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Abstract

This paper presents a new modeling strategy for joint unsupervised analysis of
multiple high-throughput biological studies. As in Multi-study Factor Analysis, our
goals are to identify both common factors shared across studies and study-specific
factors. Our approach is motivated by the growing body of high-throughput studies
in biomedical research, as exemplified by the comprehensive set of expression data
on breast tumors considered in our case study. To handle high-dimensional studies,
we extend Multi-study Factor Analysis using a Bayesian approach that imposes spar-
sity. Specifically, we generalize the sparse Bayesian infinite factor model to multiple
studies. We also devise novel solutions for the identification of the loading matrices:
we recover the loading matrices of interest ex-post, by adapting the orthogonal Pro-
crustes approach. Computationally, we propose an efficient and fast Gibbs sampling
approach. Through an extensive simulation analysis, we show that the proposed
approach performs very well in a range of different scenarios, and outperforms stan-
dard Factor analysis in all the scenarios identifying replicable signal in unsupervised
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genomic applications. The results of our analysis of breast cancer gene expression
across seven studies identified replicable gene patterns, clearly related to well-known
breast cancer pathways. An R package is implemented and available on GitHub.

Keywords: Dimension Reduction; Factor Analysis; Gene Expression; Gibbs Sampling;
Meta-analysis.
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1 Introduction

High-throughput assays are transforming the study of biology, and are generating a rich,
complex and diverse collection of high-dimensional data sets. Joint analyses combining
data from different studies and technologies are crucial to improve accuracy of conclusions
and to produce generalizable knowledge.

Most measurements from high-throughput experiments display variation arising from
both biological and artifactual sources. Within a study, effects driven by unique issues
with the experimental conditions of a specific laboratory or technology can be so large
to surpass the biological signal for many biological features (Aach et al., 2000). In gene
expression, for example, large systematic differences arising from different laboratories or
technological platforms have been long recognized (Irizarry et al., 2003, Shi et al., 2006,
Kerr, 2007). Systematic collections of gene expression data, collected with technologies that
have evolved over time, are widely available, as exemplified by the breast cancer datasets
that motivate our work, described in Section 2.

A strength of multi-study analyses is that, generally, genuine biological signal is more
likely than spurious signal to be present in multiple studies, particularly when studies
are collected from biologically similar populations. Thus, multi-study analyses offer the
opportunity to learn replicable features shared among multiple studies. Discovering these
features is, broadly speaking, more valuable than discovering signal in a single study. Joint
analyses of multiple genomic datasets have begun more than a decade ago, they are now
increasingly common, and can be highly successful (Rhodes et al., 2002, Huttenhower et al.,
2006, Gao et al., 2014b, Pharoah et al., 2013, Riester et al., 2014, Ciriello et al., 2013).
Many such analyses focus on identifying parameters that relate biological features measured
at high throughput to phenotypes. These effects can be replicable, though signal extraction
across studies can be challenging (Garrett-Mayer et al., 2008).



Trial Version g

Wondershare
PDFelement

An important goal in high-dimensional data analysis is the unsupervised identification
of latent components or factors. Despite the importance of this goal, the development of
formal statistical approaches for unsupervised multi-study analyses is relatively unexplored.

In applications, joint unsupervised analyses of high-throughput biological studies often
proceed by pooling all the data. Despite their success, these studies rely critically on
simplified methods of analysis to capture common signal. For example Wang et al. (2011)
and Edefonti et al. (2012) stack all studies and then perform standard analyses, such as
factor analysis (FA) or Principal Component Analysis (PCA). The results will capture some
common features, but the information about study-specific components will likely be lost,
and ignoring it could compromise the accuracy of the common factors found.

Alternatively, it is also common to analyze each study separately and then heuristically
explore common structures from the results (Hayes et al., 2006). Co-Inertia Analysis (CIA)
(Dray et al., 2003) explores the common structure of two different sets of variables by first
separately performing dimension reduction on each set to estimate factor scores, and then
investigating the correlation between these factors. Multiple Co-Inertia Analysis (MCIA)
is a generalization of CIA to more than two data sets, which projects different studies into
a common hyperspace (Meng et al., 2014). Multiple Factor analysis (MFA) (Abdi et al.,
2013) is an extension of PCA and consists of three steps. The first step applies PCA to
each study. In the second step, each data set is normalized by dividing by the first singular
value of the covariance matrix. In the third step, these normalized data are stacked by row
creating a single data set to which PCA is then applied.

