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Abstract—>Seeded segmentation methods have gained a lot of attention due to their good performance in fragmenting complex
images, easy usability and synengism with graph-based representations. These methods esually rely on sophisticated computational
tools whose performance strongly depends on how good the training data reflect a sought image pattern. Moneover, poor adherence to
the image contours, lack of unigue solution, and high computational cost are other common issues present in most sesded
segmentation methods. In this work we introduce Laplacian Coordinates, a quadratic energy minimization framework that tackles the
issues above in an effective and mathematically sound manner. The proposed formulation builds upon graph Laplacian operators,
quadratic energy functions, and fast minimization schemes to produce highly accurate segmentations. Moreover, the presented energy
functions are not prone to local minima, i.e., the solution is guaranteed to be globally optimal, a trait not present in most image
segmentation methods. Another key property is that the minimization procedune leads to a constrained sparse linear system of
equations, enabling the segmentation of high-resolution images at interactive rates. The effectiveness of Laplacian Coordinates is
attested by a comprehensive set of comparisons imwolving nine state-of-the-art methods and several benchmarks extensively used in

the image segmentation literature.

Index Terms—=Seedeadimage segmentation, graph laplacian, laplacian coondinates, enengy minimization models

1 INTRODUCTION
]‘:AGE segmentation plays a crucial role in computer vision
ition. Prominent appliations such as
medical imaging [1], [2], [3], [4], machine vision [5], [6], [7] and
tracking [8], [9], [10] have leveraged the development of an
extensive number of methods for segmenting images. Among
this diversity of approaches, the procedure of interpreting a
digital image as a graph became a consolidated field. Convert-
ing images into graphs enables the use of solid mathematical
tools such as energy minimization models [11], [12], [13], [14],
spectral graph theory [15], [1€], [17], [18] and numerical optimi-
zation schemes [19], [20] to effectively solve the segmentation
problem. The versatility provided by graph representations as
to data charaderization, topological arrangement, and the free-
dom to properly set edge weights greatly increases the capabil-
ity of segmentation methods in distinguishing patterns and
shapes. However, itis unanimous to postulate that outperform-
ing human skills in terms of recognition is a very challenging
task, particularly due to the human subjectivity in identifying
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boundaries and chusters. To better deal with this criticism, the
so-called seadedfuser-assisted image segmentation algorithms [21],
[22], [23], [24], [25], [26] have tumed a trend, motivated by the
user's autonomy, fast interactive feedbadck, and the versatility
of processing graphs as energy minimization problems. This
class of methods usually seek to accommodate graph Lapla-
cians [27], [28], [29] and other well-posed graph operators [30],
[31] into a similarity/affinity graph which encodes image
attributes like colors, textures and gradients. The segmentation
is then accomplished by minimizing an energy function
defined on this affinity guidance graph.

Despite their powerfulness and effectiveness, interactive
segmentation methods bear a number of drawbacks not
properly tackled by several state-of-the-art partitioners [32],
[33], [34], in particular:

1) The segmentation generally exhibits low adherence
on the object contours, failing to apture the whole
target or producing a low-quality segmentation.

2) The need for sophisticated optimization tools or many
pre /post-processing or learning steps to ensure satis-
factory results, leading to unacceptable computational
costespecially for high-resolution images.

3) The algorithms are highly sensitive to the choice of
parameters, especially the edge weights, as local
changes can lead to very contrasting outputs.

4) Ensuring accuracy and uniqueness of solution is a hur-
dle for several seed-based segmentation methods.

In this paper, we present Laplacian Coordinates (LC), a
new graph-based energy minimization framework for

seeded image segmentation that tackles most of the
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issues listed above. Our framework relies on quadratic
energy models that combine graph Laplacian and user-
provided seeds into a mathematically well-posed cluster-
ing approach. In contrast to most existing methods
which search for soluions that minimize the “distance™
between pairwise pixel/superpixels (ie, graph nodes),
our formulation aims to minimize the average distance
between the nodes, promoting a better anisotropic
behavior to the label propagation while ensuring contour
adherence and smoothness. Moreover, the solution given
by the LC energy function is not prone to be trapped in
local minima. In fact, it is guaranteed that the solution is
the globally optimal one, a desirable property not always
present in many image segmentation methods. Another
important trait of Laplacian Coordinates is that its mini-
mizer is given by the solution of a constrained sparse
linear system, making it simple to be coded while still
being computationally efficient.

