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Finding locally optimal solutions for max-cut and max-k-cut are well-known PLS-complete problems. An
instinctive approach to finding such a locally optimum solution is the FLIP method. Even though FLIP requires
exponential time in worst-case instances, it tends to terminate quickly in practical instances. To explain this
discrepancy, the run-time of FLIP has been studied in the smoothed complexity framework. Etscheid and
Röglin (ACM Transactions on Algorithms, 2017) showed that the smoothed complexity of FLIP for max-
cut in arbitrary graphs is quasi-polynomial. Angel, Bubeck, Peres, and Wei (STOC, 2017) showed that the
smoothed complexity of FLIP for max-cut in complete graphs is O (ϕ5n15.1), where ϕ is an upper bound on
the random edge-weight density and n is the number of vertices in the input graph.

While Angel, Bubeck, Peres, and Wei’s result showed the first polynomial smoothed complexity, they also
conjectured that their run-time bound is far from optimal. In this work, we make substantial progress toward
improving the run-time bound. We prove that the smoothed complexity of FLIP for max-cut in complete
graphs is O (ϕn7.83). Our results are based on a carefully chosen matrix whose rank captures the run-time
of the method along with improved rank bounds for this matrix and an improved union bound based on
this matrix. In addition, our techniques provide a general framework for analyzing FLIP in the smoothed
framework. We illustrate this general framework by showing that the smoothed complexity of FLIP for max-
3-cut in complete graphs is polynomial and for max-k-cut in arbitrary graphs is quasi-polynomial. We
believe that our techniques should also be of interest toward showing smoothed polynomial complexity of
FLIP for max-k-cut in complete graphs for larger constants k .
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1 INTRODUCTION

A k-cut in a graph is a partition of the vertex set into k parts. Given an edge-weighted graph and a
k-cut, the value of the cut is the total weight of the edges crossing the partition. In the max-k-cut
problem, denoted max-k-cut, we are given a graph with edge weights and the goal is to find a
k-cut with maximum value. For convenience, we will denote max-2-cut as max-cut. max-cut
is a well-known NP-hard problem whose study brought forth many new algorithmic techniques.
In this work, we analyze the run-time of a local algorithm for max-cut and more generally, for
max-k-cut.

A k-cut is said to be a local max-k-cut if the cut value cannot be improved by changing the part
of any single vertex. We recall that a local max-k-cut is, in fact, a (1− 1/k )-approximate max-k-cut
[11]. The computation of a local max-k-cut is of interest in game theory as it is a Nash-equilibrium
in the party affiliation game [3, 8]: considern players with certain weights between pairs of players
and they would like to formk teams. The payoff for a player is the total weight of the edges between
her and the players in her k − 1 opposing teams. A local max-k-cut is a Nash equilibrium for this
game. Schäffer and Yannakakis showed that computing a local max-cut is likely to be intractable.
In particular, they showed that it is Polynomial-Time Local Search (PLS)-complete [12].

A natural algorithm to find a local max-k-cut is to start from an arbitrary k-cut and repeatedly
perform local improving moves as long as possible. This is known as the FLIP method: it starts
from an arbitrary k-cut and repeatedly increases the weight of the cut by moving a vertex from its
current part to one of the other k−1 parts as long as such an improvement is possible. We note that
an implementation of the FLIP method should specify how to choose (1) the initial k-cut, (2) the
vertex to move in each iteration (if there is more than one vertex whose movement improves the
cut value), and (3) the part to which the chosen vertex should be moved (if there is more than one
choice that improves the cut value). The complexity of the FLIP method is the number of moves
required for any implementation of the FLIP method to terminate.

The FLIP method corresponds to a natural player dynamics in the party affiliation game and
hence its convergence time has been of much interest. Unfortunately, there are instances for which
the FLIP method needs an exponential sequence of moves to converge even for max-cut [2, 12].
Yet, empirical evidence suggests that the FLIP method is very fast in real-world instances of max-
cut [10].

The smoothed complexity framework, introduced by Spielman and Teng [13], is well-suited to
explain the discrepancy in the performance of an algorithm between worst-case and practical in-
stances. In the smoothed complexity framework for max-k-cut, we are given a graph G = (V ,E)
on n vertices along with a distribution fe : [−1, 1] → [0,ϕ] according to which the weight Xe

of edge e ∈ E is chosen. We note that the edge weights are independently distributed. Here, the
parameter ϕ determines the amount of random noise in the instance: if ϕ → ∞, then the instance
is essentially a worst-case instance, whereas finite ϕ amounts to some randomness in the instance.
The restriction of the edge weights to the interval [−1, 1] is without loss of generality as arbi-
trary bounded weights can be scaled. The goal is to determine the run-time of the FLIP method in
expectation (or with high probability) over the random choice of edge weights.

We distinguish between the two models under which the smoothed complexity of the FLIP
method for max-cut has been studied in the literature. In the case of smoothed complexity for ar-

bitrary graphs, noise is added only to the existing edges of the given graph. In the case of smoothed
complexity in complete graphs, noise is added to all vertex pairs including the non-edges of the
given graph (by treating them as zero weight edges). We emphasize that this kind of subtlety
between arbitrary graphs and complete graphs while studying the smoothed complexity has been
prevalent—indeed, Spielman and Teng’s work analyzed the smoothed complexity of the simplex
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Improving the Smoothed Complexity of FLIP for Max Cut Problems 19:3

method when noise is added to every entry of the constraint matrix including the zero entries;
determining the smoothed complexity of the simplex method when noise is added only to the
non-zero entries of the constraint matrix still remains as an important open problem.

All previous works [1, 5–7] have studied the complexity of the FLIP method only for max-cut
while its smoothed complexity for max-k-cut for k ≥ 3 has not been considered in the literature.
We now mention the results relevant to this work. Etscheid and Röglin [7] showed that any imple-
mentation of the FLIP method for max-cut in arbitrary graphs terminates using at most ϕnO (log n)

moves with high probability, i.e., the smoothed complexity when a small amount of noise is added
to every edge of the given graph is quasi-polynomial. Subsequently, Angel, Bubeck, Peres, and Wei
[1] showed that any implementation of the FLIP method for max-cut in complete graphs termi-
nates using at most O (ϕ5n15.1) moves with high probability, i.e., the smoothed complexity when a
small amount of noise is added to every vertex pair is polynomial.

1.1 Our Results

Motivated by empirical evidence, Angel, Bubeck, Peres, and Wei conjectured that the dependence
on n should be quasi-linear and therefore, raised the question of improving the run-time analysis.
In this work, we address this question by improving the run-time analysis of the FLIP method for
max-cut.

Theorem 1.1. Let G = (V ,E) be the complete graph on n vertices, and suppose that the edge

weights (Xe )e ∈E are independent random variables chosen according to a probability density function

fe : [−1, 1]→ [0,ϕ] for some ϕ > 0. Then, for every constant η > 0,

(i) with high probability every implementation of the FLIP method for max-cut terminates in at

most 23, 400ϕn3+(2+
√

2)(
√

2+η) = O (ϕn7.829+3.414η ) steps.

(ii) the expected number of steps in every implementation of the FLIP method for max-cut is

O (ϕn
47
6 +η ).

In particular, by taking η = 0.0001, our theorem implies that the FLIP method for max-cut
terminates in at most O (ϕn7.83) moves with high probability. This run-time bound improves the
dependence on both the max-density ϕ as well as the number of vertices n in comparison to that
of Angel, Bubeck, Peres, and Wei [1]. The outline of our analysis technique follows the recipe
introduced by Etscheid and Röglin [7] and followed by Angel, Bubeck, Peres, and Wei [1]: We
associate a suitable matrix with the sequence of FLIP moves; we show a union bound that a long
sequence of moves followed by the FLIP method will lead to a large improvement in the cut value
with high probability provided that the rank of this associated matrix is large; next, we show
that the rank of this matrix is indeed large. Our techniques differ from those of Angel, Bubeck,
Peres, and Wei along three fronts: (1) the matrix that we associate with the sequence of moves is
different from the one used by Angel, Bubeck, Peres, and Wei, but it is closer to the one used by
Etscheid and Röglin, (2) the union bound that we show is much stronger than the one by Angel,
Bubeck, Peres, and Wei, and (3) the rank lower bound that we show is much stronger than the
one shown by Etscheid and Röglin.

Next, we turn to the smoothed complexity of the FLIP method for max-k-cut for k ≥ 3. As
mentioned above, all known results on the smoothed analysis of the FLIP method address only the
case of k = 2. However, the convergence of this method for max-k-cut when k is larger is also
of interest (for instance, from the perspective of understanding the natural dynamics in the party
affiliation game). We take the first step towards this goal by analyzing the smoothed complexity
of the FLIP method for max-3-cut in complete graphs.
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Theorem 1.2. Let G = (V ,E) be the complete graph on n vertices, and suppose that the edge

weights (Xe )e ∈E are independent random variables chosen according to a probability density function

fe : [−1, 1]→ [0,ϕ] for some ϕ > 0. Then,

(i) for every constant η > 0, with high probability every implementation of the FLIP method for

max-3-cut terminates in at most O (ϕn99+η ) steps.

(ii) the expected number of steps in every implementation of the FLIP method for max-3-cut is

O (ϕn99).

In particular, by taking η = 0.1, our theorem implies that the FLIP method for max-3-cut
terminates in at most O (ϕn99.1) moves with high probability.1 We observe that the techniques
of Angel, Bubeck, Peres, and Wei do not extend to address the smoothed complexity of the FLIP
method for max-3-cut in complete graphs. Their union bound argument for the matrix that they
associate with the sequence of moves crucially relies on the fact that its entries are independent
of the starting 2-cut. Unfortunately, a similar matrix for max-3-cut has entries that depend on
the starting 3-cut and hence, their union bound arguments fail to extend. We overcome this
issue by relying on a completely different matrix. We believe that our techniques underlying
Theorem 1.2 provide a general framework to address the smoothed complexity of the FLIP method
for max-k-cut in complete graphs for any constant k .

Finally, we also show that the smoothed complexity of the FLIP method for max-k-cut in ar-
bitrary graphs (i.e., noise is added only to the edges of the given graph) is quasi-polynomial for
constant k .

Theorem 1.3. Let G = (V ,E) be an arbitrary graph on n vertices, and suppose that the edge

weights (Xe )e ∈E are independent random variables chosen according to a probability density function

fe : [−1, 1]→ [0,ϕ] for some ϕ > 0. Then, for every constant η > 0,

(i) with high probability every implementation of the FLIP method for max-k-cut terminates in

at most O (ϕn2(2k−1)k log (kn)+3+η ) steps.

(ii) the expected number of steps in every implementation of the FLIP method for max-k-cut is

O (ϕn2(2k−1)k log(kn)+3+η ).

1.2 Related Work

The literature of smoothed analysis is vast with successful analysis of several algorithms for var-
ious problems. We mention the works closely related to max-cut. Elsässer and Tscheuschner [5]
showed that if the edge weights are perturbed using Gaussian noise in graphs with maximum
degree O (logn), then the complexity of the FLIP method is polynomial. Etscheid and Röglin [6]
considered another special case in which the vertices are points in a d-dimensional space and
the edge weights are given by the squared Euclidean distance between these points. In this set-
ting, they showed that if the points are perturbed by Gaussian noise, then the complexity of the
FLIP method is polynomial. After these special settings, Etscheid and Röglin [7] showed that the
smoothed complexity of the FLIP method in arbitrary graphs is quasi-polynomial. Subsequently,
Angel, Bubeck, Peres, and Wei [1] showed that the smoothed complexity of the FLIP method in
complete graphs is polynomial.

As we mentioned in the introduction, the FLIP method is of interest as a natural dynamics to-
wards computing a Nash equilibrium in certain games. In the non-smoothed setting, computing a

1Our run-time bound could be improved (see Remark 7), but we state a weaker bound for the purpose of simplicity in the
analysis.
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local max-k-cut is a special case of computing a pure Nash equilibrium in network coordination
games. Independent of our work, Boodaghians, Kulkarni, and Mehta [4] have given an efficient
algorithm for computing a Nash equilibrium in smoothed network coordination games. However,
it is important to note that their smoothed setting for network coordination games when special-
ized to the case of max-k-cut does not correspond to our smoothed setting for max-k-cut. So, our
results on the smoothed complexity of the FLIP method for local max-3-cut and local max-k-cut
do not follow from their results. Alternatively, they present a “smoothness preserving reduction”
from computing Nash equilibrium in network coordination games involving only 2 strategies to
computing local max-cut. Our Theorem 1.1 complements this result as it now follows that the
smoothed complexity of a natural dynamics for computing a Nash equilibrium in 2-strategy net-
work coordination games is O (n7.83).

1.3 Preliminaries

All graphs considered in this work are simple. Let H = (V ,E) be a directed graph and let v ∈ V .
Then, we denote the outgoing neighborhood of v in H by Δout

H
(v ) := {u ∈ V | vu ∈ E} and

the incoming neighborhood of v in H by Δin
H

(v ) := {u ∈ V | uv ∈ E}. Likewise, we denote the
outgoing arcs from v in H by δout

H
(v ) := {wu ∈ E | w = v} and the incoming arcs to v in H

by δ in
H

(v ) := {uw ∈ E | w = v}. For a matrix M , we denote the element in the ith row and jth

column of M by M[i, j], and we denote the kth column of M by Mk . For two vectors a,b ∈ Rn ,
we denote their dot product by 〈a,b〉. We denote the set of integers between 1 and an integer n by
[n] := {1, . . . ,n}.

2 OUTLINE OF OUR ANALYSIS

We will first describe our analysis for max-cut followed by the analysis for max-k-cut.

2.1 Outline for max-cut

In this section, we outline our proof of Theorem 1.1. Let G = (V ,E) be the complete graph on n
vertices and let X ∈ [−1, 1]E be the edge weights. We will show that every sequence of improving
moves of sufficiently large linear length, say 2n, from any initial cut must increase the cut value
by Ω(ϕ−1n−4.83) with high probability. As the edge weights are bounded by at most 1, the value
of every local max-cut is at most n2. Hence, the FLIP method must terminate in at most O (ϕn7.83)
moves with high probability. We now outline our proof showing that with high probability every
linear length sequence of improving moves from any initial cut must increase the cut value by
Ω(ϕ−1n−4.83).

We recall that a cut has two parts. So, we will represent a cut by a configuration in {±1}V
(that represents the part of each vertex). A move of a vertex from a given configuration can be
described using a vector α ∈ {0,±1}E such that the increase in the cut value for that move is given
by 〈α ,X 〉. For a sequence of moves L from starting configuration τ0 ∈ {±1}V , we define a matrix
PL,τ0 that conveniently nullifies the effect of non-moving vertices of L: for each pair of closest
moves of a vertex v in L, we have a column in PL,τ0 , which is the sum of the two vectors α1 and α2

corresponding to those two moves of v . The main advantage of this matrix PL,τ0 is that it depends
only on the starting configuration of the vertices that move in L and is independent of the starting
configuration of the vertices that do not move in L (Proposition 1). This feature is crucially helpful
while taking a union bound later. Our matrix PL,τ0 is also implicitly used by Etscheid and Röglin.

