newton methods like BFGS and its limited-memory variant  [55]. In the 
numerical results section we compare to (finite-difference versions of) gradient 
descent and BFGS because they are so ubiquitous. We also provide comparisons to 

(6)1

�

�∑
i=1

�i
f (� + �ih) − f (�)

h
,
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Gaussian smoothing and to coordinate descent as the method we propose general-
izes both concepts.

1.2  Structure of this document and contributions

In Sect. 2.1 we investigate convergence of the stochastic subspace descent method 
for smooth functions. Assumptions used throughout the document are listed, and 
expected rates of convergence are provided in the case of non-convex, convex, and 
strongly-convex functions, as well as functions satisfying the Polyak-Lojasiewicz 
inequality. In Sect.  2.2 we discuss the properties of gradient approximation along 
random orthogonal directions for use with (2). Choosing directions from a specific 
distribution that we specify, we are able to provide non-asymptotic, high-proba-
bility convergence results for strongly-convex functions. As previously mentioned 
this algorithm is a generalization of several classical algorithms for which conver-
gence has already been studied, however as stochastic subspace descent has not been 
previously introduced, the main results are original. In particular, Theorem  1 and 
Corollary 1 provide a generalization and different analysis than has previously been 
performed on Gaussian/spherical smoothing. Theorem  2 is a straightforward gen-
eralization of a previously known result. Theorem 3 is a generalization of known 
analysis for convergence of gradient descent on non-convex objectives. Theorem 4 
is new analysis. Lemma 1 is probably known but we have not seen it stated as such, 
and the remarks are known or simple to prove.

In Sect. 3.1 we provide empirical results on a simulated function that Nesterov 
dubs “the worst function in the world” [52]. In Sect. 3.2 the placement of inducing 
points for sparse Gaussian processes in the framework of [66] is optimized. As a 
final empirical demonstration, in Sect.  3.3 our algorithms are tested in the PDE-
constrained optimization setting on a shape optimization problem. For the sake of 
readability, proofs are relegated to the Appendix.

In this document, uppercase boldfaced letters represent matrices, lowercase bold-
faced letters are vectors. The vector norm is assumed to be the Euclidean 2-norm, 
and the matrix norm is the operator norm.

2  Main results

For the remainder of this section we make use of the following assumptions on the 
sequence of matrices (�k) and the function f to be optimized.

Assumption 1 Let � ≤ d and assume: 

 (A0) �k ∈ ℝd×� , k = 1, 2,… , are iid random matrices such that � �k�
⊤
k
= �d and 

�⊤
k
�k = (d∕�) �

�
.

 (A1) f ∶ ℝd → ℝ is continuously-differentiable with a �-Lipschitz first derivative.
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 (A2) The function f attains its minimum f∗.
 (A3) For some 0 < 𝛾 ≤ 𝜆 (where � is the Lipschitz constant in (A1)) and all � ∈ ℝd , 

the function f satisfies the Polyak-Lojasiewicz (PL) inequality: 

 (A3’) f is �-strongly-convex for some 𝛾 > 0 and all � ∈ ℝd . Note, � ≥ � where � is the 
Lipschitz constant in (A1).

 (A3”) f is convex and attains its minimum f∗ on a domain D , and there is an R > 0 such 
that for the parameter initialization �0 , max�, �∗∈D{

‖‖� − �∗
‖‖ ∶ f (�) ≤ f (�0)} ≤ R

.

The assumptions on the matrix �k can be satisfied by sampling � ≤ d columns 
without replacement from an orthogonal matrix. Coercivity of f implies the exist-
ence of the constant R in (A3”). For the results below, particularly the rate in Theo-
rem 2, we require knowledge of the value of R. Also note that (A3’) implies (A3).

2.1  Asymptotic results

We now provide conditions under which function evaluations f (�k) of stochastic 
subspace descent converge to a function evaluation at the optimum f (�∗) . In the case 
of a unique optimum we also provide conditions for the iterates �k to converge to 
the optimum �∗ . Stochastic subspace descent, so-called because at each iteration the 
method descends in a random low-dimensional subspace, is a gradient-free method 
as it only requires computation of directional derivatives at each iteration without 
requiring direct access to the gradient. In practice we use � columns from a scaled 
Haar-distributed random matrices to define randomized directions along which to 
descend at each iteration. However, neither Theorem 1, nor the subsequent theorems 
in this subsection require Haar-distributed matrices specifically, as long as the ran-
dom matrices satisfy Assumption (A0). Section 2.2 demonstrates the advantages of 
using Haar over random coordinate descent type schemes.

Theorem  1 (Convergence of SSD) Assume (A0), (A1), (A2), (A3) and let �0 be 
an arbitrary initialization. Then recursion (2) with 0 < 𝛼 < 2�∕(d𝜆) results in 
f (�k)

a.s.
⟶ f∗ and f (�k)

L1

⟶ f∗.

Theorem 1 guarantees L1 and almost-sure convergence of the function values to a 
minimizer of the function whenever the function is continuously differentiable, has 
Lipschitz gradient, and satisfies the PL inequality (A3). A broadly useful example 
of an objective function satisfying (A3) is linear least squares with a data matrix 
that is not full column rank; Theorem 1 provides a convergence result for this rank-
deficient linear least squares, and similarly well-behaved non-convex functions. Cor-
ollary 1(ii) shows that the rate of convergence is linear.

Corollary 1 (Convergence under strong-convexity and rate of convergence) 

(7)f (�) − f∗ ≤ ‖∇f (�)‖2∕(2�).
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 (i) Assume (A0), (A1), (A2), (A3’) and let �0 be an arbitrary initialization. Then 
recursion (2) with 0 < 𝛼 < 2�∕d𝜆 results in �k

a.s.
⟶ �∗ where �∗ is the unique 

minimizer of f.
 (ii) Assume (A0), (A1), (A2), and either (A3) or (A3’). Then with � = �∕(d�) , the 

recursion (2) attains the following expected rate of convergence

With � = d we recover a textbook rate of convergence, � = 1 − �∕� , for gra-
dient descent [11, §9.3] because, importantly, with � = d , ��⊤∇f (�) = ∇f (�) . 
This rate is nearly optimal as can be shown with a simple example: let d = 2 
and � = (x, y) with initial conditions �0 = (0, 1) and f (�) = �∕2x2 + �∕2y2 , then 
f (�k) → 0 with linear rate � = (1 − �∕�)2 . Similar results to Corollary 1(ii) have 
been derived for general stochastic gradient methods using techniques described 
in [10, §4]. Adapting our special case to the general framework of [10] results in 
the same rate of convergence as corollary 1(ii); however [10] does not address 
different modes of convergence, nor convergence of the iterates. Using the more 
restrictive assumption of strong-convexity the result of Corollary 1 is much 
stronger than Theorem 1; we get almost sure convergence of the function evalu-
ations and of the iterates to the optimal solution at a linear rate. In inverse prob-
lems the convergence of �k , rather than that of f (�k) is of paramount importance. 
Furthermore, if either assumption (A3) or (A3’) is satisfied, SSD has a linear rate 
of convergence. The rate of convergence is strictly better than that presented in 
[53, Thm. 8]. The rate in [53] for �-strongly convex objectives with �-Lipschitz 
gradient is

By �-Lipschitz gradient our Corollary 1 (ii) implies

which is strictly better than (9). Note that � = 1 in (9), while in our case � can be 
chosen to be greater than one.