A preliminary study of Laplacian Coordinates appears in
our CVPR's paper [24] published a few years ago, which has
served as baseline for other computer vision appliations such
as Moving Object Detection [35], 3D Reconstruction of Cone
Beamn Computed Tomography [36], Image Enhancement [6],
Photo Colorization [37], and Mesh Cutting [38]. Going beyond
our previous investigation, we design a new quadratic energy
maodel that sets the user-specified seeds as hard constraints in
the LC optimization. As a result, the Laplacian matrix
involved in the minimization problem is of reduced size,
therefore lessening the burden for getting the solution. We
also extend the hard version of the Laplacian Coordinates
energy to perform superpixel segmentation on high-resolution
images at interactive rates, a task not occasionally confronted
by several seeded segmentation methods in practice due to
their high computational cost. We carry out an exiensive
experimental evaluation covering nine state-of-the-art meth-
ods and representative public benchmarks with several natu-
ral /real-world images. Finally, proofs and theoretical analysis
invalving the LC energy function in both hard and soft designs
are also given (see the Supplementary Material, which can be
found on the Computer Sodety Digital Library at http:/ /doi
ieeecomputersociety.org,/10.1109 / TP AMIL 2020.2974475).

Fig. lillustrates some of the capabilities of the LC framework.!

Summary of Contributions. The main contributions intro-
duced by the Laplacian Coordinates framework are:

s A functional and simple-to-solve energy minimization
formulation for segmenting seeded images.

# The segmentation task is formulated as a quadratic
minimization problem where the seeds can be conven-
tionally imposed as soft or hard constraints, being
also able to handle superpixel segmentation in high-
resolution images at interactive rates.

* Lapladan Coordinates gathers attractive chamacteris-
tics such as boundary fitting, anisotropic behavior,
smoothness and uniqueness of solution.

s The segmentation trivially consists of solving a con-
strained sparse system of linear equations.

1. Source code of our framework available at http: //github.
com/hbatagelo/laplacianseg
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2 RELATED WORK

To better contextualize our contributions while following the
taxonomy given by Cousty et al. [39] and Couprie et al. [40],
we focus our discussion on four very influential groups of
graph-based segmentation methods:

1) Graph Cuts [22], [30], [41], [42], [43], [44].
2)  Random Walks [21], [45], [46], [47], [48].

3)  Watersheds [23], [39], [40], [49], [50], [51].

4)  Shortest Paths [52], [53], [54], [55), [56], [57].

Additionally, we provide a discussion on seeded image
segmentation under the deep learning paradigm, given its
omnipresence and relevance in many fields of applications.

Graph Cuts. The Graph-Cut approach (GC) was first intro-
duced by Boykov and Jolly [58] and improved later on [22] to
address the problem of interactive N-dimensional image clus-
tering. The rationale behind the GCis to consider the image as
a graph, searching for the minimum cut between the seeded
regions. For instance, assuming a 4- or 8-connected graph that
represents the image, one can obtain foreground (object) and
background segments by minimizing the following energy
funchion:

Ego(x) = ; Di(z:) +A Y Vislmi,z;), (1)
TELUE

[ig)eE

where r; is the unknown label w.rt. pixel 4, D; is the data
term, V}; represents the regularization/boundary term, and
BUF gives the union of the background and foreground
input labels. I); measures the cost of assigning the label x;
to the pixel i, while V}; imposes spatial smoothness to the
segmentation, ensuring that pixels nearby the border of the
object will assume opposite labels. Different choices of V;
lead to different smoothness characterizations. To get the
minimizer for Eq. (1), the GC generally utilizes the min-cut/
mux-flow algorithm [59], [60]. But if the energy involves mul-
tiple labels instead of only a binary partition, minimizing
Energy (1) turns an NP-Hard problem [12], and an approxd-
mation of the global optimal is then required.

Many extensions of GC have been proposed in the litera-
ture, especially w.r.t. alternative ways of promoting user inter-
action and new variants to the graph-cut energy. For example,
the Lazy snapping method [41]introduces a friendly user inter-
face as a coarse-to-fine tool operated at interactive rates by the
user. In a similar work, the so-called Grabeut [30] sets bound-
ing boxes as input data to drive the graph cutting, where the
fore/background regions are obtained by computing a Gauss-
ian Mixture Model (GMM). Significant improvements of the
primary approaches [22] and [30] have been also reporied [61],
[62], [63], [64], in addition to support other applications such as
human face segmentation [65], medical imaging [4], [66], and
maobile apps [67]. In this line, Tang e al. [63] redesigned the
Grabcut [30] to deal with appearance models to improve the
color sepamability of the image, while Bai et al. [68] presents a
ratio-based function that takes the user scribbles as soft con-
straints while minimizing the graph-cut energy.