In practice, there is a need to automatically and rigorously model across studies the
common signal that can reliably be identified, while at the same time modeling study-
specific variation. A methodological tool for this task is Multi-Study Factor Analysis
(MSFA), recently introduced in De Vito et al. (2016). Inspired by models used in the social

sciences, MSFA extends FA to the joint analysis of multiple studies, separately estimating
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signal reproducibly shared across multiple studies from study-specific components arising
from artifactual and population-specific sources of variation. This dual goal clearly sets
MSFA aside from earlier applications of FA to gene expression studies, such as Carvalho
et al. (2008), Friguet et al. (2009), Blum et al. (2010), or Runcie and Mukherjee (2013).

The MSFA methodology in De Vito et al. (2016) is limited to settings where enough
samples are available in each study, and no sparsity is expected or necessary. This is because
model parameters are estimated by maximum likelihood (MLE) and model selection is
performed by standard information criteria. In high-throughput biology, the sample size
routinely exceeds the number of variables, and it is essential to employ regularization
through priors or penalties.

In this paper we introduce a Bayesian generalization of Multi-study factor analysis.
Bayesian approaches naturally provide helpful regularization, and offer further advantages,
discussed later. We leverage the sparse Bayesian infinite factor model, and generalize the
multiplicative gamma prior of Bhattacharya and Dunson (2011) to the MSFA setting, to
induce sparsity on each loading matrix. We then sample from the posterior distribution
via MCMC, without any ex-ante constraints on the loading matrices. This avoids the
order dependence induced by the often-used assumption of a lower-triangular form of the
loading matrices (Geweke and Zhou, 1996, Lopes and West, 2004), which was employed
by the original MSFA proposal. Although useful inferences can be obtained with careful
implementation of the constraint, removing it makes the application of FA much simpler
and general. We regard this to be an important advantage of our proposal.

Our prior and parametrization also facilitate inference on the covariance matrices and
precision matrices of the observed variables. These are often important goals. An im-
portant example is inference on gene networks, often implemented by first estimating the
covariance matrix through FA (Zhao et al., 2014, Gao et al., 2016). Through the estimation

of common factors implied by the decomposition of the covariance matrix described in §3.1,
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the approach we propose allows to detect a common network across the studies, and also
to recover the study-specific contributions to gene networks.

The original implementation of the sparse Bayesian infinite factor model Bhattacharya
and Dunson (2011) truncates the dimension of the loading matrices at a fixed value. In
MSFA, this point is even more important, since our model introduces (S + 1) loading
matrices if there are S studies. We suggest a pragmatic approach, where the number of
dimensions is chosen based on a simple eigenvalue decomposition of covariance matrices
obtained as output of the MCMC sampling from the posterior. The specific choice of prior
makes the choice of the dimension less critical than would alternative approaches, as we
discuss later.

A further strength of our proposal is the recovery of the loading matrices, which are
not estimated in Bhattacharya and Dunson (2011). We leverage the recently proposed
Orthogonal Procrustes (OP) method, introduced in ABmann et al. (2016). OP performs an
ex-post recovery of the estimated loadings by processing the MCMC output, after fitting the
model without any restrictions. The method provides a satisfactory solution to the rotation
invariance of FA. Our results show that the good properties of OP can be generalized to
our multiple study setting.

The plan of the paper is as follows. Section 2 describes the data. Section 3 intro-
duces the Bayesian Multi-study factor analysis (BMSFA) framework, describes our prior,
our extension of OP, and our procedure for choosing the number of shared and study-
specific factors. Section 4 presents extensive simulation studies, providing evidence on the
performance of BMSFA and comparing it with standard methods. We also investigate
determining the truncation level for latent factors. Section 5 applies BMSFA to the breast

cancer data described in Section 2. Section 5 contains a discussion.
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2 The Breast Cancer Data sets

Breast cancer is both a clinically diverse and a genetically heterogeneous disease (Perou
et al., 2000, Planey and Gevaert, 2016). The complex nature of breast cancer has been
clarified by classifying breast cancer into subtypes using gene expression measurements from
tumor samples. Reliably identifying these subtypes has the potential of driving personalized
patient treatment regimens (Masuda et al., 2013) and risk prediction models (Parker et al.,
2009). Several groups (Serlie et al., 2001, Sotiriou et al., 2003, Hu et al., 2006, Planey and
Gevaert, 2016) have focused on finding replicable gene expression patterns across different
studies, to better classify breast carcinomas into distinct subtypes.

A very valuable statistical approach is unsupervised clustering using different microar-
rays that query the same set of genes (Perou et al., 2000, Sgrlie et al., 2001, 2003, Castro
et al., 2016). A challenge is to characterize the extent to which variation in gene expression,
and the resulting subtypes, are stable across different studies (Hayes et al., 2006). When
different microarray studies are considered together, one is likely to encounter significant
and unknown sources of study-to-study heterogeneity (Simon et al., 2009, Bernau et al.,
2014). These sources include differences in design, hidden biases, technologies used for
measurements, batch effects, and also variation in the populations studied —for example,
differences in treatment or disease stage and severity. Quantifying these heterogeneities
and dissecting their impact on the replicability of patterns is essential.