The proof in the convex case is different, but substantively similar to a proof of 
coordinate descent on convex functions found in [71].

Theorem 2 (Convergence under convexity) Assume (A0), (A1), (A2), (A3”). Then 
recursion (2) with � = �∕(d�) gives

Convergence in the convex case is in expectation, and is sub-linear. This is in line 
with the convergence rate of gradient descent which is also sub-linear in the smooth, 
convex case [52]. In particular, taking � = d , our result gives f (�k) − f∗ ≤ 2�R2∕k 
(this is now a deterministic result), where the stepsize is � = 1∕� . It can be shown 

(8)�f (�k) − f∗ ≤ �k(f (�0) − f∗), � = 1 − ��∕(d�).

(9)�f (�k) − f∗ ≤ (�∕2)(1 − �∕(8�(d + 4)))k‖‖�0 − �∗
‖‖2.

�f (�k) − f∗ ≤ (�∕2)(1 − ��∕(d�))k‖‖�0 − �∗
‖‖2,

�f (�k) − f∗ ≤ 2d�R2∕(k�).
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that for this common choice of a stepsize, there is a function f satisfying the assump-
tions of Thm. 2 where f (�k) − f∗ ≥

�

4k+2
R2 [20, Thm. 3.2], which implies that when 

� = d , the upper bound in Thm. 2 is tight to within a factor of 8.
In the general non-convex setting we can provide guarantees of convergence to 

a stationary point and are able to provide guarantees on the rate at which ‖‖∇f (�k)‖‖ 
decreases. These are presented in the following theorem which adapts well-known 
results for the convergence of gradient descent on non-convex functions to our case. 
The rates of convergence are of the same order as [53, p.24] with slightly better 
constants.

Theorem 3 (Non-convex convergence) Assume (A0), (A1), (A2). Then recursion (2) 
with � = �∕(d�) and an arbitrary initialization yields

That is, k = O(d∕(��)) iterations are required to achieve �‖‖∇f (�k)‖‖2 < 𝜖.

2.2  High‑probability results

While it is important to understand how an algorithm will perform on average, in 
practice it is good know how it is likely to perform on a single run. In this section 
we discuss convergence bounds that hold with high probability, providing a better 
understanding of typical convergence. We consider two types of random matrices 
from the class satisfying assumption (A0): 

1. Columns from Haar-distributed random orthogonal matrix: 

 where � is as in the QR-decomposition of a matrix � = �� ∈ ℝd×d with 
�ii > 0, and each element of � is drawn independently from N(0, 1) . �d×� trun-
cates � to its first � columns so ��d×� corresponds to � columns of the ran-
dom orthogonal matrix distributed according to the Haar measure on orthogonal 
matrices [49]. In fact, for our results to hold, �ii need not be strictly positive, 
we merely require that ��⊤∇f (�)

d
= (d∕�)Projcol(��d×�)(∇f (�)) . It is convenient to 

work with Haar distributed matrices so we use matrices of the form (10).
  There is an important correspondence between matrices described by 

(10), Gaussian smoothing of [53], and the smoothing on a sphere of [6]. Let 
� ∈ ℝd×d be as in (10), � ∈ ℝd an arbitrary fixed vector, and � = ��1 , where 
�1 is the first standard basis vector, so � ∼ N(�, �d) . Then �⊤�∕‖�‖ and �∕‖�‖ 
are both distributed uniformly on the d-dimensional sphere. When � = 1 , 
� =

√
d��1

d
=
√
d �∕‖�‖ . Therefore, in this case (‖�‖2∕d)��⊤

d
= ��⊤ . That is, 

when h = 0 our method is proportional to Gaussian smoothing with a constant 
of proportionality ‖�‖2∕d . Since ‖�‖2 is a �2 random variable with mean d, this 

min
i∈{0,…,k}

�‖‖∇f (�i)‖‖2 ≤
2d�(f (�0) − f∗)

(k + 1)�
.

(10)� =
√
d∕���d×� ∈ ℝ

d×� ,
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means in high dimensions the constant of proportionality is sharply concentrated 
around 1.

  Furthermore, when � = 1 , then � ∼ U(S(0,
√
d)) , i.e., we recover spherical 

smoothing as discussed by [6]. To increase � , the traditional method in the lit-
erature is to use (6), which is different than (10) for � > 1 . Thus, we provide a 
novel generalization of Gaussian smoothing and smoothing on the sphere as a 
mapping of the gradient onto a lower dimensional subspace. A consequence of 
our approach is that matrices of the form (10) with � = d satisfy ��⊤ = �⊤� = �d , 
and the exact gradient is recovered.

  To summarize, in high-dimensions, our method with matrices defined by (10) is 
very similar to both Gaussian smoothing and smoothing on a sphere for � = 1 , but 
the differences with existing methods grow as � increases, and are markedly dif-
ferent for � = d . Table 1 provides a summary of the well-known special cases to 
our algorithm, and describes how they relate to our framework. We re-emphasize 
that for both Gaussian smoothing and smoothing on a sphere it is typical to use 
h > 0 , however we only analyze the case h = 0 . Indeed it is true the h = 0 is no 
longer smoothing of the gradient per se, but is a projection of the gradient onto 
a subspace of dimension �.

  Note that for problems of interest, function evaluations are so costly that 
we can ignore the computational overhead of a QR decomposition, which is 
O(d�2 − 2�3∕3) . Since � ≪ d , the cost is negligible compared to, for instance, 
d PDE-solves.

2. Randomized block-coordinate descent random matrix: 

 where � ∈ ℝd×� is comprised of � columns of the identity matrix �d selected 
uniformly at random. It is straightforward to verify that (10) and (11) satisfy 
assumption (A0), the former by properties of the QR decomposition.

