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Abstract
We introduce and investigate the approximability of the maximum binary tree prob-
lem (MBT) in directed and undirected graphs. The goal in MBT is to find a maxi-
mum-sized binary tree in a given graph. MBT is a natural variant of the well-studied 
longest path problem, since both can be viewed as finding a maximum-sized tree 
of bounded degree in a given graph. The connection to longest path motivates the 
study of MBT in directed acyclic graphs (DAGs), since the longest path problem 
is solvable efficiently in DAGs. In contrast, we show that MBT in DAGs is hard: 
it has no efficient exp(−O(log n∕ log log n))-approximation under the exponential 
time hypothesis, where n is the number of vertices in the input graph. In undirected 
graphs, we show that MBT has no efficient exp(−O(log0.63 n))-approximation under 
the exponential time hypothesis. Our inapproximability results rely on self-improv-
ing reductions and structural properties of binary trees. We also show constant-fac-
tor inapproximability assuming � ≠ �� . In addition to inapproximability results, we 
present algorithmic results along two different flavors: (1) We design a randomized 
algorithm to verify if a given directed graph on n vertices contains a binary tree of 
size k in 2k����(n) time. (2) Motivated by the longest heapable subsequence prob-
lem, introduced by Byers, Heeringa, Mitzenmacher, and Zervas, ANALCO 2011, 
which is equivalent to MBT in permutation DAGs, we design efficient algorithms 
for MBT in bipartite permutation graphs.
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1  Introduction

A general degree-constrained subgraph problem asks for an optimal subgraph of a 
given graph with specified properties while also satisfying degree constraints on all 
vertices. Degree-constrained subgraph problems have numerous applications in the 
field of network design and consequently, have been studied extensively in the algo-
rithms and approximation literature [1, 15–17, 30, 34, 35]. In this work, we intro-
duce and study the maximum binary tree problem in directed and undirected graphs. 
In the maximum binary tree problem (MBT), we are given an input graph G and the 
goal is to find a binary tree in G with maximum number of vertices.

Our first motivation for studying MBT arises from the viewpoint that it is a vari-
ant of the longest path problem: In the longest path problem, the goal is to find a 
maximum-sized tree in which every vertex has degree at most 2. In MBT, the goal 
is to find a maximum-sized tree in which every vertex has degree at most 3. Cer-
tainly, one may generalize both these problems to finding a maximum-sized degree-
constrained tree in a given graph. In this work we focus on binary trees; however, all 
our results extend to the maximum-sized degree-constrained tree problem for con-
stant degree bound.

Our second motivation for studying MBT is its connection to the longest hea-
pable subsequence problem introduced by Byers et al. [11]. Let � = (�1, �2,… , �n) 
be a permutation on n elements. Byers et al. define a subsequence (not necessarily 
contiguous) of � to be heapable if the elements of the subsequence can be sequen-
tially inserted to form a binary min-heap data structure. Namely, insertions subse-
quent to the first element, which takes the root position, happen below previously 
placed elements. The longest heapable subsequence problem asks for a maximum-
length heapable subsequence of a given sequence. This generalizes the well-known 
longest increasing subsequence problem. Porfilio [33] showed that the longest hea-
pable subsequence problem is equivalent to MBT in permutation directed acyclic 
graphs (abbreviated permutation DAGs): a permutation DAG associated with the 
sequence � is obtained by introducing a vertex ui for every sequence element �i , 
and arcs (ui, uj) for every pair (i, j) such that i > j and �i ≥ �j . On the other hand, for 
sequences of intervals the maximum binary problem is easily solvable by a greedy 
algorithm [6] (see also [22] for further results and open problems on the heapabil-
ity of partial orders). These results motivate the study of MBT in restricted graph 
families.

We now formally define MBT in undirected graphs, which we denote as 
UndirMaxBinaryTree. A binary tree of an undirected graph G is a subgraph T of G 
that is connected and acyclic with the degree of u in T being at most 3 for every ver-
tex u in T. In UndirMaxBinaryTree, the input is an undirected graph G and the goal 
is to find a binary tree in G with maximum number of vertices. In the rooted variant 
of this problem, the input is an undirected graph G along with a specified root vertex 
r and the goal is to find a binary tree containing r in G with maximum number of 
vertices such that the degree of r in the tree is at most 2. We focus on the unrooted 
variant of the problem and mention that it reduces to the rooted variant. We empha-
size that a binary tree T of G is not necessarily spanning (i.e., may not contain all 
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vertices of the given graph). The problem of verifying whether a given undirected 
graph has a spanning binary tree is ��-complete. This follows by a reduction from 
the Hamiltonian path problem: Given an undirected graph G = (V ,E) , create a pen-
dant vertex v′ adjacent to v for every vertex v ∈ V  . The resulting graph has a span-
ning binary tree if and only if G has a Hamiltonian path.

Next, we formally define MBT in directed graphs. A tree of a directed graph G 
is a subgraph T of G such that T is acyclic and has a unique vertex, termed as the 
root, with the property that every vertex v in T has a unique directed path to the 
root in T. A binary tree of a directed graph G is a tree T such that the incoming-
degree of every vertex u in T is at most 2 while the outgoing-degree of every ver-
tex u in T is at most 1. In the rooted variant of the maximum binary tree problem 
for directed graphs, the input is a directed graph G along with a specified root r 
and the goal is to find an r-rooted binary tree T in G with maximum number of 
vertices. The problem of verifying whether a given directed graph has a spanning 
binary tree is ��-complete (by a similar reduction as that for undirected graphs).

The connection to the longest path problem as well as the longest heapable 
subsequence problem motivates the study of the maximum binary tree problem 
in directed acyclic graphs (DAGs). In contrast to directed graphs, the longest path 
problem in DAGs can be solved in polynomial-time (e.g., using dynamic pro-
gramming or LP-based techniques). Moreover, verifying whether a given DAG 
contains a spanning binary tree is solvable in polynomial-time using the follow-
ing characterization: a given DAG on vertex set V contains a spanning binary tree 
if and only if the partition matroid corresponding to the in-degree of every vertex 
being at most two and the partition matroid corresponding to the out-degree of 
every vertex being at most one have a common independent set of size |V| − 1 . 
These observations raise the intriguing possibility of solving the maximum 
binary tree problem in DAGs in polynomial-time. For this reason, we focus on 
DAGs within the family of directed graphs in this work. We denote the maximum 
binary tree problem in DAGs as DAGMaxBinaryTree.

The rooted and the unrooted variants of the maximum binary tree problem 
in DAGs are polynomial-time equivalent by simple transformations. Indeed, the 
unrooted variant can be solved by solving the rooted variant for every choice of 
the root. To see the other direction, suppose we would like to find a maximum 
r-rooted binary tree in a given DAG G = (V ,E) . Then, we discard from G all out-
going arcs from r and all vertices that cannot reach r (i.e., we consider the sub-
DAG induced by the descendents of r) and find an unrooted maximum binary tree 
in the resulting DAG. If this binary tree is rooted at a vertex r′ ≠ r , then it can be 
extended to an r-rooted binary tree by including an arbitrary r′ → r path P—since 
the graph is a DAG, any such path P will not visit a vertex that is already in the 
tree (apart from r′ ). The equivalence is also approximation preserving. For this 
reason, we only study the rooted variant of the problem in DAGs.

We present inapproximability results for MBT in DAGs and undirected graphs. 
On the algorithmic side, we show that MBT in directed graphs is fixed-parameter 
tractable when parameterized by the solution size. We observe that the equiva-
lence of the longest heapable subsequence to MBT in permutation DAGs moti-
vates the study of MBT even in restricted graph families. As a first step towards 
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understanding MBT in permutation DAGs, we design an algorithm for bipar-
tite permutation graphs. We use a variety of tools including self-improving and 
gadget reductions for our inapproximability results, and algebraic and structural 
techniques for our algorithmic results.

1.1 � Related Work

Degree-constrained subgraph problems appeared as early as 1978 in the textbook 
of Garey and Johnson [18] and have garnered plenty of attention in the approxi-
mation community [1, 15–17, 24, 30, 34, 35]. A rich line of works have addressed 
the minimum degree spanning tree problem as well as the minimum cost degree-
constrained spanning tree problem leading to powerful rounding techniques and 
a deep understanding of the spanning tree polytope [12, 13, 16, 19, 26, 29, 35]. 
Approximation and bicriteria approximation algorithms for the counterparts of 
these problems in directed graphs, namely degree-constrained arborescence and 
min-cost degree-constrained arborescence, have also been studied in the literature 
[7].

In the maximum-edge degree-constrained connected subgraph problem, the 
goal is to find a connected degree-constrained subgraph of a given graph with 
maximum number of edges. This problem does not admit a PTAS [3] and has 
been studied from the perspective of fixed-parameter tractability [4]. MBT could 
be viewed as a maximum-vertex degree-constrained connected subgraph problem, 
where the goal is to maximize the number of vertices as opposed to the number 
of edges—the degree-constrained connected subgraph maximizing the number of 
vertices may be assumed to be acyclic and hence, a tree. It is believed that the 
connectivity constraint makes the maximum-edge degree-constrained connected 
subgraph problem to become extremely difficult to approximate. Our results for-
malize this belief when the objective is to maximize the number of vertices.

Switching the objective with the constraint in the maximum-vertex degree-
constrained connected subgraph problem leads to the minimum-degree k-tree 
problem: here the goal is to find a minimum degree subgraph that is a tree with 
at least k vertices. Minimum degree k-tree admits a O(

√
(k∕Δ∗) log k)-approxima-

tion, where Δ∗ is the optimal degree and does not admit a o(log n)-approximation 
[24]. We note that the hardness reduction here (from set cover) crucially requires 
the optimal solution value Δ∗ to grow with the number n of vertices in the input 
instance, and hence, does not imply any hardness result for input instances in 
which Δ∗ is a constant. Moreover, the approximation result implies that a tree of 
degree O(

√
k log k) containing k vertices can be found in polynomial time if the 

input graph contains a constant-degree tree with k vertices.
We consider the maximum binary tree problem to be a generalization of the 

longest path problem as both can be viewed as asking for a maximum-sized 
degree-constrained connected acyclic subgraph. The longest path problem in 
undirected graphs admits an Ω

(
(log n∕ log log n)2∕n

)
-approximation [9], but it is 

APX-hard and does not admit a 2−O(log1−� n)-approximation for any constant 𝜀 > 0 
unless �� ⊆ �����

(
2log

O(1∕𝜀) n
)
 [23]. Our hardness results for the max binary 
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tree problem in undirected graphs bolsters this connection. The longest path prob-
lem in directed graphs is much harder: For every 𝜀 > 0 it cannot be approximated 
to within a factor of 1∕n1−� unless � = �� , and it cannot be approximated to 
within a factor of (log2+� n)∕n under the Exponential Time Hypothesis [9]. How-
ever, the longest path problem in DAGs is solvable in polynomial time. Our hard-
ness results for the max binary tree problem in DAGs are in stark contrast to the 
polynomial-time solvability of the longest path problem in DAGs.

On the algorithmic side, the color-coding technique introduced by Alon 
et al. [2] can be used to decide whether an undirected graph G = (V ,E) contains a 
copy of a bounded treewidth pattern graph H = (VH ,EH) where |VH| = O(log |V|) , 
and if so, then find one in polynomial time. The idea here is to randomly color 
the vertices of G by O(log |V|) colors and to find a maximum colorful copy of 
H using dynamic programming. We note that the same dynamic programming 
approach can be modified to find a maximum colorful binary tree. This algorithm 
can be derandomized, thus leading to a deterministic Ω((1∕n) log n)-approxima-
tion to UndirMaxBinaryTree.

In parameterized complexity, designing algorithms with running time �k����(n) 
( 𝛽 > 1 is a constant) for problems like k-Path and k-Tree is a central topic. For k
-Path, the color-coding technique mentioned above already implies a (2e)k����(n)
-time algorithm. Koutis  [27] noticed that k-Path can be reduced to detecting 
whether a given polynomial contains a multilinear term. Using algebraic methods 
for the latter problem, Koutis obtained a 21.5k����(n) time algorithm for k-Path. 
This was later improved by Williams  [39] to 2k����(n) . The current state-of-art 
algorithm is due to Björklund et al. [8], which is also an algebraic algorithm with 
running time 1.66k����(n) . All of these algorithms are randomized. Our study of 
the k-BinaryTree problem, which is the problem of deciding whether a given 
graph G contains a binary tree of size at least k, is inspired by this line of results. 
Our construction of the polynomial employs the idea of branching walk first 
introduced by Nederlof [31]. This idea has also been used in other graph connec-
tivity problems [10, 20].

Several ��-hard problems are known to be solvable in specific families of 
graphs. Bipartite permutation graphs is one such family which is known to exhibit 
this behaviour [25, 36–38]. Our polynomial-time solvability result for these fami-
lies of graphs crucially identifies the existence of structured optimal solutions to 
reduce the search space and solves the problem over this reduced search space.