We say that a sequence L of moves is ϵ-slow from an initial configuration τ0 with respect to
edge-weights X if each move of L strictly improves the cut value and moreover, the total improve-
ment made by L to the cut-value is at most ϵ . Thus, if L is ϵ-slow from τ0 with respect to X , then
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〈αt ,X 〉 > 0 and
∑length(L)

t=1 〈αt ,X 〉 ≤ ϵ , where αt is the vector associated with the t th step of L. It
follows that if L is ϵ-slow from τ0 with respect to X , then 〈C,X 〉 > 0 for all columnsC in PL,τ0 and
moreover

∑
C ∈Columns(PL,τ0 )〈C,X 〉 ≤ 2ϵ , since each column α participates in at most two columns

of the matrix PL,τ0 . We define the following event for a sequence L from a starting configuration
τ0 for edge weights X : EL,τ0,X is the event where 〈C,X 〉 > 0 for all columns C in PL,τ0 and

∑
C ∈Columns(PL,τ0 )

〈C,X 〉 ≤ 2ϵ .

We show that (Lemma 3.13) for a fixed choice of L and τ0, the probability (over the choices of X )
that EL,τ0,X happens is at most

(2ϕϵ )r ank (PL,τ0 )

rank (PL,τ0 )!
.

Our probability bound mentioned above is stronger than the bound given by Etscheid and Röglin
as well as Angel, Bubeck, Peres, and Wei. The main fact that we exploit to obtain this stronger
bound is that an ϵ-slow sequence, by definition, improves the total sum

∑
C ∈Columns(PL,τ0 )〈C,X 〉 by

at most 2ϵ . In contrast, previous works used ϵ-slow in a weaker manner: Etscheid and Röglin only
used the fact that 〈C,X 〉 ≤ 2ϵ for every column C of the matrix PL,τ0 while Angel, Bubeck, Peres,
and Wei only used the fact that 〈αt ,X 〉 ≤ ϵ for every step t in L. We deviate from their analysis to
further exploit the definition of ϵ-slowness.

Next, we need to upper bound the probability that there exists a starting configuration τ0 and a
linear length sequence L such that the event EL,τ0,X happens. To attempt the natural union bound,
we need a lower bound on the rank of the matrix PL,τ0 for sequences of linear length. For example,
if the rank is at least some constant fraction of n, then we may use a straightforward union bound.
However, there are linear length sequences that have rank much smaller than n. We address this
issue by focusing on critical sequences.

A sequence B is a critical sequence if �(B) = 
1.71s (B)� and moreover, �(B′) < 1.71s (B′) for
every subsequence B′ of B, where �(L) and s (L) denote the length and the number of vertices, re-
spectively, in a sequence L. Here, the constant 1.71 is chosen optimally to obtain the best possible
run-time using our technique and the reasoning behind this choice is not insightful for the pur-
poses of this overview. Critical sequences were introduced by Angel, Bubeck, Peres, and Wei, who
also showed that every sequence of length 
1.71n� (i.e., sufficiently large linear length) contains
a critical subsequence (Lemma 3.14). Thus, it suffices to upper bound the probability that there
exists a critical sequence B and a starting configuration τ0 such that the event EB,τ0,X happens.

Let us now fix a critical sequence B and obtain an upper bound on the probability that there
exists a starting configuration τ0 such that the event EB,τ0,X happens. We exploit the fact that
the event EB,τ0,X is independent of the starting configuration of the vertices that do not move
in B (as the matrix PB,τ0 has this property). Thus, it suffices to perform a union bound over
the starting configuration of the vertices that move in B. The number of such vertices is s (B),
hence the number of possible starting configurations of moving vertices is 2s (B ) . Now, it remains
to bound the probability that the event EB,τ0,X happens, where τ0 is a fixed choice of the starting
configuration of the vertices that move in B and an arbitrarily chosen starting configuration of
the vertices that do not move in B. For this, the above discussions suggest that we need a lower
bound on the rank of the matrix PB,τ0 for a critical sequence B. We show that for a critical se-
quence B, the rank of PB,τ0 is at least 0.38s (B) (Corollary 3.11). Thus, for a fixed critical sequence
B, the probability that there exists a starting configuration τ0 such that the event EB,τ0,X happens
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is at most

2s (B ) (2ϕϵ )0.38s (B )

(0.38s (B))!
.

Finally, we take a union bound over critical sequences. The number of possible critical sequences
B with s (B) = s is at most

(
n
s

)
s 
1.71s � , since the length of such a critical sequence is 
1.71s�. Thus,

the probability that there exists a critical sequence B and a starting configuration τ0 such that the
event EB,τ0,X happens is at most

n∑
s=1

(
n

s

)
s 
1.71s �

(
2s (2ϕϵ )0.38s

(0.38s )!

)
= o(1),

when ϵ = ϕ−1n−4.83 using Stirling’s approximation.
Our analysis approach builds on top of two previously known ingredients: the matrix PL,τ0

implicitly used by Etscheid and Röglin [7] to nullify the effect of non-moving vertices and the
notion of a critical block introduced by Angel, Bubeck, Peres, and Wei [1] that is helpful to show a
lower bound on the rank of the relevant matrix. Our main contributions to improve the run-time
analysis are (1) a tighter union bound by exploiting the full power of ϵ-slowness and (2) improved
rank lower bounds for critical sequences.

2.2 Outline for max-3-cut and max-k-cut in Arbitrary Graphs

In this section, we outline our proof of Theorems 1.2 and 1.3. The high-level approach is similar
to the one for max-cut described above. Let G = (V ,E) be an arbitrary graph on n vertices and
let X ∈ [−1, 1]E be the edge weights. Our goal is to show that every sufficiently long linear length
sequence of improving moves from any initial k-cut must increase the cut value by some non-
negligible amount.

We represent a k-cut by a configuration in [k]V that represents the part of each vertex. Using an
observation by Frieze and Jerrum [9], we can again associate a vector α ∈ {0,±1}E with each move
such that the increase in the cut value for that move is given by 〈α ,X 〉. We emphasize that these
vectors depend on the starting configuration. The analysis technique by Angel, Bubeck, Peres, and
Wei for max-cut does not extend to max-k-cut even for k = 3 primarily due to the dependence
of the rank of the matrix of these vectors on the starting configuration.

Our main tool to overcome this issue is by considering an appropriate matrix PL,τ0 for max-
k-cut. Instead of pairs of nearest moves in L that was helpful for max-cut, here, we define the
notion of a cycle over a vertex in L. A cycle over a vertex is a set of moves of that vertex that result
in the vertex moving from one part and eventually returning to that same part. We note that this
generalizes the concept of a pair in the max-cut setting, since any two nearest moves would form
a cycle. Next, we define the matrix PL,τ0 to have a column for every cycle in L that is the sum of
all the vectors that correspond to moves in that cycle. The matrix PL,τ0 has the property that it is
independent of the starting configuration of the vertices that do not move in L (Proposition 2).

We use the same notion of ϵ-slowness as that for max-cut. Now, if L is ϵ-slow from an initial
configuration τ0 with respect to edge weights X , then 〈C,X 〉 ∈ (0,kϵ] for all columns C ∈ PL,τ0 ,
since each column of the matrix PL,τ0 is the sum of at most k vectors αt1 , . . . αtk

. We define the
following event for a sequence L from a starting configuration τ0 for edge weights X :

DL,τ0,X : 〈C,X 〉 ∈ (0,kϵ] for all columns C in PL,τ0 .

For a fixed L and τ0 (Lemma 4.16), the probability (over the choices of X ) that DL,τ0,X happens is
at most

(kϕϵ )r ank (PL,τ0 ) .

The above result follows from Lemma A.1 in Reference [7].
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Next, we need a lower bound on the rank of the matrix PL,τ0 . We emphasize that this needs
substantially new combinatorial ideas in the form of considering the many different ways a cycle
can interact with other cycles and vertices that are not part of any cycle.

• For the complete graph in the max-3-cut case, we show that the rank of a critical improving
sequence B is at least (1/32)s (B), where s (B) is the number of vertices that move in the se-
quence B (Corollary 4.14). With this rank lower bound and the probability bound mentioned
above, the rest of the analysis for the complete graph is similar to the analysis for max-cut.
• For arbitrary graphs in the max-k-cut case, we show that the rank of an improving se-

quence B is at least half the number of vertices that appear in a cycle of B (Lemma 4.7).
Next, we show that a sequence B of length kn must have a subsequence B′ with at least
1/(2(2k − 1)k log(kn))s (B) vertices that appear in some cycle of B′. We use these results
in conjunction with the probability bound mentioned above to show that every sequence
of improving moves of length kn from any initial k-cut must increase the cut value by
Ω(ϕ−1n−2(2k−1)k log kn ).

Our main contributions are twofold: (1) We introduce the appropriate matrix PL,τ0 that nullifies
the effect of non-moving vertices, which is crucial to perform the union bound, and (2) we show
rank lower bounds for this matrix for k-cut in arbitrary graphs and for 3-cut in the complete graph
based on combinatorial arguments. We believe that our techniques should also be helpful to show
polynomial smoothed complexity of FLIP for max-k-cut for larger constants k in the complete
graph case.

3 SMOOTHED ANALYSIS OF FLIP FOR max-cut

In this section, we prove Theorem 1.1. We begin with some notation.
Let G = (V ,E) be a connected graph with n vertices and let X : E → [−1, 1] be an edge-weight

function. We recall a convenient formulation of the objective function for max-cut. We consider
the space {±1}V of configurations that define a partition of the vertex set into two parts. For a
configuration τ ∈ {±1}V , we denote the part of v by τ (v ). For a configuration τ ∈ {±1}V , the
weight of τ is given by

1

2

∑
uv ∈E

Xuv (1 − τ (u)τ (v )). (1)

Let

H (τ ) := −1

2

∑
uv ∈E

Xuvτ (u)τ (v ).

We observe thatH (τ ) is a translation of (1) by half the total weight of all edges and hence, it suffices
to work with H (τ ) henceforth.

We analyze the run-time of the FLIP method in the smoothed framework for the complete graph.
We will work with the complete graph in this section and avoid stating this explicitly henceforth.
A flip of a vertex v ∈ V changes τ (v ) to −τ (v ). We will denote a move by the vertex that is flipped.
We will need the notion of improving sequences that we define now.

Definition 3.1. Let L be a sequence of moves, τ0 ∈ {±1}V be an initial configuration and X ∈
[−1, 1]E be the edge weights. We will denote the length of the sequence L by �(L), the set of
vertices appearing in the moves in L by S (L), and s (L) := |S (L) |. We will denote the t th move of L
by L(t ) = vt .

(1) For each t ∈ [�(L)], we will denote τt as the configuration obtained from τt−1 by setting
τt (u) := τt−1 (u) for every u ∈ V \ {vt } and τt (vt ) := −τt−1 (vt ).
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(2) We say that L is improving from τ0 with respect to X if H (τt ) − H (τt−1) > 0 for all t ∈ [�(L)].
We say that L is ϵ-slowly improving from τ0 with respect to X if L is improving from τ0 and
H (τ�(L) ) − H (τ0) ∈ (0, ϵ].

The improvement ofH (τ ) in a step can be written as the inner product between the edge-weight
vector X and a suitable {0,±1}-vector. We formalize this with a convenient matrix below.

Definition 3.2. Let L be a sequence of moves and τ0 ∈ {±1}V be an initial configuration. Let
ML,τ0 ∈ {0,±1}E×[�(L)] be a matrix with rows corresponding to the edges of G, columns corre-
sponding to time-steps in the sequence L, and whose entries are given by

ML,τ0 [{a,b}, t] :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
+1 if L(t ) ∈ {a,b} and τt (a) � τt (b),

−1 if L(t ) ∈ {a,b} and τt (a) = τt (b),

0 otherwise,

where {a,b} ∈ E and t ∈ [�(L)].

Remark 1. For a sequence L from an initial configuration τ0, we have H (τt ) − H (τt−1) =
〈Mt

L,τ0
,X 〉.

Next, we need the notion of repeating and singleton vertices. We note that the following defini-
tion does not depend on the initial configuration.

Definition 3.3. Let L be a sequence of moves. We will denote the number of times that a vertex
v moves in L by #L (v ). A vertex v ∈ S (L) is called repeating if #L (v ) ≥ 2 and is called a singleton

otherwise. Let S1 (L) and S2 (L) denote the set of singleton and repeating vertices of L, respectively,
and let s1 (L) := |S1 (L) | and s2 (L) := |S2 (L) |. For time steps t1, t2 ∈ [�(L)], the ordered pair (t1, t2) is
a pair for vertex v ∈ V if t1 < t2, L(t1) = v = L(t2) and L(t ) � v for all t ∈ {t1 + 1, . . . , t2 − 1}. For
all v ∈ V , let Γ(L,v ) be the set of pairs for v in L and Γ(L) := ∪v ∈V Γ(L,v ) be the set of pairs for all
vertices in L.

We now define a suitable matrix that will nullify the influence of non-moving vertices.

Definition 3.4. Let L be a sequence of moves and let τ0 ∈ {±1}V be an initial configuration. Let
PL,τ0 ∈ {0,±1}E×Γ(L) be a matrix with rows corresponding to edges of G, columns corresponding
to pairs in L, and whose entries are given by

PL,τ0 [{a,b},C] :=
∑
t ∈C

ML,τ0 [{a,b}, t],

where {a,b} ∈ E and C ∈ Γ(L).

Proposition 1. Let L be a sequence of moves. If v ∈ V \ S (L), then PL,τ0 [{a,v},C] = 0 for every

C ∈ Γ(L) and {a,v} ∈ E.

Proof. Let C = (t1, t2) ∈ Γ(L) and {a,v} ∈ E. Since v is not in S (L), it follows that C is not a
pair for v . IfC is not a pair for a, then ML,τ0 [{a,v}, ti ] = 0 for i ∈ [2] and hence PL,τ0 [{a,v},C] = 0.
Suppose C is a pair for a. Then, it follows that ML,τ0 [{a,v}, t1] = −ML,τ0 [{a,v}, t2] and hence
PL,τ0 [{a,v},C] = ML,τ0 [{a,v}, t1] +ML,τ0 [{a,v}, t2] = 0. �

3.1 Rank Lower Bounds for PL,τ0

Let L be a sequence of moves and let τ0 be an initial configuration. In this section, we show a lower
bound on the rank of PL,τ0 . For this, we will relate the rank of the matrix PL,τ0 with the number
of edges of a certain directed graph. This graph has certain properties that imply this relation.
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These properties, in fact, motivate the definition of the graph; hence, we define the properties in
Definition 3.5 below.

First, we need non-zero entries in PL,τ0 to obtain rank lower bounds. For a pairC = (t1, t2) ∈ Γ(L)
for vertex v , the entry PL,τ0 [{u,v},C] is non-zero if and only if u appears an odd number of times
between t1 and t2. This motivates the definition of L-good-arcs below. Second, we need several
linearly-independent rows in the matrix PL,τ0 . The notion of L-neighbor-wise independence below
will help us to obtain an upper-triangular submatrix of PL,τ0 , thereby allowing us to get linearly-
independent rows. Finally, the notion of functional graphs below will help us later in constructing
an L-good L-neighbor-wise independent directed acyclic graph with a large number of edges. We
define these notions below.

Definition 3.5. Let L be a sequence of moves.

(i) For u,v ∈ S (L), we will call the ordered pair vu to be an L-good-arc if there exists a pair
C ∈ Γ(L) forv such that PL,τ0 [{u,v},C] � 0. A directed graph H with node set S (L) is L-good

if every arc in H is an L-good-arc.
(ii) A directed graph H with node set S (L) is L-neighbor-wise independent if for every v ∈ S (L),

there exists an ordering of Δout
H

(v ), say u1, . . . ,um , along with pairsC1, . . . ,Cm ∈ Γ(L) for v
such that for every i ∈ [m],

(a) PL,τ0 [{v,ui },Ci ] � 0 and
(b) PL,τ0 [{v,uj },Ci ] = 0 for every j ∈ {i + 1, . . . ,m}.