  Denoting the columns of � as �1,… ,�� , the following equality holds 

(11)� =
√
d∕��,

Table 1  Summary of special cases of our framework

Using the � , �
k
 , and � specified in the table it is possible to recover exactly the methods described. �

k
 is 

the kth Gaussian matrix used to generate �
k
 and �

1
 is the first standard basis vector

Description � �
k

�

Gaussian smoothing 1 Satisfying (10) ‖‖�k
�
1
‖‖2∕(d2�)

Smoothing on a sphere 1 Satisfying (10) 0 < 𝛼 < 2∕(d𝜆)

 of radius 
√
d

Gradient descent d Any satisfying (A0) 0 < 𝛼 < 2∕𝜆

Block-coordinate descent 1 ≤ � < d Satisfying (11) 0 < 𝛼 < 2�∕(d𝜆)
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 where ∇�i f (�) is a directional derivative of f at � in the �i-th direction. Thus 
there is a convenient interpretation that the gradient is approximated by a map-
ping onto an �-dimensional random subspace embedded in ℝd . In fact, since 
���⊤ = � , ��⊤∇f (�) is centered at ∇f (�) with MSE (1 − �∕d)‖∇f (�)‖2.

In advance of the main results of this section we investigate how well multiplica-
tion by the matrices specified by (10) and (11) preserves the norm of an arbitrary 
vector. Norm invariance has important consequences with respect to the rate of con-
vergence. Of particular interest for our purpose is the lower bound which governs 
the rate of convergence (see Theorem 4 for details). We define a successful embed-
ding in order to quantify the norm invariance.

Definition 1 (Successful isometric embedding) An embedding � is deemed to be 
successful if for some � ∈ (0, 1) and some � ∈ ℝd , ���⊤���2 ≥ (1 − 𝜖)‖�‖2.

The following Lemma provides the probability of successful embedding when 
the matrix � is Haar-distributed.

Lemma 1 (Approximately isometric embedding using Haar-distributed matrices) 
Fix � ∈ (0, 1) , a positive integer � ≤ d , and consider a matrix � drawn according to 
(10). Then for any fixed vector � ∈ ℝd , the probability of a successful embedding, � , 
is given by

(12)∇f (�) ≈ ��⊤∇f (�) =

⎛
⎜⎜⎝

�∇�1 f (�)

⋮

�∇�𝓁 f (�)

⎞
⎟⎟⎠
,

d

�

Fig. 1  Contour plots for probability of successful embedding for various values of � , d, and � . Each of 
the figures share the same horizontal and vertical range. Left: � = 0.01 . Center: � = 0.1 . Right: � = 0.2
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where Ip(�, �) is the regularized incomplete Beta function, and 
X ∼ Beta(�∕2, (d − �)∕2).

For fixed d one can simply use Lemma 1 to determine values of � and � 
required to achieve the desired probability of successful embedding. For a fixed 
d, an increase in � or � corresponds to an increase in � . For � = d , we can take 
� = 0 and I1(�, �) = 0 so � = 1 , meaning we always have a perfect isometric 
embedding. Figure 1 provides examples of the probability of success for various 
values of � , d, and � . It is plain to see the similarity between the left hand-side 
of Lemma 1 and the lower tail of the Johnson–Lindenstrauss (JL) lemma when it 
is applied to a single point. Indeed, a connection of the JL lemma with the Beta 
distribution is discussed in [26]. Our bound differs in two ways: first, in [26] they 
provide asymptotic results as d → ∞ whereas our results are valid for all d with 
the d-dependence explicit; second, [26] provide a closed-form approximate bound 
while we provide an exact functional form. For finite dimensions, our result is 
stronger.

A well-known property of the matrices (10) is that �⊤ is spherically symmetric. 
That is �⊤� has the same distribution as �⊤ for any orthogonal matrix � . Conse-
quently, the quality of the embedding does not depend on the vector � ∈ ℝd . Nat-
urally, the coordinate descent matrices given by (11) do not share this orthogonal 
invariance; indeed, speaking of the ability of such matrices to preserve pairwise dis-
tances, Achlioptas [2] says “A naive, perhaps, attempt at constructing JL-embed-
dings would be to pick � of the original coordinates in d-dimensional space as the 
new coordinates. Naturally, as two points can be very far apart while only differing 
along a single dimension, this approach is doomed”. Remark 1 provides intuition for 
the reason randomized block-coordinate descent cannot be close to norm preserving 
for arbitrary directions.

Remark 1 (Coordinate sampling is rarely an isometry) Let � ∈ ℝd be a standard 
basis vector and � ∈ ℝd×� be a coordinate descent sampling matrix satisfying (11). 
Then, ‖‖�⊤�‖‖ ∈ {0, 1} , and

Thus,

Since exactly � entries of ��⊤ are 1, the probability that any non-zero entry cor-
responds to a non-zero entry of � is �∕d.

Remark 1 shows that in the worst case (that is, if the vector � is axis-aligned 
with concentration along a single coordinate), there is no approximate norm-preser-
vation: it is either exact with probability �∕d or not-at-all with probability 1 − �∕d . 
This compares very unfavorably to the results of Lemma 1, cf. Fig. 1.

� = 1 − I(1−�)�∕d(�∕2, (d − �)∕2) = ℙ(X ≥ (1 − �)�∕d),

ℙ(‖√�∕d �⊤�‖2 = 1) = �∕d and ℙ(‖√�∕d �⊤�‖2 = 0) = 1 − �∕d.

�‖�⊤�‖2 = 1 and �ar‖�⊤�‖2 = d∕� − 1.
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To summarize, the structure of the objective function plays a role in the quality 
of a coordinate descent mapping, and in the worst-case the mapping using (11) is 
useless with probability 1 − �∕d . In contrast, using Haar matrices guarantees that 
irrespective of the structure of the function a successful embedding is obtained with 
probability according to Lemma 1. Though this probability depends on dimension, it 
is not very sensitive to an increase in d, as illustrated in Fig. 1.