Although versatile and mathematically sound, techni-
ques inspired on graph cuts tend to suffer from the genera-
tion of small segmented regions, which arise due to the
underlying mathematical formulation that looks for
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Fig. 1. A summary of different capabilities of the Laplacian Coordinates framework. From left to right, (a) Smoothness and seed propagability: Lapla-
cian Coordinates solution = the well-established Random Walker [21] for line graphs as shown in the top row, with unitary weights and seeds in yal-

low and purple, (b) Contour adherence/boundary fitting, (c) Multiple-region segmentation, (d) Fast superpixel segmentation for large size images, (e)

Imvariance to sead placemant.

solutions with minimal boundary length [45]. Another issue
is the NP-hardness of the multilabel segmentation case [12].

Random Walks. The Random Walker segmentation (RW)
[21] is a useful and easy-to-implement approach that relies
on the standard graph Laplacian formulation Lx = (), where
L is the graph Laplacian operator [27]. Given a graph G rep-
resenting the image, the RW method minimizes the follow-
ing quadratic energy function on G:

Epw(x) = Z wi(z — ;) (2)

i) eE

constrained to the input seeded vertices: 2; = z5,i € B, and
m=zp,i€F, with W=(w;) denoting the weights
assigned to the edges of . Grady [21] presents an interest-
ing interpretation of the standard Laplacian formulation
Lx = (I, by associating to each unseeded pixel, the probabil-
ity of a random walker starting on it to reach a background
seed. The segmentation is then performed by assigning a
background label to a pixel if the probability is greater than
0.5 and a foreground label otherwise. In practice, instead of
solving Lx = 0, the RW solves D7'Wx = x, imposing the
input seeds as constraints to ensure uniqueness of solution,
where D is the diagonal weighted valency matrix.

As the GC approach, the RW has also strongly influenced
several interactive segmentation methods. For instance, aim-
ing at quickly computing the solution of the RW energy, [46]
and [69] optimize a spectral decomposition problem. Similarly,
Casaca et al. [] interpreted the RW model as a spectral dus-
tering problem, where theimage is subdivided into two partic-
ular bands: cartoon (smooth) and texhme. While the cartoon
band is taken to build the affinity graph, the texture is used to
interactively tuning the clustering process. Segmenting tex-
tured images in a more efficient way was also the focus of Kim
et al. [71], where the notion of “restart” was infroduced into the
RW model as a probabilistic measure reflecting the similarity
between the graph nodes. Extensions of the above-mentioned
method have recently appeared [72] to process dynamic
graphs as well as to segment sequence of similar images [73].

Finally, there are still RW variants built to take advantage of
natural observations and biological metaphors. The methodol-
ogy described by Bampis and colleagues [48], [74] is a good
representative of this kind of , where the BEW is
related to spedfic mathematical models of diseases [75]. The
Grow-Cut [76] is another seeded segmentation method
inspired on biological processes, as it simulates the grow and
struggle for domination of the unseeded pixels by baderia
colonies, previously labeled by the user as a certain figurative
bype of “bacterial” seed.

Despite the good properties, high usability and ease of cod-
ing, methods derived from the classic RW formulation are
prone to present an isotropic behavior when capturing object
boundaries, leading to “flat” solutions, as i y shown
in [24], [77]. Notice that our energy model shares many of the
good properties of RW such as uniqueness of sdlution and a
formulation given by a quadratic minimization problem
while still propagating the seeds more smoothly (see Fig. 1a).

Wiatersheds. The core idea of Watersheds/Maxinmom Spanning
Forest algorithms (MSF) is to represent the image objects as
“catchment basins”, peffarming the segmentation from these
basins and their watershed lines (points equally likely to assume
maore than one minimum). Given a seeded image, trees are
computed from the connected seed components by spanning
the nodes of the weighted graph so that the set of trees (a forest)
will be maximum w.r.t. weight intensities. The resulting seg-
mentation is called a Watershad if the seeds correspond to the
maxima. In pradice, optimal spanning forests can be efficiently
computed by the classic Kruskal s [78] or Prim's [79] algorithms.