1.2 � Our Contributions

1.2.1 � Inapproximability Results

Directed Graphs We first focus on directed graphs and in particular, on directed 
acyclic graphs. It is well-known that the longest path problem in DAGs is solvable 
in polynomial-time. In contrast, we show that DAGMaxBinaryTree does not even 
admit a constant-factor approximation. Furthermore, if DAGMaxBinaryTree 
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admitted a polynomial-time exp (−O(log n∕ log log n))-approximation algorithm 
then the Exponential Time Hypothesis would be violated.

Theorem  1  We have the following inapproximability results for DAGMaxBi-
naryTree on n-vertex input graphs: 

1.	 DAGMaxBinaryTree does not admit a polynomial-time constant-factor approxi-
mation assuming � ≠ ��.

2.	 If DAGMaxBinaryTree admits a polynomial-time exp (−O(log n∕ log log n))
-approximation, then �� ⊆ �����

�
exp

�
O
�√

n
���

 , refuting the Exponential 
Time Hypothesis.

3.	 For any 𝜀 > 0 , if DAGMaxBinaryTree admits a quasi-polynomial time 
exp

(
−O

(
log1−� n

))
-approximation, then �� ⊆ �����

(
exp

(
logO(1∕𝜀) n

))
 , thus 

refuting the Exponential Time Hypothesis.

LP-Based Approach The longest path problem in DAGs can be solved using 
a linear program (LP) based on cut constraints. Based on this connection, an 
integer program (IP) based on cut constraints can be formulated for DAGMax-
BinaryTree. In Sect. 5.3, we show that the LP-relaxation of this cut-constraints-
based-IP has an integrality gap of Ω(n1∕3) in n-vertex DAGs.

Undirected Graphs Next, we turn to undirected graphs. We show that 
UndirMaxBinaryTree does not have a constant-factor approximation and does 
not admit a quasi-polynomial-time exp(−O(log0.63 n))-approximation under the 
Exponential Time Hypothesis.

Theorem  2  We have the following inapproximability results for UndirMaxBi-
naryTree on n-vertex input graphs: 

1.	 UndirMaxBinaryTree does not admit a polynomial-time constant-factor approxi-
mation assuming � ≠ ��.

2.	 For c = log3 2 and any 𝜀 > 0 , if UndirMaxBinaryTree admits a quasi-polynomial 
time exp (−O(logc−� n))-approximation, then �� ⊆ �����

(
exp

(
logO(1∕𝜀) n

))
 , 

thus refuting the Exponential Time Hypothesis.

We summarize our hardness results for MBT on various graph families in 
Table 1 and contrast them with the corresponding known hardness results for the 
longest path problem on those families.

1.2.2 � Algorithmic Results

Fixed-Parameter Tractability We denote the decision variant of MBT as k-Bina-
ryTree—here the goal is to verify if a given graph contains a binary tree with at 
least k vertices. Since k-BinaryTree is ��-hard when k is part of the input, it is 
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desirable to have an algorithm that runs in time f (k)����(n) (i.e., a fixed parameter 
algorithm parameterized by the solution size). Our first algorithmic result achieves 
precisely this goal. Our algorithm is based on algebraic techniques.

Theorem 3  k-binary-tree There exists a randomized algorithm that takes a directed 
graph G = (V ,E) , a positive integer k, and a real value � ∈ (0, 1) as input, runs in 
time 2k����(|V|) log(1∕�) and 

1.	 outputs ’no’ if G does not contain a binary tree of size k;
2.	 outputs a binary tree of size k with probability 1 − � if G contains one.

Bipartite Permutation Graphs Next, motivated by its connection to the max hea-
pable subsequence problem, we study MBT in bipartite permutation graphs. A 
bipartite permutation graph is a permutation graph (undirected) which is also bipar-
tite. We show that bipartite permutation graphs admit an efficient algorithm for 
MBT. Our algorithm exploits structural properties of bipartite permutation graphs. 
We believe that these structural properties could be helpful in solving MBT in per-
mutation graphs which, in turn, could provide key insights towards solving MBT in 
permutation DAGs.

Theorem  4  There exists an algorithm to solve UndirMaxBinaryTree in n-vertex 
bipartite permutation graphs that runs in time O(n3).

We summarize our algorithmic results for MBT in Table  2 and contrast them 
with the corresponding best known bounds for the longest path problem.

Table 1   Summary of inapproximability results

Here, n refers to the number of vertices in the input graph and � is any positive constant. We include the 
known results for longest path for comparison

Family Assumption Max binary tree Longest path

DAGs � ≠ �� No poly-time Ω(1)-apx (Theorem 1) Poly-time solvable
ETH No poly-time exp(−O( log n

log log n
))-apx Poly-time solvable

No quasi-poly-time
   exp(−O(log1−� n))-apx (Theorem 1)

Directed � ≠ �� Same as DAGs (Theorem 1)
No poly-time 

1

n1−�-apx [9]
ETH Same as DAGs (Theorem 1) Same as � ≠ ��

Undirected � ≠ �� No poly-time Ω(1)-apx (Theorem 2) No poly-time Ω(1)-apx [23]
ETH No quasi-poly-time No quasi-poly-time

   exp(−O(log0.63−� n))-apx (Theorem 2)     exp(−O(log1−� n))-apx 
[23]
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We remark again that our inapproximability as well as algorithmic results are also 
applicable to the maximum degree-constrained tree problem for larger, but constant 
degree constraint. We focus on the degree constraint corresponding to binary trees 
for the sake of simplicity in exposition.

1.3 � Proof Techniques

In this section, we outline the techniques underlying our results.

1.3.1 � Inapproximability Results

At a very high level, our inapproximability results for MBT rely on the proof strat-
egy for hardness of longest path due to Karger et al. [23], which has two main steps: 
(1) a self-improving reduction whose amplification implies that a constant-factor 
approximation immediately leads to a PTAS, and (2) a proof that there is no PTAS. 
However, we achieve both these steps in a completely different manner compared to 
the approach of Karger, Motwani, and Ramkumar. Both their steps are tailored for 
the longest path problem, but fail for the maximum degree-constrained tree problem. 
Our results for MBT require several novel ideas, as described next.

Karger, Motwani and Ramkumar’s self-improving reduction for the longest path 
proceeds as follows: given an undirected graph G, they obtain a squared graph G2 by 
replacing each edge {u, v} of G with a copy of G by adding edges from u and v to all 
vertices in that edge copy. Let OPT(G) be the length of the longest path in G. They 
make the following two observations: Obs (i) OPT(G2) ≥ OPT(G)2 and Obs (ii) a 
path in G2 of length at least �OPT(G2) can be used to recover a path in G of length 
at least 

√
�OPT(G) . The first observation is because we can extend any path P in G 

into a path of length |E(P)|2 by traversing each edge copy also along P. The second 
observation is because for any path P2 in G2 either P2 restricted to some edge copy 
of G (i.e., subgraph of the edge copy formed by the vertices and edges it has in com-
mon with P2 ) is a path of length at least 

√�E(P2)� or projecting P2 to G (i.e., replac-
ing each sub-path of P2 in each edge copy by a single edge) gives a path of length at 

Table 2   Summary of 
algorithmic results

Here, n refers to the number of vertices in the input graph. We 
include the known results for longest path for comparison

Problem Max binary tree Longest path

FPT param-
eterized by 
solution size 
(Dir.)

2k����(n)-time (Theorem 3) 1.66k����(n)-time [8]

Bipartite 
permuta-
tion graphs 
(Undir.)

O(n3)-time (Theorem 4) O(n)-time [38]
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least 
√�E(P2)� . We note that a similar construction of the squared graph for directed 

graphs also has the above mentioned observations: replace each directed arc (u, v) of 
G with a copy of G by adding arcs from u to all vertices in that edge copy and from 
all vertices in that edge copy to v.

In order to obtain inapproximability results for the maximum binary tree problem, 
we first introduce different constructions for the squared graph in the self-improving 
reduction compared to the ones by Karger et al. Moreover, our constructions of the 
squared graph differ substantially between undirected and directed graphs. Interest-
ingly, our constructions also generalize naturally to the max degree-constrained tree 
problem. Secondly, although our reduction for showing the lack of PTAS in undi-
rected graphs for MBT is also from TSP(1, 2), it is completely different from that of 
Karger et al. and, once again, generalizes to the max degree-constrained tree prob-
lem. Thirdly, we show the lack of PTAS in DAGs for MBT by reducing from the 
max 3-coloring problem. This reduction is altogether new—the reader might recall 
that the longest path problem in DAGs is solvable in polynomial-time, so there can-
not be a counterpart of this step (i.e., lack of PTAS in DAGs) for longest path. We 
next present further details underlying our proofs.

Self-improving Reduction for Directed Graphs We focus on the rooted variant of 
MBT in directed graphs. We first assume that the given graph G contains a source 
(if not, adding such a source vertex with arcs to all the vertices changes the opti-
mum only by one). In contrast to the squared graph described above (i.e., instead of 
adding edge copies), we replace every vertex in G by a copy of G (that we call as a 
vertex copy) and for every arc (u, v) in G, we add an arc from the root node (we call 
the vertices within vertex copies as nodes) of the vertex copy corresponding to u to 
the source node of the vertex copy corresponding to v. Finally, we declare the root 
node of the root vertex copy to be the root node of G2 . Let � ∈ (0, 1] and OPT(G) 
be the number of vertices in the maximum binary tree in G. With this construction 
of the squared graph, we show that (1) OPT(G2) ≥ OPT(G)2 and (2) an �-approxi-
mate rooted binary tree T2 in G2 can be used to recover a rooted binary tree T1 in G 
which is a 

√
�-approximation. We emphasize that if G is a DAG, then the graph G2 

obtained by this construction is also a DAG.
Inapproximability for DAGs In order to show the constant-factor inapproximabil-

ity result for DAGs, it suffices to show that there is no PTAS (due to the self-improv-
ing reduction for directed graphs described above). We show the lack of a PTAS 
in DAGs by reducing from the max 3-coloring problem in 3-colorable graphs. It is 
known that this problem is APX-hard—in particular, there is no polynomial-time 
algorithm to find a coloring that colors at least 32/33-fraction of the edges prop-
erly [21]. Our reduction encodes the coloring problem into a DAGMaxBinaryTree 
instance in a way that recovers a consistent coloring for the vertices while also being 
proper for a large fraction of the edges. Our ETH-based inapproximability result is 
also a consequence of this reduction in conjunction with the self-improving reduc-
tion. We again emphasize that there is no counterpart of APX-hardness in DAGs for 
max binary tree in the longest path literature.

Self-improving Reduction for Undirected Graphs For UndirMaxBinaryTree, 
the self-improving reduction is more involved. Our above-mentioned reduction for 
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DirMaxBinaryTree heavily exploits the directed nature of the graph (e.g., uses 
source vertices) and hence, is not applicable for undirected graphs. Moreover, the 
same choice of squared graph G2 as Karger et al. [23] fails since Obs (ii) does not 
hold any more: the tree T2 restricted to each edge copy may not be a tree (but it will 
be a forest). However, we observe that T2 restricted to each edge copy may result in a 
forest with up to four binary trees in it. This observation and a more careful projec-
tion can be used to recover a tree of size at least 

√�V(T2)�∕4 (let us call this weak-
ened Obs (ii)). Yet, weakened Obs (ii) is insufficient for a self-improving reduction. 
One approach to fix this would be to construct a different squared graph G⊠2 that 
strengthens Obs (i) to guarantee that OPT(G⊠2) ≥ 16OPT(G)2 while still allowing 
us to recover a binary tree of size 

√�V(T2)�∕4 in G from a binary tree T2 in G⊠2 . 
Such a strengthened Obs (i) coupled with weakened Obs (ii) would complete the 
self-improving reduction. Our reduction is a variant of this approach: we introduce a 
construction of the squared-graph that strengthens Obs (i) by a factor of 2 while also 
weakening Obs (ii) only by a factor of 2. We prove these two properties of the con-
struction by relying on a handshake-like property of binary trees which is a relation-
ship between the number of vertices of each degree and the total number of vertices 
in the binary tree.

Inapproximability for Undirected Graphs In order to show the constant-factor 
inapproximability result, it suffices to show that there is no PTAS (due to the self-
improving reduction). We show the lack of a PTAS by reducing from TSP(1, 2). We 
mention that Karger et al.  [23] also show the lack of a PTAS for the longest path 
problem by reducing from TSP(1, 2). However, our reduction is much different from 
their reduction. Our reduction mainly relies on the fact that if we add a pendant node 
to each vertex of a graph G and obtain a binary tree T that has a large number of 
such pendants, then the binary tree restricted to G cannot have too many nodes of 
degree three. Our ETH-based inapproximability result is also a consequence of this 
reduction in conjunction with the self-improving reduction.