A typical bioinformatics analysis pipeline would attempt to remove variation attributable
to experimental artifacts before further analysis. If information on batches of other relevant
experimental factors is available, their effects can be addressed (Draghici et al., 2007). For
example, Sgrlie et al. (2001) use the SAM (significance analysis of microarrays) algorithm
to detect genes not influenced by batch effect, and then use this set of genes to perform un-

supervised cluster analysis. In general, it is challenging to fully remove artifactual effects,
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Study Adjuvant Therapy N  N: ER+ 3Q survival Reference

CAL Chemo, hormonal 118 75 42 Chin et al. (2006)
MAINZ none 200 162 120 Schmidt et al. (2008)
MSK combination 99 57 76 Minn et al. (2005)
EXPO hormonal 517 325 126 Symmans et al. (2010)
TRANSBIG none 198 134 143 Desmedt et al. (2007)
UNT none 133 86 151 Sotiriou et al. (2006)
VDX none 344 209 44 Minn et al. (2007)

Table 1: The seven data sets considered in the illustration and their characteristics. N is
the total number of samples; N: ER+ is the number of Estrogen Receptor positive patients.

3Q) survival is the third quartile of the survival function for all patients in the study.

particularly if they are related to unobserved confounders rather than known batches or
factors (Draghici et al., 2007).

The joint analysis of multiple studies offers the opportunity to understand replicable
variation across different studies. The overarching goal of this work is to improve the
identification of a stable and replicable signal by simultaneously modeling both the com-
ponents of variation shared across studies, and those that are study-specific. The latter
could include artifacts and batch effects that were not addressed by the study specific pre-
processing, as well as biological signal that may hard to replicate or genuinely unique to a
study. An example of the latter would be the gene expression signature resulting from the
administration of a treatment that is used in one study only.

In our case study, we consider a systematic collection of publicly available breast cancer
microarray studies compiled by Haibe-Kains et al. (2012). Table 1 provides an overview
of the studies, the corresponding references, sample size, Estrogen Receptor (ER) status
prevalence, and survival time. Additional details about these studies, their preprocessing,

curation, criteria for inclusion, and public availability are described in Haibe-Kains et al.
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(2012). Four of these studies only include patients who did not receive hormone therapy
or chemotherapy. Within the Affymetrix technology, genes can be represented by multiple
probe-sets. Our analysis considers, for each gene, only the probe-set with maximum mean
(Miller et al., 2011). As in Bernau et al. (2014), we only consider we only consider genes

measured in all the seven studies and focus on the 50% of genes with higher variance.

3 A Bayesian Framework for multi-study analysis

This section provides details of our model, in four parts:

i) Definition of the multi-study factor model sampling distribution;

ii) Choice of the multiplicative gamma prior (Bhattacharya and Dunson, 2011), with
shrinkage priors for the loading matrices to incorporate sparsity. Posterior sampling

is carried out by Gibbs sampling, without any constraints on the model parameters;

iii) Choice of truncation level for the latent factor dimensions, determined by a suitable

singular value decomposition;

iv) Recovery of the loading matrices, performed by the OP approach.

3.1 Model definition

We consider S studies, each with the same P genomic variables. Study s, s =1,...,.5, has
ns subjects and P-dimensional data vector x;,, 1 = 1,...,n,, centered at its sample mean.
Our sampling distribution follows the multi-study factor model (De Vito et al., 2016). The
variables in study s are decomposed into K factors shared among all studies, and J, further

factors specific to study s, as follows:
Xis = (I)fzs + Aslis + €. (1)

9
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Here f;; ~ Ni(0,1I) are the shared latent factors, ® is their P x K loading matrix; 1;5; ~
N;,(0,1;,) are the study-specific latent factors and A,, s =1,...,S are the corresponding
P x J; loading matrices; lastly, e;s is the p x 1 Gaussian error vector with covariance
W, = diag( 21, ceey wzp) The resulting marginal distribution of x;¢ is a multivariate normal

with mean vector 0 and covariance matrix 3, = ®® " +ASAST +W,. The covariance matrix

of study s can be rewritten as
2s = 2@ + EAS + \1187 (2>

where X = ®® ' is the covariance of the shared factors, and 3, = As,,A;r is the covariance
of the study-specific factors. A straightforward implication of (2) is that 3¢ and X,
describe the variability of the P variables in study s that can be interpreted as shared
across studies and specific to study s, respectively.