Various watershed-based es have gained a lot of
popularity in recent years [40], [50], [80], [81], being the uni-
fied framework Power Watershed (PWS) [40] one of the most
influential methods for seeded segmentation due to mathe-
matical links established between several popular clustering
algorithms, represented as a common energy function. Other
theoretical studies involving the PWS appeared recently in
[82], [83]. Although watersheds are very traditional in the
computer vision literature, they are not quite efficientin fitting
objects where the gradient is locally irregular [24]. Also
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reaching a trade-off between oversegmentation and high
accuracy is another hurdle [84], as watersheds may suffer
from drops and the degradation of the solution on the pla-
teaus of the weight fundion [40].

Shortest Paths. The goal of Shortest Paths/Geodesic algorithms
(SP) is to minimize the sum of the edge weights for geodesic
paths connecting two vertices. More specifically, the segmen-
tation problem is formulated in the sense of searching the
minimum cost paths between two vertices so that the optimal
solution can be effectively constructed from the given seeds.
A typical representative of SP is the method proposed by
Falcao et al. [52], [85], called Image Foresting Transform (IFT).
This technique accomplishes the image partitioning by find-
ing paths of minimum cost between seeded nodes while still
allowing for user intervention to tune the edge weights. The
use of IFT for high-predsion interactive s tation has
been reported in previous studies [86], [B7]. Another typical
Geodesic-based method is the one proposed by Bai &
Sapiro [54], [55], where the pixel labeling is accomplished by
computing the shorter weighted path from the target pixel to
the fore/background seeds. The energy function solved by
this method is very attractive in terms of computational cost,
but it highly depends on the fore/badkground color model
designated to assign the probabilities to the pixels [88]. Con-
sidering the diversity of ways in traversing a graph and the
good metrification properties of SP-inspired algorithms, new
geodesic distances have been reported [89], [90], [91], which
also perform well in terms of time complexity. However, these
methods are highly influenced by the location where the seeds
are placed [45].

Other Approaches (Deep Learning). Deep learning-based
approaches for seeded segmentation combine either seed
maps or dense ground-truth data, or both with solid label
propagators such as RW, GC or Watersheds to train Deep
Convolational Neural Networks (CININs). This is the case of
[92], where seeds and label masks are taken to predict edge
weights of image-derived graphs, used subsequently by the
classic RW model for label propagation. Similarly, [93]
trains a CNN to diffuse, via RW, the seeds to the unlabeled
pixels to get dense image labels. Such a training process
was also deployed in [M], but applying the Watershed
framework instead. Since Watershed is a very popular seg-
mentation method, it has been the basis of modern applica-
tions that rely on CNNs [95], [96]. Going deeper on CNNs,
new interactive schemes have been proposed as part of
deep learning models, as in [97], where the GC partitioner is
tuned with distance maps and user-provided clicks, and
in [98], where the targets are marked by loose rectangles.
Finally, CNNs have even been trained to automatically
mimic user-given trimaps, as in [99], where a spectral mat-
ting problem [17] is solved to produce soft segments, a set
of multiple layers commonly utilized in image editing soft-
wares [100]. Despite the recent advances of deep learning
for interactive segmentation, CNN-based architectures
require large amounts of data to successfully train the net-
work parameters [101]. Another issue faced by CNNs is that
they highly depend on dense ground-truth masks [92], and
are computationally expensive, making interactive feedback
unfeasible to the users [102]. Finally, as CNNs usually apply
gradient descendent to optimize the parameters, differentia-
bility is crucial in most cases [92].
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As stated by Couprie et al. [40] and Cemoneet al. [92], a com-
mon characteristic of most visited groups of segmentation
methods is that they minimize the same energy fundion,
whose formulation takes into account the first-order pairwise
pixels, differing only in terms of a set of exponent values. In
contrast, the LC energy model introduced in this paper relies
on the minimization of a weighted average of neighbor pixels,
which leads to a better contour adherence of the segments.
Moreover, the LC formulation admits a unique solution, which
can be quickly computed by solving a sparse linear system.
Further, the method can be extended to segment large images
at iterative rates, in addition to addressing multiple segmenta-
tion targets. Finally, we observed that the LC energy is robust
w.rt the seed placement, and it works well even for very ele-
mentary edge weight fundions. This set of traits is hard to be
concomitantly found in any other seed-based method.

In the following, we detail the technical aspects of the
Laplacian Coordinates framework.