1.3.2 � Algorithmic Results

A 2k����(n) Time Algorithm for k-BinaryTree. The proof of this result is inspired 
by the algebrization technique introduced in [27, 28, 39] for designing randomized 
algorithms for k-Path and k-Tree—in k-Path, the goal is to recover a path of length 
k in the given graph while k-Tree asks to recover a given tree on k vertices in the 
given graph. Their idea is to encode a path (or the given tree) as a multilinear mono-
mial term in a carefully constructed polynomial, which is efficiently computable 
using an arithmetic circuit. Then, a result due to Williams  [39] is used to verify 
if the constructed polynomial contains a multilinear term—Williams’ result gives 
an efficient randomized algorithm, which on input a small circuit that computes the 
polynomial, outputs ‘yes’ if a multilinear term exists in the sum of products repre-
sentation of the input polynomial, and ‘no’ otherwise. The subgraph that is sought 
may then be extracted using an additional pass over the graph. Our main technical 
contribution is the construction of a polynomial PG whose multilinear terms corre-
spond to binary trees of size k in G and which is efficiently computable by an arith-
metic circuit. We remark that the polynomial constructions in previous results do 
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not readily generalize for our problem. Our key contribution is the construction of a 
suitable polynomial, based on a carefully designed recursion.

Efficient Algorithm for Bipartite Permutation Graphs Our main structural insight 
for bipartite permutation graphs is that there exists a maximum binary tree which 
is crossing-free with respect to the so-called strong ordering of the vertices. With 
this insight, MBT in bipartite permutation graphs reduces to finding a maximum 
crossing-free binary tree. We solve this latter problem by dynamic programming.

1.4 � Organization

We present the 2k����(n) time algorithm for k-BinaryTree in Sect. 4. We present our 
hardness results for DAGs in Sect. 5. We formulate an IP for DAGs and discuss its 
integrality gap in Sect. 5.3. We show our hardness results for undirected graphs in 
Sect. 6. We design an efficient algorithm for bipartite permutation graphs in Sect. 7. 
We conclude with a few open problems in Sect. 8.

1.5 � Preliminaries

PTAS and APX-Hardness We say that a maximization problem has a polynomial-
time approximation scheme (PTAS) if it admits an algorithm that for each fixed 
𝜀 > 0 , and for each instance, outputs a solution of size at least (1 − �) times the opti-
mal solution (we refer to such solutions as (1 − �)-approximate solutions), in time 
polynomial in the size of the input instance. A problem is said to be in the class 
APX if it has a polynomial-time constant-factor approximation algorithm. A prob-
lem is APX-hard if there is a PTAS reduction from every problem in APX to that 
problem.

MBT in Directed Graphs Given a directed graph G = (V ,E) and a vertex r ∈ V  , 
we say that a subgraph T where V(T) ⊆ V  and E(T) ⊆ E , is an r-rooted tree in G if 
T is acyclic and every vertex v in T has a unique directed path (in T) to r. If the in-
degree of each vertex in T is at most 2, then T is an r-rooted binary tree.

The problem of interest in directed graphs is the following: 

rooted-DirMaxBinaryTree

Given: A directed graph G = (V ,E) and a root r ∈ V .
Goal: An r-rooted binary tree T in G with maximum number of vertices.

  The problem DAGMaxBinaryTree is a special case of rooted-DirMaxBinaryTree 
in which the input directed graph is a DAG. We recall that the rooted and unrooted 
variants of the maximum binary tree problem in DAGs are equivalent.

MBT in Undirected Graphs Given an undirected graph G = (V ,E) , we say that a 
subgraph T, where V(T) ⊆ V  and E(T) ⊆ E , is a binary tree in G if T is connected, 
acyclic, and degT (v) ≤ 3 for every vertex v ∈ V(T) . We will focus on the unrooted 
variant, i.e., UndirMaxBinaryTree, since the inapproximability results for the 
rooted variant are implied by inapproximability results for the unrooted variant. 
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UndirMaxBinaryTree

Given: An undirected graph G.
Goal: A binary tree in G with maximum number of vertices.

2 � A 2k����(n) Time Algorithm for k‑BinaryTree

In this section, we present a randomized algorithm that solves k-BinaryTree 
exactly and runs in time 2k����(n) where n is the number of vertices in the input 
graph. We recall that k-BinaryTree is the problem of deciding whether a given 
directed graph contains a binary tree of size k. Our algorithm is inspired by an 
algebraic approach for solving the k-Path problem—the algebraic approach relies 
on efficient detection of multilinear terms in a given polynomial.

k-Path, polynomials and Multilinear Terms We begin with a recap of the alge-
braic approach to solve k-Path—here, the goal is to verify if a given (directed 
or undirected) graph G contains a path of length at least k. There has been a rich 
line of research dedicated to designing algorithms for k-Path with running time 
�k����(n) where 𝛽 > 1 is a constant and n is the number of vertices in G (cf. [2, 8, 
27, 39]). In particular, the algorithms in [27, 39] are based on detecting multilin-
ear terms in a polynomial.

We now recall the problem of detecting multilinear terms in a polynomial. 
Here, we are given a polynomial with coefficients in a finite field �q and the goal 
is to verify if it has a multilinear term. We emphasize that the input polynomial is 
given implicitly by an arithmetic circuit consisting of addition and multiplication 
gates. In other words, the algorithm is allowed to evaluate the polynomial at any 
point but does not have direct access to the sum-of-product expansion of the poly-
nomial. We recall that a multilinear term in a polynomial p ∈ �q[x1, x2,⋯ , xm] is 
a monomial in the sum-of-products expansion of p consisting of only degree-1 
variables. For example, in the following polynomial

the monomials x3 and x1x2x3 are multilinear terms, whereas x2
1
x2 is not a multilinear 

term since x1 has degree 2. We will use the algorithm mentioned in the following 
theorem as a black box for detecting multilinear terms in a given polynomial.

Theorem 5  (Theorem 3.1 in [39]) Let P(x1,⋯ , xn) be a polynomial of degree at most 
k, represented by an arithmetic circuit of size s(n) with addition gates (of unbounded 
fan-in), multiplication gates (of fan-in two), and no scalar multiplications. There is a 
randomized algorithm that on input P runs in 2ks(n) ⋅ ����(n) log (1∕�) time, outputs 
‘yes’ with probability 1 − � if there is a multilinear term in the sum-product expan-
sion of P, and outputs ‘no’ if there is no multilinear term.

The idea behind solving k-Path with the help of this theorem is to construct a 
polynomial pG based on the input graph G so that pG contains a multilinear term 

p(x1, x2, x3) = x2
1
x2 + x3 + x1x2x3,
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if and only if G contains a simple path of length k. At the same time, pG should be 
computable by an arithmetic circuit of size ����(n) . Koutis and Williams achieved 
these properties using the following polynomial:

We recall that a walk in G is a sequence of vertices in which neighbouring vertices 
are adjacent in G. From the definition, it is easy to observe that there is a one-to-one 
correspondence between simple k-paths in G and multilinear terms in pG . Moreover, 
it can be shown that there is an arithmetic circuit of size O

(
k2(m + n)

)
 that computes 

pG , where m is the number of edges and n is the number of vertices in G. See Chap-
ter 10.4 of [14] for alternative constructions of this polynomial.

The Polynomial Construction for k-BinaryTree Following the above-mentioned 
approach, we construct a polynomial PG with the property that PG contains a mul-
tilinear term if and only if G contains a binary tree of size k. Unfortunately, there is 
no immediate generalization of walks of length k that characterize binary trees on 
k vertices. So, instead of defining the polynomial conceptually, we will define the 
polynomial recursively by building the arithmetic circuit that computes PG , and will 
prove the correspondence between multilinear terms in PG and binary trees of size 
k in G. In the definition of our polynomial, we also need to introduce an auxiliary 
variable to eliminate low-degree multilinear terms in PG (which is not an issue in the 
construction of the polynomial for k-Path).

Let G = (V ,E) be the given directed graph. For v ∈ V  , let 
Δin

v
∶= {u ∈ V ∶ (u, v) ∈ E} . We begin by defining a polynomial P(k)

v
 for every 

v ∈ V  and every positive integer k, in (n + 1) variables 
{
xv
}
v∈V

∪ {y}:

Next, we define P(k)

G
∶=

∑
v∈V P

(k)
v

 . We recall that a polynomial is homogenous if 
every monomial has the same degree. By induction on k, the polynomial P(k)

v
 is a 

degree-k homogeneous polynomial and so is P(k)

G
 . Moreover, by the recursive defini-

tion, we see that P(k)
v

 can be represented as an arithmetic circuit of size O(k2n) since 
there are kn polynomials in total, and computing each requires O(1) addition gates 
(with unbounded fan-in) and O(k) multiplication gates (with fan-in two). We show 
the following connection between multilinear terms in P(k)

G
 and binary trees in G.

Lemma 1  The graph G has a binary tree of size k rooted at r if and only if there is a 
multilinear term of the form 

∏
v∈S xv in P(k)

r
 where |S| = k.

Proof  We first show the forward direction, i.e., if G has a binary tree T of size k 
rooted at r, then there is a multilinear term of the form 

∏
v∈T xv in P(k)

r
 . We prove this 

pG(x1,⋯ , xn) ∶=
∑

(
vi1

,vi2
,…,vik

)
∶awalkinG

xi1xi2 … xik .

P(k)
v

∶=

⎧
⎪⎪⎨⎪⎪⎩

xv ifk = 1

xv ⋅ y
k−1 if k > 1 andΔin

v
= ∅

xv

⎛⎜⎜⎝
�
u∈Δin

v

P(k−1)
u

+

k−2�
𝓁=1

⎛⎜⎜⎝
�

u1∈Δ
in
v

P(𝓁)
u1

⎞⎟⎟⎠

⎛⎜⎜⎝
�

u2∈Δ
in
v

P(k−1−𝓁)
u2

⎞⎟⎟⎠

⎞⎟⎟⎠
if k > 1 andΔin

v
≠ ∅
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by induction on k. The base case k = 1 follows since P(1)
r

= xr . Suppose that the for-
ward direction holds when |T| ≤ k − 1 . For |T| = k , we consider two cases. 

1.	 The root r has only one child c. The subtree Tc of T rooted at c has size k − 1 . By 
induction hypothesis there is a multilinear term 

∏
v∈Tc

xv in P(k−1)
c

 . Since c ∈ Δin
r

 , 
for some polynomial Q we can write 

 Therefore xr ⋅
∏

v∈Tc
xv is a term in P(k)

r
 . This term is multilinear and equals to ∏

v∈T xv since r ∉ Tc.
2.	 The root r has two children c1, c2 . Suppose that the subtree Tc1 rooted at c1 has size 

� , thus the subtree Tc2 rooted at c2 has size k − 1 − � . The induction hypothesis 
implies that P(�)

c1
 has a multilinear term 

∏
v∈Tc1

xv , and P(k−1−�)
c2

 has a multilinear 
term 

∏
v∈Tc2

xv . Since c1, c2 ∈ Δin
r

 , for some polynomial Q we can write 

 Therefore xr
�∏

v∈Tc1
xv

��∏
v∈Tc2

xv

�
 is a term in P(k)

r
 . This term is multilinear 

and equals to 
∏

v∈T xv because T is the disjoint union of r, Tc1 and Tc2.
In both cases, the polynomial P(k)

r
 has a multilinear term 

∏
v∈T xv . This completes the 

inductive step.
Next, we show that if P(k)

r
 has a multilinear term of the form 

∏
v∈S xv where 

|S| = k , then there is a binary tree T rooted at r in G with vertex set S. We prove 
this also by induction on k. The base case k = 1 is trivial since P(1)

r
= xr and there is 

a binary tree of size 1 rooted at r. Suppose that the statement holds for k − 1 or less 
( k > 1).

Let 
∏

v∈S xv be a multilinear term in P(k)
r

 . We note that r ∈ S since every term 
in P(k)

r
 contains xr . Moreover, we may assume that Δin

r
≠ ∅ since otherwise 

P(k)
r

= xr ⋅ y
k−1 which does not contain any term of the form 

∏
v∈S xv . According to 

the definition of P(k)
r

 , we could have two cases. 

1.	 The term 
∏

v∈S⧵{r} xv is a multilinear term in P(k−1)
c

 for some c ∈ Δin
r

 . The induc-
tion hypothesis implies that there is a binary tree Tc rooted at c with vertex set 
S ⧵ {r} . Let T be the binary tree obtained by adding the edge (c, r) to Tc . Then T 
is a binary tree rooted at r with vertex set S.

2.	 The term 
∏

v∈S⧵{r} xv is a multilinear term in P(�)
c1
P(k−1−�)
c2

 for some c1, c2 ∈ Δin
r

 and 
some integer 1 ≤ � ≤ k − 2 . In this case, since P(�)

c1
 and P(k−1−�)

c2
 are homogeneous 

polynomials of degree � and k − 1 − � , we can partition S ⧵ {r} into two sets S1 
and S2 with |S1| = � and |S2| = k − 1 − � such that 

∏
v∈S1

xv is a multilinear term 
in P(�)

c1
 , and 

∏
v∈S2

xv is a multilinear term in P(�)
c2

 . Applying the induction hypoth-
esis, we obtain a binary tree Tc1 (rooted at c1 ) with vertex set S1 and a binary tree 
Tc2 (rooted at c2 ) with vertex set S2 . Let T be the binary tree obtained by adding 
edges (c1, r) and (c2, r) to Tc1 ∪ Tc2 . Then T is a binary tree rooted at r with vertex 
set S1 ∪ S2 ∪ {r} = S.