Due to the strong dependence on the dimension for randomized coordinate 
descent, the analysis in the remainder of this section is not appropriate for matrices 
of type (11). Thus, we consider only Haar distributed random matrices. It should be 
noted that there are special classes of functions for which the complexity is inde-
pendent of d, as discussed in [39], however in general the dependence on the dimen-
sion can not be removed using coordinate descent methods. We consider first a result 
that is a simple but useful corollary to Theorem 3.1 in [48], later proved in [4]

Remark 2 Let B ∼ Bin(k, �) . Then for all t > 0 and � ∈ (0, 1)

with

Remark 2 provides an optimal proxy-variance for sub-Gaussianity of Binomial 
random variables. For � = 1∕2 , �2

k
 is defined as k/4 so that �k is continuous in � ; 

also note that for any k, lim�↗1 �
2
k
= 0 which agrees with the fact ℙ(B ≠ k) = 0 

in the case � = 1 (which occurs when � = d ). We use the result of Remark 2 to 
provide sharp bounds for the performance of our algorithm. First we state a result 
showing that the success of each embedding is independent so that the number 
of successful embeddings can be treated as a binomial random variable, which in 
turn allows for an application of Remark 2.

Remark 3 Let Ak(�k) =

{‖‖‖�⊤
k
�k
‖‖‖
2

≤ (1 − 𝜖)‖‖�k‖‖2
}

 and �k be independent of �k for 

all k with �k drawn according to (10). Then (Ak(�k)) is an independent sequence of 
events.

The remark is proved by iteratively conditioning on the available information 
and recognizing that spherical symmetry implies Ak is identically distributed for 
any �k that is fixed or independent of �k , and can be found in the Appendix. Using 
Lemma 1 and Remark 2 in conjunction with Remark 3 results in the following 
probabilistic rate of convergence,

Theorem  4 (Probabilistic rate of convergence. Strongly-convex case) Assume 
(A1), (A2), (A3’) and let �0 be an arbitrary initialization. Apply recursion (2) with 

ℙ(B > k𝛿 + t) ≤ exp
(
−t2∕(2𝜎2

k
)
)

and ℙ(B < k𝛿 − t) ≤ exp
(
−t2∕(2𝜎2

k
)
)

(13)�2
k
=

{
k(1−2�)

2 log((1−�)∕�)
� ∈ (0, 1) ⧵ {1∕2}

1∕4, � = 1∕2.
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step-size � = �∕(d�) and �k drawn according to (10), with � sufficiently large to 
achieve the desired � and � according to Lemma 1. Then for any t ∈ (0, �]

where �2
k
 is defined by (13) and,

Theorem  4 provides an exponential decay (in k) for the probability that any 
single run of the algorithm converges more slowly than the average performance 
guaranteed by Corollary 1(ii). Similar results can be derived for the convex case 
combining the methodology of Theorem 4 with Theorem 2. We note the interplay 
between parameters �, t and � , all of which affect � : we can trade off � → 0 by 
decreasing � ; both � and � affect � , but due to their complicated relationship, it is 
not easy to optimize � with respect to these parameters. We can also take t → � 
to get a conservative bound (high probability but worse rate � ), or t → 0 to get an 
aggressive bound (lower probability but better rate � ). Since the probability con-
centrates quickly with the number of iterations k, for large iterations, one can take 
t ∝ 1∕

√
k and have both good control over the failure probability, exp(O(−k)) , 

while still having a good convergence rate.
Again, Theorem 4 agrees with the standard deterministic result (discussed after 

Corollary 1) when � = d , since then � = 0 , � = 1 and �2
k
= 0 for any t > 0 , so the 

rate � is arbitrarily close to 1 − �

�
 , which is the rate from Corollary 1(ii).

3  Experimental results

In this section we provide results for a synthetic problem, a problem from the 
machine learning literature, and a PDE-constrained shape-optimization problem.

In the synthetic and machine learning problems we compare to randomized block-
coordinate descent. For the shape-optimization problem we compare to Gaussian 
smoothing and finite-difference gradient descent. In each of the examples we make 
use of a deterministic backtracking line search with Armijo conditions. Analysis of 
algorithms with inexact gradient estimates using a stochastic line search is a topic 
that has received considerable attention recently, but which we do not address here. 
In particular, [7, 56] describe a stochastic variant of an Armijo backtracking line 
search that can be adapted to our method to provide sharper convergence analysis. 
Their work does not directly apply to all of our settings without modification, but in 
the strongly-convex case the application is clear.

ℙ
(
fe(�k) ≥ �kfe(�0)

)
≤ exp(−(kt)2∕2�2

k
),

� =

(
1 − (1 − �)

��

d�

)�−t

.
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3.1  Synthetic data

We begin with a simulated example using what Nesterov dubs “the worst function in 
the world” [52]. Fix a Lipschitz constant 𝜆 > 0 and let

where xi represents the ith coordinate of � and r < d is a constant integer that defines 
the intrinsic dimension of the problem. This function is convex and continuously 
differentiable with global minimum f∗ = −�r∕8(r + 1) , so Theorem 2 applies. This 
example illustrates the consequences of the dimension dependence in Remark 1, 
as well as the dimension independence of Lemma 1 in the context of optimization 
using recursion (2). Figure 2 highlights the performance of three algorithms: finite-
difference gradient descent, SSD using (11) (hereafter, SSD-CD), and SSD using 
(10) (hereafter, SSD-Haar); all algorithms start at � = 0 . We show each with the 
fixed step-size � = �∕(d�) suggested by the theorem, as well as an adaptive step-
size using a backtracking linesearch with the Armijo conditions. We keep � = 3 and 
r = 20 fixed and provide results for d = 100 , d = 1000 , d = 10,000 . For the SSD 
cases we run each 500 times and display the performance of the 10th and 90th percen-
tile (shaded region) as well as the mean performance.

Clearly both gradient descent and randomized block-coordinate descent depend 
strongly on the ambient dimension of the problem, even when a linesearch is used. 
Functions from this family are a worst case for both of these algorithms as only the 
first r dimensions have a non-zero gradient. Thus, in the case d = 10,000 , gradient 

(14)f�,r(�) = �((x2
1
+

r−1∑
i=1

(
xi − xi+1

)2
+ x2

r
)∕2 − x1)∕4,

Fig. 2  Minimizing a function from the family (14) with r = 20, � = 8 . CD represents randomized block-
coordinate descent. In several of the subfigures gradient descent overlaps randomized block-coordinate 
descent. The shaded regions in the SSD cases represent the interval between best 10th and 90th percen-
tile performance after 1000 runs. The vertical-axis is the relative error: (f (�k) − f∗)∕f∗ . Left: d = 100 . 
Center: d = 1000 . Right: d = 10,000 . Top: Step-size chosen by a backtracking linesearch with Armijo 
conditions. Bottom: Fixed step-size
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descent must perform 10,000 function evaluations at every iteration when only 
r = 20 dimensions are important. Similarly, randomized coordinate descent has only 
a 20/10,000 chance of descending at all, so as predicted in the discussion of Remark 
1, we see many iterations of coordinate descent with no improvement. The line-
search makes coordinate descent slower relative to gradient descent for this exam-
ple because every iteration for which a pertinent coordinate is not selected requires 
several function evaluations to perform the linesearch. Regarding SSD-Haar, using 
a linesearch dramatically impacts performance by allowing for invariance to ambi-
ent dimension as suggested by Lemma 1. Without linesearch, as expected by Theo-
rem 2, the performance can be no better than that of gradient descent. As previously 
noted, the function has low intrinsic dimension; the performance on this problem 
suggests that the bound in Lemma 1 (and in turn, of Theorems 1 and 2) can be 
sharpened by accounting for this structure and we consider this a promising avenue 
for future research.