3 LapPLACIAN COORDINATES FRAMEWORK

3.1 Affinity Graph Setup

Let I be a color or grayscale image. To compute the LC
energy, we define a weighted graph G = (V, E, W), where
V is the set of nodes whose element ¢ corresponds to the
image pixel F; € I, E is the edges set linking pixels that are
neighbors in an 8-connected lattice, and Wg is the set of
weights associated to the edges. The local neighborhood set
N(i) = {j: (i,j) € E} returns the list of nodes j that share
an edge with node i, while d; = 3 . y;) wi; accounts for the
weighted valency of i.

There are many different ways to determine Wg, which
includes pixel intensity, gradient, scalability and contour-
based strategies [70], [103], [104], [105]. Aiming at keeping our
framework as simple as possible, specially free of spedfic fea-
ture settings and tweaks, we only consider the loal range of
the pixel intensities I; and I; in both RGB and Lab compo-
nents, as concatenated color vectors to determine the weights
wy; € Wg. More precisely, w; is aalculated as follows:

L — L3
Wyj =ex_'p(— M),a’= [maxI"ft- — I, (3

a ek

where g is a tuning constant. Notice that the weights are
positive and symmetric in the sense that wy; = wy. In prac-
tice, a small constant € = 107° is added into Eq. (3) to avoid
null weights, as suggested by Grady [106].

3.2 Soft-Constrained Laplacian Coordinates

Given the background (B) and foreground (F) seeded pixels
and their corresponding scalar labels = g and x5, the following
energy function is minimized:

2

- 2 2
Eu(x) = Y llas — zalls + Y i - zrll2 + 30

w8 e F =

diz; — Z WhyLy

JENTE)

2

(4)

where x = (1, 72,.. ., In) is the sought solution, that is, the
scalar values assigned to the pixels (P, P, ..., FB.) s0 as to
minimize F,(x), and wy; is computed as in Eq. (3).
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Motice from Eq. (4) that the values x;, i € 5:= B | Fare
enforced to be as close as possible to the reference values zp
and rgin a soft manner, avoiding to strictly impose hard
constraints to the optimization problem. Laplacian Coordi-
nates Energy (4) is made up of two core components, one
accounting for the soft constraints imposed by the seeds in
B and F, called fidelity term, and a second component con-
trolling the label spread in the neighborhood of each pixel,
called LC energy term. In matricial form, the LC energy term
can be rewritten as follows:

2

el

2
= x"L*x = ||Lx|3, (5)
2

dix; — Z WiFE 5

FENTE)

where L =D — W is the graph Laplacian matriv, D is the
diagonal matrix Dy = d;, and W denotes the weighted adja-
cency matrix, ie.,

w. = Jws, E(LJ)EE
7700, otherwise =
Motice that each row in Lx corresponds to the differential
(or average) aperator
1

& =m—= Y wysz;, thatis, (Lx), = d3;. (M
dijEN[fJ

In less mathematical terms, & measures how much each
node deviates from the weighted average of its neighbors.

(6)

3.21 Soft-Constrained Energy Minimization

Let us denote by N and Np the number of pixels marked as
background and foreground in the image. Eq. (4) can be
rewritten in a more general matrix form as follows [29]:

E,(x)=x"Is+ L%)x — &b + ¢ ()

where I3 is a diagonal matrix such that Is, =1, i € 5, and
zero, otherwise, b is the vedor whose by =g ic B,
b; = zp,i € F, and zero, otherwise, and ¢ = Npr§ + Npzi
is a real constant. It is clear that Eq. (8) is a quadratic form,
therefore it has a unique minimizer since (Iz + L?) is sym-
metric and positive definite (see the Appendix B, which can
be found on the Computer Society Digital Library at http: //
doi.ieeecomputersociety.org/10.1109/ TPAMI 2020.2974475,
for the proof). Moreover, its minimizer vector x is the solu-
tion of the following linear system [107]:

(Is + L*)x =b. (9

Therefore, minimizing FE,(x) is equivalent to solving the
linear system (9), which, in turn, holds quite attractive prop-
erties such as symmetry, positive definiteness and sparsity.

3.22 Performing the Segmentation

Once the Energy (4) is minimized, the segmentation can be
reached by applying a conventional clustering algorithm
such as K-Means, Otsu or other thresholding schemes to the
values z;. For instance, assuming that x5 > zg, a straight-
forward way to obtain partitions is to assign fore/back-
ground labels gy € {rp,xr}, i€V, according to the
following segmentation criterium:

2660

. Tg + Tp
if z; =

otherwise

%= {E“" (10)
IE,

3.3 Hard-Constrained Laplacian Coordinates

In Eq. (4), x;, i € 8, are soft constraints in the sense that the

solution x does not strictly impose 7; = zp and x; = zp. To

hold such equalities, i.e., hard constraints, we rewrite the LC

Energy (4) as follows:

minimize Ej(x) = x'Lx
x

subject to T; =g, ic B (11)

r;=xp, 1€ F.