The decomposition of ¥ is not unique, as there are infinite possibilities to represent it
because ®* = ®Q and AL = A;Q; both satisfy (2) for any two orthogonal matrices Q and
Q,. MSFA identifies the parameters by imposing constraints on the two factor loadings
matrices, such as the lower triangular constraint used in Factor Analysis (FA) (Geweke
and Zhou, 1996, Lopes and West, 2004) . This constraint generates an order dependence
among the variables. Thus, as noted by Carvalho et al. (2008), the choice of the first K + Jg
variables becomes an important modeling choice.

Several approaches focus on the estimation of covariance matrix (Bhattacharya and
Dunson, 2011) or precision matrix (Gao et al., 2014a, Zhao et al., 2014). These methods
do not require identifiability of the loading matrix. Our approach is also based on this
concept: we focus on the estimation of the common variation 34 shared among the studies
and the variation specific to each study 3,,. The two matrices ¥¢ and X,, are only
assumed to be positive semidefinite normal matrices, i.e. symmetric matrices with a subset

of positive non-null eigenvalues.

10
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3.2 The multiplicative gamma shrinkage prior

We adapt a shrinkage prior from Bhattacharya and Dunson (2011) for both the common
and study-specific factor loadings. The shrinkage priors favor sparsity by removing some
entries of the loading matrix. When an element is close to zero, the variable corresponding
to the row does not contribute to the common or study-specific latent factor corresponding
to the column. In the genomic context, this sparsity models the biological reality that
only a subset of the genes represented in a cell’s transcriptome is participating in a specific
biological function (Tegner et al., 2003). Another important property of the Bhattacharya
and Dunson (2011) prior is that the shrinkage towards zero increasing with the column
index of the loading matrix.

Our extension of the multiplicative gamma shrinkage prior to the multiple study setting

is as follows. The prior for the elements of the shared factor loading matrix ® is

(bpk\wpk,TkwN(O,w;le,;l), p=1,...,P, k=1,...,00,

k
v v
wpk~F<§,§> Tk:H(Sl 51~F(a1,1) 51NF((L2,1), ZZQ
where 6, (I = 1,2,...) are independent, 7 is the global shrinkage parameter for the k-th
column and w,y, is the local shrinkage for the element p in column k. We then replicate this

scheme to specify the prior for the elements of the study-specific factor loading matrix Aj:

S S 871 871 _ > J—
Apjo | Wyjs T~ N(O,wp 75), p=1,...,P jo=1,...,00, ands=1,...,85,

s s Js
1% 14 s | | S S S S s
ijs h F <?’ 5) Tjs - I—1 51 51 ~ F(a’h 1) 5! ~ F(a27 1)7 l Z 2

where 6;(l = 1,2,...) are independent, 77 is the global shrinkage parameter for the j

column and wy, is the local shrinkage for the element p in column js.

11
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For each of the error variances 1,5, p = 1,..., P we assume an inverse gamma prior
@bljsl ~ I'(ay, by). This choice, made also by Bhattacharya and Dunson (2011), is common
in standard FA (Lopes and West, 2004, Gao et al., 2013, Rockovd and George, 2016).
Sampling from the posterior distribution of the model parameters is carried out by Gibbs

sampling. Details are in Supplementary Materials.

3.3 Choosing the number of latent factors

In practical applications, the number of important latent factors is likely to be small com-
pared to the number of variables P. As suggested by Bhattacharya and Dunson (2011),
the effective number of factors would be small when data are sparse. Our approach cir-
cumvents the need for pre-specifying the latent dimension since the shrinkage prior gives
positive mass to an infinite number of them. However, we need a proper computational
strategy for choosing accurate truncation levels K and J,, s = 1,...,5. Ideally, we would
like to retain the relevant factors discarding the redundant ones.

An analogous task for FA is addressed in Bhattacharya and Dunson (2011) who truncate
the number of factors to a finite value, usually far smaller than the number of variables P.
This truncation level is chosen by checking the columns of the estimated loading matrix,
to assess which ones are formed entirely by elements of negligible size. The fact that the
shrinkage implied by the prior increases in later columns greatly simplifies this task, com-
pared to what required by alternative shrinkage priors such as the spike and slab (Carvalho
et al., 2008). We use the same idea, though computational details differ.

Our practical method to assess the numbers of shared factors K and study-specific
factors Jy is based on singular value decomposition (SVD) and proceeds as follows. Starting
from a considerable number of shared and study-specific factors, we seek K < P and

Js < P. In the MSFA model, this implies that the two matrices ¥¢ and 3, are singular,

12
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with ranks K and J,, respectively. Since these matrices are symmetric, they have K
and J; non-null eigenvalues. Based on this, we compute the eigenvalues vy, ..., vp of flp,
with v, > 0, p=1,..., P, ordered in decreasing size. We then choose K as the number of
eigenvalues larger than a pre-specified positive threshold, to achieve UNgUT = 3\3@ , where
Ny = diag(vy, ..., vk), and the columns of U, of size P x K, are given by K (normalized)

eigenvectors of icp. We proceed in the same way for Jg, s=1,...,5.