(iii) A directed graph H with node set S (L) is functional if |δout
H

(v ) | = 1 for every v ∈ S2 (L).

Remark 2. For u,v ∈ S (L), the ordered pair vu is an L-good-arc if and only if there exists a pair
(t1, t2) ∈ Γ(L) for v such that the number of times u appears between t1 and t2 is odd.

The following lemma is our key tool in obtaining a lower bound on the rank of PL,τ0 . We show
that the rank is at least the number of arcs in an L-good L-neighbor-wise independent directed
acyclic graph.

Lemma 3.6. Let L be a sequence of moves and let τ0 ∈ {±1}V be an initial configuration. Let H be

an L-good L-neighbor-wise independent directed acyclic graph. Then,

rank (PL,τ0 ) ≥ |E (H ) |.

Proof. Consider the submatrix BH of PL,τ0 consisting of the rows corresponding to edges {u,v}
for every arc vu ∈ E (H ). We now show that the matrix BH has full row-rank by induction on
|E (H ) |. The base case for |E (H ) | = 0 is trivial.

For the induction step, we consider |E (H ) | ≥ 1. Suppose that there exist coefficients μ {u,v } ∈ R
for every uv ∈ E (H ) such that ∑

uv ∈E (H )

μ {u,v }PL,τ0 [{u,v}, (t , t ′)] = 0

for every pair (t , t ′) ∈ Γ(L). Since H is a directed acyclic graph with at least one arc, there exists a
node v ∈ V (H ) with |δout

H
(v ) | ≥ 1 and |δ in

H
(v ) | = 0.

Claim 1. For every u ∈ Δout
H

(v ), the coefficient μ {v,u } is zero.

Proof. Consider the orderingu1, . . . ,um of the vertices in Δout
H

(v ) and pairsCi ∈ Γ(L) satisfying
Definition 3.5 (ii). We will show that μ {v,ui } = 0 for every i ∈ [m]. We use induction on j ∈ [m + 1]
to show that μ {v,ui } = 0 for every i < j.
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The base case for j = 1 is trivial. To prove the inductive step, we consider j = j0 + 1 ≥ 2. By the
induction hypothesis, we know that μ {v,ui } = 0 for every i < j0. Thus,

0 =
m∑

i=j0

μ {v,ui }PL,τ0 [{v,ui },Cj0 ].

Moreover, by the choice of Cj0 , we also have that

PL,τ0 [{v,uj0 },Cj0 ] � 0, and PL,τ0 [{v,ui },Cj0 ] = 0 ∀i ∈ {j0 + 1, . . . ,m}.

Consequently, we obtain that μ {v,uj0 } = 0. We have thus concluded the inductive statement that
μ {v,ui } = 0 for every i < j0 + 1. �

As a consequence of the claim, we have that the matrix BH has full row-rank if and only if the
matrix BH ′ obtained from the graphH ′ := H−δout

H
(v ) has full row-rank. We note that the graphH ′

is also an L-good L-neighbor-wise independent directed acyclic graph. Moreover, |E (H ′) | < |E (H ) |.
Thus, by the induction hypothesis, the matrix BH ′ has full row-rank. Hence, the matrix BH also
has full row-rank. �

To show a lower bound on the rank of PL,τ0 , we switch our attention from L to specific blocks

of L with special properties. We will see later that all sufficiently long L must contain such blocks.

Definition 3.7. Let L be a sequence of moves. A block of L is a continuous subsequence of L. For
t1, t2 ∈ [�(L)], we will denote the block of L between time-steps t1 and t2 as L[t1, t2]. For a block B
of L, we will denote the starting and ending time-step of B in L as tbeд (B) and tend (B). Let β > 0
be a constant. A block B in L is β-critical if �(B) ≥ (1 + β )s (B) and �(B′) < (1 + β )s (B′) for every
block B′ that is strictly contained in B.

We begin with a simple property of β-critical blocks.

Claim 2. Let B be a β-critical block for 0 < β ≤ 1. Then, for every block B′ that is strictly
contained in B, we have that S1 (B′) � ∅.

Proof. Let B′ be a block that is strictly contained in B. Suppose for the sake of contradiction that
every vertex in B′ appears at least twice. Then, �(B′) ≥ 2s (B′) ≥ (1 + β )s (B′), which contradicts
the criticality of B. �

We use Claim 2 to show that for a β-critical block B, there exists a path of B-good-arcs from any
repeating vertex to a singleton vertex.

Lemma 3.8. Let B be a β-critical block for 0 < β ≤ 1 with S1 (B) � ∅. Then, for every v ∈ S2 (B),
there exists a sequence u0u1,u1u2, . . . ,ukuk+1 of L-good-arcs such that u0 = v and uk+1 ∈ S1 (B).

Proof. Letv ∈ S2 (B). We will build a chain of blocks B0 � B1 � B2 � . . . � Bk ⊆ B and vertices
u0,u1, . . . ,uk ,uk+1 such that

(i) u0 = v and the vertices u0,u1, . . . ,uk+1 are distinct,
(ii) uk+1 ∈ S1 (B),

(iii) ui ∈ S1 (Bi−1) for every i ∈ [k + 1],
(iv) the start vertex and end vertex of the sequence Bi are ui and a vertex in {u0,u1, . . . ,ui−1},

and
(v) for every i ∈ [k + 1], there exists an L-good-arc ujui for some j < i .
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Fig. 1. Procedure for Lemma 3.8.

We observe that such a chain immediately implies the existence of the required sequence of
L-good-arcs that proves the lemma: by condition (v), there exists a sequence of L-good-arcs that
form a path that ends at uk+1 and necessarily starts at u0. By condition (i), we have that u0 = v and
by condition (ii), we have that uk+1 ∈ S1 (B).

We now show that a chain of blocks and vertices satisfying properties (i)–(v) indeed exists. For
this, we consider the procedure given in Figure 1. We first note that a valid choice for the vertex
u in steps 2 and 3(e) exists by Claim 2 and by the fact that S1 (B) � ∅. The sequence constructed
by the procedure is a nested chain, since Bi+1 is a concatenation of Bi with a block adjacent to
Bi . Moreover, by steps 3(c) and 3(d), the block Bi−1 is strictly contained in the block Bi . Thus, the
procedure will indeed terminate, since the sequence of blocks B0,B1, . . . ,Bk forms a nested chain
that grows in size. In the worst case, the procedure will terminate with Bk = B at which point
step 3(e) finds u ∈ S1 (Bk ) = S1 (B). We now show that the required conditions are satisfied. Let
the procedure terminate with the nested chain B0 � B1 � B2 � . . . � Bk ⊆ B and vertices
u0,u1, . . . ,uk ,uk+1.

(i) By initialization u0 = v . Since Bi is strictly contained in Bi+1 and by steps 3(e) and 3(b), the
vertices u0,u1, . . . ,uk+1 are distinct.

(ii) By the termination criteria, we have that uk+1 ∈ S1 (B).
(iii) By steps 3(e), 3(a) and 3(b), we have that ui ∈ S1 (Bi−1) for every i ∈ [k + 1].
(iv) By steps 3(c) and 3(d), the start vertex and end vertex of the sequence Bi are the vertex ui

and a vertex in {u0,u1, . . . ,ui−1}.
(v) Let i ∈ [k + 1] and consider ui . Let h be the smallest index in {0, 1, . . . ,k + 1} such that

ui ∈ S1 (Bh ). Then, by condition (iii), we have that h ≤ i−1. We will show that the arcuhui is
an L-good-arc. If h = 0, then, by the choice of B0, we have that the arc u0ui is an L-good-arc.
So, we may assume that h ≥ 1. Then, the block Bh is a concatenation of Bh−1 and B′

h−1. Also,
by the choice of h, we know that ui � Bh−1. Hence, the vertex ui ∈ B′h−1. Now, by condition
(iv), we have that the block B′

h−1 ends with uh . By condition (iii), we have that uh ∈ S1 (Bh−1).
Hence, we have an L-good-arc uhui . �

We need the notion of transition and singleton blocks.
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Definition 3.9. Let L be an improving sequence from some initial configuration. Then a maximal
block of repeating vertices is called a transition block and a maximal block of singletons is called a
singleton block.

For a sequence L and a vertex v ∈ S2 (L), let bL (v ) denote the number of transition blocks that
contain v . Also, let R (L) := {v ∈ S2 (L) : bL (v ) ≥ 2} (i.e., R (L) is the set of vertices that appear in at
least two transition blocks) and let r (L) := |R (L) |.

Lemma 3.10. Let B be a β-critical block where 0 < β ≤ 1 with S1 (B) � ∅. Let τ0 ∈ {±1}V be an

initial configuration. Then,

rank (PB,τ0 ) ≥ s2 (B) − r (B) +
∑

v ∈S2 (B )

(bB (v ) − 1).

Proof. We first build a functional B-good directed acyclic graph with s2 (B) arcs as follows:
consider the B-good directed graph H over the node set S (B) containing all possible B-good-arcs.
Now, run a reverse breadth first search from the nodes in S1 (B) and consider the subgraph H ′ over
the node set S (B) obtained by including only the reverse-BFS-tree arcs. By Lemma 3.8, the reverse
BFS search traverses all nodes in S2 (B) and hence, the graphH ′ has at least s2 (B) arcs. Moreover, the
graph H ′ is a functional graph and acyclic, since we included only the reverse-BFS-tree arcs. Now,
we note that every functional B-good directed graph is B-neighbor-wise independent as every
node has only one outgoing arc. Thus, the graph H ′ is a B-good B-neighbor-wise independent
directed acyclic graph.

Next, we add more arcs to H ′ to obtain a larger B-good B-neighbor-wise independent directed
acyclic graphH ′′ as follows: Consider a nodev ∈ R (B). We have exactly one outgoing arcvw from
v in H ′. For every two adjacent transition blocks containing v , we may add one B-good-arc vu to
a vertex u that appears in a singleton block between those two adjacent transition blocks. If vw is
not B-neighborwise-independent with the added arcs, then we discard the arcvw . We perform the
above operation for every node v ∈ R (B). The resulting graph H ′′ is a B-good B-neighbor-wise
independent directed acyclic graph. The number of arcs in H ′′ is at least

s2 (B) +
∑

v ∈R (B )

(bB (v ) − 2) = s2 (B) − r (B) +
∑

v ∈S2 (B )

(bB (v ) − 1).

Then, by Lemma 3.6, we have that

rank (PB,τ0 ) ≥ s2 (B) − r (B) +
∑

v ∈S2 (B )

(bB (v ) − 1). �

Corollary 3.11. Let B be a β-critical block where 0 < β ≤ 1 with S1 (B) � ∅. Let τ0 ∈ {±1}V be

an initial configuration. Then,

rank (PB,τ0 ) ≥ β

1 + 2β
s (B).

Proof. We first show that rank (PB,τ0 ) ≥ β

1+β
s1 (B). Let T1, . . . ,Tk denote the transition blocks

of B, and for a vertex v , let 1v ∈Ti
denote the indicator function for whether the vertex v appears

in Ti . Then,

∑
v ∈S2 (B )

bB (v ) =
∑

v ∈S2 (B )

k∑
i=1

1v ∈Ti
=

k∑
i=1

∑
v ∈S2 (B )

1v ∈Ti
=

k∑
i=1

s (Ti ).
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Since each Ti is a proper sub-block of B, we have that �(Ti ) < (1 + β )s (Bi ); hence,

∑
v ∈S2 (B )

bB (v ) =
k∑

i=1

s (Ti ) ≥ 1

1 + β

k∑
i=1

�(Ti ).

We note that r (B) ≤ s2 (B). Then by Lemma 3.10, we have that

rank (PB,τ0 ) ≥ s2 (B) − r (B) +
∑

v ∈S2 (B )

(bB (v ) − 1)

≥
∑

v ∈S2 (B )

(bB (v ) − 1)

=
∑

v ∈S2 (B )

bB (v ) − s2 (B)

≥ 1

1 + β

k∑
i=1

�(Ti ) − s2 (B)

=
�(B) − s1 (B)

1 + β
− s2 (B)

=
�(B)

1 + β
− 1

1 + β
s1 (B) − s2 (B)

≥ β

1 + β
s1 (B),

since B is a critical block, we have �(B) ≥ (1 + β )s (B). Moreover, by Lemma 3.10,

rank (PB,τ0 ) ≥ s2 (B) − r (B) +
∑

v ∈S2 (B )

(bB (v ) − 1) = s2 (B) +
∑

v ∈R (B )

(bB (v ) − 2) ≥ s2 (B).

The last inequality above is because bB (v ) ≥ 2 for every v ∈ R (B). Thus,

rank (PB,τ0 ) ≥ max

{
s2 (B),

β

1 + β
s1 (B)

}
.

Let λ := s1 (B)/s (B). Then, s1 (B) = λs (B) and s2 (B) = (1 − λ)s (B) with λ ∈ (0, 1]. Therefore,

rank (PB,τ0 ) ≥ max

{
1 − λ, β

1 + β
λ

}
s (B).

Setting λ =
1+β

1+2β
minimizes the maximum among the two quantities in the right-hand side (RHS).

Hence,

rank (PB,τ0 ) ≥ β

1 + 2β
s (B). �

3.2 Run-time of FLIP for max-cut in the Complete Graph

In this subsection, we will show that a linear-sized improving sequence will improve the value of
H (τ ) by some non-negligible amount with constant probability. Theorem 1.1 will follow from this
result. First, we show a slight extension to a lemma of Reference [7].

Lemma 3.12. Let ϕ > 0 and X1, . . . ,Xm be independent random variables with density functions

f1, . . . , fm : R→ [0,ϕ]. Let X := (x1, . . . ,xm )ᵀ and α1, . . . ,αk ∈ Zn be linearly independent vectors.
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Then for every ϵ > 0,

Pr
X

[
〈αi ,X 〉 > 0 ∀i ∈ [k] and

k∑
i=1

〈αi ,X 〉 ≤ ϵ
]
≤ (ϕϵ )k

k!
.

The proof of Lemma 3.12 is presented in the appendix (see Appendix A). We will use Lemma 3.12
and the rank lower bound to bound the probability of existence of a starting configuration that is
slow for critical blocks.

Lemma 3.13. Let B be a β-critical block where 0 < β ≤ 1 with S1 (B) � ∅. Then the probability

that there exists a starting configuration τ0 ∈ {±1}V such that B is ϵ-slowly improving from τ0 with

respect to X is at most

2s (B ) (2ϕϵ )
β

1+2β
s (B )

(
β

1+2β
s (B)

)
!
.

Proof. Suppose that B is ϵ-slowly improving from some τ0 with respect to X . Since B is
improving, we have that 〈Mt

B,τ0
,X 〉 > 0 for all t ∈ [�(B)]. Since B is ϵ-slow, we have that∑�(B )

t=1 〈Mt
B,τ0

X 〉 ≤ ϵ . As every column of PB,τ0 is the sum of two columns of MB,τ0 , we have

〈PC
B,τ0
,X 〉 > 0 for all pairs C ∈ Γ(B). Moreover, every column of MB,τ0 contributes at most to

two distinct columns of PB,τ0 . Hence
∑

C ∈Γ(B )〈PC
B,τ0
,X 〉 ≤ 2ϵ .