3.3.1 Hard-Constrained Energy Minimization

To minimize Eq. (11), we need to adequately group the
labeled nodes apart from the un-labelled ones (unknown
variables). This can be efficiently done by reordering the
rows and columns of L by using the row-column permuta-
tion PLPT, which preserves the topological relationships of
the input Laplacian matrix L

= [ o) [x wl
“lo Dy R'" Wy
Lg —R]

(12)
- [—RT Ly

where P denotes the resulting permutation matrix so that
Eq. (12) holds, and U = 8° = (B U F)", where © stands for the
complementary set, gathering the un-labeled nodes. Notice
that both submatrices Lg and Ly are symmetric, since the
Laplacian matrix L is symmetric. Moreover, matrix R stands
for the weighted adjacency matrix whose rows represent the
nodes marked as seeds, and columns the un-labeled ones.
From Egs. (11) and (12), Ej(x) becomes

o -R]" -R
s % 2% )
(13)

x5 ’ :
where x= x| Xz = [{‘Tﬂjlx!ﬁ; {IF:IIXNP] » while xy
acoounts for the unknown nodes.
Expanding Eq. (13), the energy function is reduced to

Bu(x) = X L2 Lexs — xPLI Ry — IR Lexg
+ xR Rxu + xg RR 'xs — xg RLyxy
LR + X3

=g {l‘g + RET]IXS —x I[LéR +RLy)xy
— <8 (RPLs + LER ) + ¥ (R'R + L)y
=g (Lg+ RR' Jxs — 2 (R"'Ls + LR )xs
+ Iq;lI I[R.PR. + L‘[?I:I XyJ.
Again, one can observe that the resulting LC Energy (14)
is quadratic. Our goal is to find the global minimum of
Eq. (14), which corresponds to the solution of

aE ’ ’ g,
31—:; =0 = (R"R+ L} )xy = (R"Lg + L{R")xs.

(14)

(15)
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Eq. (15) remains sparse and admits unique solution inxy if
the assodated affinity graph is conneded and BU F # ) (see
the Supplementary Material - Appendix A, available online).

After solving Eq. (15), the segmentation is obtained by
labeling the un-labeled pixels as in the soft case.

3.4 Basic Features and Behavioral Properties
Besides being mathematically simple and ensuring a unique
solution, Laplacian Coordinates has additional properties
that render it suitable to segment images as discussed below.

3.4.1 Smoothness = Graph Laplacian Variants
Laplacian Coordinates mainly differs from other typical seg-
mentation methods w.r.t. capability of propagating the seeds
more smoothly. In Fig. 1a, we plot the LC solution against the
one given by the RW for line graphs with unitary weights,
where the seeds are marked in yellow and purple. One may
notice that the LC energy tends to smoothly decrease while
the RW diffuses the labels linearly. Such a behavior comes
ﬁ'umtheuseuf[.zul:ﬂ'aturintl'ie LC energy instead of the
standard graph Lapladan L, as usually taken by other energy-
based models. Moreover, as the combinatorial (graph) formu-
lation of the well-known Laplace equation encodes the canon-
il graph Laplacian [21], it is not surprising that the L*
operator is strictly related to the biharmonic equation, a higher-
order differential formulation which leads to smoother soha-
tions as shown in other related fields [108], [109].

There are still other graph Lapladan variants besides L
such as the one proposed by Levin et al. [17], named matting
Laplacian matrix: a generalization that es several useful
characteristics of the standard graph Laplacian [17], [99]. Just
like the matting Laplacian, in our LC energy, the L? operatar
extends the graph Laplacian to keep its good properties such
as symmetry and positive-semidefiniteness. Despite the com-
mon facets of both matting [17] and our squared Laplacian-
derived formulation, they differ substantially in the way of
handling the energy functions as well as the nature of the prob-
lem: while the former solves a spectral segmentation problem
for natural image matting, the latier minimizes an energy func-
tion in one shot to interactively segment the image.