P(k)
r

= xr
(
P(k−1)
c

+ Q
)
.

P(k)
r

= xr

(
P(�)
c1
P(k−1−�)
c2

+ Q
)
.
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In both cases, we can find a binary tree T rooted at r with vertex set S. This com-
pletes the inductive step. 	�  ◻

With this choice of P(k)

G
 , we call the algorithm appearing in Theorem  5 on 

input polynomial P̃(k)

G
∶= y ⋅ P

(k)

G
 , and output the result. We note that every multi-

linear term of the form 
∏

v∈S xv in P(k)

G
 becomes a multilinear term of the form 

y ⋅
∏

v∈S xv in P̃(k)

G
 , and every multilinear term of the form y ⋅

∏
v∈S xv in P(k)

G
 becomes 

y2 ⋅
∏

v∈S xv in P̃(k)

G
 , which is no longer a multilinear term. In light of Lemma 

1, the graph G contains a binary tree of size k if and only if the degree-(k + 1) 
homogeneous polynomial P̃

(k)

G
 has a multilinear term. The running time is 

2k+1 ⋅ O(k2n) ⋅ ����(n + 1) log (1∕�) = 2k ⋅ ����(n) log (1∕�).
We remark that this algorithm does not immediately tell us the tree T (namely the 

edges in T). However, we can find the edges in T with high probability via a reduc-
tion from the search variant to the decision variant. This is formalized in the next 
lemma.

Lemma 2  Suppose that there is an algorithm A which takes as input a directed 
graph G = (V ,E) , an integer k and �� ∈ (0, 1) runs in time 2k����(|V|) log (1∕��) 
and

•	 outputs ’yes’ with probability at least 1 − �� if G contains a binary tree of size k,
•	 outputs ’no’ with probability 1 if G does not contain a binary tree of size k.

Then there also exists an algorithm A′ which for every � ∈ (0, 1) outputs a binary 
tree T of size k with probability at least 1 − � when the answer is ’yes’, and runs in 
time 2k����(|V|) log (1∕�).
Proof  The algorithm A′ iterates through all arcs e ∈ E and calls A on (G − e, k) with 
�� = �∕m where G − e = (V ,E ⧵ {e}) and m = |E| . If for some e ∈ E the call to A 
outputs ’yes’, we remove e from G (i.e., set G ← G − e ) and continue the process. 
We will show that when the algorithm terminates, the arcs in G constitute a binary 
tree of size k (if there exists one) with probability at least 1 − �.

Suppose the order in which A′ processes the arcs is e1, e2,⋯ , em , and the graph 
at iteration t is denoted by G(t) . Let Bt denote the event “ G(t−1) − et contains a binary 
tree of size k, but the call to A

(
G(t−1) − et, k

)
 returns no”. Due to the assumption we 

made for A , event Bt happens with probability at most �′ . Since the algorithm A has 
perfect soundness, whenever A′ removes an edge we are certain that the remain-
ing graph still contains a binary tree of size k (otherwise the call to A would never 
return ‘yes’). That means if G(0) = G contains a binary tree of size k then G(t) con-
tains a binary tree of size k for all 0 ≤ t ≤ m . Therefore if none of the events Bt hap-
pens, the final graph G(m) is a binary tree of size k. The probability of failure is upper 
bounded by

Pr

[
m⋃
t=1

Bt

]
≤ m ⋅ �� = m ⋅

�

m
= �.
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Since algorithm A′ makes m calls to algorithm A , the running time of A′ is 
m ⋅ 2k����(|V|) log (1∕��) = 2k����(|V|) log (1∕�) . 	�  ◻

Theorem 5 in conjunction with Lemmas 1 and 2 complete the proof of Theorem 3.

3 � Hardness Results for DAGs

In this section, we show the inapproximability of finding a maximum binary tree in 
DAGs. The size of a binary tree denotes the number of vertices in the tree.

3.1 � Self‑improvability for Directed Graphs

We show that if there exists a constant-factor approximation algorithm for rooted-
DirMaxBinaryTree, then such an algorithm can be turned into a PTAS as in Theo-
rem 6. We emphasize that this result holds for arbitrary directed graphs and not just 
DAGs. The idea is to define a squared graph and gradually boost up the approxima-
tion ratio by running the constant-factor approximation algorithm on squared graphs 
and extracting better solutions for the original graph. We note that our notion of 
squared graph is similar to that of Karger, Motwani and Ramkumar [23], and differs 
from standard graph theoretic definitions of the same. We define our squared graph 
next.

Definition 1  Given a directed graph G = (V ,E) with root r, the squared graph G2 is 
the directed graph obtained by performing the following operations on G: 

1.	 Construct G� = (V �,E�) by introducing a source vertex s, i.e., V � ∶= V ∪ {s} . We 
add arcs from s to every vertex in G, i.e., E� ∶= E ∪ {(s, v) ∶ v ∈ V}.

2.	 For each u ∈ V  (we note that V does not include the source vertex), we create a 
copy of G′ that we denote as a vertex copy G′

u
 . We call the vertices within vertex 

copies as nodes, and denote the root node of G′
u
 by ru , and the source node of G′

u
 

by su.
3.	 For each (u, v) ∈ E , we create an arc 

(
ru, sv

)
.

4.	 We declare the root of G2 to be rr , i.e. the root node of the vertex copy G′
r
.

We define G2k+1 recursively as G2k+1 ∶=
(
G2k

)2
 with the base case G1 ∶= G.

Given a directed graph G with n − 1 vertices, let nk ∶=
|||V

(
G2k

)||| so that 
n0 = n − 1 . Then, nk satisfies the following recurrence relation.

Hence, we have

nk = nk−1
(
nk−1 + 1

)
= n2

k−1
+ nk−1.

nk + 1 ≤
(
nk−1 + 1

)2
≤
(
nk−2 + 1

)22
≤ … ≤

(
n0 + 1

)2k
= n2

k

.
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We use OPT(G) to denote the size (number of vertices) of a maximum binary tree in 
G. The following lemma shows that OPT(G) is super-multiplicative under the squar-
ing operation.

Lemma 3  For any fixed root r, OPT(G2) ≥ OPT(G)2.

Proof  Suppose we have an optimal r-rooted binary tree T1 of G, i.e. 
|V(T1

)| = OPT(G) . We construct an rr-rooted binary tree T2 of G2 as follows 
(Fig. 1): 

1.	 For v ∈ V(G) , define T �
v
= Tv ∪

{
sv
}
 to be the optimal rv-rooted binary tree in the 

vertex copy G′
v
 where Tv is identical to T1 and the source node sv is connected to 

an arbitrary leaf node in Tv.
2.	 For every vertex v ∈ T1 , add T ′

v
 to T2 . This step generates |V(T1

)| ⋅ (|V(T1
)| + 1

)
 

nodes in T2.
3.	 Connect the copies selected in step 2 by adding the arc 

(
ru, sv

)
 to T2 for every arc 

(u, v) ∈ T1.

Since T1 is an r-rooted binary tree (in G), it follows that T2 is an rr-rooted binary tree 
(in G2 ). Moreover, the size of T2 is

which cannot exceed OPT
(
G2

)
 . 	�  ◻

The following lemma shows that a large binary tree in G2 can be used to obtain a 
large binary tree in G.

Lemma 4  For every � ∈ (0, 1] , given an rr-rooted binary tree T2 in G2 with size

|V(T2
)| = |V(T1

)| ⋅ (|V(T1
)| + 1

)
≥ OPT(G)2,

r

v1 v2

(a)G rooted at the black node

s0

s1

s2

r

(b)G2 rooted at the black node. Source nodes are represented
by diamonds.

Fig. 1   Directed squared graph
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there is a linear-time (in the size of G2 ) algorithm that finds an r-rooted binary tree 
T1 of G with size

Proof  Let U ∶= {v ∶ v ∈ V(G) such that rv ∈ V(T2)} and 
A ∶= {(v,w) ∶ v,w ∈ V(G),

(
rv, sw

)
∈ E(T2)} . We note that T �

1
∶= (U,A) is an 

r-rooted binary tree in G. This is because the path from every v ∈ U to the root 
r is preserved, and the in-degree of every vertex w ∈ U is bounded by the in-
degree of sw (in T2 ), which is thus at most 2, and similarly the out-degree of 
every vertex is at most 1. We also remark that T ′

1
 can be found in linear time. If 

�U� ≥ √
𝛼OPT(G) >

√
𝛼OPT(G) − 1 , then the lemma is already proved. So, we 

may assume that �U� < √
𝛼OPT(G).

We now consider T �
v
∶=

(
V
(
T2
)
∩ V

(
G�

v

)
,E

(
T2
)
∩ E

(
G�

v

))
 for v ∈ U . We can 

view T ′
v
 as the restriction of T2 to G′

v
 , hence every node of T ′

v
 has out-degree at most 

2. Since T2 is an rr-rooted binary tree in G2 , every node in V
(
T2
)
∩ V

(
G�

v

)
 has a 

unique directed path (in T2 ) to rr , which must go through rv , thus every node in 
V
(
T2
)
∩ V

(
G�

v

)
 has a unique directed path to rv . It follows that T ′

v
 is an rv-rooted 

binary tree in the vertex copy G′
v
.

We now show that there exists v ∈ U such that �V�T �
v

�� ≥ √
�OPT(G) . Suppose 

not, which means for every v ∈ U we have �V�T �
v

�� < √
𝛼OPT(G) . Then

a contradiction. The last inequality is due to Lemma 3.
In linear time we can find a binary tree T ′

v
 with the desired size 

�V�T �
v

�� ≥ √
�OPT(G) . To complete the proof of the lemma, we let T1 ∶= T �

v
⧵
{
sv
}
 

which is (isomorphic to) an r-rooted binary tree in G with size at least √
�OPT(G) − 1 . 	�  ◻

Theorem  6  If rooted-DirMaxBinaryTree has a polynomial-time algorithm that 
achieves a constant-factor approximation, then it has a PTAS.

Proof  Suppose that we have a polynomial-time algorithm A that achieves an �
-approximation for rooted-DirMaxBinaryTree. Given a directed graph G, root r 
and 𝜀 > 0 , let

|V(T2
)| ≥ �OPT

(
G2

)
− 1,

�V�T1
�� ≥ √

�OPT(G) − 1.

�V�T2
�� = �

v∈U

�V�T �
v

�� < �
v∈U

�√
𝛼OPT(G)

�
<
√
𝛼OPT(G) ⋅

√
𝛼OPT(G)

= 𝛼OPT(G)2 ≤ 𝛼 ⋅ OPT
�
G2

�
,

k ∶= 1 +

⌈
log2

log2 �

log2(1 − �)

⌉
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be an integer constant that depends on � and � . We construct G2k and run algorithm 
A on G2k . Then, we get a binary tree in G2k of size at least �OPT

(
G2k

)
− 1 . By 

Lemma 4, we can obtain an r-rooted binary tree in G of size at least

The first inequality holds as long as

We note that if OPT(G) is smaller than 1∕
(
�2−k − �2−k+1

)
 which is a constant, then 

we can solve the problem exactly by brute force in polynomial time. Finally, we also 
observe that for fixed � , the running time of this algorithm is polynomial since there 
are at most n2k = nO(1) vertices in the graph G2k . 	�  ◻

3.2 � APX‑Hardness for DAGs

Next, we show the inapproximability results for DAGs. We begin by recalling 
DAGMaxBinaryTree:

DAGMaxBinaryTree

Given: A directed acyclic graph G = (V ,E) and a root r ∈ V .
Goal: An r-rooted binary tree in G with the largest number of vertices.

We may assume that the root is the only vertex that has no outgoing arcs as 
we may discard all vertices that cannot reach the root. We show that DAGMaxBi-
naryTree is APX-hard by reducing from the following problem.

Max-3-Colorable-Subgraph

Given: An undirected graph G that is 3-colorable.
Goal: A 3-coloring of G that maximizes the fraction of properly colored edges.

It is known that finding a 3-coloring that properly colors at least 32/33-fraction of 
edges in a given 3-colorable graph is NP-hard [5, 21]. In particular, Max-3-Colora-
ble-Subgraph is APX-hard. We reduce Max-3-Colorable-Subgraph to DAGMax-
BinaryTree. Let G = (V ,E) be the input 3-colorable undirected graph with n ∶= |V| 
and m ∶= |E| . For 𝜀 > 0 to be fixed later, we construct a DAG, denoted D(G, �) , as 
follows (see Fig. 2 for an illustration):

1.	 Create a directed binary tree B rooted at vertex c with n ∶= |V| leaf vertices. We 
will identify each leaf by a unique vertex v ∈ V  . Create a super root a and arc 
c → a . This tree and the super root would have 2n vertices, including the super 
root vertex a, n leaf vertices, and n − 1 internal vertices.

�2−kOPT(G) − 1 ≥ �2−k+1OPT(G) ≥ (1 − �)OPT(G).