3.2  Parameter estimation for sparse Gaussian processes

We test the efficacy of SSD-Haar against SSD-CD in the context of hyperparameter 
estimation for sparse Gaussian processes used in regression. The goal is inference on 
a function T ∶ ℝd → ℝ based on noisy observations at m points �1,… , �m . We use a 
zero-mean Gaussian process with covariance function ℂov(T(�i), T(�j)) = K(�i, �j;�) 
and model the m observations as yi = T(�i) + �i , where K(⋅ , ⋅ ;�) is a symmetric 
positive-definite kernel with parameters � . The process T is assumed to be inde-
pendent of the noise vector (𝜖1,… , 𝜖m)

⊤ ∼ N(�, 𝜎2�) with unknown variance �2 . 
We denote the covariance of the vector � = (T(�1),… , T(�m))

⊤ as �� = �ar(�) , 
where (��)ij = K(�i, �j;�) . Maximum likelihood estimates of the parameters 
� = [�, �2] are obtained by maximizing the log-marginal likelihood of observations 
� = (y1,… , ym)

⊤ with density p� [69]: �(�;�) = log p�(�;�) . When the number of 
observations is large the cost of this maximization is O(m3) due to the inversion 
and determinant calculations in �(�;�) . We use the method described in [66] to 
approximate the likelihood. The basic idea is as follows: choose a p < m and define 
a set of inducing points �̃1,… , �̃p ∈ ℝd different from the original �1,… , �m , and let 
�� = (T(��1),… , T(��p))

⊤ . We obtain a lower bound for the loglikelihood [66]:

Here �̃  is the loglikelihood of the multivariate Gaussian N(�, �̂�) , where 
�̂� = �� − 𝕍ar(� ∣ �̃) = ℂov(�, �̃)�−1

�̃
ℂov(�̃,�) is the the Nyström approxima-

tion of �� introduced in [70]. Gradient-based methods are used to simultaneously 
find an optimal placement of the p inducing points and the best hyperparameter set-
tings by maximizing the lower bound in (15), which we re-state as a function of 
� = [̃�1,… , �̃p,�] to be consistent with notation in previous sections:

(15)�(�;�) ≥ f (̃�1,… �̃m,�) = �̃(�;�) − tr(�ar(� ∣ �̃))∕2�2.

(16)f (�) = �̃(�;�) − tr(�ar(� ∣ �̃))∕2�2.
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Practically speaking, the optimization problem is (pd + |�| + 1)-dimensional: pd for 
p inducing points in ℝd , |�| for the kernel hyperparmeters, and 1 for the unknown 
noise variance. By moving to this high-dimensional optimization problem the time 
complexity is reduced to O(mp2) and the storage costs to O(mp).

For example, we model a noisy version of the function described by (14) with � = 1 
and r = d using a Gaussian process in the framework of [66] with a squared-expo-
nential kernel that has two unknown parameters. Between the inducing points, the 
parameters of the kernel, and the unknown noise, there are 153,  503,  2003 parame-
ters to be estimated for cases (d = 3, p = 50), (d = 10, p = 50) , (d = 20, p = 100) 
respectively. We report the objective function, which is (16) up to an irrelevant con-
stant. We terminate the algorithm after 500 function evaluations. Thus, since the 
second and third experiments have 503, and 2003 parameters respectively, gradient 
descent would not have the opportunity for even one iteration. As such, for all three 
experiments we only compare SSD-Haar to SSD-CD (Fig. 3).

The objective function of this problem is non-convex despite the underlying func-
tion T being convex. The interpretation of coordinate descent is interesting as each 
coordinate in parameter space either corresponds to one of the hyperparameters of 
the kernel, to the noise, or to the placement of one of the inducing points along 
one dimension. Since r = d , the latent function has no low-dimensional structure 
and movements in any direction in input space correspond to a changing function 

Fig. 3  Approximating a function from the family (14) with a sparse Gaussian process where the hyper-
parameters have been estimated by minimizing (16) and r = d, � = 1 . CD represents randomized block-
coordinate descent. Step-size in all cases is chosen by a backtracking linesearch with Armijo conditions. 
Left: d = 3, p = 50 , total parameters = 153. Center: d = 10, p = 50 , total parameters = 503. Right: 
d = 20, p = 100 , total parameters = 2003

Fig. 4  Left: 30-dimensional problem. Right: 60-dimensional problem. M
�
 is the number of function 

evaluations required to attain a cut-off threshold for various values of � . For a fixed initialization BFGS 
is non-random, represented by the vertical line. Gradient descent, not pictured, has a vertical line at 
� = 2850 and � = 22828 for p = 30 and p = 60 , respectively. � = 1 is equivalent to the method proposed 
in [53] when h = 0
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evaluation. Once again coordinate descent does not scale well with the dimension. 
This behavior is to be expected: changing the location of particular inducing points 
along the correct axis has a large improvement on the objective, but if the wrong 
point is chosen, or the correct point but wrong axis, then little improvement is made 
(though as we see from the inset, there is slight improvement at each iteration). In 
contrast, SSD-Haar changes all inducing points in tandem so it descends more rap-
idly and consistently, particularly in high-dimensional problems. We notice that as 
before SSD-Haar remains robust to changes in the ambient dimension of the param-
eter space, though we do see a slight degradation of performance with increased 
dimension.

We use performance profiles [19] to determine the effect of varying � for dif-
ferent problem sizes and to gauge the variability between runs for a fixed � . A per-
formance profile is conducted by running each parameterization on a suite of rand-
omized restarts, with termination after some pre-specified tolerance for accuracy has 
been reached. We count the proportion of realizations from each parameterization 
that achieves the specified tolerance within � function evaluations where � = 1 is the 
fewest function evaluations required in any of the trials, � = 2 is twice as many func-
tion evaluations, etc. Each parameterization is run 300 times. Results for SSD-Haar 
are shown in Fig. 4 for 30- and 60- dimensional objective functions.