3.4.2 Explicit Solution = Locally Extended Neighbors
An interesting interpretation of Laplacian Coordinates is
that the solation r; for each node  is written not in terms of
the first-order neighbors, but rather involves more distant
neighbors. Mathematically, for a non-labeled pixel P, the
following equation holds:
1
(Lx), =z > w(Lx);, (16)
FeN(i)

where (Lx); is computed as in Eq. (7). The solution z; is then
mathematically expressed by

JENTE)
=T Sowigmi b= wg| Y walr—x)].
FEN(i) T FEN(H) rEN(T)

(1n
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Fig. 2. Solution =; (for i = 7) in terms of its local neighborhood nodes.
The gray drcle illustrates the points used to compute the diffensntial
coordinate §; at node j =11

The solution z; involves both the weighted average of
the first-order neighbors j € N(i) and the derivatives &; in
the second-order neighbors (see Fig. 2). It differs from
other well-known solutions given uniquely in terms of
the first-order neighbors as, for example, the one com-
puted from the standard graph Laplacian by RW. The
resulting solution is largely region-expandable and can be
said to be anisotropic in behavior [110], as the derivatives
d; in Eq. (17) capture the image pixel discrepancies that
are away from the central node as well. Therefore, the
information coming from the constraints is better diffused
by the Laplacian Coordinates to distant pixels while still
ensuring smoothness to the segmentation solution, as pre-
viously discussed.

3.4.3 Multiple-Region Segmentation

Laplacian Coordinates can be easily extended to segment
images into several parts, in both soft and hard modalities.
Considering the soft solution given by Eq. (9), multiple seg-
mentations can be reached by simply solving (N — 1) sys-
tems of linear equations, similar to the binary case:

(Is + L%)xl) = bli), (18)

but setting Iz, =1 for all seeded pixels in the image, and

specifying different b¥ for each one of the given labels j,
1<j=(N-1), whuseuﬂmsarerangmgm K;, the set of
the seeded nodes K; €« K= | 1;_1K More spa:l.ﬁca]l}r,

(' be a positive constant. We set bt[-‘ﬂ =0, ie K; bt[-‘ﬂ = —,
i € K\ K, zero, otherwise.

Assuming that all xii) are bounded by [-C,C), the last
scalar map x™ is then obtained as follows:

It[_!'ﬁl = - {EEJJ]_

(19)

max
172 N-1)

Finally, for each j: 1 < j < N, the segmentation yU (ie, a
binary image) is performed by

yil = ﬂ (x = xip))
p=1,..N
P

(20)
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Fig. 3. The use of Eq. (21) for multiple segmentation. Frst to fourth rows:
multiple seeds are sketched as colored strokes, from which Laplacian
Coordinates produces the segmented regions. Bottom row: the five com-
puted solutions x that give rise to the multiple partitions ¥ merged in
the woman's segmentation.

where the symbol > is computed for all pixels of the image.
Similarly, for the hard constrained multiple segmentation,
the following set of sparse linear systems mustbe solved:
(R'R+ L)) = (RTLs + LIR")xY . (21)
Eq. (21) derives from the binary case as in Eq. (15). More-
over, matrices involved in Eq. (21) only require handling
the full list of the seeded pixels, ie., none of the particular
sets of the user-prescribed seeds K; are necessary to deter-
mine the left-hand matrix in Eq. (21). The individual sets of
seeds K; are later imposed into xgj, by setting Ig.E'TJ =,
icKj :r:g,E'ﬂ =—{, i € K\ K;, zero, otherwise (see Fig. 3).
Finally, to compute the last scalar mapping x™ as well as
the outputs }rm, we proceed similarly to the soft case.

3.44 Seeding Flexibility and Adaptability

In Fig. 4, we illustrate the robustness of the Laplacian Coordi-
nates in producing different segmentations just by marking
distinct objects in the image. From the three input configura-
tions in Fig. 4 (left, middle and right columns), multiple tar-
gets can be accurately segmented by simply seeding them
from both soft and hard LC models.

4 LapPLAcCIAN COORDINATES SUPERPIXEL
SEGMENTATION
We also introduce a superpixel version of Laplacian Coordi-

nates designed to operate on large digital images. As the
matrices in Eqgs. (9) and (15) are fairly sparse, the LC-based

26T

Fig. 4. Sdecting dfferant targets by exploiting the seeding flesdbility of Lap-
lacian Coomdinates. Odd rows: muliple markings ame given as input to the
soft (first example) and hard (middle and bottom examples) LC mod alities.

models perform the segmentation at interactive rates when
handling images of moderate size (~ 2 seconds for 600 x
600 images). However, the computational time can grow for
large images. To reduce the computational burden when
dealing with large images, we have adapted the Laplacian
Coordinates framework to deal with superpixel domains.
The Superpixel Laplacian Coordinates (SPLC) performs seg-
mentations at interactive frame rates while providing com-
petitive results as to segmentation quality and accuracy
when compared against the regular l:riJcEl—basa:I VErsion.