OPT(G) ≥
1√

1 − � − (1 − �)
≥

1

�2−k − �2−k+1
.
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2.	 For every i ∈ V , we introduce three directed paths of length n that will be referred 
to as Ri,Gi and Bi . Let Ri be structured as r(1)

i
← r

(2)

i
← ⋯ ← r

(n)

i
 , and similarly 

introduce g(k)
i

 and b(k)
i

 with the same structure. Also add arcs r(1)
i

→ vi , g
(1)

i
→ vi 

and b(1)
i

→ vi.
3.	 For every edge e = {i, j} ∈ E , introduce three directed binary trees that will be 

referred to as TR
e
, TG

e
 , and TB

e
 , each with t =

⌈
2�n(n+1)+4n2

�m

⌉
 vertices. Let the roots 

of the binary trees TR
e
, TG

e
 , and TB

e
 be aR

e
, aG

e
 , and aB

e
 respectively. Add arcs 

aR
e
→ r

(p1)

i
 and aR

e
→ r

(q1)

j
 where r(p1)

i
 and r(q1)

j
 are two vertices in Ri and Rj with 

in-degree strictly smaller than 2. We note that Ri is a path with n vertices so such 
a vertex always exists. Similarly connect aG

e
 to g(p2)

i
 and g(q2)

j
 , and aB

e
 to b(p3)

i
 and 

b
(q3)

j
 in the directed paths Gi and Bi , respectively.

The constructed graph D(G, �) is a DAG. We fix a to be the root. The number of 
vertices N in D(G, �) is N = 3mt + 3n ⋅ n + 2n = 3mt + 3n2 + 2n . We note that 
every vertex vi ∈ V  has in-degree exactly 2 in every a-rooted maximal binary tree 
in D(G, �) . The idea of this reduction is to encode the color of vi as the unique path 
among Ri,Gi,Bi that is not in the subtree under vi . The following two lemmas sum-
marize the main properties of the DAG constructed above.

a

c

vi

r
(1)
i

...

r
(p1)
i

...

g
(1)
i

...

g
(p2)
i

...

b
(1)
i

...

b
(p3)
i

...

vj

r
(1)
j

...

r
(q1)
j

...

g
(1)
j

...

g
(q2)
j

...

b
(1)
j

...

b
(q3)
j

...

. . . . . . . . .

aRe

TR
e

aGe

TG
e

aBe

TB
e

. . . . . .

B

Fig. 2   DAG D(G, �) constructed in the reduction from Max-3-Colorable-Subgraph to DAGMaxBi-
naryTree 
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Lemma 5  Let T be a maximal a-rooted binary tree of D(G, �) . If 
|V(T)| ≥ (1 − �∕4)(N − n2) , then at most �m vertices among ∪e∈E{a

R
e
, aG

e
, aB

e
} are 

not in T.

Proof  Suppose more than �m such vertices are missing from T. For each vertex aR
e
 

that is not in T, the corresponding subtree TR
e
 is also not in T (same for aG

e
 and aB

e
 ). 

Therefore

The choice of t implies that 𝜀mt∕4 > 𝜀n(n + 1)∕2 + n2 . Therefore

a contradiction. 	�  ◻

Lemma 6  If G is 3-colorable, then every a-rooted maximum binary tree in D(G, �) 
has size exactly N − n2.

Proof  We first note that every binary subtree of D(G, �) has size at most N − n2 . 
This is because there are n vertices with in-degree 3 (namely v1, v2,⋯ , vn ). For each 
such vertex vi , there are 3 vertices r(1)

i
, g

(1)

i
 and b(1)

i
 whose only outgoing arc is to vi . 

Moreover, each vertex r(1)
i

 (and similarly g(1)
i

 and b(1)
i

 ) is the end-vertex of an induced 
path of length n.

Suppose G is 3-colorable. We now construct an a-rooted binary tree T of size 
N − n2 in D(G, �) . We focus on the vertices to be discarded so that we may construct 
a binary spanning tree with the remaining vertices. Let � ∶ V → {Red,Green,Blue} 
be a proper 3-coloring of G. If �(vi) = Red , we discard the path Ri . The cases where 
�(vi) ∈ {Green,Blue} are similar. Since there are no monochromatic edges, there do 
not exist e =

{
vi, vj

}
∈ E and C ∈ {R,G,B} such that both parents of aC

e
 are not in 

T. Therefore every binary tree TC
e

 is contained as a subtree in T. 	�  ◻

Theorem 7  Suppose there is a PTAS for DAGMaxBinaryTree on DAGs, then for 
every 𝜀 > 0 there is a polynomial-time algorithm which takes as input an undirected 
3-colorable graph G, and outputs a 3-coloring of G that properly colors at least 
(1 − �)m edges.

Proof  Let G = (V ,E) be the given undirected 3-colorable graph. We construct 
D(G, �) in polynomial time. We note that the constructed graph D(G, �) is a directed 
acyclic graph. We now run the PTAS for DAGMaxBinaryTree on D(G, �) and root 
a to obtain a (1 − �∕4)-approximate maximum binary tree in D(G, �) . By Lemma 6 

|V(T)| < N − 𝜀mt = 3mt + 3n2 + 2n − 𝜀mt =
(
1 −

𝜀

4

)
⋅ 3mt + 3n2 + 2n −

𝜀

4
mt.

|V(T)| <
(
1 −

𝜀

4

)
⋅ 3mt + 3n2 + 2n −

𝜀n(n + 1)

2
− n2

<

(
1 −

𝜀

4

)
⋅ 3mt +

(
1 −

𝜀

4

)(
2n2 + 2n

)

=
(
1 −

𝜀

4

)
(N − n2),
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and the fact that G is 3-colorable, the PTAS will output an a-rooted binary tree T of 
size at least

We may assume that T is a maximal binary tree in D(G, �) (if not, then add more 
vertices to T until we cannot add any further). Maximality ensures that the vertices vi 
are in the tree T and moreover, the in-degree of vi in T is exactly 2. For each vi ∈ V  , 
let ci be the unique vertex among 

{
r
(1)

i
, g

(1)

i
, b

(1)

i

}
 that is not in T. We define a color-

ing � ∶ V → {Red,Green,Blue} of G as

We now argue that the coloring is proper for at least (1 − �)-fraction of the edges of 
G. Suppose we have an edge e =

{
vi, vj

}
 which is monochromatic under � , and sup-

pose w.l.o.g. �(vi) = �(vj) = Red . This means that neither r(1)
i

 nor r(1)
j

 is included in 
T. Therefore aR

e
∉ T  since neither of the two vertices with incoming arcs from aR

e
 are 

in T. By Lemma 5, we know that at most �m vertices among ∪e∈E{a
R
e
, aG

e
, aB

e
} can be 

excluded from T. Hence, the coloring � that we obtained can violate at most �m 
edges in G. 	�  ◻

Finally, we prove Theorem 1 using the self-improving argument (Theorem 6) and 
the APX-hardness of DAGMaxBinaryTree (Theorem 7).

Proof of Theorem 1 

1.	 We observe that the graph G2 constructed in Sect. 5 for the self-improving reduc-
tion is a DAG if G is a DAG. Therefore, by Theorem 6, a polynomial-time con-
stant-factor approximation for DAGMaxBinaryTree would imply a PTAS for 
DAGMaxBinaryTree, a contradiction to APX-hardness shown in Theorem 7.

2.	 Next we show hardness under the Exponential Time Hypothesis. Suppose there 
is a polynomial-time algorithm A for DAGMaxBinaryTree that achieves an 
exp

(
−C ⋅ log2 n∕ log2 log2 n

)
-approximation for some constant C > 0 . Given the 

input graph G with n − 1 vertices, let k be an integer that satisfies 

 and run A on G2k to obtain a binary tree with size at least 

 where N = n2
k upper bounds the size of G2k . Recursively running the algorithm 

suggested in Theorem 6 k times gives us a binary tree in G with size at least 

(
1 −

�

4

)
(N − n2).

∀vi ∈ V , �(vi) =

⎧
⎪⎨⎪⎩

Red ifci = r
(1)

i

Green ifci = g
(1)

i

Blue ifci = b
(1)

i
.

2
√
n ≤ n2

k

≤ 22
√
n,

exp
(
−C ⋅ log2 N∕ log2 log2 N

)
OPT

(
G2k

)
,
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 The last inequality holds as long as 

 We note that if OPT(G) is smaller than 2e4C which is a constant, we can solve 
the problem exactly by brute force in polynomial time. Otherwise the above 
procedure can be regarded as a constant-factor approximation for DAGMaxBi-
naryTree. The running time is polynomial in 

 which is sub-exponential. Moreover, from item 1 we know that it is ��-hard to 
approximate DAGMaxBinaryTree within a constant factor, thus 
�� ⊆ �����

�
exp

�
O
�√

n
���

.
3.	 The proof of this item is almost identical to the previous one except that we 

choose a different integer k. Suppose there is an algorithm A′ for DAGMaxBi-
naryTree that achieves a exp

(
−C ⋅ log1−� n

)
-approximation for some constant 

C > 0 , and runs in time exp
(
O
(
logd n

))
 for some constant d > 0 . We show that 

there is an algorithm that achieves a constant-factor approximation for DAGMax-
BinaryTree, and runs in time exp

(
O
(
logd∕� n

))
 . Given a DAG G on n − 1 verti-

ces as input for DAGMaxBinaryTree, let k =
⌈(

1

�
− 1

)
log2 log n

⌉
 be an integer 

that satisfies 

 Running A′ on G2k gives us a binary tree with size at least 

 where N = n2
k upper bounds the size of G2k . Recursively running the algorithm 

suggested in Theorem 6 k times gives us a binary tree in G with size at least 

exp

�
−C ⋅

log2 N

log2 log2 N ⋅ 2k

�
OPT(G) − 1

≥ exp

�
−C ⋅

2
√
n

log2
√
n
⋅
log2 n√

n

�
OPT(G) − 1

≥ exp (−4C)OPT(G) − 1 ≥
1

2
⋅ exp (−4C)OPT(G).

OPT(G) ≥ 2 ⋅ e4C.

N = n2
k

= exp
�
O
�√

n
��

,

(
2k log n

)1−�
≤ 2k ≤ 2(log n)

1

�
−1
.

exp
(
−C ⋅ log1−� N

)
OPT

(
G2k

)
,
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 The last inequality holds as long as 

 We note that if OPT(G) is smaller than 2eC which is a constant, we can solve 
the problem exactly by brute force in polynomial time. Otherwise the above 
procedure can be regarded as a constant-factor approximation for DAGMaxBi-
naryTree. The running time is quasi-polynomial in N, i.e. for some constant 
C′ > 0 , the running time is upper-bounded by 

	�  ◻

3.3 � An IP and Its Integrality Gap for DAGs

Let G = (V ,E) with root r ∈ V  be the input graph. We use indicator variables Yu 
for the vertices u ∈ V  and Xe for the arcs e ∈ E to determine the set of vertexs and 
arcs chosen in the solution. With these variables, the objective is to maximize the 
number of chosen vertices. Let �out(u) and �in(u) be the set of incoming and outgoing 
edges of u respectively. Constraints (2) ensure that each chosen vertex has at most 
two incoming arcs. Constraints (3) ensure that each chosen non-root vertex has an 
outgoing arc. Constraints (4) are cut constraints that ensure that every subset S of 
vertices containing a chosen vertex u but not the root has at least one outgoing arc.

exp

(
−C ⋅

log1−� N

2k

)
OPT(G) − 1

≥ exp

(
−C ⋅

(
2k log n

)1−�
2k

)
OPT(G) − 1

≥ exp (−C)OPT(G) − 1 ≥
1

2
⋅ exp (−C)OPT(G).

OPT(G) ≥ 2 ⋅ eC.

exp
(
C�
(
logd N

))
= exp

(
C�
((

2k log n
)d))

≤ exp
(
C�
(
logd∕� n

))
.

(1)maximize
∑
v∈V

Yv

(2)subject to
∑

e∈�in(u)

Xe ≤ 2Yu ∀ u ∈ V ,

(3)
∑

e∈�out(u)

Xe = Yu ∀ u ∈ V ⧵ {r},

(4)
∑

e∈𝛿out(S)

Xe ≥ Yu∀ u ∈ S ⊂ V ⧵ {r},
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We note that a similar IP formulation can also be written for the longest s → t path 
problem by replacing the factor 2 in the RHS of (2) with a factor of 1. It can be 
shown that extreme point solutions for the LP-relaxation of such an IP are in fact 
integral. Owing to the similarity between the longest s → t path problem in DAGs 
and DAGMaxBinaryTree (as degree bounded maximum subtree problems), it might 
be tempting to conjecture that LP-based techniques might be helpful for DAGMax-
BinaryTree. However, in contrast to the LP-relaxation for longest s → t path prob-
lem in DAGs (which is integral), the LP-relaxation of the above IP (by removing 
Constraints 7) for DAGMaxBinaryTree has very large integrality gap.

Theorem 8  The integrality gap of the LP-relaxation of the above IP, even in DAGs, 
is Ω(n1∕3) , where n is the number of vertices in the input DAG.