3.4 Recovering loading matrices

The method of §3.1-3.3 provides a practical route to the estimation of 3 and ¥, _, but in
many applications recovery of the loading matrices is also useful. Recently Affimann et al.
(2016) solved the identification issue in the context of FA by first generating an MCMC
sample without any constraints, and then filtering out the possible effect of orthogonal
rotations. They solve an Orthogonal Procrustes (OP) problem (Gower and Dijksterhuis,
2004) by building a sequence of orthogonal matrices defined from the MCMC output.
Here we extend this procedure to BMSFA. When the model parameters are not con-
strained, the Gibbs sampler is said to be orthogonally mixed (Afimann et al., 2016), as
each chain may produce different orthogonal transformations (represented by the matrices
Q and Q) for the factor loadings ®* and A}. Starting from a sequence of R draws from
the posterior distribution of ®(®',..., &%), the OP algorithm circumvents this problem
by estimation the loading matrices via the following constrained optimization:
R R
{{Q}m , ci»*} = arguin ZlLQ <<I>*, @(T)Q(T)) st. QNQYT =g, r=1,...,R (3)

where L is the loss function

-
Lo(#.80Q") =t { (27Q0 —a)" (8Q" - &) } ,
The optimization is carried out by iterating two steps:

13
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1. Minimize equation (3), for a given ®* by computing the SVD of 2. = ®®*" and
setting Q(”) = U, V,, where U, and V, are the two orthogonal matrices obtained by
the SVD at MCMC iteration r,

2. Compute " = %Zil QM.

The algorithm is then iterated using the updated value of ® in place of ®*. The search
stops when subsequent estimates of ® are close enough.

This algorithm requires a starting value for ®*. Afimann et al. (2016) suggests the last
iteration of the Gibbs sampler as initial value for ®*. The same procedure can be applied
to each of the study-specific loading matrices. This algorithm provides an approximate
solution to identifiability, since the posterior distribution of the loading matrices is only
known in approximate form. Yet, Aimann et al. (2016) show that it can be quite effective.

The OP procedure is iterative in nature. However, we verified that typically the first
iteration is sufficient to get close to the final estimate. Since the OP algorithm is compu-
tationally demanding, the one-step version is recommendable. All the results of this paper
have been obtained with a single iteration of the OP algorithm.

This point will be further examined for our setting in the following section.

4 Simulation Results

In this section we use simulation experiments to assess BMSFA’s ability to recover common
and study-specific latent dimensions, by itself and in comparison to standard FA applied to
the merged datasets. We generate 50 datasets from the distributions specified in Table 2.
We fixed @, A, and ¥, and thus X,. We consider four scenarios differing in the number
of studies, study sample sizes, and covariance structure (see Figure 1). Scenarios 1 and 2

are similar to Zhao et al. (2014): n, is chosen to be smaller than P to mimic large P and

14
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X ~MVN (0, %) Common factor loadings : wpy ~T' (”T:37 ”?3)
S, =dd" + ASA;— + W, Study-Specific factor loadings : wp;, ~ I’ (US;S, VS;S)
fixed @ and As: sparse matrices with =~ 80 % of zeros 61 ~T'(a1 =2.1,1) and §; ~ I'(az = 3.1,1) with I > 2
fixed @ and As: non zero elements drawn once from U(—1,1) 03 ~T(af =2.1,1) and 67 ~ T'(a3 = 3.1,1) with [ > 2
fixed ¥4: diagonal elements drawn once from U(0, 1) Wl ~T(ay =1,by =0.3)
Table 2: Distributions used to generate ob- Table 3: Prior distributions used in the
servations in study s, for simulation exper- simulation experiments and real data analy-
iments. 818.

small ny conditions while operating with a manageable set of variables for visualization
and summarization. In the Scenario 3 we wish to model a situation where not all the
studies have P > n. Moreover, in this scenario, study-specific factor loadings are large.
The motivation behind this scenario is to investigate if our method recovers the shared
biological signal in the presence of large study-specific or batch effects, and if it can isolate
these sources. In Scenario 4 we closely mimic the data in Table 1, choosing S = 7 and
matching the sample sizes to those of Table 1. Moreover, in Scenarios 1, 2 and 4 we
randomly allocate the zeros in each column of ® and Ag (Table 2), while in Scenario 3, we
allocate zeros matching the central panel in the third row of Figure 1. We run the Gibbs
sampler for 15000 iterations with a burn-in of 5000 iterations. We set priors as in Table 3.
We first evaluate, for fixed latent dimension K and J,, BMSFA’s ability to recover the
covariance component g determined by the shared factors, as well as the shared factors’
loadings ®. For one randomly selected simulation dataset, Figure 1 compares the true
and estimated elements of 5. We also present a summary of the analyses of 50 datasets.
To quantify the similarity between X5"¢ and $le we use the RV coefficient (Robert and
Escouffer, 1976) of similarity of two P x P matrices ¥; and Xs:
tr((3:3,)(5,1%,)
tr(Z15])%r (2,3, )2