For πf : S (B) → {±1} and πc : V \ S (B) → {±1}, let us define τ(πf ,πc ) : V → {±1} as

τ(πf ,πc ) (u) :=
⎧⎪⎨⎪⎩πf (u) if u ∈ S (B) and

πc (u) if u ∈ V \ S (B).

Let RB,τ ,X denote the event that B is ϵ-slowly improving from the initial configuration τ with
respect to X . Then, by union bound, the required probability is at most∑

πf :S (B )→{±1}
Pr
X

[
∃ πc : V \ S (B) → {±1} : RB,τ(πf ,πc ),X

]
.

Now, consider a fixed choice of πf : S (B) → {±1}. We would like to bound the following
probability:

Pr
X

[
∃ πc : V \ S (B) → {±1} : RB,τ(πf ,πc ),X

]
.

Let us define an initial configuration π c : V \ S (B) → {±1} by π c (u) = 1 for all u ∈ V \ S (B) and
consider σ := τ(πf ,π c ) . By Proposition 1, we have PL,σ = PL,τ(πf ,πc )

for every πc : V \ S (B) → {±1}.
Hence,

Pr
X

[
∃ πc : V \ S (B) → {±1} : RB,τ(πf ,πc ),X

]
= Pr

X

[
RB,σ ,X

]
≤ (2ϕϵ )

β
1+2β

s (B )

(
β

1+2β
s (B)

)
!
.

The last inequality above follows from Lemma 3.12 and Corollary 3.11. Hence, the required prob-
ability is at most

2s (B ) (2ϕϵ )
β

1+2β
s (B )

(
β

1+2β
s (B)

)
!
. �

For edge-weights X , let RX denote the event that there exist a sequence L of moves of length

(1 + β )n� and an initial configuration τ0 ∈ {±1}V such that L is ϵ-slowly improving from τ0 with
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respect to X . The following two lemmas show that if RX happens, then there exists a starting
configuration τ0 ∈ {±1}V and a β-critical block B such that B is ϵ-slowly improving from τ0 with
respect to X and moreover, �(B) = 
(1 + β )s (B)� and S1 (B) � ∅. Lemma 3.14 is similar to Lemma
4.1 in Angel, Bubeck, Peres, and Wei [1].

Lemma 3.14. Let L be a sequence of moves of length 
(1 + β )n� for some β > 0. Then there exists

a β-critical block B in L such that �(B) = 
(1 + β )s (B)�.

Proof. Consider an inclusion-wise minimal block B in L such that �(B) ≥ (1+ β )s (B). We note
that such a block exists, since �(L) = 
(1 + β )n� ≥ (1 + β )s (B). By inclusion-wise minimality, we
have that B is a β-critical block. Suppose �(B) ≥ 
(1 + β )s (B)� + 1. Then, consider the sub-block
B′ � B obtained by removing the last vertex from B. For this sub-block, we have that s (B′) ≤ s (B)
and �(B′) = �(B) − 1 ≥ 
(1 + β )s (B)� ≥ 
(1 + β )s (B′)� ≥ (1 + β )s (B′), thus, contradicting the
choice of B. �

The next lemma shows that β-critical blocks that are improving from an initial configuration
with respect to some edge weights have at least one singleton vertex.

Lemma 3.15. Let B be a β-critical block where 0 < β < 1 with �(B) = 
(1+ β )s (B)�. Suppose there

exists an initial configuration τ0 ∈ {±1}V and edge weights X ∈ [−1, 1]E such that B is improving

from τ0 with respect to X . Then, S1 (B) � ∅.

Proof. Suppose for the sake of contradiction that S1 (B) = ∅. Suppose 2s (B) > 
(1 + β )s (B)�.
Since every vertex appears at least twice in the sequence B, we have

�(B) ≥ 2s (B) > 
(1 + β )s (B)� = �(B),

a contradiction. Therefore, we may assume that 2s (B) = 
(1 + β )s (B)� (i.e., �(B) = 2s (B)). Let
Seven (B) and Sodd (B) denote the set of vertices that appear an even and odd number of times
in the sequence B, respectively. Since B is improving from τ0 with respect to X , it follows that
Sodd (B) � ∅ (otherwise, every vertex moves an even number of times in B, which means that the
final configuration is the same as the initial configuration τ0 and consequently, the sequence B
would not have been improving). Now, we have

�(B) =
∑

v ∈Seven (B )

#B (v ) +
∑

v ∈Sodd (B )

#B (v ) (2)

≥ 2|Seven (B) | + 3|Sodd (B) | (3)

= 2s (B) + |Sodd (B) | (4)

> �(B), (5)

a contradiction, where Equation (3) follows from the assumption that S1 (B) = ∅, Equation (4)
follows from |S (B) | = |Seven (B) | + |Sodd (B) |, and Equation (5) follows from �(B) = 2s (B) and
|Sodd (B) | ≥ 1. �

Lemma 3.16. Let G be the complete graph with |V | = n and for constants η > 0, and β ∈ (0, 1), let

ϵ := e−
2(1+3β )

β

(
β

1 + 2β

)
ϕ−1n

−
(

1+2β+2β 2

β
+

η (1+2β )
β

)
.

Then, the probability (over the choices ofX ) that there exists a sequence L of moves of length 
(1+β )n�
and an initial configuration τ0 ∈ {±1}V such that L is ϵ-slowly improving from τ0 with respect to X
is o(1).
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Proof. Let RX denote the event that there exist a sequence L of moves of length 
(1 + β )n�
and an initial configuration τ0 ∈ {±1}V and such that L is ϵ-slowly improving from τ0 with respect
to X . Lemmas 3.14 and 3.15 show that if RX happens, then there exists a starting configuration
τ0 ∈ {±1}V and a β-critical block B such that B is ϵ-slowly improving from τ0 with respect to X
and moreover, �(B) = 
(1 + β )s (B)� and S1 (B) � ∅.

LetB be the set of β-critical blocks with �(B) ≤ 
(1+β )s (B)� and S1 (B) � ∅. Then, the probability
of RX occurring is at most the sum over B ∈ B of the probability that there exists τ0 ∈ {±1}V such
that B is ϵ-slowly improving from τ0 with respect to X . By Lemma 3.13, this sum is at most

∑
B∈B

2s (B ) (2ϕϵ )
β

1+2β
s (B )

(
β

1+2β
s (B)

)
!
≤

n∑
s=1

(
n

s

)
s 
(1+β )s �2s (2ϕϵ )

β
1+2β

s

(
β

1+2β
s
)
!
.

The last inequality above is because �(B) = 
(1+ β )s (B)� and hence the number of possibilities for
B ∈ B with s (B) = s for a fixed s is at most

(
n
s

)
s 
(1+β )s � . Now, by using Stirling’s approximation

and the fact that 
(1+ β )s� ≤ (1+ β )s + 1, we have that the probability of RX occurring is at most

n∑
s=1

(ne
s

)s

s (1+β )s+12s (2ϕϵ )
β

1+2β
s

(
β

e (1+2β ) s
) β

1+2β
s
≤

n∑
s=1

s 
��e
2(1+3β )

1+2β

(
β

1 + 2β

)− β
1+2β

n
1+2β+2β 2

1+2β (ϕϵ )
β

1+2β
��

s

.

The last inequality above is by using the fact that s ≤ n. Now, for the choice of

ϵ = e−
2(1+3β )

β

(
β

1 + 2β

)
ϕ−1n

−
(

1+2β+2β 2

β
+

η (1+2β )
β

)
,

the above sum is an arithmetic-geometric sum. That is,

Pr
X

[RX ] ≤
n∑

s=1

sn−ηs ≤
∞∑

s=1

sn−ηs =
n−η

(1 − n−η )2
,

which tends to 0 as n → ∞. �

We now restate and prove Theorem 1.1.

Theorem 1.1. Let G = (V ,E) be the complete graph on n vertices, and suppose that the edge

weights (Xe )e ∈E are independent random variables chosen according to a probability density function

fe : [−1, 1]→ [0,ϕ] for some ϕ > 0. Then, for every constant η > 0,

(i) with high probability every implementation of the FLIP method for max-cut terminates in at

most 23, 400ϕn3+(2+
√

2)(
√

2+η) = O (ϕn7.829+3.414η ) steps.

(ii) the expected number of steps in every implementation of the FLIP method for max-cut is

O (ϕn
47
6 +η ).

Proof.

(i) We will use Lemma 3.16 with an optimal setting of β . We will derive this optimal setting at
the end of the proof. For now, let us consider β ∈ (0, 1). Let RX denote the event that an
implementation of FLIP starting from some initial configuration τ0 follows a sequence L of
length at least

(1 + β )e
2(1+3β )

β

(
β

1 + 2β

)−1

ϕn

(
3+ 1+2β+2β 2

β
+

η (1+2β )
β

)
. (6)
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Suppose RX happens. For 1 ≤ i ≤ z := �(L)/(1 + β )n, let Li denote the block of L from
time-step (i − 1) (1+ β )n + 1 to time-step i (1+ β )n and let τi denote the configuration before
time-step (i − 1) (1 + β )n + 1. We note that

z ≥ e
2(1+3β )

β

(
β

1 + 2β

)−1

ϕn

(
2+ 1+2β+2β 2

β
+

η (1+2β )
β

)
. (7)

For every i ∈ [z], we have that �(Li ) = 
(1+ β )n� and Li is an improving sequence from the
initial configuration τi with respect to X . We will now show that there exists i ∈ [z] such
that Li is an ϵ-slowly improving sequence from the initial configuration τi with respect to
X for an appropriate choice of ϵ .
For notational convenience, let h(L) denote the total improvement of H (τ0) from the initial
configuration τ0 by following the sequence of moves in L. Then, h(L) ≤ n2, since |Xe | ≤ 1 for
every e ∈ E. Let h(Li ) denote the total improvement of H (τi ) from the initial configuration
τi by following the sequence of moves in Li . Then, h(L) =

∑z
i=1 h(Li ). Hence, there exists

i ∈ [z] such that h(Li ) is at most

n2

z
≤ e−

2(1+3β )
β

(
β

1 + 2β

)
ϕ−1n

−
(

1+2β+2β 2

β
+

η (1+2β )
β

)
.

The inequality above is by the lower bound on z from Equation (7). Thus, there exists i ∈ [z]
such that Li is ϵ-slowly improving from τi with respect to X , where

ϵ := e−
2(1+3β )

β

(
β

1 + 2β

)
ϕ−1n

−
(

1+2β+2β 2

β
+

η (1+2β )
β

)
.

The above argument implies that if RX happens, then there exists a sequence L′ of moves of
length 
(1+ β )n� and an initial configuration σ0 ∈ {±1}V such that L′ is ϵ-slowly improving
from σ0 with respect to X . By Lemma 3.16, the probability of the latter event is o(1) and
hence the probability that RX happens is o(1).
It remains to identify a setting of β that bounds the run-time. That is, we need a setting of β
that minimizes the exponent of n in the RHS of Equation (6). The optimal choice is β = 1/

√
2.

Thus, the probability that an implementation of FLIP starting from some initial configuration
τ0 follows a sequence L of length at least

23, 400ϕn3+(2+
√

2)(
√

2+η)

is o(1).
(ii) We consider β = max{2/3+η/2, 1} ∈ (2/3, 1). Let L denote the sequence of moves executed by

the algorithm and letT := ��(L)/(1+β )n�. IfT ≥ 1, then there exists a starting configuration
τ0 and a β-critical block B such that B is (n2/T )-slowly improving from τ0 with respect to X
and moreover, by Lemmas 3.14 and 3.15, �(B) = 
(1 + β )s (B)� and S1 (B) � ∅.
For non-negative integers s and t , let R (s, t ) denote the event that there exists a β-critical
block B in L of length 
(1+ β )s� with s (B) = s and S1 (B) � ∅ and a starting partition τ0 such
that B is (n2/t )-slowly improving from τ0 with respect to edge-weights X . Let

t0 :=

⌈
e

2(1+3β )
β

(
1 + 2β

β

)
ϕn4+2β+ 1

β

⌉
.

We have that

EX (T ) ≤
∞∑

t=1

Pr
X

(T ≥ t ) ≤ t0 +
∞∑

t=t0

n∑
s=1

Pr
X

(R (s, t )).

We will show that the second term is O (t0).
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We begin by considering the case of s ≤ 3. For s = 1, 2, there are no β-critical blocks B with
s (B) = s for which �(B) = 
(1+ β )s�. For s = 3, an exhaustive search shows that for every β-
critical block B with s (B) = 3 from every starting configuration τ0 with �(B) = 
3(1+β )� = 6,
the rank of the matrix PB,τ0 is at least 3. Thus,

Pr
X

(R (3, t )) ≤
(
n

3

)
3 
(1+β )3�23

(
2ϕ

(
n2

t

))3

2
= O 
�n3

(
ϕn2

t

)3� .
Hence,

∞∑
t=t0

Pr
X

(R (3, t )) =

∫ ∞

t0

O 
�n3

(
ϕn2

t

)3�dt = O 
�n3t0

(
ϕn2

t0

)3� = o (t0) .

The last equality above is by the choice of t0.
We now consider the case of s ≥ 4. By Lemma 3.13 and the fact that the number of critical
blocks B with s (B) = s and �(B) = 
(1 + β )s (B)� is at most

(
n
s

)
s 
(1+β )s � , we have that

Pr
X

(R (s, t )) ≤
(
n

s

)
s 
(1+β )s �2s

(
2ϕ

(
n2

t

)) β
1+2β

s

(
β

1+2β
s
)
!

≤
(ne
s

)s

s (1+β )s+12s

(
2ϕ

(
n2

t

)) β
1+2β

s

(
β

e (1+2β ) s
) β

1+2β
s

≤ s 
��e
2(1+3β )

1+2β

(
β

1 + 2β

)− β
1+2β

ns
2β 2

1+2β

(
ϕ

(
n2

t

)) β
1+2β ��

s

.

Hence,
∑∞

t=t0
PrX (R (s, t )) is at most


��e
2(1+3β )

1+2β

(
β

1 + 2β

)− β
1+2β

ns
2β 2

1+2β

(
ϕ

(
n2

t0

)) β
1+2β ��

s 
��
st0

s − 1+2β

β

��
(

1 + 2β

β

)
.

With the above-mentioned choice of t0, we obtain that

∞∑
t=t0

Pr
X

(R (s, t )) ≤
( s
n

) (
2β 2

1+2β

)
s 
��

st0

s − 1+2β

β

��
(

1 + 2β

β

)
.

Therefore,

n∑
s=4

∞∑
t=�0

Pr
X

(R (s, t )) ≤
(

1 + 2β

β

) n∑
s=4

( s
n

) (
2β 2

1+2β

)
s 
��

st0

s − 1+2β

β

�� = O (t0)
n∑

s=4

( s
n

) (
2β 2

1+2β

)
s

,

where the last equation is because β ∈ (0, 1) is a constant. Finally, we note that for every
constant β , we have

n∑
s=4

( s
n

) (
2β 2

1+2β

)
s

= O (1),

which is due to the fact that the function

f (n) :=
n∑

s=4

( s
n

) (
2β 2

1+2β

)
s

ACM Transactions on Algorithms, Vol. 17, No. 3, Article 19. Publication date: July 2021.