The cut-off threshold is 95% of the distance between the objective function at the 
parameter initialization and at the optima, as found by BFGS. Clearly, � = 18 is not 
a good option in this case. Similarly, � = 9 can be ruled as it underperforms � = 1 
and � = 3 approximately 90% (resp. 99%) of the time in the 30- (resp. 60-) dimen-
sional problem. The case � = 1 has the best single performance: in the fastest trial 
it is roughly 100 (resp. 800) times faster than BFGS for the 30- (resp. 60-) dimen-
sional problem, but the variance of the performance for � = 1 is high, and about 1% 
of the time it performs at least 10 times slower than BFGS (not pictured). On the 
other hand, � = 3 beats BFGS by a similar factor and seems to be insulated from the 
high variance observed for � = 1 . Note also that in 60 dimensions � = 3 is approxi-
mately three times faster than BFGS in 90% of the trials, and about 100 times faster 

θ
r

σ0

σ0

x

y

Fig. 5  Left: Schematic of the linear elasticity problem used in the shape optimization example of 
Sect. 3.3. Right: Conforming finite element mesh used to solve for maximum stress �y along the y direc-
tion. Only a quarter of the plate corresponding to � ∈ [0,�∕2] is modeled
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in 40% of trials. A few trials of � = 1 and � = 3 found their way to a local minima, 
resulting in the methods not achieving the target threshold.

3.3  Shape optimization

We consider a shape optimization problem involving a linear, elastic structure. Con-
sider a square plate of size 250 × 250 with a hole, subject to uniform boundary trac-
tion �0=1, as illustrated in Fig. 5. We adopt a discretize-then-optimize approach to 
solving the PDE-constrained optimization problem. The discretization and optimiza-
tion steps do not generally commute and an optimize-then-discretize approach may 
be preferable for some types of problems [32, §2.9], but we do not pursue this ques-
tion here.

Our goal is to identify a shape of the hole that minimizes the maximum stress �y 
along the y direction over a quarter of the plate corresponding to � ∈ [0,�∕2] . To 
this end, we parameterize the radius of the hole for a given � (see Fig. 5) via

where � ∈ (0, 0.5∕
∑p

i=1
i−1∕2) is a user-defined parameter controlling the poten-

tial deviation from an n-gon of radius 1. The parameters that dictate the shape are 
� ∈ ℝp and � ∈ ℝp so that the parameter space is dimension d = 2p . Subscripts indi-
cate the index of the vector. We set � = 0.4∕

∑p

i=1
i−1∕2 so that the minimum possible 

radius of any particular control point is 0.2 at the initialization. We initialize the 
entries of � and � uniformly at random between − 1 and 1. For each instance of � 
and �—equivalently r(�)—we generate a conforming triangular finite element mesh 
of the plate that we subsequently use within the FEniCS package [46] to solve for 
the maximum stress �y . A mesh refinement study is performed to ensure the spa-
tial discretization errors are negligible. As we only model a quarter of the plate, we 
apply symmetry boundary conditions so that y and x displacements along � = 0 and 
� = �∕2 are zero. The Young’s modulus and Poisson’s ratio of the plate material 
are set to E = 1000 and � = 0.3 , respectively. A similar problem has been examined 
in [18] using a bi-fidelity variant of the popular SVRG algorithm [41]. Due to the 

(17)r(�) = 1 + �

p∑
i=1

i−1∕2
(
�i sin(i�) + �i cos(i�)

)
,

Fig. 6  Three runs for optimization of the objective for a hole with shape parameterized by (17) with 
p = 50 (100 dimensions). Each restart represents an initialization of the parameters uniformly at random 
in (−1, 1)
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different focus of that work, the investigation of [18] is conducted in a low-dimen-
sional setting with d = 6 rather than d = 100 as in our case.

The parametric radius defined by (17) enables us to scale the complexity of the 
problem arbitrarily by increasing the dimension d. In effect, if d is large then the 
problem becomes ill-conditioned since �p and �p each make at most �p−1∕2 addi-
tive contribution to the radius. Such ill-posedness suggests that gradient descent 
ought to perform poorly as it does not account for the curvature of the objective 
function. Based upon the intrinsic dimensionality results presented in Sect.  3.1 
we anticipate SSD to outperform gradient descent even though it does not explic-
itly account for the curvature either. Note that each function evaluation requires a 
PDE-solve meaning that gradient descent requires d + 1 PDE-solves per iteration. 
Though a conforming finite element mesh is used to reduce the computational 
burden, the cost of so many PDE-solves makes this problem intractable in high-
dimensions unless the resolution of the mesh is very low. On the other hand, SSD 
requires far fewer PDE-solves per iteration provided � ≪ d . As mentioned above, 
the goal is to minimize the maximum stress in the y-direction, �y , over the plate. 
We make two slight changes to this objective for the sake of the model. First, the 
stress is obviously minimized if the radius of the hole is zero so we add a term 
to the objective to penalize deviations from an area of 1 squared unit; even with 
the regularizer the objective function is still non-convex. Second, the max func-
tion is not smooth, so it does not fit into the framework of our theory; instead, 
we minimize the �p-norm of the stress with p = 100 , which provides an almost 
indistinguishable result.

In Fig.  6 we minimize the objective for a hole with shape governed by (17) 
for problems with p = 50 (that is, d = 100 parameters), using gradient descent 
and Gaussian smoothing, as well as SSD with � = 5 and � = 15 . In each case, an 
Armijo backtracking linesearch is used.

In all three randomized restarts finite-difference gradient descent performs poorly 
relative to the stochastic optimizers. The early iterations are particularly good for 
the stochastic optimizers. We hypothesize that as the �-dimensional subspace along 
which SSD and Gaussian smoothing descends changes with each iteration, param-
eter space is explored more thoroughly than deterministic methods, making these 
subspace methods less likely to get funnelled into long, shallow basins; this is intui-
tively similar to the recent line of research suggesting that noisy perturbation of iter-
ative algorithms helps avoid saddle points [28]. Alternative perspectives hold that 
subspace methods are cheap on a per-iteration basis so temporarily being caught in 
a shallow basin is not as expensive in terms of function evaluations. Conversely, 
a subspace comprised of a single directional derivative (as in Gaussian smooth-
ing) will have a large variance, causing erratic movements through parameter space 
whenever the gradient is poorly approximated. Figure 6 corroborates the evidence 
provided in Fig. 4 that choosing � greather than 1 but less than d can be beneficial in 
terms of rate of convergence.