RV (S4,8S,) =
RV varies in [0,1]. The closer RV is to 1 the more similar the two matrices are. Smilde

15
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et al. (2008) argue that the RV coefficient can overestimate similarity between data sets
in high-dimensions, and propose a modified version that addresses this problem. We use
it in Scenario 4, though differences will not be pronounced. The red boxplots in the right
column of Figure 1 show the RV distributions across 50 simulations in our four scenarios.

Figure 2 presents a similar analysis comparing the true factor loadings to their estimates

obtained through posterior sampling and the OP procedure. The correlations between true

settings true estimated RV
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Figure 1: Covariance matrices Xg and their Bayesian estimates in four simulation scenarios.

The right column shows the boxplots of RV coefficient between the true and the estimated g .
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and estimated values in both Figures 1 and 2) are very high, suggesting that our estimands

are well identified and our sampling approaches are appropriate.
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Figure 2: Heatmap of the true (left) and estimated (center) shared factor loadings ® in
the four scenarios of Figure 1. In Scenario 4 we only show common factor loadings > 0.5.
The right column displays boxplots of correlations between the true and estimated common

factor loadings over 50 datasets for each scenario.

Next we compare BMSFA to a Bayesian FA, using the same prior distribution. For
Bayesian FA, we stacked all studies into a single dataset, ignoring that samples originate
from distinct studies. The RV coefficients for BMSFA are systematically greater than FA’s
(Figure 1, right column), demonstrating that BMSFA recovers shared factors better than a

17
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merged analysis. In Scenario 3 the gap is more pronounced, as study-specific factor loadings
are large. In most simulations, FA captures study-specific effects that are not actually
shared. BMSFA recovers the shared signal better. Also, the distribution of BMSFA’s RV
coefficient is narrower than FA’s. This comparison illustrates that BMSFA identifies the
shared signal across the studies and improves its estimation compared to standard Bayesian
FA. Moreover, the BMSFA estimations are more efficient compared to the FA estimation,
due to the beneficial effects of removing the study-specific components that lack cross-study
reproducibility.

So far we took K, the number of shared factors, and J,’s, the numbers of study-specific
factors, to be known. We next focus on the latent dimensions calculated via SVD of
matrices g and 3y, as described earlier, and using an eigenvalue threshold of 0.05. The
simple adaptive method described in §3.3 for latent factor selection, common K and specific
Js, proved to be extremely robust respect to the choice of this threshold. Conclusion with
a threshold of 0.1 was the same. We choose a lower value as are more concerned to lose
important shared biological factors than to include additional shared factors. Figure 3
shows the results obtained by fitting the model for 50 different data sets generated from
the BMSFA with K = 3 in the four different scenarios. The vertical lines show the 50
estimated latent dimensions in each data set. Our method consistently selects the right
dimensions for both the shared and the study-specific factors.

The simulation analysis highlights the merit of our method in a variety of scenarios,
with improved performance over FA in terms of covariance matrices estimation in multi-
study settings, estimation of the reproducible signal across studies, and identification issue

for the factor loading matrix.
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Figure 3: Dimensions of shared and study specific factors in the four scenarios. Model
selection procedure for the shared K and the study-specific Js latent dimension via SVD of

Yo and Xp,. The true dimensions are visualized by the dashed lines.

5 Breast Cancer Case Study

The aim of this analysis is to identify shared common factors describing the common corre-
lation structure across the 7 breast cancer microarray studies listed in Table 1. Recovering
shared gene co-expression patterns from different high-throughput studies is important to
identify replicable genetic regulation. This case study considers a relatively well understood

area of cancer biology and provides a realistic positive control for the BMSFA methodology.
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We consider genes measured in all studies and remove the 50% of genes with the lowest
variance. We use the prior of Table 3. Our method chooses a shared latent dimension of
K = 8, through the SVD of 3. We first summarize and visualize the shared co-expression
patterns via a co-expression network (Figure 4) built on X, and thus representing all
studies. A gene co-expression network is an undirected graph. Each node corresponds to
a gene and each edge represents a high co-expression between genes. The importance of
genes in a cluster is represented by the node size.