Proof  We construct an integrality gap graph Tk recursively as shown in Fig. 3a with 
the base graph T1 being a single vertex labeled r1 . We will denote the root vertices of 
T1, T2,… , Tk−1, Tk to be special vertices. The layered construction and the direction 
of the arcs illustrate that the graph Tn is a DAG. The number Vk of vertices in the 
graph Tk satisfies the recursion

with V1 = 1 . Thus, Vk = (13∕7)(8k−1 − 1).
Due to the degree constraints, the optimal integral solution T̃k is obtained using a 

recursive construction as shown in Fig. 3b with the base graph T̃1 = T1 . The number 
of arcs in the optimal integral solution satisfies the recursion

(5)0 ≤ Yu ≤ 1∀ u ∈ V ,

(6)0 ≤ Xe ≤ 1∀ e ∈ E,

(7)Y ∈ ℤ
|V|,X ∈ ℤ

|E|.

Vk = 8Vk−1 + 13

Fig. 3   DAG integrality gap
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with IP-OPT(1) = 0 . Thus, IP-OPT(k) = (7∕3)(4k−1 − 1).
In order to show large integrality gap, we give an LP-feasible solution with large 

objective value. The LP-feasible solution that we consider is Xe ∶= 1∕2 for every 
arc e in the graph with

We now argue that this solution satisfies all constraints of the LP-relaxation. The 
in-degree and out-degree constraints hold by definition. We now show that the cut 
constraints, i.e., constraints (4), are satisfied. We have two cases:

Case 1. Suppose u is a non-special vertex. For every non-special vertex u, we 
have a path from u to the root r. So, every cut S containing u but not r has an arc 
leaving it and hence 

∑
e∈�out(S) Xe ≥ 1∕2 = Yu.

Case 2. Suppose u is a special verteex. For every special vertex u, we have two 
arc-disjoint paths from u to the root r. So, every cut S containing u but not r has at 
least 2 arcs leaving it and hence 

∑
e∈�out(S) Xe ≥ 1 = Yu.

The objective value of this LP-feasible solution satisfies the recursion

with LP-obj(1) = 0 . Thus, LP-obj(k) = 2(8k−1 − 1) . Consequently, the integrality 
gap of the LP for instance Tk is Ω(2k−1) = Ω(V

1∕3

k
) . 	�  ◻

4 � Hardness Results for Undirected Graphs

We show the inapproximability of finding a maximum binary tree in undirected 
graphs. We use OPT(G) to denote the size (number of vertices) of a maximum 
binary tree in G.

4.1 � Self‑improvability

This section is devoted to proving the following theorem.

Theorem 9  If UndirMaxBinaryTree has a polynomial-time algorithm that achieves 
a constant-factor approximation, then it has a PTAS.

In the previous section we showed an analogous self-improvability for rooted-
DirMaxBinaryTree (Theorem 6) by defining a squared graph and gradually boost-
ing up the approximation ratio by running the constant-factor approximation algo-
rithm on squared graphs. We use the same high-level strategy to prove Theorem 9. 
We need a different notion of a squared graph, which we formally introduce next.

IP-OPT(k) = 4IP-OPT(k − 1) + 7

Yu ∶=

{
1 if u is a special vertex,
1

2
otherwise.

LP-obj(k) = 8LP-obj(k − 1) + 14
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Definition 2  For an undirected graph G, its squared graph G⊠2 is defined as the 
graph obtained by performing the following operations in G. 

1.	 Replace each edge {u, v} ∈ E(G) with a copy Gu,v of G. Connect u and v to all 
vertices in Gu,v . We will refer to these copies as edge copies.

2.	 For each vertex v ∈ V(G) , introduce two copies of G denoted by G(1)
v

 and G(2)
v

 , and 
connect v to all vertices in G(1)

v
 and G(2)

v
 . We will refer to these copies as pendant 

copies.

We will use V(G) to denote the original vertices of G and the same vertices in the 
graph G⊠2 (see Fig. 4 for an example). We will refer to vertices from vertex cop-
ies, edge copies, and pendant copies as nodes. We define G⊠2k+1 recursively as 
G⊠2k+1 ∶=

(
G⊠2k

)⊠2
 with the base case G⊠1 ∶= G.

Given an undirected graph G with n vertices, the number of vertices in G⊠2k is 
upper bounded by n3k since at most |E(G)| + 2|V(G)| ≤ n2 copies of G are intro-
duced in G⊠2 when n ≥ 3.

For a binary tree T and d ∈ {0, 1, 2, 3} , let Id(T) ⊆ V(T) be the set of vertices 
with degree exactly d. The following lemma is our main tool in the reduction.

Lemma 7  For every non-empty binary tree T, we have

3|I0(T)| + 2|I1(T)| + |I2(T)| = |V(T)| + 2,

(a)

(b)

Fig. 4   A graph G and its squared graph G⊠2
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Proof  We prove by induction on |V(T)|. When |V(T)| = 1 , the tree T has 
one degree-0 vertex. Therefore |I0(T)| = 1 and |I1(T)| = |I2(T)| = 0 , thus 
3|I0(T)| + 2|I0(T)| + |I1(T)| = 3 = |V(T)| + 2 holds.

Suppose that the statement holds for all binary trees with t − 1 vertices for t ≥ 2 . 
Let T be a binary tree with t vertices. When t ≥ 2 there are no degree-0 vertices, so 
we only need to verify that 2|I1(T)| + |I2(T)| = |V(T)| + 2 . Let � be an arbitrary leaf 
node in T and p be its unique neighbor. Then degT (�) = 1 . Removing � results in a 
binary tree T ′ with t − 1 vertices. We have the following cases: 

1.	 If p ∈ I3(T) , then I1(T �) = I1(T) ⧵ {�} and I2(T �) = I2(T) ∪ {p}.
2.	 If p ∈ I2(T) , then I1(T �) =

(
I1(T) ⧵ {�}

)
∪ {p} and I2(T �) = I2(T) ⧵ {p}.

3.	 If p ∈ I1(T) , then I0(T �) = {p} , I1(T �) = I1(T) ⧵ {p,�} and I2(T �) = I2(T).

In all cases, we have

where the second equality is due to the induction hypothesis. This completes the 
inductive step. 	�  ◻

Remark 1  Lemma 7 can be generalized to any non-empty tree T with maxi-
mum degree k to conclude that 

∑k−1

i=0
(k − i)�Ii(T)� = (k − 2)�V(T)� + 2 , where 

Id(T) ⊆ V(T) is the set of vertices with degree exactly d. This can be proved by 
induction on |V(T)| in a very similar fashion to the proof of Lemma 7.

The next lemma shows that OPT(G) is super-multiplicative under the squaring 
operation.

Lemma 8  OPT
(
G⊠2

)
≥ 2OPT(G)2 + 2OPT(G).

Proof  Let T1 be an optimal binary tree in G, i.e. |V(T1)| = OPT(G) . We construct a 
binary tree T2 in G⊠2 as follows: 

1.	 For {u, v} ∈ E(G) , let Tu,v be the optimal binary tree (identical to T1 ) in the edge 
copy Gu,v . For v ∈ V(G) and i ∈ {1, 2} , let T (i)

v
 be the optimal binary tree in the 

pendant copy G(i)
v

.
2.	 For every edge {u, v} ∈ T1 , add Tu,v into T2 along with two edges {u,�} 

and {v,�} where � is an arbitrary leaf node in Tu,v . This step gener-
ates |V(T1)| + |V(T1)| ⋅ (|V(T1)| − 1) = |V(T1)|2 vertices in T2 of which 
|V(T1)|(|V(T1)| − 1) are nodes, since the number of edges in E(T1) is |V(T1)| − 1.

3.	 For v ∈ I1(T1) , add both T (1)
v

 and T (2)
v

 to T2 by connecting v to �(1) and �(2) , where 
�
(1) and �(2) are arbitrary leaf nodes in T (1)

v
 and T (2)

v
 , respectively. For u ∈ I2(T1) , 

add only T (1)
u

 to T2 by connecting u to a leaf node in T (1)
u

 . By Lemma 7, this step 
generates |V(T1)| ⋅ (|V(T1)| + 2) nodes in T2.

2|I1(T)| + |I2(T)| = 3|I0(T �)| + 2|I1(T �)| + |I2(T �)| + 1 = |V(T �)| + 3 = t + 2
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Since T1 is a binary tree, it follows that T2 is a binary tree. Moreover, the size of 
V(T2) is

which cannot exceed OPT
(
G⊠2

)
 . 	�  ◻

The next two lemmas show that a large binary tree in G⊠2 can be used to obtain a 
large binary tree in G.

Lemma 9  Given T2 as a binary tree in G⊠2 , there is a linear-time (in the size of G⊠2 ) 
algorithm that finds a binary tree T ′

1
 in G with vertex set V(T2) ∩ V(G).

Proof  Given a binary tree T2 in the squared graph G⊠2 , the algorithm finds a binary 
tree T ′

1
 in G by going through every edge {u, v} ∈ E(G) and adding it to T ′

1
 whenever 

the unique path from u to v in T2 goes through the edge copy Gu,v . We discard the 
edge {u, v} if there does not exist a path through Gu,v connecting u and v in T2.

By construction, the subgraph returned by the algorithm has maximum degree 
3 and is acyclic. Moreover, it is connected since the path between any two verti-
ces u, v ∈ T2 is preserved in T ′

1
 . Therefore, T ′

1
 is a binary tree in G with vertex set 

V(T2) ∩ V(G) . 	�  ◻

Lemma 10  For every � ∈ (0, 1] , given a binary tree T2 in G⊠2 with size

there is a linear-time (in the size of G⊠2 ) algorithm that finds a binary tree T1 in G 
with size

Proof  Running the algorithm suggested in Lemma 9 gives us a binary tree 
T ′
1
 in G with vertex set V

(
T �
1

)
= V

(
T2
)
∩ V(G) in linear time. Therefore if 

�V�T2
�
∩ V(G)� ≥ √

𝛼OPT(G) >
√
𝛼OPT(G) − 1 then the lemma is already proved. 

So, we may assume that �V�T2
�
∩ V(G)� < √

𝛼OPT(G).
Let us first deal with the case when V

(
T2
)
∩ V(G) = ∅ . In this case T2 completely 

resides within some edge copy or pendant copy of G⊠2 . That means T2 is already a 
binary tree in G with size

where the second inequality uses Lemma 8 and the third inequality assumes √
�OPT(G) ≥ 1.
Suppose T ′

1
 is not the empty tree. Removing vertices in V(G) from T2 results in a 

forest with each connected component of the forest residing completely within one 
of the copies of G (either edge or pendent copy). Let F  be the set of trees in this 
forest.

|V(T2)| = |V(T1)|2 + |V(T1)| ⋅ (|V(T1)| + 2) = 2OPT(G)2 + 2OPT(G),

|V(T2
)| ≥ 𝛼OPT

(
G⊠2

)
− 1,

�V�T1
�� ≥ √

�OPT(G) − 1.

���V
�
T2
���� ≥ 𝛼OPT

�
G⊠2

�
− 1 ≥

�√
𝛼OPT(G)

�2

− 1 ≥
√
𝛼OPT(G) − 1,
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Claim  We have

Proof  Each tree T (j) ∈ F  is connected to one or two vertices in V
(
T2
)
∩ V(G) . 

Let Fj be the set of trees connected to exactly j vertices in V(G) ∩ V
(
T2
)
 . Then 

F = F2 ∪ F1 . We now bound the size of F2 and F1 . If T (j) is connected to two 
vertices u, v ∈ V(G) ∩ V

(
T2
)
 , then {u, v} must be an edge in T ′

1
 . Moreover, if 

there are two distinct trees T (j1) , T (j2) both connected to u, v ∈ V(G) ∩ V
(
T2
)
 

then there will be a cycle. Therefore |F2| ≤ |E(T �
1

)| = |V(T �
1

)| − 1 . As to F1 , 
for j ∈ {0, 1, 2, 3} , every vertex v ∈ Ij(T

�
1
) is connected to at most 3 − j trees in 

F1 . Every vertex v ∈ V(G) ⧵ V
(
T �
1

)
 is not connected to any tree in F1 . Therefore 

|F1| ≤ 3|I0(T �
1
)| + 2|I1(T �

1
)| + |I2(T �

1
)| . This gives an upper bound on |F|.

where the second equality is due to Lemma 7. 	�  ◻

Claim  There exists a tree T∗ ∈ F  with size at least

Proof  Suppose not. Then every tree T ∈ F  has �V(T)� < √
𝛼OPT(G) − 1 . Then,

which is a contradiction. The last inequality here is due to Lemma 8. 	�  ◻

Since T∗ resides in one of the copies of G, it is a binary tree in G. A DFS would 
find T∗ in linear time. 	�  ◻

Now we are ready prove the main theorem of this subsection. Our proof strategy 
is similar to that of Theorem 6.

Proof of Theorem  9  Suppose that we have a polynomial-time algorithm A that 
achieves an �-approximation for UndirMaxBinaryTree. Given an undirected graph 
G and 𝜀 > 0 , let

�F� < 2
√
𝛼OPT(G) + 1.