It is unclear how to choose an optimal � . Intuition and empirical evidence sug-
gests that a good choice of � depends on all of the eigenvalues of f, not just on the 
condition number. In particular, we observe that a rapidly decaying eigenspectrum 
(as in this problem, and to a larger extent the synthetic data problem described in 
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Sect. 3.1) allows for � to be chosen small compared to d. In contrast, with a slow-
decaying eigenspectrum choosing � small seems to provide relatively less improve-
ment (these experiments are not shown). In none of our experiments does � ≪ d 
yield worse results compared to gradient descent when a linesearch is used, suggest-
ing that choosing � ≪ d may be beneficial with little risk of performing worse. Fur-
ther analysis must be conducted to verify this assertion. An interesting alternative 
to choosing a fixed � is to change � as the algorithm progresses in an attempt deter-
mine, locally, the appropriate dimension of the subspace used for descent. Further 
experimentation and analysis would be required to ascertain the benefits of such an 
adaptive �.

4  Conclusions

We present analysis of an algorithm that generalizes Gaussian smoothing to descend 
in a randomly chosen subspace and have provided evidence that this generalization 
is appropriate for high-dimensional objective functions. We give asymptotic and 
non-asymptotic results of convergence under a variety of convexity assumptions. We 
provide tools that are useful beyond the context of this work, such as an interpre-
tation of the Johnson–Lindenstrauss lemma that takes advantage of finite ambient 
dimension d. We demonstrate empirical improvements compared to the status quo 
for several practical problems, and show that the empirical performance can be good 
even when the assumptions required by the theory are relaxed.

The most obvious extension of this work is a generalization to the case of derivative-
free optimization. With directional derivatives unavailable, finite-difference approx-
imations of the derivatives must be employed adding a non-cancelling error at each 
iteration. Preliminary experiments show that this does not noticeably impede the con-
vergence if h, the finite-difference stepsize is sufficiently small.

Thus far, analysis has only been performed for a fixed step-size, but we have shown 
that an adaptive step-size is required for good practical performance. Recent work in 
this direction [7, 13] provides promising results that may readily extend to our case. 
Alternatively, our analysis may be more amenable to trust region methods as in [47]

It would be interesting to adapt stochastic optimization algorithms that subsample 
the observations, as for example in ERM, to the stochastic subspace descent frame-
work. Such sampling would necessitate examination into the effect that noisy function 
evaluations have on the convergence results. A computationally straightforward exten-
sion may allow sketching methods (see e.g. [59]) to improve our results with minimal 
programming overhead, but analysis must be conducted to confirm the theoretical 
properties of such modifications. An adaptive scheme that makes use of observed cur-
vature information could be beneficial for determining the descent directions, an idea 
that has been discussed at length in the coordinate descent literature [51, 61]. Parallel-
izing our methods to calculate the � directional derivatives at each iteration simultane-
ously is straightforward, but we would like to explore the feasibility of asynchronous 
parallelization as has been discussed in the coordinate descent case (see, e.g., [57]). 
Faster convergence using derivative-free quasi-Newton methods as in [5] are an obvi-
ous extension of this work. Finally, recent work on a universal “catalyst” scheme [45] 
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also applies to our method, allowing for Nesterov-style acceleration without requiring 
additional knowledge of the Lipschitz constants along any particular direction.

Proofs of main results

Theorem 1

Because f is continuously-differentiable with a �-Lipschitz derivative it follows that

Let fe(�) = f (�) − f∗ be the error for a particular � . Then, (2) and (18) yield:

where we have used the fact that �k�
⊤
k
�k�

⊤
k
= (d∕�)�k�

⊤
k
 . Any choice 

0 < 𝛼 < 2�∕(d𝜆) ensures 𝛼𝜆 > 0 . With this choice the right hand-side is non-pos-
itive and the errors are non-increasing. Since the error is bounded below by zero 
the sequence converges almost surely. Furthermore, since the sequence is bounded 
above by fe(�0) , Lebesgue’s dominated convergence implies convergence of the 
sequence in L1 . To find the actual limit, define the filtration (i.e., increasing sequence 
of �-algebras) Fk = 𝜎(�1,… ,�k−1), k > 1 , and F1 = {�,�} . We take conditional 
expectations of both sides to get

which leads to

and since 𝛼𝜆 > 0 , the PL-inequality yields

from which we conclude that

Thus, since fe(�k)
a.s.
⟶ � for some � ∈ L1 and fe(�k)

L1

⟶ 0 , we have both f (�k)
a.s.
⟶ f∗ 

and f (�k)
L1

⟶ f∗.

(18)f (�k+1) ≤ f (�k) + ∇f (�k)
⊤(�k+1 − �k) +

𝜆

2
‖‖�k+1 − �k

‖‖2.

(19)
fe(�k+1) − fe(�k) ≤ −𝛼𝜆⟨∇f (�k), �k�

⊤
k
∇f (�k)⟩ with 𝛼𝜆 = 𝛼 − d𝛼2𝜆∕(2�),

�[fe(�k+1) ∣ Fk] ≤ −𝛼𝜆�[⟨∇f (�k),�k�
⊤
k
∇f (�k)⟩ ∣ Fk] + fe(�k),

(20)�
(
fe(�k+1) ∣ Fk

)
≤ −��

‖‖∇f (�k)‖‖2 + fe(�k),

�
(
fe(�k+1) ∣ Fk

)
≤ −2���fe(�k) + fe(�k) =

(
1 − 2���

)
fe(�k),

�f (�k+1) − f∗ ≤
(
1 − 2���

)k+1(
f (�0) − f∗

)
.
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Corollary 1(i)

By strong-convexity, the PL-inequality, and Theorem 1 we obtain f (�k)
a.s.
⟶ f (�∗) 

and f (�k) − f (�∗) ≥
�

2
‖‖�∗ − �k

‖‖ . Since the left-hand side converges a.s. to zero and 
𝛾 > 0 , we have �k

a.s.
⟶ �∗.

Corollary 1(ii)

Rearranging the terms in Eq. (20) we have 
−�−1

�
�
(
fe(�k) − fe(�k+1) ∣ Fk

)
≥ ‖‖∇f (�k)‖‖2 . Combining this with Lipschitz continu-

ity yields 2�fe(�k) ≤ ‖‖∇f (�k)‖‖2 ≤ −�−1
�
�
(
fe(�k) − fe(�k+1) ∣ Fk

)
.