Our analysis identifies five larger clusters. Co-expressed genes tend to be members of
the same, highly plausible, biological pathways. All clusters are associated with biological
processes known for explaining heterogeneity of expression across breast cancers, lending
credibility to BMSFA. The first cluster is driven by expression of the estrogen receptor
(ESR1), which historically is one of the earliest cancer biomarkers to have been discovered,
and plays a crucial role in the biology and treatment of breast cancer (Jordan, 2007, Robin-
son et al., 2013). High dimensional expression pattern are found in Segrlie et al. (2001).
Many studies have shown the relation of ESR1 with growth of cancer (Osborne et al.,
2001, Iorio et al., 2005, Toy et al., 2013). Levels of ESR1 expression are associated with
different outcomes (Ross-Innes et al., 2012, Theodorou et al., 2013). Three other genes
stand out: GATA3, XBP1 and FOXA1. These are ESR1-cooperating transcription factors
altered in breast tumors (Lacroix and Leclercq, 2004, Theodorou et al., 2013). In breast
cancer cell, many studies revealed strong and positive association of GATA3, XBP1 and
FOXA1 with ESR1 (Hoch et al., 1999, Sotiriou et al., 2003, Sgrlie et al., 2003, Lacroix and
Leclercq, 2004, Lai et al., 2013, Theodorou et al., 2013). The second cluster is related to
the cell cycle. One of the most important genes in this cluster is CCNB1, which encodes
cyclin B. Cyclins are prime cell cycle regulators. Many analyses found a common pattern
of overexpression of the mitotic cyclins A and B and their dependent kinase in the tumor

cell of breast cancer (Keyomarsi and Pardee, 1993, Lin et al., 2000, Basso et al., 2002).
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Figure 4: Shared gene co-expression network across the 7 studies of Table 1. We include edges
between two genes if the corresponding element in the shared part of the covariance matriz is

greater than 0.5. Edges in blue (orange) represent positive (negative) associations.

Two other important genes in this cluster are CDK1, a kinase dependent on cyclins, and

CDC20, a gene related to the metaphase and anaphase of cell cycle. All genes in the third
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Figure 5: Heatmap of the estimated shared factor loadings obtained with BMSFA across the 7

studies in Table 1. We only show common factor loadings > 0.5.

cluster are related to regulation of the immune response. The CD genes are important for
the immune system pathway and the HLA genes are a crucial element for immune func-
tion. The fourth cluster includes several genes expressed by the connective tissue, including
collagen genes (COL1A1, COL1A2, COL3A1, COL5A1, COL5A2, COL10A1, COL11A1),
previously associated with stromal cells (Ross et al., 2000, Ioachim et al., 2002). Of note
are also ADAM, a protease related to the degradation of the connective tissue, and smooth
muscle cell marker TAGLN, also previously found to play a role in breast cancer. Finally,
all the RP genes in the fifth cluster codify the ribosome, which synthesizes proteins. Dys-
regulation of Ribosome function is related to tumor progression in breast cancer (Belin
et al., 2009).

To further explore the patterns found in the shared gene co-expression network, we esti-
mate the shared factor loadings after the post-process procrustes algorithm. The heatmap
in Figure 5 depicts the estimates of the shared factor loadings that can be identified re-
producibly across the studies. To extract biological insight from the shared factors, we

explore whether specific gene sets are enriched among the loadings using Gene Set En-
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richment Analysis (GSEA) (Mootha et al., 2003). We used the package RTopper in R in
Bioconductor, following the method of Tyekucheva et al. (2011) and considering all the
gene sets representing pathways from reactome.org. The resulting analysis shows con-
cordant results with the pathways obtained with the shared gene co-expression network,
further suggesting that we identify genuine biological signal. The first shared factor is sig-
nificantly enriched with the “Cell communication” and “Cell cycle” pathways. The second
factor is associated with the Immune system pathway and all the sub-pathway included in
it, namely the “Adaptive Immune System”, “Innate Immune System” and “Cytokine Sig-
naling in Immune System”. Factor 3 shows a significant association with cell cycle, namely
with the pathway “Cell cycle”, “Cell cycle mitotic”, “Cell cycle checkpoints”, “Regulation
of mitotic cell cycle”. The shared 5, 6 and 7 factors have protein production “Transport
of ribonucleoproteins into the host nucleus”, “Protein folding”, “Mitochondrial protein im-
port”, “Metabolism of proteins”, “NRIF signals cell death from the nucleus”. Finally,
factor 8 is related to the ER pathway, “ER phagosome pathway”, “Interferon signaling”,
and “Interferon alpha beta signaling”.