19:20 A. Bibak et al.

has a constant value for n = 4, and is decreasing for n ≥ 4 as we have

d

dn

��

n∑
s=4

( s
n

) (
2β 2

1+2β

)
s�� =

n∑
s=4

d

dn

( s
n

) (
2β 2

1+2β

)
s

=

n∑
s=4

− 2β2

1 + 2β

( s
n

) 2β 2

1+2β
s+1
< 0.

Hence,
n∑

s=4

∞∑
�=t0

Pr
X

(R (s, �)) = O (t0).

We have thus shown that EX (T ) = O (t0) for every constant β ∈ (2/3, 1) and hence, the
expected number of flips performed by the algorithm is

O (t0n) = O (ϕn5+2β+ 1
β ) = O (ϕn

13
2 +2β ).

By the choice of β = max{2/3 + η/2, 1}, we see that the expected number of flips performed
by the algorithm is

O (ϕn
47
6 +η ).

�

4 SMOOTHED ANALYSIS OF FLIP FOR max-K-cut

In this section, we prove Theorems 1.2 and 1.3. We begin with some notation. LetG = (V ,E) be an
arbitrary connected graph with n vertices and let X : E → [−1, 1] be an edge-weight function. We
will redefine some of the concepts from Section 3 as there are subtle differences between the same
notions between the case of max-cut and max-k-cut. For the sake of completeness, we state the
complete definitions and prove all necessary details.

We recall a convenient formulation of the objective function for max-k-cut [9]. When consider-
ing max-k-cut, let σ (1), . . . ,σ (k ) be vectors defined as follows: take an equilateral simplex Σk in
Rk−1 with vertices b1, . . . ,bk . Let ck := (b1+ · · ·+bk )/k be the centroid of Σk and let σ (i ) = bi −ck ,
for i ∈ [k]. Assume that Σk is scaled such that |σ (i ) | = 1 for i ∈ [k]. For example, max-3-cut
produces the vectors:

σ (1) :=
1
√

6
(−2, 1, 1), σ (2) :=

1
√

6
(1,−2, 1), and σ (3) :=

1
√

6
(1, 1,−2).

Remark 3. If i, j ∈ [k], then

〈σ (i ),σ (j )〉 =
⎧⎪⎨⎪⎩1 if i = j,
−1

k−1 if i � j .

We consider the space [k]V of configurations that define a partition of the vertex set into k parts.
For a configuration τ ∈ [k]V , we denote the part of v by τ (v ). For a configuration τ ∈ [k]V , the
weight of τ is given by

k − 1

k

∑
uv ∈E

Xuv (1 − 〈σ (τ (u)),σ (τ (v ))〉).

Let

H (τ ) := −k − 1

k

∑
uv ∈E

Xuv 〈σ (τ (u)),σ (τ (v ))〉.

We observe that for constant k , H (τ ) is a translation of the weight of τ by some fraction of the
total weight of all edges and hence, it suffices to work with H (τ ) henceforth.

We analyze the run-time of the FLIP method in the smoothed framework. We will denote the
move of a vertex v ∈ V from part p ∈ [k] to part q ∈ [k] \ {p} as an ordered triple (v,p,q). A move
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(v,p,q) is valid for a configuration τ ∈ [k]V if τ (v ) = p and q � p. We will need the notions of
valid and improving sequences that we define now.

Definition 4.1. Let L be a sequence of moves, τ0 ∈ [k]V be an initial configuration, and X ∈
[−1, 1]E be the edge weights. We will denote the length of the sequence L by �(L), the set of
vertices appearing in the moves in L by S (L), and s (L) := |S (L) |. For each v ∈ V , we will denote
the number of times that the vertex v moves in L by #L (v ). We will denote the t th move of L by
L(t ) = (vt ,pt ,qt ).

(1) For each t ∈ [�(L)] such that L(t ) is valid for τt−1, we will denote τt as the configuration
obtained from τt−1 by setting τt (u) := τt−1 (u) for every u ∈ V \ {vt } and τt (vt ) := qt . If
there exists t ∈ [�(L)] such that L(t ) is invalid for τt−1, then we say that L is invalid from τ0;
otherwise L is valid from τ0.

(2) We say thatL is improving from τ0 with respect toX if L is valid from τ0 andH (τt )−H (τt−1) > 0
for all t ∈ [�(L)]. We say that L is ϵ-slowly improving from τ0 with respect to X if L is valid
from τ0 and H (τt ) − H (τt−1) ∈ (0, ϵ] for all t ∈ [�(L)].

The notion of valid sequences is needed only for k ≥ 3 in the case of max-k-cut and was
not necessary for max-cut in the previous section. Moreover, we emphasize that the definition
of ϵ-slowly improving here is different from the one that we used in Section 3 for max-cut. The
improvement of H (τ ) can once again be written as the inner product between the edge-weight
vectorX and a suitable vector whose coordinates are in {0,±1}. We formalize this with a convenient
matrix below.

Definition 4.2. Let L be a valid sequence of moves from a configuration τ0 ∈ [k]V . Let ML,τ0 ∈
{0,±1}E×�(L) be a matrix with rows corresponding to the edges of G, columns corresponding to
time-steps in the sequence L, and whose entries are given by

ML,τ0 [{a,b}, t] :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

+1
if a = vt and pt = τt (b),
or b = vt and pt = τt (a),

−1
if a = vt and qt = τt (b),
or b = vt and qt = τt (a),

0 otherwise,

where {a,b} ∈ E and t ∈ [�(L)]. We will denote the t th column of ML,τ0 by Mt
L,τ0

.

Remark 4. For a sequence L that is valid from an initial configuration τ0, we have H (τt ) −
H (τt−1) = 〈Mt

L,τ0
,X 〉.

Next, we generalize the notion of “pairs of immediate occurrences” used in Section 3 with the
notion of cycles and cyclic vertices. We note that the following definitions do not depend on the
initial configuration.

Definition 4.3. Let L be a sequence of moves.

(1) A set of w moves {(vt1 ,pt1 ,qt1 ), . . . , (vtw
,ptw
,qtw

)} in L is a w-circuit over a vertex v ∈ S (L)
if

(a) ti < tj for all i < j,
(b) qti

= pti+1 for all i ∈ [w − 1],
(c) qtw

= pt1 and,
(d) vti

= v for all i ∈ [w].
We will denote the time steps {t1, . . . , tw } of the w-circuit by T (C ).
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(2) A w-circuit is a w-cycle if it is inclusion-wise minimal.
(3) A set C of moves in L is a cycle if it is a w-cycle for some w . Also, let tbeд (C ) := min(T (C ))

and tend (C ) := max(T (C )). Let Γ(L) denote the set of all cycles in L.
(4) A vertex v is called cyclic if there exists a cycle in Γ(L) that is over v . A vertex v is called

acyclic if it is not cyclic. Let C (L) and A(L) denote the set of cyclic and acyclic vertices of L,
respectively, and let c (L) := |C (L) | and a(L) := |A(L) |.

As mentioned above, the notion of cycles (circuits) can be viewed as a generalization of pairs of
immediate occurrences used in Section 3. We note that every pair of immediate occurrences of a
vertex is a 2-cycle (2-circuit). However, the converse does not hold, as the moves in a cycle (circuit)
need not be consecutive moves of a vertex.

Remark 5. Let L be a sequence of moves and letC ∈ Γ(L) be a cycle over a vertexv . Then, every
part is visited at most once by v in the cycle.

Remark 6. For a sequence L of moves, we have that #L (v ) ≤ k − 1 for each vertex v ∈ A(L).

We now define a suitable matrix that will nullify the influence of non-moving vertices.

Definition 4.4. Let L be a sequence of moves that is valid from an initial configuration τ0 ∈ [k]V .
Let PL,τ0 ∈ {0,±1}E×Γ(L) be a matrix with rows corresponding to edges ofG, columns corresponding
to cycles in L, and whose entries are given by

PL,τ0 [{a,b},C] :=
∑

(vt ,pt ,qt )∈C
ML,τ0 [{a,b}, t],

where {a,b} ∈ E and C ∈ Γ(L).

Proposition 2. For a sequence L of moves that is valid from an initial configuration τ0 ∈ [k]V , if

v ∈ V \ S (L), then PL,τ0 [{a,v},C] = 0 for every C ∈ Γ(L) and {a,v} ∈ E.

Proof. Let C ∈ Γ(L) and {a,v} ∈ E. Since v is not in S (L), it follows that C is not over v . If C is
not over a, then ML,τ0 [{a,v}, t] = 0 for every t ∈ T (C ), and hence PL,τ0 [{a,v},C] = 0. SupposeC is
aw-cycle over the vertex a and letC = {(a,pt1 ,qt1 ), . . . , (a,ptw

,qtw
)}. If ML,τ0 [{a,v}, ti ] = 0 for all

i ∈ [w], then the claim holds. Let ti0 be the first instant in {t1, . . . , tw } such thatML,τ0 [{a,v}, ti0 ] � 0.
Then, it follows that ti0 � tw . We have two cases:

• Case 1. Suppose ti0 � t1. Then ML,τ0 [{a,v}, ti0 ] = −1 and ML,τ0 [{a,v}, ti0+1] = 1. Moreover,
ML,τ0 [{a,v}, tj ] = 0 for every j ∈ [w] \ {i0, i0 + 1}, since v does not move in L. Hence,
PL,τ0 [{a,v},C] =

∑w
i=1 ML,τ0 [{a,v}, ti ] = 0.

• Case 2. Suppose ti0 = t1. Then, ML,τ0 [{a,v}, t1] = 1. Moreover, ML,τ0 [{a,v}, ti ] = 0 for all
1 < i < w , since qti

� pt1 for all i � w . Finally, it follows that ML,τ0 [{a,v}, tw ] = −1, since v
does not move between t1 and tw in L. Hence, PL,τ0 [{a,v},C] =

∑w
i=1 ML,τ0 [{a,v}, ti ] = 0. �

4.1 Rank Lower Bounds for PL,τ0

In this section, we show a lower bound on the rank of PL,τ0 . For this, we will again relate the rank of
the matrix with the number of edges of a certan directed graph. This graph has certain properties
that imply this relation. These properties, in fact, motivate the definition of the graph; hence, we
define the properties in Definition 4.5 below before defining the graph.

The notion of L-good arcs below will help us identify non-zero entries in the matrix while
the notion of L-neighbor-wise independence below will help us obtain large upper triangular
submatrices.
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Definition 4.5. Let L be a sequence of moves.

(i) For u,v ∈ S (L), we will call the ordered pair vu to be an L-good-arc if there exists a cycle
C ∈ Γ(L) over v such that PL,τ0 [{u,v},C] � 0. A directed graph H with node set S (L) is
L-good if every arc in H is an L-good-arc.

(ii) For a cyclic vertex v ∈ C (L) and a collection U ⊆ S (L) of vertices with m := |U |, the
collection of ordered pairs {vu : u ∈ U } is an L-neighbor-wise independent set if there exists
an ordering of U , say u1, . . . ,um , along with cycles C1, . . . ,Cm ∈ Γ(L) over v such that

(a) PL,τ0 [{v,ui },Ci ] � 0 and
(b) PL,τ0 [{v,uj },Ci ] = 0 for every j ∈ {i + 1, . . . ,m}.

A directed graph H with node set S (L) is L-neighbor-wise independent if for everyv ∈ S (L),
the collection {vu : u ∈ Δout

H
(v )} is an L-neighbor-wise independent set.

The next lemma is our key tool in obtaining a lower bound on the rank of PL,τ0 . We show that
the rank is at least the number of edges in an L-good L-neighbor-wise independent directed acyclic
graph. Although the definitions have changed mildly, the proof follows the same outline as that
of Lemma 3.6 in Section 3.

Lemma 4.6. Let L be a valid sequence from an initial configuration τ0 ∈ [k]V . Let H be an L-good

L-neighbor-wise independent directed acyclic graph. Then,

rank (PL,τ0 ) ≥ |E (H ) |.

Proof. Consider the submatrix BH of PL,τ0 consisting of the rows corresponding to edges {u,v}
for every arcvu ∈ E (H ). We will show that the matrix BH has full row-rank by induction on |E (H ) |.
The base case of |E (H ) | = 0 is trivial.

For the induction step, we consider |E (H ) | ≥ 1. Suppose that there exist coefficients μ {u,v } ∈ R
for every uv ∈ E (H ) such that ∑

uv ∈E (H )

μ {u,v }PL,τ0 [{u,v},C] = 0

for every cycle C ∈ Γ(L). Since H is a directed acyclic graph with at least one arc, there exists a
node v ∈ V (H ) with |δout

H
(v ) | ≥ 1 and |δ in

H
(v ) | = 0.

Claim 3. For every u ∈ Δout
H

(v ), the coefficient μ {v,u } is zero.

Proof. Consider the ordering u1, . . . ,um of the vertices in Δout
H

(v ) and cyclesCi ∈ Γ(L) satisfy-
ing Definition 4.5 (4.5). We want to show that μ {v,uj } = 0 for every j ∈ [m] by induction on j. We
use induction on j ∈ [m + 1] to show that μ {v,ui } = 0 for every i < j.

The base case for j = 1 is trivial. For the induction step, we consider j = j0 + 1 ≥ 2. We consider
the columns of P corresponding to the cycle Cj0 ∈ Γ(L). Since Cj0 is also over v , the only possible
non-zero entries in this column among the chosen rows are in the rows corresponding to the edges
{v,u1}, . . . , {v,um }. Thus,

0 =
∑

uv ∈E (H )

μ {u,v }PL,τ0 [{u,v},Cj0 ] =
m∑

i=1

μ {v,ui }PL,τ0 [{v,ui },Cj0 ].

By induction hypothesis, we know that μ {v,ui } = 0 for every i < j0. Thus,

0 =
m∑

i=j0

μ {v,ui }PL,τ0 [{v,ui },Cj0 ].
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Moreover, by the choice of Cj0 , we also have that

PL,τ0 [{v,uj0 },Cj0 ] � 0, and PL,τ0 [{v,ui },Cj0 ] = 0 ∀i ∈ {j0 + 1, . . . ,m}.

Consequently, we obtain that μ {v,uj0 } = 0. We have thus concluded the inductive statement that
μ {v,ui } = 0 for every i < j0 + 1. �

As a consequence of the claim, we have that the matrix BH has full row-rank if and only if the
matrix BH ′ obtained from the graph H ′ := H − δout

H
(v ) has full row-rank. We note that the graph

H ′ is also an L-good L-neighbor-wise independent directed acyclic graph with |E (H ′) | < |E (H ) |.
Thus, by induction hypothesis, the matrix BH ′ has full row-rank. Hence, the matrix BH also has
full row-rank. �

We now use Lemma 4.6 to show that the rank of the matrix PL,τ0 is at least half the number of
cyclic vertices in L provided that L is an improving sequence from some initial configuration.

Lemma 4.7. Let L be an improving sequence from an initial configuration τ0 ∈ [k]V with respect

to some edge weights X ∈ [−1, 1]E . Then,

rank (PL,τ0 ) ≥ 1

2
c (L).

Proof. We will use the following claim to construct an L-good L-neighbor-wise independent
directed acyclic graph.

Claim 4. For every vertex v ∈ C (L) and for every cycle C ∈ Γ(L) that is over v , there exists an
edge {u,v} ∈ E such that PL,τ0 [{u,v},C] � 0.

Proof. For contradiction, suppose that for all edges {u,v} ∈ E, we have PL,τ0 [{u,v},C] = 0.
We note that for all e ∈ E, if v is not an end-vertex of e , then ML,τ0 [e, t] = 0 for every t ∈ T (C ).
Moreover, for all e ∈ E with v being an end-vertex of e , we have that∑

t ∈T (C )

ML,τ0 [e, t] = PL,τ0 [e,C] = 0.