�F� = �F1� + �F2� ≤ �V�T �
1

�� − 1 + 3�I0(T �
1
)� + 2�I1(T �

1
)� + �I2(T �

1
)�

= 2�V�T �
1

�� + 1 = 2�V�T2
�
∩ V(G)� + 1 < 2

√
𝛼OPT(G) + 1,

�V(T∗)� ≥ √
�OPT(G) − 1.

�V�T2
�� = �V�T2

�
∩ V(G)� + �

T (j)∈F

���V
�
T (j)

����
<
√
𝛼OPT(G) +

�√
𝛼OPT(G) − 1

��
2
√
𝛼OPT(G) + 1

�
(By Claim 4.1)

= 2𝛼OPT(G)2 − 1

< 𝛼
�
2OPT(G)2 + 2OPT(G)

�
− 1

≤ 𝛼OPT
�
G⊠2

�
− 1

k ∶= 1 +

⌈
log2

log2 �

log2(1 − �)

⌉
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be an integer constant that depends on � and � . We construct G⊠2k and run algorithm 
A on it. We get a binary tree in G⊠2k of size at least 𝛼OPT

(
G⊠2k

)
− 1 . By Lemma 

10, we can obtain a binary tree in G of size at least

The first inequality holds as long as

We note that if OPT(G) is smaller than 1∕
�√

1 − � − (1 − �)
�
 which is a constant, 

then we can solve the problem exactly by brute force in polynomial time. Finally, we 
also observe that for fixed constant � , the running time of this algorithm is polyno-
mial since there are at most n3k = nO(1) vertices in the graph G⊠2k . 	�  ◻

4.2 � APX‑Hardness

In this section, we show that UndirMaxBinaryTree is APX-hard. The reduction is 
from the following problem, denoted as TSP(1,2).

TSP(1,2)
Given: A complete undirected graph Kn with edge weights wij where wij ∈ {1, 2} ∀i, j ∈ [n].
Goal: A tour with minimum weight which starts and finishes at the same vertex and visits every other 

vertex exactly once.

For an instance Kn = ([n],E1 ∪ E2) of TSP(1,2) where E1 is the set of edges 
with weight 1, and E2 is the set of edges with weight 2, define two subgraphs 
S1 = ([n],E1) and S2 = ([n],E2) . It is convenient to think of S1 and S2 as unweighted 
graphs.

Theorem  10  ([32],  Theorem  9 of [23]) TSP(1,2) is APX-hard even on instances 
with optimal value n, i.e. instances whose associated subgraph S1 has a Hamiltonian 
cycle.

The following lemma shows that a binary tree in Kn with a small number of 
degree-3 vertices can be transformed into a path without too much increase in total 
weight.

Lemma 11  Let Kn be a weighted complete graph with edge weights in {1, 2} . Let T 
be a binary tree in Kn with � vertices and let w be the sum of the edge weights of T. 
If at most d vertices in T have degree 3, then in linear time we can find a path in Kn 
with length � and total weight at most w + d.

�2−kOPT(G) − 1 ≥ �2−k+1OPT(G) ≥ (1 − �)OPT(G).

OPT(G) ≥
1√

1 − � − (1 − �)
≥

1

�2−k − �2−k+1
.
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Proof  Pick an arbitrary root vertex r with degT (r) ≤ 2 and consider the r-rooted 
tree T. Perform the following operation on T bottom-up to convert every vertex of 
degree-3 in T into a vertex of degree-2. 

1.	 Find a vertex v ∈ T  with degree 3 such that the two subtrees of v are paths. 
Suppose that the path on the left is (a1, a2,⋯ , ap) and the path on the right is 
(b1, b2,⋯ , bq) with a1 and b1 being adjacent to v in T.

2.	 Merge the two paths into a longer path (a1,⋯ , ap, b1, b2,⋯ , bq) by replacing edge 
(v, b1) with (ap, b1).

This operation converts v into a degree-2 vertex and increases the total weight of 
T by at most 1 (in case of w(v, b1) = 1 and w(ap, b1) = 2 ). Since no new degree-3 
vertices are introduced during the operation, the total number of degree-3 vertices 
decreases by one. The path claimed by the lemma is thus obtained by recursively 
performing this operation d times. We note that the final path is effectively a post-
order traversal of T. 	�  ◻

We also need the following structural result.

Lemma 12  Let H = (V ,E) be a graph with n vertices and let H̃ = (V ∪ V �,E ∪ E�) 
where V � ∶= {v� ∶ v ∈ V} and E� ∶= {{v, v�} ∶ v ∈ V} . Suppose we have a binary 
tree T̃  in H̃ of size at least (2 − �)n . Then, the graph T obtained by restricting T̃  to H 
is a binary tree with at most �n vertices of degree 3.

Proof  Let us denote the set V ′ of added vertices as pendants. Since the pendants 
have degree 1 in H̃ , the restricted graph T is a binary tree. We now show that the 
number of vertices in T with degree 3 is small. We note that the number of vertices 
in H̃ is 2n and hence T̃  contains all but at most �n vertices of H̃ . For every vertex v 
with degT (v) = 3 , its pendant v′ is not in T̃  . Thus, in order for T̃  to contain all but �n 
vertices of H̃ , the number of vertices of degree 3 in T cannot exceed �n . 	�  ◻

The following lemma implies that if there is a PTAS for UndirMaxBinaryTree 
then there is a PTAS for TSP(1,2).

Lemma 13  Suppose there is a PTAS for UndirMaxBinaryTree (even restricted to 
graphs that contain binary spanning trees), then for every 𝜀 > 0 there is a poly-
nomial-time algorithm which takes as input an undirected complete graph Kn with 
edge weights in {1, 2} whose associated subgraph S1 has a Hamiltonian cycle to out-
put a tour with weight at most (1 + �)n.

Proof  Let Kn be the input instance of TSP(1,2) with S1 and S2 defined as above. Let 
S̃1 be the graph constructed from S1 as follows: For every i ∈ [n] , introduce a new 
vertex vi adjacent to vertex i in S1 . We will refer to vi as the pendant of vertex i.

We note that S̃1 has a spanning binary tree (i.e. OPT(S̃1) = 2n ) because S1 has a 
Hamiltonian cycle. Therefore we can run the PTAS for UndirMaxBinaryTree on 
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graph S̃1 with error parameter �∕4 (which still takes polynomial time). The PTAS 
would output a binary tree T̃  of size at least

By Lemma 12, we obtain a binary tree T in S1 with the following properties: 

1.	 T contains at least 2n − �n∕2 − n = (1 − �∕2)n vertices and
2.	 T has at most �n∕2 vertices with degree 3.

By Lemma 11 we can transform T into a path in Kn that has total weight at most 
(1 − �∕2)n + �n∕2 = n and contains at least (1 − �∕2)n vertices. This path can be 
extended to a valid tour by including the missing vertices using edges with weight 2. 
Such a tour will have total weight at most n + 2(�n∕2) = (1 + �)n . 	�  ◻

Now we are ready to prove Theorem 2.

Theorem  2  We have the following inapproximability results for DAGMaxBi-
naryTree on n-vertex input graphs: 

1.	 DAGMaxBinaryTree does not admit a polynomial-time constant-factor approxi-
mation assuming � ≠ ��.

2.	 If DAGMaxBinaryTree admits a polynomial-time exp (−O(log n∕ log log n))
-approximation, then �� ⊆ �����

�
exp

�
O
�√

n
���

 , refuting the Exponential 
Time Hypothesis.

3.	 For any 𝜀 > 0 , if DAGMaxBinaryTree admits a quasi-polynomial time 
exp

(
−O

(
log1−� n

))
-approximation, then �� ⊆ �����

(
exp

(
logO(1∕𝜀) n

))
 , thus 

refuting the Exponential Time Hypothesis.

Proof 

1.	 Suppose there is a polynomial-time algorithm for UndirMaxBinaryTree that 
achieves a constant-factor approximation. By Theorem 9, the problem also has a 
PTAS. By Lemma 13, TSP(1,2) would also have a PTAS, thus contradicting its 
APX-hardness. Therefore UndirMaxBinaryTree does not admit a polynomial-
time constant-factor approximation assuming � ≠ ��.

2.	 Next we show hardness under the exponential time hypothesis. Suppose there 
is a polynomial-time algorithm A for UndirMaxBinaryTree that achieves 
an exp

(
−C ⋅ (log n)log3 2−�

)
-approximation for constants C, 𝜀 > 0 . We show 

that there is an algorithm that achieves a constant-factor approximation for 
UndirMaxBinaryTree, and runs in time exp

(
O
(
(log n)�

−1 log3 2
))

 . Given an 
undirected graph G on n vertices as input for UndirMaxBinaryTree, let 
k =

⌈(
�−1 log3 2 − 1

)
log3 log n

⌉
 , which is an integer that satisfies 

(
1 −

𝜀

4

)
⋅ OPT(S̃1) =

(
1 −

𝜀

4

)
⋅ 2n = 2n −

𝜀

2
n,
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 Running A on G⊠2k gives us a binary tree with size at least 

 where N ≤ n3
k is the size of G⊠2k . Recursively applying Lemma 10 gives us a 

binary tree in G with number of vertices being at least 

 The last inequality holds as long as 

 We note that when OPT(G) is smaller than 2eC which is a constant, we can solve 
the problem exactly by brute force in polynomial time. Otherwise the above 
procedure can be regarded as a constant-factor approximation for UndirMaxBi-
naryTree. The running time is quasi-polynomial in N, i.e. for some constant 
C′ > 0 , the running time is upper-bounded by 

 Moreover, from item 1 we know that it is ��-hard to approxi-
mate UndirMaxBinaryTree within a constant factor, therefore 
�� ⊆ �����

(
exp

(
O
(
(log n)𝜀

−1d log3 2
)))

.
	�  ◻

We remark that APX-hardness for UndirMaxBinaryTree on graphs with span-
ning binary trees does not rule out constant-factor approximation algorithms on such 
instances. This is because our squaring operation might lose spanning binary trees 
( G⊠2 does not necessarily contain a spanning binary tree even if G does).

5 � An Efficient Algorithm for Bipartite Permutation Graphs

In this section we prove Theorem 4. We begin with some structural properties of bipar-
tite permutation graphs that will be helpful in designing the algorithm.

(
3k log n

)log3 2−�
≤ 2k and 3k ≤ 3(log n)�

−1 log3 2−1.

exp
(
−C ⋅ (logN)log3 2−𝜀

)
OPT

(
G⊠2k

)

exp

(
−C ⋅

(logN)log3 2−�

2k

)
OPT(G) − 1

≥ exp

(
−C ⋅

(3k log n)log3 2−�

2k

)
OPT(G) − 1

≥ exp (−C)OPT(G) − 1 ≥
1

2
⋅ exp (−C)OPT(G).

OPT(G) ≥ 2 ⋅ eC.

exp
(
C�
(
logd N

))
≤ exp

(
C�
((

3k ⋅ log n
)d))

≤ exp
(
C�
(
(log n)�

−1d log3 2
))

.
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5.1 � Structural Properties of Bipartite Permutation Graphs

Definition 3  A strong ordering � of a bipartite graph G = (S, T ,E) is an ordering of 
S and an ordering of T such that

Informally, strong ordering essentially states that the existence of cross edges implies 
the existence of parallel edges. The following theorem from [37] shows that strong 
ordering exactly characterizes bipartite permutation graphs.

Theorem 11  (Theorem 1 of [37]) A bipartite graph G = (S, T ,E) is also a permuta-
tion graph if and only if G has a strong ordering.

Corollary 1  Let G be a bipartite permutation graph and H = G[VH] be an induced 
subgraph. Then H is also a bipartite permutation graph.

Proof  Let � be a strong ordering of G. The corollary follows by applying Theo-
rem 11 and observing that the projection of � onto VH is a strong ordering of H. 	�  ◻

In the following, when we are given a bipartite permutation graph G = (S, T ,E) 
along with a strong ordering � (or simply a strongly ordered bipartite permutation 
graph), we always assume that the elements in S and T are sorted in ascending order 
according to �:

Here p ∶= |S| and q ∶= |T|.
The following lemma shows that in a bipartite permutation graph the neighborhood 

of a vertex v ∈ G has a nice consecutive structure.

Lemma 14  Let G = (S, T ,E) be a connected bipartite permutation graph and � be a 
strong ordering of G. For every si ∈ S , there exist ai ≤ bi ∈ [q] such that

Moreover, for any si, sj ∈ S such that si <𝜎 sj we have

Proof  For the first part, let s ∈ S be an arbitrary vertex and let t1 , t2 be the smallest 
and largest elements in N(s) (with respect to � ), respectively. Consider any t ∈ T  
satisfying t1 <𝜎 t <𝜎 t2 . We want to show that t ∈ N(s) . Since G is connected, there 
must be some s� ∈ S adjacent to t. Suppose s′ <𝜎 s . Since � is a strong ordering, we 
have

∀s <𝜎 s� ∈ S, t <𝜎 t� ∈ T , (s, t�) ∈ Eand(s�, t) ∈ E ⟹ (s, t) ∈ Eand(s�, t�) ∈ E.

s1 <𝜎 s2 <𝜎 ⋯ <𝜎 sp, t1 <𝜎 t2 <𝜎 ⋯ <𝜎 tq.