That is,

Choosing �� = �∕(d�) results in �fe(�k+1) ≤ (1 − ��∕(d�))k+1fe(�0)   ◻

Theorem 2

We follow the proof of Theorem 1 until (20), then we rearrange terms to obtain,

and then by convexity and the Cauch-Schwarz inequality, ‖‖∇f (�k)‖‖ ≥ fe(�k)∕R . 
Plugging this into Eq. (22) and letting � = �∕(d�) results in

and one more expectation yields

since � ≥ 0 and �fe(�k+1) ≤ �fe(�k) . Dividing by �fe(�k) ⋅ �fe(�k+1) gives

Applying (24) recursively, and replacing � with �∕(d�) we obtain 
�fe(�k+1) ≤ 2d�R2∕k�.

Theorem 3

Beginning from (20) we set �� = �∕(d�) and rearrange terms to get

(21)�
(
fe(�k+1) ∣ Fk

)
≤
(
1 − 2���

)
fe(�k).

(22)�
(
f (�k+1) ∣ Fk

)
≤ f (�k) − ��

‖‖∇f (�k)‖‖2,

(23)�[fe(�k+1) ∣ Fk] − fe(�k) ≤ −�fe(�k)
2∕2R2,

�[fe(�k+1) − fe(�k)] ≤ −��fe(�k)
2∕2R2 ≤ −�

(
�fe(�k)

)2
∕2R2

≤ −��fe(�k) ⋅ �fe(�k+1)∕(2R
2)

(24)
1

�fe(�k+1)
≥

1

�fe(�k)
+

�

2R2
.
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which leads to

Recognizing that a sum of k + 1 values is bounded below by k + 1 replicates of its 
minimum yields

Divide both sides by k + 1 to get the result. Now, define some tolerance � such that

Then,

That is, k = O(d∕��) iterations are sufficient to achieve �‖‖∇f (�k)‖‖ ≤ �.

Lemma 1

Let � ∈ ℝd×d be a Haar-distributed random matrix, � ∈ ℝd an arbitrary fixed vector, 
and � ∼ N(�, �d) . Then �⊤�∕‖�‖ and �∕‖�‖ are both distributed uniformly on the 
d-dimensional sphere. Let �

�×d ∈ ℝ�×d represent a mapping onto the first � coordi-
nates. Then,

and

For independent random variables X ∼ �2(�) and Y ∼ �2(�) , 
Z = X∕(X + Y) ∼ Beta(�∕2, �∕2) . Thus,

By construction, �k

d
=
√
d∕� �

�×d� , so

�∕(2d�)‖‖∇f (�k)‖‖2 ≤ f (�k) − �(f (�k+1) ∣ Fk),

�∕(2d�)

k∑
i=0

�‖‖∇f (�k)‖‖2 ≤
k∑

i=0

�(f (�i) − f (�i+1)) = f (�0) − �f (�k+1) ≤ f (�0) − f∗.

(k + 1) min
i∈{0,…,k}

�‖‖∇f (�k)‖‖2 ≤
2d�(f (�0) − f∗)

�
.

2d�(f (�0) − f∗)

(k + 1)�
≤ �.

k ≥
2d�(f (�0) − f∗)

��
− 1.

‖‖��×d�‖‖2 =
(
u2
1
+…+ u2

�

)
∼ �2(�),

‖�‖2 = u2
1
+…+ u2

�
+ u2

�+1
+…+ u2

d
∼ �2(d).

����×d�⊤���2
‖�‖2 =

������×d�
⊤ �

‖�‖
����
2

d
=
������×d

�

‖�‖
����
2

=
����×d���2
‖�‖2 ∼ Beta(�∕2, (d − �)∕2).
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The Beta CDF is calculated by evaluating the regularized incomplete Beta function. 
That is, if X ∼ Beta(�, �) then FX(p) = Ip(�, �) . Thus, the probability

provides a probability of a successful embedding.

Remark 3

We show that for any k1 < ⋯ < km the sets Ak1
,… ,Akm

 are mutually independent. 
Let �A denote the indicator function of a set A. Define the filtration (i.e., increasing 
sequence of �-algebras) Fk = 𝜎(�1,… ,�k−1), k > 1 , and F1 = {�,�} and note that 
Ak is Fk−1−measurable. Then by the chain rule of probability and the fact that the 
(�k) are iid,

Theorem 4

Beginning from (19) we choose an � determined by Lemma 1 such that with prob-
ability �,

By (A3’) the function is �-strongly-convex, so,

Define the Bernoulli random variable Wk ∼ Bern(�) such that Wk = 1 , occurring 
with probability � , constitutes a successful embedding on the kth iteration. We can 
re-write (26) as

ℙ

�����
⊤
k
�
���
2

≤ (1 − 𝜖)‖�‖2
�

= ℙ

�������×d�
⊤ �

‖�‖
����
2

≤
�

d
(1 − 𝜖)

�
.

ℙ

�������×d�
⊤ �

‖�‖
����
2

≥
�

d
(1 − 𝜖)

�
= 1 − I(1−𝜖)�∕d(�∕2, (d − �)∕2)

ℙ(Ak1
∩⋯ ∩ Akm

) = 𝔼[𝟙Ak1

⋯ 𝟙Akm−1
]ℙ(Akm

∣ Fkm−1
)

= 𝔼[𝟙Ak1

⋯ 𝟙Akm−2
]ℙ(Akm−1

∣ Fkm−2
)ℙ(Akm

∣ Fkm−1
)

⋮

= ℙ(Ak1
∣ Fk0

)⋯ℙ(Akm
∣ Fkm−1

)

= ℙ(Ak1
)⋯ℙ(Akm

).

(25)fe(�k) ≤ fe(�k−1) − (1 − �)��
‖‖∇f (�k−1)‖‖2.

(26)fe(�k) ≤

(
1 − (1 − �)

��

d�

)
fe(�k−1) with probability �.

(27)fe(�k) ≤
(
1 −Wk(1 − �)

)
fe(�k−1),
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where � = 1 − (1 − �)��∕(d�) . If the embedding is a failure, we use the trivial 
bound ‖‖‖�⊤

k
∇f (�k)

‖‖‖
2

≥ 0 . Consider a random variable Uk = 1 −Wk(1 − �) , then (27) 
is

Note that log(Uk) = Yk log� for Yk ∼ Bernoulli(�) . Let B ∼ Bin(k, �) , then, for 
t� ∈ (0, k�]

Thus, for t� ∈ (0, k�] we obtain a probabilistic lower bound on the improvement 
using Remark 2,

where �2
k
= k(1 − 2�)∕(2 log((1 − �)∕�)) . Now,

which implies that for t� ∈ (0, k�],

Define t = (t�∕k) ∈ (0, �] and the result follows.
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