Hence, for every e ∈ E, we have that ∑
t ∈T (C )

ML,τ0 [e, t] = 0.

This implies that
∑

t ∈T (C )〈Mt
L,τ0
,Y 〉 = 0 for all Y ∈ [−1, 1]E . However, since L is an improving

sequence from τ0 with respect to X ∈ [−1, 1]E , it follows that 〈Mt
L,τ0
,X 〉 > 0 for all t ∈ [�(L)]. In

particular,
∑

t ∈T (C )〈Mt
L,τ0
,X 〉 > 0, a contradiction. �

Now, we construct an L-good L-neighbor-wise independent graph H over the node set S (L) as
follows: For every v ∈ C (L), pick an arbitrary u ∈ V \ {v} such that PL,τ0 [{u,v},C] � 0 (which is
guaranteed to exist by the above claim) and add the arcvu toH . The resulting graphH is L-good by
construction. It is trivially L-neighbor-wise independent, since each node has out-degree at most
one. Moreover, |E (H ) | = c (L) and the directed cycles in H are node-disjoint.

Finally, we obtain an L-good L-neighbor-wise independent directed acyclic graph H ′ by remov-
ing one arc from each directed cycle in H . Since |E (H ) | = c (L) and the directed cycles in H are
node-disjoint, it follows that |E (H ′) | ≥ 1

2c (L). The lemma now follows by applying Lemma 4.6
to H ′. �
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Next, we will improve the rank lower bound from Lemma 4.7 in complete graphs for max-3-
cut. We need a few additional definitions. The following definition will also be useful for the
quasi-polynomial time analysis for max-k-cut.

Definition 4.8. Let L be a sequence of moves. A block is a continuous subsequence of L. For a
block L′ of L, we will denote the set of time-steps of the moves of L′ in L byT (L′). A maximal block
of L consisting only of cyclic vertices of L is called a cyclic block. Likewise, a maximal block of L
consisting only of acyclic vertices of L is called an acyclic block.

We note that a sequence L can be partitioned into alternating cyclic and acyclic blocks.

4.1.1 Improving Rank Lower Bounds for max-3-cut in the Complete Graph. We now focus on
the case when k = 3 and G is the complete graph. For k = 3, the cycles of interest are 2-cycles
and 3-cycles. We are able to sharpen the rank lower bound with a better understanding of how
the cycles interact with the cyclic blocks. We need the following definitions to characterize these
interactions.

Definition 4.9. A cycleC ∈ Γ(L) over a vertexv ∈ V is leaping if the time-steps inT (C ) belong to
at least two distinct cyclic blocks of L. A leaping 3-cycle {(vt ,pt ,qt ), (vt ′,pt ′,qt ′ ), (vt ′′,pt ′′,qt ′′ )} ∈
Γ(L) is called tricky if

(1) the time-steps t , t ′, t ′′ belong to distinct cyclic blocks of L and
(2) the set of acyclic vertices of L that appear between t and t ′ is the same as those that appear

between t ′ and t ′′ (i.e., A(L) ∩ S (L[t , t ′]) = A(L) ∩ S (L[t ′, t ′′])).

The following two lemmas summarize the structure of cyclic blocks and leaping cycles.

Lemma 4.10. Let L be a valid sequence from some initial configuration τ0 ∈ [3]V and let t1 < t2 < t3
be the time-steps of three occurrences of a vertex v in L such that t1, t2, t3 belong to different cyclic

blocks. Then, there exists a cycle C ∈ Γ(L) over v such that

(i) C is a leaping cycle and

(ii) t ∈ {t1, t1 + 1, . . . , t ′3} for every t ∈ T (C ), where t ′3 is the last occurrence of v in the same cyclic

block as that of t3.

Proof. Let the time-steps t1, t2 and t3 be in cyclic blocks B1,B2, and B3, respectively. Let t ′1, t
′
2

and t ′3 denote the last occurrence of v in B1,B2, and B3, respectively. Without loss of generality,
suppose that the vertex v moves from part 1 to part 2 at time-step t ′1 (i.e., pt ′1

= 1 and qt ′1
= 2). We

consider the following three cases:

• Case 1. There exists a time-step t such that t ′1 ≤ t ≤ t ′3 and L(t ) = (v, 2, 1). Then, the cycle
C ∈ Γ(L) given by {(v, 1, 2), (v, 2, 1)} with T (C ) = {t ′1, t } is the desired cycle.
• Case 2. There does not exist a time-step t such that t ′1 ≤ t ≤ t ′3 and L(t ) = (v, 2, 1), but there

exists a time-step t such that t ′1 ≤ t ≤ t ′3 and L(t ) = (v, 3, 1). Since L is a valid sequence from
an initial configuration τ0, there exists a time-step t ′ such that t ′1 ≤ t ′ ≤ t and L(t ′) = (v, 2, 3).
Hence, the cycle C ∈ Γ(L) given by {(v, 1, 2), (v, 2, 3), (v, 3, 1)} with T (C ) = {t ′1, t ′, t } is the
desired cycle.
• Case 3. There does not exist a time-step t such that t ′1 ≤ t ≤ t ′3 and L(t ) = (v, 2, 1), and

there does not exist a time-step t such that t ′1 ≤ t ≤ t ′3 and L(t ) = (v, 3, 1). Let t be the first
occurrence ofv in B3. Since L is a valid sequence for an initial configuration τ0, we have that
{L(t ′2),L(t )} = {(v, 2, 3), (v, 3, 2)}. Hence, the cycleC ∈ Γ(L) given by {(v, 2, 3), (v, 3, 2)} with
T (C ) = {t ′2, t } is the desired cycle. �
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Lemma 4.11. Let G = (V ,E) be the complete graph and let L be a valid sequence from some initial

configuration τ0 ∈ [3]V . Suppose C ∈ Γ(L) is a non-tricky leaping cycle over a vertex v . Then there

exists a vertex u ∈ A(L) ∩ S (L[tbeд (C ), tend (C )]) such that the arc vu is an L-good-arc.

Proof. We consider the following three cases:

• Case 1. Suppose that C is a 2-cycle and T (C ) = {t1, t2}. Without loss of generality, sup-
pose that C = {(v, 1, 2), (v, 2, 1)}. Since C is a leaping cycle, there exists a vertex u ∈
A(L) ∩ S (L[tbeд (C ), tend (C )]). Let p,q ∈ [3] denote the parts of u at time-steps t1 and t2,
respectively. Since u ∈ A(L), we have that p � q. Therefore, {p,q} ∈ {{1, 2}, {1, 3}, {2, 3}}.
Hence, PL,τ0 [{u,v},C] ∈ {±1,±2} and it is non-zero.
• Case 2. Suppose that C is a 3-cycle and the time-steps in T (C ) = {t1, t2, t3} belong to

exactly two distinct cyclic blocks of L. Without loss of generality, suppose that C =

{(v, 1, 2), (v, 2, 3), (v, 3, 1)} and that t1, t2 belong to the same cyclic block, which is differ-
ent from that of t3. We note that there exists u ∈ A(L) ∩ S (L[t2, t3]). Let p,q ∈ [3] denote the
parts of u at time-steps t2 and t3, respectively. Since u ∈ A(L), we have that p � q. Therefore,
{p,q} ∈ {{1, 2}, {1, 3}, {2, 3}}. Hence, PL,τ0 [{u,v},C] ∈ {±1,±2} and it is non-zero.
• Case 3. Suppose that C is a 3-cycle and the time-steps in T (C ) = {t1, t2, t3} belong to

exactly three distinct cyclic blocks of L. Without loss of generality, suppose that C =
{(v, 1, 2), (v, 2, 3), (v, 3, 1)}. Since C is non-tricky, there exists u ∈ A(L) such that u is in
exactly one of S (L[t1, t2]) and S (L[t2, t3]). Without loss of generality, suppose that u ∈
S (L[t2, t3]) \ S (L[t1, t2]). Let p,q ∈ [3] denote the position of u at time-steps t2 and t3, re-
spectively. Since u ∈ A(L), we have that p � q. Therefore, {p,q} ∈ {{1, 2}, {1, 3}, {2, 3}}.
Hence, PL,τ0 [{u,v},C] ∈ {±1,±2} and it is non-zero. �

We now show that for every cyclic vertex v in a sequence L, we have a large number of L-good
arcs whose tail is v that also form an L-neighbor-wise independent set. This fact will be useful
in constructing a large L-good L-neighbor-wise independent directed acyclic graph, which will in
turn improve the rank using Lemma 4.6. We emphasize that our proof of this fact will crucially
use the fact that the graph G is complete. For a sequence L of moves, we will denote the number
of cyclic blocks in which v occurs as bL (v ).

Lemma 4.12. LetG be the complete graph, let L be a valid sequence from some initial configuration

τ0 ∈ [3]V , and letv ∈ C (L). Then, there exists a collection of k ≥ 
 1
2 �

1
3 (bL (v )−1)�� verticesu1, . . . ,uk

such that

(i) u1, . . . ,uk ∈ A(L),
(ii) vui is an L-good-arc for every i ∈ [k], and

(iii) the set {vu1, . . . ,vuk } is an L-neighbor-wise independent set.

Proof. Let the cyclic blocks that contain v be B1, . . . ,BbL (v ) . Let R := � 1
3 (bL (v ) − 1)�. For 0 ≤

r ≤ R, let Br := {B3r+1,B3r+2,B3r+3,B3r+4}. We note that the last block in Br and the first block
in Br+1 coincide for every 0 ≤ r < R. Let Ar be the set of three acyclic blocks in L that appear
between B3r+1 and B3r+2, between B3r+2 and B3r+3 and between B3r+3 and B3r+4. For simplicity, we
let S (Ar ) := ∪A∈Ar

S (A) denote the set of vertices occurring in the blocks in Ar , and let T (Ar ) :=
∪A∈Ar

T (A) denote the set of time-steps of the moves of blocks in Ar as they appear in L. By
definition, we have that T (Ar ) ∩T (Ar ′ ) = ∅ for every distinct r , r ′ ∈ [R].

Let us consider an r ∈ [R]. By Lemma 4.10, there exist leaping cycles Cr and C ′r in Γ(L) over v
such that T (Cr ) ⊆ T (B3r+1) ∪T (B3r+2) ∪T (B3r+3) and T (C ′r ) ⊆ T (B3r+2) ∪T (B3r+3) ∪T (B3r+4).

Claim 5. The cycles Cr and C ′r cannot both be tricky cycles.
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Proof. For the sake of contradiction suppose that both Cr and C ′r are tricky cycles. Let
T (Cr ) = {t1, t2, t3} and T (C ′r ) = {t ′1, t ′2, t ′3} for some t1 < t2 < t3 and t ′1 < t ′2 < t ′3. By the
choice of Cr and C ′r , we must have ti ∈ T (B3r+i ) and t ′i ∈ T (B3r+i+1) for i ∈ {1, 2, 3}. There-
fore, A(L) ∩ S (L[t2, t3]) = A(L) ∩ S (L[t ′1, t

′
2]), and since Cr and C ′r are tricky, it follows that

A(L) ∩ S (L[t1, t2]) = A(L) ∩ S (L[t2, t3]) and A(L) ∩ S (L[t ′1, t
′
2]) = A(L) ∩ S (L[t ′2, t

′
3]). Hence,

A(L) ∩ S (L[t1, t2]) = A(L) ∩ S (L[t2, t3]) = A(L) ∩ S (L[t ′2, t
′
3]). Since neither of these sets are empty,

there must exist au ∈ A(L) that appears at least 3 times in the sequence. However, this contradicts
the fact that for all u ∈ A(L), we have #L (u) ≤ 2. �

Let Ĉr := Cr if Cr is non-tricky, and Ĉr := C ′r otherwise. It follows from Claim 5 that Ĉr is a
non-tricky cycle. Therefore, by Lemma 4.11, there exists a vertex ur ∈ A(L) that appears between
two cyclic blocks in Br such that vur is an L-good-arc.

We have shown that for each r ∈ [R], there exists a vertex ur ∈ S (Ar ) that appears between two
cyclic blocks in Br such that vur is an L-good-arc. LetU := {u1, . . . ,uR }. We note that the vertices
u1, . . . ,uR may not be distinct and consequently, we may not be able to obtain a large number of
L-good-arcs while constructing the needed L-good L-neighbor-wise independent directed acyclic
graph. Even if they are distinct, we need an ordering of them that satisfies the L-neighbor-wise
independent property. The following claim handles these two issues.

Claim 6. There exists a subset of k ≥ R/2 distinct elements in U along with an ordering
ur1 , . . . ,urk

of these elements such that ur j
� S (Ari

) for every i, j ∈ [k] with i < j.

Proof. We will construct a sequence w1, . . . ,wk such that

(i) k ≥ R/2,
(ii) wi ∈ U for every i ∈ [k],

(iii) wi � w j for every 1 ≤ i < j ≤ k ,
(iv) for every 1 ≤ i < j ≤ k , we have that wi � S (At ), where t is any index in [R] such that

w j = ut .

We show that such a sequence translates into the sequence ur1 , . . . ,urk
required in the claim.

Conditions (i), (ii), and (iii) imply that the elements w1, . . . ,wk are indeed a subset of k ≥ R/2
distinct elements ofU . Let us denote the sequence wk , . . . ,w1 by ur1 , . . . ,urk

, where ri is the least
index of wk−i+1 in u1, . . . ,uR . Substituting wi = urk−i+1 and w j = urk−j+1 for all 1 ≤ i < j ≤ k in
condition (iv) results in urk−i+1 � S (Ark−j+1 ) for every 1 ≤ i < j ≤ k . Thus, re-indexing produces
ur j
� S (Ari

) for every i, j ∈ [k] with i < j as desired.
To construct a sequencew1, . . . ,wk satisfying the conditions (i)–(iv), we consider the procedure

in Figure 2. The input satisfies the required conditions asur ∈ S (Ar ) for every r ∈ [R] by construc-
tion ofu1, . . . ,uR , andur appears in at most two of the Ai ’s, since #L (ur ) ≤ 2 andT (Ar )∩T (Ar ′ ) = ∅
for every distinct r , r ′ ∈ [R].

We first show that the procedure always terminates. We note that before the execution of
step 2(d), we have r ∈ I because of step 2(b). Moreover, from wk = ur ∈ S (Ar ) it follows that
r will be removed from I after the execution of step 2(d). Hence, the size of I decreases by at least
one after each iteration of the while loop.

Next, we prove conditions (i)–(iv). Suppose the procedure terminates with the sequence
w1, . . . ,wk .

(i) Since each ur appears in at most two S (Ai )’s, each execution of step 2(d) decreases the size
of I by at most two. Therefore, the while loop iterates at least R/2 times. Hence, k ≥ R/2.

(ii) By step 2(c), we have that wi ∈ U for every i ∈ [k].
(iii) From step 2(b) to 2(d) it follows that wi � w j for 1 ≤ i < j ≤ k .
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Fig. 2. Procedure for Claim 6.