N(si) = [tai , tbi] ∶=
{
tai , tai+1,⋯ , tbi−1, tbi

}
.

ai ≤ aj, bi ≤ bj.

(s�, t2) ∈ Eand(s, t) ∈ E ⟹ (s, t) ∈ E.
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A symmetric argument holds for the case s <𝜎 s′ . Therefore t ∈ N(s).
For the second part, suppose for the sake of contradiction that aj < ai . Recall that 

si <𝜎 sj , we have

That means taj ∈ N(si) = [tai , tbi] , contradicting with aj < ai . A symmetric argument 
can be used to prove bi ≤ bj . 	�  ◻

Another important property of (connected) bipartite permutation graphs is that 
they contain crossing-free spanning trees.

Definition 4  Given a bipartite permutation graph G = (S, T ,E) and a strong ordering 
� of G, we say a subgraph H has an edge crossing (w.r.t. the strong ordering � ) if H 
contains two edges (s1, t1) and (s2, t2) such that s1 <𝜎 s2 and t2 <𝜎 t1 . Otherwise we 
say H is crossing-free.

We need the following theorem from [36].

Theorem 12  (Corollary 4.19 of [36]) Let G be a strongly ordered connected bipar-
tite permutation graph. There exists a minimum degree spanning tree (MDST) of G 
which is crossing-free.

Lemma 15  Let G be a strongly ordered bipartite permutation graph. There exists a 
maximum binary tree in G which is crossing-free.

Proof  Consider any maximum binary tree H = (VH ,EH) in G and the induced sub-
graph G[VH] . By Corollary 1 we have that G[VH] is a bipartite permutation graph. 
Moreover, G[VH] contains a spanning binary tree and is thus connected. By Theo-
rem 12 there is a crossing-free MDST of G[VH] , which we will denote by H′ . We 
note that H′ is a binary tree, and that H′ has the same size as H since they are both 
spanning trees of G[VH] . Therefore H′ is a maximum binary tree in G which is cross-
ing-free. 	�  ◻

The next lemma inspires the definition of subproblems which lead us to the 
Dynamic Programming based algorithm.

Lemma 16  Let G = (S, T ,E) be a strongly ordered bipartite permutation graph, and 
let H =

(
VH ,EH

)
 be a connected crossing-free subgraph of G. Let s1 and t1 be the 

two minimum vertices (w.r.t. the strong ordering) in S ∩ VH and T ∩ VH , respec-
tively. Then we have 

{
s1, t1

}
∈ EH , and that one of s1 and t1 has degree 1.

Proof  Suppose for the sake of contradiction that 
{
s1, t1

}
∉ EH . Since H is con-

nected, there exists a path 
(
s1, t2,⋯ , s2, t1

)
 where t2 >𝜎 t1 and s2 >𝜎 s1 . However, the 

two edges 
{
s1, t2

}
 and 

{
s2, t1

}
 constitute an edge crossing which is a contradiction to 

the assumption that H is crossing-free.

(si, tai) ∈ Eand(sj, taj) ∈ E ⟹ (si, taj) ∈ E.
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We proved that 
{
s1, t1

}
∈ EH . Suppose both s1 and t1 have at least one more 

neighbors, say t2 and s2 , respectively, then once more 
{
s1, t2

}
 and 

{
s2, t1

}
 constitute 

an edge crossing. Therefore one of s1 and t1 has degree 1. 	�  ◻

5.2 � The Algorithm

In this section, we give a dynamic programming approach for solving UndirMax-
BinaryTree on bipartite permutation graphs. We first focus on connected, strongly 
ordered bipartite permutation graphs. Theorem  4 will follow from the fact that a 
strong ordering can be found in linear time.

Let G = (S, T ,E) be a strongly ordered bipartite permutation graph with |S| = p 
and |T| = q . For i ∈ [p], j ∈ [q] , define

We also use the convention Sp+1 = Tq+1 = ∅ . Define [i, j] ∶= G[Si ∪ Tj] , i.e. the sub-
graph of G induced by Si ∪ Tj.

For i ∈ [p] and j ∈ [q] , let ���S(i, j) be the maximum cardinality (number of 
edges) of a binary tree H in [i, j] such that 

1.	 H is crossing-free,
2.	

{
si, tj

}
∈ EH,

3.	 si is a leaf vertex in H.

���T (i, j) is similarly defined except that in the last constraint we require tj (instead 
of si ) to be a leaf vertex in H. Finally let

Lemma 17  Let G = (S, T ,E) be a strongly ordered bipartite permutation 
graph. Let ���(G) be the cardinality of the maximum binary tree in G. Then 
���(G) = ���(G).

Proof  Since it is trivial that ���(G) ≥ ���(G) , we focus on the other direction 
���(G) ≤ ���(G).

Let H = (VH ,EH) be a maximum binary tree in G, i.e. |EH| = ���(G) . By 
Lemma 15, we can further assume that H is a crossing-free. Let si be the minimum 
vertex in S ∩ VH and let tj be the minimum vertex in T ∩ VH . Since H is a connected 
crossing-free subgraph, by Lemma 16 we have that 

{
si, tj

}
∈ EH , and that one of si 

and tj is a leaf vertex in H. Observing that H is also a maximum binary tree in the 
subgraph [i, j], we have

Si ∶=
{
si, si+1,⋯ , sp

}
, Tj ∶=

{
tj, tj+1,⋯ , tq

}
.

���(G) ∶= max
i∈[p],j∈[q]

{
max

{
���S(i, j),���T (i, j)

}}
.

���(G) = |EH| = max
{
���S(i, j),���T (i, j)

}
≤ ���(G).
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	�  ◻

Now in order to compute ���(G) , it suffices to compute ���(G) which 
amounts to solving the subproblems ���S(i, j) and ���T (i, j) . The following 
recurrence relations immediately give a dynamic programming algorithm:

The boundary conditions are given by

Lemma 18 ���S(i, j) and ���T (i, j) satisfy the recurrence relations (8) and (9).

Proof  Since S and T are symmetric, we will only prove that ���S(i, j) satisfies rela-
tion (8).

Case 1: si ∉ N[i,j](tj) . Clearly ���S(i, j) = 0 since 
{
si, tj

}
∉ E implies that con-

straint 2 cannot be satisfied by any binary tree.
Case 2: N[i,j](tj) =

{
si
}
 , i.e. si is the unique neighbor of tj in the graph [i, j]. Since 

by constraint 3 vertex si has to be a leaf vertex in H, we know that 
{
si, tj

}
 is the only 

binary tree which satisfies all 3 constraints. In this case ���S(i, j) = 1.
Case 3: Case 1 and Case 2 do not occur, which implies d ∶=

|||N[i,j](tj)
||| ≥ 2 . Con-

sider the optimal binary tree H = (VH ,EH) satisfying all 3 constraints. Let si+k 
( 1 ≤ k ≤ d − 1 ) be the “furthest” neighbor of tj , i.e. the maximal element in 
NH(tj) ⧵

{
si
}
 . We further consider 2 possibilities.

•	 k = 1 . We note that tj is a degree-2 vertex in this case. Consider the binary tree 
H� = (VH� ,EH� ) where VH� = VH ⧵

{
si
}
 and EH� = EH ⧵

{{
si, tj

}}
 . H′ is a feasi-

ble solution to the subproblem ���T (i + 1, j) since H′ is a crossing-free binary 
tree which contains tj as a leaf vertex and the edge 

{
si+1, tj

}
 . We deduce that 

|EH| = |EH� | + 1 ≤ ���T (i + 1, j) + 1.
•	 k ≥ 2 . Since H is maximum, tj must have another neighbor other than si and si+k . 

By Lemma 14, si+� is a neighbor of tj for any 0 ≤ � ≤ k . Since H is crossing-
free, that third neighbor of tj is a leaf vertex in H. Therefore without loss of gen-
erality we can assume that it is si+1 . Consider the binary tree H� = (VH� ,EH� ) 
where VH� = VH ⧵

{
si, si+1

}
 and EH� = EH ⧵

{{
si, tj

}
,
{
si+1, tj

}}
 . H′ is a feasi-

ble solution to the subproblem ���T (i + k, j) since H′ is a crossing-free binary 

(8)���S(i, j) =

⎧⎪⎪⎨⎪⎪⎩

0 ifsi ∉ N[i,j](tj),

1 ifN[i,j](tj) =
�
si
�
,

max

�
���T (i + 1, j) + 1, max

2≤k≤�N[i,j] (tj)�−1
�
���T (i + k, j) + 2

��
if
���N[i,j](tj)

��� ≥ 2.

(9)���T (i, j) =

⎧⎪⎪⎨⎪⎪⎩

0 iftj ∉ N[i,j](si),

1 ifN[i,j](si) =
�
tj
�
,

max

�
���S(i, j + 1) + 1, max

2≤k≤
���N[i,j] (si )

���−1

�
���S(i, j + k) + 2

��
if
���N[i,j](si)

��� ≥ 2.

���S(p + 1, q + 1) = ���T (p + 1, q + 1) = 0.
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tree which contains tj as a leaf vertex and the edge 
{
si+k, tj

}
 . We deduce that 

|EH| = |EH� | + 2 ≤ ���T (i + k, j) + 2.

Thus, we conclude that

To see the other direction of the inequality, we note that a feasible solution to 
���T (i + 1, j) induces a feasible solution to ���S(i, j) by including the edge 

{
si, tj

}
 , 

and a feasible solution to ���T (i + k, j) induces a feasible solution to ���S(i, j) by 
including the edges 

{
si, tj

}
 and 

{
si+1, tj

}
 . 	�  ◻

We now give a formal proof of Theorem 4.

Theorem  4  There exists an algorithm to solve UndirMaxBinaryTree in n-vertex 
bipartite permutation graphs that runs in time O(n3).

Proof  Given a bipartite permutation graph G with n vertices and m edges, there is an 
O(m + n) time algorithm for finding a strong ordering of G (cf. [37]). Suppose G has 
connected components G1,G2,⋯ ,G

𝓁
 and Gi has ni vertices, hence 

∑�

i=1
ni = n . 

Every Gi is a (strongly ordered) connected bipartite permutation graph. Since any 
binary tree in G completely resides in one connected component of G, it suffices to 
solve ���

(
Gi

)
 for every Gi and return max1≤i≤�

{
���

(
Gi

)}
 . Solving ���

(
Gi

)
 

requires O
(
n3
i

)
 time since there are O

(
n2
i

)
 subproblems ( ���S(i, j) and ���T (i, j) for 

i, j ∈ [ni] ) solving each of which requires O
(
ni
)
 time. The overall running time is 

O
�∑�

i=1
n3
i

�
= O

�
n3
�
 . 	�  ◻

6 � Conclusion and Open Problems

In this work, we introduced the maximum binary tree problem (MBT) and presented 
hardness of approximation results for undirected, directed, and directed acyclic 
graphs, a fixed-parameter algorithm with the solution as the parameter, and efficient 
algorithms for bipartite permutation graphs. Our work raises several open questions 
that we state below.

6.1 � Inapproximability of DirMaxBinaryTree

The view that MBT is a variant of the longest path problem leads to the natural 
question of whether the inapproximability results for MBT match that of longest 
path: Is MBT in directed graphs (or even in DAGs) hard to approximate within a 
factor of 1∕n1−� (we recall that longest path is hard to approximate within a factor of 
1∕n1−� [9])? We remark that the self-improving technique is weak to handle 1∕n1−�

���S(i, j) ≤ max

{
���T (i + 1, j) + 1, max

2≤k≤d−1

{
���T (i + k, j) + 2

}}
.
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-approximations since the squaring operation yields no improvement. The reduc-
tion in [9] showing 1∕n1−�-inapproximability of longest paths is from a restricted 
version of the vertex-disjoint paths problem and is very specific to paths. Further-
more, directed cycles play a crucial role in their reduction for a fundamental reason: 
longest path is polynomial-time solvable in DAGs. However, it is unclear if directed 
cycles are the source of hardness for MBT in digraphs (since MBT is already hard 
in DAGs).

6.2 � Bicriteria Approximations

Given our inapproximability results, one natural algorithmic possibility is that of 
bicriteria approximations: can we find a tree with at least � ⋅ OPT  vertices while 
violating the degree bound by a factor of at most � ? In particular, this motivates 
an intriguing direction concerning the longest path problem: Given an undirected/
directed graph G with a path of length k, can we find a c1-degree tree in G with at 
least k∕c2 vertices for some constants c1 and c2 efficiently?

6.3 � Maximum Binary Tree in Permutation DAGs

Finally, it would be interesting to resolve the complexity of MBT in permutation 
DAGs (and permutation graphs). This would also resolve the open problem posed 
by Byers, Heeringa, Mitzenmacher, and Zervas of whether the maximum heapable 
subsequence problem is solvable in polynomial time [11].
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