An important feature of BMSFA in this case study is regularization of the common factor
loadings. To illustrate this in more detail, we conclude this section comparing BMSFA to
the MSFA which uses MLE for parameter estimation. The data consists of 63 genes in the
Immune System Pathway. Their loadings are compared in Figure 6. BMSFA regularizes
common factor loadings by shrinking small and moderate MLE loadings to zero while
systematically amplifying larger MLE loadings (Figure 6, left panel). This regularization
behavior is somewhat unique to this setting, as it is far more common for regularization
to only result in shrinkage. Here, the prior helps the posterior perform a factor rotation
method which results in more sparse factors. To further illustrate we rotate the loadings
obtained with the MLE using the varimax rotation (Kaiser, 1958) and we compare it with

the BMSFA (Figure 6 right panel). The BMSFA loadings are far more similar to the
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Figure 6: Left: Comparison between the first two estimated common factor loadings with
MLE and BMSFA. Right: Comparison between the first two estimated factor loadings with
MLE, followed by varimax rotation, and BMSFA.

varimax rotated MLE (correlation 0.97) than the original MLE (correlation 0.7).

6 Discussion

In this paper we propose a general Bayesian framework for the unsupervised analysis of
high-dimensional biological data across multiple studies, building upon De Vito et al.
(2016). We address the unmet need to rigorously model replicable signal across stud-
ies, while at the same time capturing study-specific variation. Our approach is not limited
by P < n and, in addition to replicability, shows considerable promise in modeling sparsity
and enhancing interpretability via rotation-like shrinkage. Building on Bhattacharya and
Dunson (2011) we propose a computationally efficient MCMC algorithm.

The work in this paper is motivated by identifying replicable signal in unsupervised
genomic applications. The results of our analysis of breast cancer gene expression across
seven studies identified shared gene patterns, which we also represented via clusters in a

co-expression network. Both factors and clusters are clearly related to well-known breast
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cancer pathways. Our analytic tools allows investigators to focus on the replicable shared
signal, after properly accounting for, and separating, the influence of study-specific varia-
tion. While we focused on the shared signal, study-specific loadings can also be examined
directly.

BMSFA may have broad applicability in a wide variety of genomic platforms, in-
cluding microarrays, RNA-seq, SNP-based genome-wide association studies, proteomics,
metabolomics, and epigenomics. Relevance is also immediate in other fields of biomedical
research, such as those generated by exposome studies, Electronic Medical Record (EMR),
or high dimensional epidemiological data. In dietary pattern analysis, it is important to
find replicable dietary patterns in different populations (Castell6 et al., 2016). Our analysis
could be applied to check if there are shared dietary patterns across different populations
and to detect the study-specific dietary patterns of a particular population. In this field
generally, it is common to apply a varimax rotation to factor loading matrix, for a better
interpretation. Specifically, the interpretation of a factor relies on loadings. The inter-
pretation of the model is simplified if more of the loadings are shrunk towards zero and
the factor is defined by few large loadings. In the frequentist analysis, this is possible by
rotation methods, such as varimax. In our representation, the BMSFA embeds this step
giving an immediate representation of the two sparse factor loading matrices through the
shrinkage prior, as shown in Section 5.

Our Bayesian non-parametric approach offers more flexibility in the choice of the di-
mensionality of shared latent factors. Moreover, we provide shrinkage of the latent factor
loadings, enhancing the role of the variables that are most important in each factor.

To address the choice of model dimension, we developed, building on Bhattacharya and
Dunson (2011), a practical procedure based on separate SVD of the shared covariance part
and the study-specific covariance parts. The choice of the number of factors remains an

important open problem. The most common method for choosing latent dimension fits the
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factor model for different choices of K and compares them using selection criteria such as
BIC. This approach presents many problems especially in a p > n setting where MLE is
not duable. Lopes and West (2004) proposed a reversible jump MCMC to estimate the
number of factors in standard FA, but this method is also often computationally intensive.
Bhattacharya and Dunson (2011) developed an interesting adaptive scheme that dynam-
ically changes the dimension of the latent factors as the Gibbs sampling progresses. In
our approach, we develop a practical approach where we have a balance between retaining
important factors and removing the redundant ones.

We also address identification. Identifiability remains a challenge in standard FA. In
the Bayesian approach, constraints were proposed to tackle this issue, such as that of a
block lower triangular matrix (Lopes and West, 2004, Carvalho et al., 2008). As Carvalho
et al. (2008) noticed, in this constraint different ordering of variables could lead to different
conclusions. In our work, we adopt a procrustes algorithm and demonstrate through a
series of simulation analyses that this method applied to the BMSFA is effective. Rockova
and George (2016) solves this problems in a Bayesian context by rotating the factor loadings
matrix with the varimax rotation (Kaiser, 1958). We also compared the BMSFA estimates
after the procrustes algorithm with the MLE after rotating the common factor loadings.
The resulting analysis are close, demonstrating that the prior we adopt works similarly to
a rotation.

We hope BMSFA will encourage joint analyses of multiple high-throughput studies in
biology, and contribute to alleviating the current challenges in replicability of unsupervised

analyses in this fields and across data science.
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