(iv) Let i ∈ [k]. Consider the ith iteration of the while loop. After step 2(d) refines the set I , we
have that wi � S (Ar ) for all indices r ∈ I that are chosen in iterations after the ith iteration.
Thus, if t is the index of w j in u1, . . . ,uR for some j ∈ [k] where j > i , then wi � S (At ). �

Consider the subset of k ≥ 
 1
2 �

1
3 (bL (v ) − 1)�� distinct elements U ′ = {ur1 , . . . ,urk

} ⊆ U from
Claim 6. Conditions (4.12) and (4.12) desired in the lemma trivially hold, since U ′ ⊆ U ⊆ A(L)
and vu is an L-good arc for all u ∈ U . We recall that the cycles Cr1 , . . . ,Crk

are disjoint and
PL,τ0 [{v,uri

},Cri
] � 0 for all i ∈ [k]. Then, since uri

� S (Ar j
) for every j ∈ {i + 1, . . . ,k }, it follows

that PL,τ0 [{v,uri
},Cr j

] = 0 for all j ∈ {i + 1, . . . ,k }. Hence, Condition (4.12) holds. �

We now have all the tools necessary to show our improved rank lower bound.

Lemma 4.13. Let G = (V ,E) be the complete graph and let L be a valid sequence from some initial

configuration τ0 ∈ [3]V . Then rank (PL,τ0 ) ≥ 1
6

∑
v ∈C (L) (bL (v ) − 3).

Proof. For each v ∈ C (L), let R (v ) := 
 1
2 �

1
3 (bL (v ) − 1)��. We construct an L-good L-neighbor-

wise independent directed acyclic graph H over the vertex set S (L) as follows: for each v ∈ C (L),
add the arcs vur1 , . . . ,vuR (v ) , where ur1 , . . . ,uR (v ) is the collection of vertices guaranteed to exist
by Lemma 4.12. Then it follows that H is L-good and L-neighbor-wise independent. Moreover, we
note that all arcs in E (H ) have heads in A(L) and tails in C (L). Hence, H does not contain any
directed cycles. Therefore, H is an L-good L-neighbor-wise independent directed acyclic graph.
For a lower bound on the number of arcs in H , we have

|E (H ) | =
∑

v ∈C (L)

R (v )

=
∑

v ∈C (L)

⌈1

2

⌊1

3
(bL (v ) − 1)

⌋⌉
=

∑
v ∈C (L)

⌈1

2

( 1

3
(bL (v ) − 1) − 2

3

)⌉
≥

∑
v ∈C (L)

1

2

(
bL (v ) − 3

3

)

=
1

6

∑
v ∈C (L)

(bL (v ) − 3). �
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Finally, we combine the results of Lemmas 4.7 and 4.13 to get one final rank bound. We define
a block B in L to be 2-critical if �(B) ≥ 3s (B) and �(B′) < 3s (B′) for every block B′ that is strictly
contained in B.

Corollary 4.14. Let G = (V ,E) be the complete graph and let B be an improving sequence from

some initial configuration τ0 ∈ [3]V with respect to some edge weightsX ∈ [−1, 1]E . If B is a 2-critical

block, then rank (PB,τ0 ) ≥ 1
32s (B).

Proof. Suppose that B has no acyclic vertices, then

rank(PB,τ0 ) ≥ 1

2
c (B) =

1

2
s (B),

and we are done. So, we may assume that B has at least one acyclic block. Let B1, . . . ,Bk denote
the cyclic blocks of B and for a vertex v , let 1v ∈Bi

denote the indicator function for whether the
vertex v appears in Bi . Then,

∑
v ∈C (B )

bB (v ) =
∑

v ∈C (B )

k∑
i=1

1v ∈Bi
=

k∑
i=1

∑
v ∈C (B )

1v ∈Bi
=

k∑
i=1

s (Bi ).

Since each Bi is a proper sub-block of B, we have that �(Bi ) < 3s (Bi ); hence,

∑
v ∈C (B )

bB (v ) =
k∑

i=1

s (Bi ) ≥ 1

3

k∑
i=1

�(Bi ).

By Lemma 4.13, we have that

rank (PB,τ0 ) ≥ 1

6

∑
v ∈C (B )

(bB (v ) − 3) (8)

=
1

6

��

∑
v ∈C (B )

bB (v ) − 3c (B)�� (9)

≥ 1

6

�1

3

k∑
i=1

�(Bi ) − 3c (B)� (10)

≥ 1

6

(
�(B) − 2a(B)

3
− 3c (B)

)
(11)

≥ 1

6

(
s (B) − 2

3
a(B) − 3c (B)

)
(12)

=
1

18
a(B) − 1

3
c (B), (13)

where Equation (11) follows from the fact that acyclic vertices of B appear at most twice in B,
inequality Equation (12) follows from the fact that B is a 2-critical block, and Equation (13) follows
from s (B) = a(B) + c (B). Thus, by the above inequality and Lemma 4.7, we have

rank (PB,τ0 ) ≥ max
{ 1

2
c (B),

1

18
a(B) − 1

3
c (B)

}
.

Let λ := a(B)/s (B). Then, a(B) = λs (B) and c (B) = (1 − λ)s (B). Thus,

rank (PB,τ0 ) ≥ max
{ 1

2
(1 − λ),

1

18
λ − 1

3
(1 − λ)

}
s (B) ≥ 1

32
s (B).

�
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4.2 Run-time of FLIP for max-3-cut in the Complete Graph

In this subsection, we will show that an improving sequence will improve the value of H (τ ) by
some non-negligible amount with constant probability. Theorem 1.2 will follow from this result.
First, we recall a lemma of Reference [7] below that closely resembles Lemma 3.12.

Lemma 4.15. [7] Letϕ > 0 andX1, . . . ,Xm be independent random variables with density functions

f1, . . . , fm : R → [0,ϕ], and let X := (x1, . . . ,xm )ᵀ . Let α1, . . . ,αk ∈ Zn be linearly independent

vectors. Then for every ϵ > 0,

Pr
X

[
〈αi ,X 〉 ∈ (0, ϵ] ∀ i ∈ [k]

]
≤ (ϕϵ )k .

We note that the event of interest in Lemma 3.12, namely, all inner products being non-negative
and having sum at most ϵ implies the event of interest in Lemma 4.15, namely, all inner products
being in the interval (0, ϵ]. Consequently, the upper bound that we get for the latter event is weaker
than the upper bound of Lemma 3.12. We will use Lemma 4.15 and the rank lower bound to bound
the probability of the existence of a bad starting configuration for critical blocks.

Lemma 4.16. Let G = (V ,E) be the complete graph and let B be a 2-critical block. Then the prob-

ability that there exists a starting configuration τ0 ∈ [3]V such that B is ϵ-slowly improving from τ0

with respect to X is at most

3s (B ) (3ϕϵ )
1
32 s (B ) .

Proof. Let IB,τ0 denote the event that there exist edge weights Y such that B is an improving
sequence from τ0 with respect to Y . Suppose that B is ϵ-slowly improving from some τ0 with
respect to X . Since B is improving from τ0 with respect to X , it follows that 〈Mt

B,τ0
,X 〉 ∈ (0, ϵ] for

all t ∈ [�(B)]. Since every column of PB,τ0 is the sum of at most three columns of MB,τ0 , we have
that 〈PC

B,τ0
,X 〉 ∈ (0, 3ϵ] for all C ∈ Γ(B). Hence, the required probability is at most the probability

that there exists a starting configuration τ0 ∈ [3]V such that IB,τ0 holds and 〈PC
B,τ0
,X 〉 ∈ (0, 3ϵ] for

all C ∈ Γ(B). Then, by union bound, the required probability is at most the sum over all v ∈ S (B)
and τ0 (v ) ∈ [3] of the probability that for all u ∈ V \ S (B) there exists τ0 (u) ∈ [3] such that IB,τ0

holds and 〈PC
B,τ0
,X 〉 ∈ (0, 3ϵ] for all C ∈ Γ(B).

For πf : S (B) → [3] and πc : V \ S (B) → [3], let us define τ(πf ,πc ) : V → [3] as

τ(πf ,πc ) (u) :=
⎧⎪⎨⎪⎩πf (u) if u ∈ S (B) and

πc (u) if u ∈ V \ S (B).

We will now bound the following probability for a fixed choice of πf : S (B) → [3] and then take a
union bound over the choices of the initial configuration for the vertices in S (B):

Pr
X

[
∃ πc : V \ S (B) → [3] : IB,τ(πf ,πc )

and 〈PC
B,τ(πf ,πc )

,X 〉 ∈ (0, 3ϵ] ∀C ∈ Γ(B)
]
.

Let us define an initial configuration

σ0 (u) :=
⎧⎪⎨⎪⎩πf (u) if u ∈ S (B) and

1 if u ∈ V \ S (B).

By Proposition 2, we have that PB,σ0 = PB,τ(πf ,πc )
for all πc : V \ S (B) → [3]. Hence,

Pr
X

[
∃ πc : V \ S (B) → [3] : IB,τ(πf ,πc )

and 〈PC
B,τ(πf ,πc )

,X 〉 ∈ (0, 3ϵ] ∀C ∈ Γ(B)
]

= Pr
X

[
∃ πc : V \ S (B) → [3] : IB,τ(πf ,πc )

and 〈PC
B,σ0
,X 〉 ∈ (0, 3ϵ] ∀C ∈ Γ(B)

]
.
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Now, we bound the RHS probability. If there exists πc : V \S (B) → [3] such that the sequence B
is improving from τ(πf ,πc ) with respect to some edge weights Y , then by Corollary 4.14, the rank
of PB,τ(πf ,πc )

is at least s (B)/32. Moreover, we know that PB,σ0 = PB,τ(πf ,πc )
and hence the rank of

PB,σ0 is at least s (B)/32. Therefore, using Lemma 4.15, the RHS probability is at most

(3ϕϵ )rank(PB,σ0 ) ≤ (3ϕϵ )
1
32 s (B ) .

Hence, the probability required in the lemma is at most

3s (B ) (3ϕϵ )
1
32 s (B ),

as the number of possible initial configurations for the vertices that move in B is at most 3s (B ) . �

Lemma 4.17. Let G be the complete graph and let ϵ = ϕ−1n−(96+η) for a constant η > 0. Then, the

probability (over the choices of X ) that there exists a sequence L of moves of length 3n and an initial

configuration τ0 ∈ [3]V such that L is ϵ-slowly improving from τ0 with respect to X is o(1).

Proof. Let RX denote the event that there exists a sequence L of moves of length 3n and an
initial configuration τ0 ∈ [3]V such that L is ϵ-slowly improving from τ0 with respect to X . We
note that every sequence L of length 3n contains a 2-critical block B whose length is 3s (B)—the
proof of this fact is similar to the proof of Lemma 3.14. Therefore, if the event RX happens, then
there exists a 2-critical block B with �(B) = 3s (B) and an initial configuration τ0 ∈ [3]V such that
B is ϵ-slowly improving from τ0 with respect toX . Hence, the probability that RX occurs (over the
choices of X ) is at most∑

B: B is critical,
�(B )≤3n

Pr
X

[
∃σ0 : B is ϵ-slowly improving from τ0 with respect to X

]

≤
∑

B: B is critical,
�(B )≤3n

3s (B ) (3ϕϵ )
1
32 s (B ) (by Lemma 4.16)

≤
n∑

s=1

n3s 3s (3ϕϵ )
1
32 s

≤
n∑

s=1

(
Cn3ϕ

1
32 ϵ

1
32

)s

for some universal constantC > 0. The second inequality above is because a 2-critical block could
have length at most 3s . Therefore, for ϵ = ϕ−1n−(96+η) the sum tends to 0 as n → ∞. �

The proof of Theorem 1.2(i) follows from Lemma 4.17 similar to the proof of Theorem 1.1(i)
that follows from Lemma 3.16. In this case, we consider the event that an implementation of FLIP
produces a sequence of moves from some initial configuration that has length greater than ϕn99+η

for any constant η > 0. This event implies that there exists a sequence of length 3n that is ϵ-
slowly improving from some initial configuration, where ϵ = ϕ−1n−(96+η) . Finally, we note that the
probability of such an event is o(1) by Lemma 4.17.

Remark 7. The run-time analysis using the above techniques can be improved by replacing the
notion of 2-critical blocks with β-critical blocks and optimizing the value of β similar to the ideas
in Section 3. This gives a run-time bound of O (ϕn90.81+η ) with high probability. We avoid writing
a proof of this improved bound in the interest of simplicity. We now prove Theorem 1.2(ii). We
restate it below for the reader’s convenience.
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Lemma 4.18. LetG = (V ,E) be the complete graph on n vertices, and suppose that the edge weights

(Xe )e ∈E are independent random variables chosen according to a probability density function fe :
[−1, 1] → [0,ϕ] for some ϕ > 0. Then, the expected number of steps in every implementation of the

FLIP method for max-3-cut is O (ϕn99).

Proof. Let L denote the sequence of moves executed by the algorithm and letT := ��(L)/3n�. If
T ≥ 1, then there exists a starting configuration τ0 and a 2-critical block B in L with �(B) = 3s (B)
such that B is (n/T )-slowly improving from τ0 with respect to X .

For non-negative integers s and t , let R (s, t ) denote the event that there exists a 2-critical block
B in L of length 3s (B) and a starting partition τ0 such that B is (n/t )-slowly improving from τ0 with
respect to edge weights X . Let ζ := 
432ϕn97� and ti := iζ for i ≥ 2. We recall that �(L) ≤ 3n , since
the algorithm never cycles back to the same configuration twice. Therefore,

EX (T ) ≤
3n∑

t=1

Pr
X

(T ≥ t )

≤ 2ζ +
3n∑
i=2

ti+1−1∑
t=ti

Pr
X

(T ≥ t )

≤ 2ζ +
3n∑
i=2

ti+1−1∑
t=ti

Pr
X

(T ≥ ti )

≤ 2ζ +
3n∑
i=2

ti+1−1∑
t=ti

n∑
s=1

Pr
X

(R (s, ti )).

We will show that the second term in the RHS above is O (ζn).
By Lemma 4.16 and the fact that the number of 2-critical blocks B with �(B) = 3s is at most n3s ,

we have that

Pr
X

(R (s, ti )) ≤ 3sn3s

(
3ϕn

ti

) s
32

≤ 
�4n3

(
ϕn

iζ

) 1
32 �

s

≤
( 1

i

) s
32

.

The last inequality above is by the choice of ζ . Hence,

n∑
s=1

Pr
X

(R (s, ti )) ≤
n∑

s=1

( 1

i

) s
32

≤

n/32�∑
s ′=0

31∑
s ′′=0

( 1

i

)s ′+s ′′/32

≤
∞∑

s ′=0

31∑
s ′′=0

( 1

i

)s ′+s ′′/32

≤
∞∑

s ′=1

32
(1

i

)s ′

≤ 32 
�
∞∑

s ′=0

1

is ′
− 1�

=
32

i − 1
.
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Therefore,
3n∑
i=2

ti+1−1∑
t=ti

n∑
s=1

Pr
X

(R (s, ti )) ≤
3n∑
i=2

ti+1−1∑
t=ti

32

i − 1
=

3n∑
i=2

32ζ

i − 1
= 32ζO (log (3n )) = O (ζn).

We have thus shown that EX (T ) = O (ζn) and hence, the expected number of flips performed
by the algorithm is O (ζn2) = O (ϕn99). �

4.3 Run-time of FLIP for max-k-cut in Arbitrary Graphs

In this subsection, we turn our attention to FLIP for max-k-cut in arbitrary graphs and prove
Theorem 1.3. We will again use Lemma 4.15. We note that it is not immediately clear that a result
similar to Lemma 4.13 holds for arbitrary graphs. The proof technique for Lemma 4.13 fails for
arbitrary graphs, since the acyclic vertices between two cyclic blocks for a vertex v may not be in
the neighborhood ofv . Instead, we show that each sequence of sufficiently large length must have
a block that has a large fraction of cyclic vertices.

Definition 4.19. The surplus of a sequence L is

z (L) := �(L) −
∑

v ∈A(L)

#L (v ) − c (L),

and the maximum surplus over all blocks of length t in L is

mL (t ) := max{z (B) : B is a block of L with �(B) = t }.

The following lemma can be seen as a generalization of Lemma 5.1 from Angel, Bubeck, Peres,
and Wei [1].

Lemma 4.20. Suppose that α > 1 and L is a sequence of length αn. Then there exists a block B in L
such that

c (B)

�(B)
≥ α − k + 1

(2k − 1)α log(αn)
.

Proof. We will use the following claim.

Claim 7. If a block B is the concatenation of blocks B1 and B2, then

z (B) ≤ z (B1) + z (B2) + (2k − 1)c (B).

Proof. We recall Remark 6, which states that an acyclic vertex appears at most k − 1 times in a
sequence. Hence, in the worst case, a cyclic vertex v ∈ C (B) in B is an acyclic vertex in B1 and B2

and appears k − 1 times in each block. �

Let δ := max{c (B)/�(B) : B is a block in L}. Therefore, for every block B in L, we have c (B) ≤
δ�(B). Then,

mL (t ) ≤ 2mL (t/2) + (2k − 1)δt

for all t > 0. Sincem(1) = 0, we can bound the sequence above by

mL (αn) ≤ (2k − 1)δαn log(αn). (14)

Since ∑
v ∈A(B )

#B (v ) + c (B) ≤ (k − 1)s (B)

for all blocks B in L and s (L) ≤ n, it follows that

mL (αn) ≥ αn − (k − 1)s (L) ≥ (α − k + 1)n. (15)
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Therefore, combining Equations (14) and (15), we get that

δ ≥ α − k + 1

(2k − 1)α log(αn)
,

which concludes the proof. �

Definition 4.21. A block B is α-cyclic if

c (B) ≥ α − k + 1

(2k − 1)α log(αn)
�(B).

Lemma 4.22. Let G = (V ,E) be a graph and let B be an α-cyclic block. Then the probability that

there exists a starting configuration τ0 ∈ [k]V such that B is ϵ-slowly improving from τ0 with respect

to X is at most

k�(B ) (kϕϵ )
α−k+1

2(2k−1)α log(α n ) �(B )
.

Proof. For a starting configuration τ0 ∈ [k]V , let IB,τ0 denote the event that there exist edge
weights Y such that B is an improving sequence from τ0 with respect to Y . Suppose that B is ϵ-
slowly improving from some τ0 ∈ [k]V with respect toX . Since B is improving from τ0 with respect
to X , it follows that 〈Mt

B,τ0
,X 〉 ∈ (0, ϵ] for all t ∈ [�(B)]. Since every column of PB,τ0 is the sum of

at most k columns of MB,τ0 , we have that 〈PC
B,τ0
,X 〉 ∈ (0,kϵ] for all C ∈ Γ(B). Hence, the required

probability is at most the probability that there exists a starting configuration τ0 ∈ [k]V such that
IB,τ0 holds and 〈PC

B,τ0
,X 〉 ∈ (0,kϵ] ∀ C ∈ Γ(B). Then, by union bound, the required probability is

at most the sum over all v ∈ S (B) and τ0 (v ) ∈ [k] of the probability that for all u ∈ V \ S (B) there
exists τ0 (u) ∈ [k] such that IB,τ0 holds and 〈PC

B,τ0
,X 〉 ∈ (0,kϵ] ∀C ∈ Γ(B).

For πf : S (B) → [k] and πc : V \ S (B) → [k], let us define τ(πf ,πc ) : V → [k] as

τ(πf ,πc ) (u) :=
⎧⎪⎨⎪⎩πf (u) if u ∈ S (B) and

πc (u) if u ∈ V \ S (B).

Now, consider a fixed choice of πf and πc . We would like to bound the following probability:

Pr
X

[
∃ πc : V \ S (B) → [k] : IB,τ(πf ,πc )

and 〈PC
B,τ(πf ,πc )

,X 〉 ∈ (0,kϵ] ∀C ∈ Γ(B)
]
.

Let us define an initial configuration

σ0 (u) :=
⎧⎪⎨⎪⎩πf (u) if u ∈ S (B) and

1 if u ∈ V \ S (B).

By Proposition 2, we have that PB,σ0 = PB,τ(πf ,πc )
for every πc : V \ S (B) → [k]. Hence,

Pr
X

[
∃ πc : V \ S (B) → [k] : IB,τ(πf ,πc )

and 〈PC
B,τ(πf ,πc )

,X 〉 ∈ (0,kϵ] ∀C ∈ Γ(B)
]

= Pr
X

[
∃ πc : V \ S (B) → [k] : IB,τ(πf ,πc )

and 〈PC
B,σ0
,X 〉 ∈ (0,kϵ] ∀C ∈ Γ(B)

]
.

Now, we bound the RHS probability. If there exists πc : V \ S (B) → [k] such that the sequence
B is improving from τ(πf ,πc ) with respect to some edge weights Y , then by Lemma 4.7, the rank of
PB,τ(πf ,πc )

is at least c (B)/2. Moreover, we know that PB,σ0 = PB,τ(πf ,πc )
, hence the rank of PB,σ0 is at

least c (B)/2. Since B is an α-cyclic block, we have that c (B) ≥ (α −k + 1)�(B)/((2k − 1)α log (αn))
and hence the rank of PB,σ0 is at least (α − k + 1)�(B)/(2(2k − 1)α log (αn)). Therefore, using
Lemma 4.15, the RHS probability is at most

(kϕϵ )rank(PB,σ0 ) ≤ (kϕϵ )
1
2

α−k+1
(2k−1)α log(α n ) �(B )

.
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Hence, the probability required in the lemma is at most

ks (B ) (kϕϵ )
1
2 ·

α−k+1
(2k−1)α log(α n ) �(B )

.

as the number of possible initial configurations for the vertices that move in B is at most ks (B ) . The
lemma now follows, since s (B) ≤ �(B) and k ≥ 1. �

The next lemma follows from Lemmas 4.22 and 4.20 similar to the proof of Lemma 4.17.

Lemma 4.23. Let G be a graph and let ϵ = ϕ−1n−((2k−1)k log(kn)+η) for a constant η > 0. Then, the

probability (over the choices of X ) that there exists a sequence L of moves of length kn and an initial

configuration τ0 ∈ [k]V such that L is ϵ-slowly improving from τ0 with respect to X is o(1).

Proof. Let RX denote the event that there exists a sequence L of moves of length kn and an
initial configuration τ0 ∈ [k]V such that L is ϵ-slowly improving from τ0 with respect to X . It
follows from Lemma 4.20 that every sequence L of length kn contains a k-cyclic block. Therefore,
if the event RX happens, then there exists a k-cyclic block B of length at most kn and an initial
configuration τ0 ∈ [k]V such that B is ϵ-slowly improving from τ0 with respect to X . Hence, the
probability that RX occurs (over the choices of X ) is at most∑

B: B is k-cyclic,
�(B )≤kn

Pr
X

[
∃σ0 ∈ [k]V : B is ϵ-slowly improving from τ0 with respect to X

]

≤
∑

B: B is k-cyclic,
�(B )≤kn

k�(B ) (kϕϵ )
1

2(2k−1)k log(kn ) �(B ) (by Lemma 4.22)

≤
kn∑
�=1

n�k� (kϕϵ )
�

2(2k−1)k log(kn )

≤
kn∑
�=1

(
k2nϕ

1
2(2k−1)k log(kn ) ϵ

1
2(2k−1)k log(kn )

)�
,

where the second inequality follows from the fact that there are at most n� blocks of length �.
Therefore, for constant k and ϵ = ϕ−1n−(2(2k−1)k log(kn)+η) , the sum tends to 0 as n → ∞. �

The proof of Theorem 1.3(i) follows from Lemma 4.23 similar to the proof of Theorem 1.1(i)
that follows from Lemma 3.16. In this case, we consider the event that an implementation of
FLIP produces a sequence of moves from some initial configuration that has length greater
than ϕn2(2k−1)k log(kn)+3+η for any constant η > 0. This event implies that there exists a se-
quence of length kn that is ϵ-slowly improving from some initial configuration, where ϵ =
ϕ−1n−(2(2k−1)k log(kn)+η)) . Finally, we note that the probability of such an event iso(1) by Lemma 4.23.
We now prove Theorem 1.3(ii). We restate it below for the reader’s convenience.

Lemma 4.24. LetG = (V ,E) be an arbitrary graph on n vertices, and suppose that the edge weights

(Xe )e ∈E are independent random variables chosen according to a probability density function fe :
[−1, 1]→ [0,ϕ] for some ϕ > 0. Then, for every constant η > 0, the expected number of steps in every

implementation of the FLIP method for max-k-cut is O (ϕn2(2k−1)k log(kn)+3+η ).

Proof. Let L denote the sequence of moves executed by the algorithm and let T := ��(L)/kn�.
If T ≥ 1, then by Lemma 4.20, there exists a starting configuration τ0 and a k-cyclic block B in L
such that B is (n/T )-slowly improving from τ0 with respect to X .
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For non-negative integers �′ and t , let R (�′, t ) denote the event that there exists a k-cyclic block
B in L of length �′ and a starting partition τ0 such that B is (n/t )-slowly improving from τ0 with
respect to edge weights X . Let

ζ :=
⌈
kϕn(kn)2(2k−1)k log(kn)

⌉
,

and ti := iζ for i ≥ 2. We recall that �(L) ≤ kn , since the algorithm never cycles back to the same
configuration twice. Therefore,

EX (T ) ≤
kn∑
t=1

Pr
X

(T ≥ t )

≤ 2ζ +
kn∑
i=2

ti+1−1∑
t=ti

Pr
X

(T ≥ t )

≤ 2ζ +
kn∑
i=2

ti+1−1∑
t=ti

Pr
X

(T ≥ ti )

≤ 2ζ +
kn∑
i=2

ti+1−1∑
t=ti

kn∑
�′=1

Pr
X

(R (�′, ti )).

We will show that the second term in the RHS above is O (ζn logn).
By Lemma 4.22 and the fact that the number of k-cyclic blocks B with �(B) = �′ is at most n�

′
,

we have that

Pr
X

(R (�′, ti )) ≤ (kn)�
′
(
kϕn

ti

) 1
2(2k−1)k log(kn ) �

′

=

( 1

i

) 1
2(2k−1)k log(kn ) �

′

.

The last equality above is by the choice of ζ . Hence,

kn∑
�′=1

Pr
X

(R (�′, ti )) ≤
kn∑
�′=1

( 1

i

) 1
2(2k−1)k log(kn ) �

′

≤
∞∑

�′′=0

31∑
�′′′=0

( 1

i

)�′′+ 1
2(2k−1)k log(kn ) �

′′′

≤
∞∑

�′′=1

2(2k − 1)k log(kn)
( 1

i

)�′′

≤ 2(2k − 1)k log(kn) 
�
∞∑

�′′=0

1

i�′′
− 1�

=
2(2k − 1)k log(kn)

i − 1
.

Therefore,
kn∑
i=2

ti+1−1∑
t=ti

kn∑
�′=1

Pr
X

(R (�′, ti )) ≤
kn∑
i=2

ti+1−1∑
t=ti

2(2k − 1)k log(kn)

i − 1

=

kn∑
i=2

ζ
2(2k − 1)k log(kn)

i − 1
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= 2ζ (2k − 1)k log(kn)O (log (kn ))

= O (ζn logn).

We have thus shown that EX (T ) = O (ζn logn) and hence, the expected number of flips per-
formed by the algorithm is O (ζn2 logn) = O (ϕn2(2k−1)k log(kn)+3+η ) for every constant η > 0. �

APPENDIX

A PROOF OF LEMMA 3.12

We restate and prove Lemma 3.12.

Lemma 3.12. Let ϕ > 0 and X1, . . . ,Xm be independent random variables with density functions

f1, . . . , fm : R→ [0,ϕ]. Let X := (x1, . . . ,xm )ᵀ and α1, . . . ,αk ∈ Zn be linearly independent vectors.

Then for every ϵ > 0,

Pr
X

[
〈αi ,X 〉 > 0 ∀i ∈ [k] and

k∑
i=1

〈αi ,X 〉 ≤ ϵ
]
≤ (ϕϵ )k

k!
.

Proof. Our proof closely resembles that of Lemma A.1 in Reference [7]. Let ei denote the ith
coordinate vector. We can extend {α1, . . . ,αk } to a basis for Rm by adding coordinate vectors.
Without loss of generality suppose that the derived basis is {α1, . . . ,αk , ek+1, . . . , em }. Let

B :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α
ᵀ
1
...
α
ᵀ
k

e
ᵀ
k+1
...
e
ᵀ
m

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

We note that A is a full-rank m ×m matrix. Let Y := (Y1, . . . ,Ym )T := BX and A := B−1. We note
that Y is a random vector whose coordinates are possibly dependent. Let f ,д : Rm → R≥0 denote
the joint density function of X and Y , respectively.

Claim 8. Let y1, . . . ,ym ∈ R. Then д(y1, . . . ,ym ) ≤ ϕk ∏m
i=k+1 fi (yi ).

Proof. Let y := (y1, . . . ,ym ). Then, we have д(y) = | det(A)−1 | f (A−1 (y)). Since A is integral, we
have that | det(A) | ∈ Z+ and hence | det(A)−1 | ≤ 1. Therefore,

д(y) ≤ f (A−1 (y))

= f (A−1
1 (y), . . . ,A−1

m (y))

= f1 (A−1
1 (y)) . . . fm (A−1

m (y))

(since X1, . . . ,Xm are independent)

≤ ϕk fk+1 (A−1
k+1 (y)) . . . fm (A−1

m (y))

= ϕk fk+1 (Bk+1 (y)) . . . fm (Bm (y))

= ϕk fk+1 (yk+1) . . . fm (ym ). �

ACM Transactions on Algorithms, Vol. 17, No. 3, Article 19. Publication date: July 2021.



19:38 A. Bibak et al.

Let V := {(y1, . . . ,ym ) ∈ Rm : y1, . . . ,yk > 0,
∑k

i=1 yi ≤ ϵ } and U := {(y1, . . . ,yk ) ∈ Rk :
y1, . . . ,yk > 0,

∑k
i=1 yi ≤ ϵ }. We have that

Pr
X

[
α
ᵀ
i X > 0 ∀i ∈ [k],

k∑
i=1

α
ᵀ
i X ≤ ϵ

]
= Pr

Y

[
yi > 0 ∀i ∈ [k],

k∑
i=1

Yi ≤ ϵ
]

=

∫
V

д(y1, . . . ,ym )dy1 . . .dym

≤
∫

V

ϕk 
�
m∏

i=k+1

fi (yi )�dy1 . . .dym

= ϕk

(∫
U

dy1 . . .dyk

)

× 
�
∫

yk+1, ...,ym ∈R

m∏
i=k+1

fi (yi )dyk+1 . . .dym
�

≤ ϕk Vol(U ) 
�
m∏

i=k+1

(∫
yi ∈R

fi (yi )dyi

)�
= ϕk Vol(U )

= ϕk ϵ
k

k!
.

The last step above is because U is a k-dimensional simplex of side length ϵ . �
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