In the following, we detail the basic steps of the proposed
SPLC segmentation approach.

4.1 Superpixel Initialization
There are several approaches to create an initial superpixel
representation of an image. Those approaches vary consid-
El'ﬂhl}" as to the dustering rules, image descriptors, shape
analysis, among other factors. In our approach, we use SLIC
superpixels [111], because it is broadly used and it has been
proved to be very effective in practice.

Superpixels are marked as background or foreground
depending on the underlying labeling of their pixels. A simple
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Differential operator & (i = 5)
and its wrapped points

Nlustrative image
superpixels

Fig. 5. Superpixel graph representation. (Left) A superpixel partition of
the image. (Right) Differential operator 4; evaluated at node i = 5.

voting scheme is used to label a superpixel, that is, if the num-
ber of pixels labeled as background is greater than the number
of pixels marked as foreground, the superpixel is labeled as
background, and vice versa. If a superpixel does not contain
any labeled pixel, then it isset as unknoun.

4.2 SPLC Affinity Graph Setup

Once the seeds are given, we apply the differential opera-
tor (7) to the superpixel domain, as illustrated in Fig. 5. In
contrast to the pixel-based modality, the number of neigh-
bors N(i) in the SPLC varies beyond 4 or 8 neighbors. In our
approach, we consider that two superpixels i and j are adja-
cent if at least one pixel ini has a pixel of jin its 4-connected
neighborhood (e.g., see superpixels in Fig. 5).

The weight function wy; used in SPLC also differs from
the pixel-based approach. While in the pixel-based LC the
weight depends only on the pixel color attributes, in the
superpixel formulation, we take into account both the image
colors (as a feature vector) and the geometric data, given by
the distance between the centroids of the superpixels. As a
result, assuming that we have computed the feature vectors
fi and f; as well as the centroids & and ¢; of two adjacent
superpixels i and j, the weight uy; assigned to the edge (4, )
is computed as follows:

wy; = exp(—Byl fi — fill o )exp (—Ballei — ell2), (22)

where we find §; over a range [p,p + A. . g] using a simple
weight-difference heuristic (see the Supplementary Material -
Appendix C, available onling). In our experiments, we set
By =88, p=01,g9=05, and A = 0.01. For color images, we
set as feature vector f; = {E.‘Gf.‘m in Eq. (22), where E., G3;
and B; are the arithmetic mean for each color channel Red
(R;), Green (G;) and Blue (B;) of the pixels within superpixel i.

4.3 SPLC Segmentation
In the last step of the SPLC, we minimize one of the LC
Energies: soft, E,(x) (8), or hard, Ej(x) (14), but assuming as
input the affinity graph resulting from the superpixel
model. In either case, the linear system to be solved is sparse
with the number of rows and columns given by the number
of nodes in the input graph (see Egs. (9)-(15)).

After solving the linear system corresponding to the cho-
sen energy model (ie., soft or hard), the foreground super-
pixels are assigned by using Otsu's thresholding, thereby
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producing as output the sought segmentation of the image
(see Fig. 1d for an illustration).

5 RESULTS AND EVALUATIONS

In this section, we provide a comprehensive experimental
evaluation of the proposed LC and SPLC methods in the hand
mode, referred here as LCH and SPLCH, respectively.
We then compare the LCH and SPLCH against nine well-
established graph-based approaches for seeded image
segmentation, namely Grow Cuts (GRO) [76], One Cut
(ONE) [63], Power Watershed (PWS) [40], Maximum Span-
ning Forest with Kruskal's algorithm (MSFK) [23], [40], Image
Foresting Transform with Sub-pixel Precision (IFTS) [86],
Random Walker (EW) [21], Normalized Random Walker
(NRW) [74], Normalized Lazy Random Walker (NLRW) [48],
and the prior Laplacian Coordinates (LC) method [24]. We
use publicly available implementations of those methods
with default parameters or tuned according to what is
reported in the corresponding papers. For the SLIC parame-
ters in SPLCH, we use compactness 10, superpixel size 100 and
centers initialized in a hexagon distribution.

5.1 Metrics and Datasets

In order to quantitatively assess the segmentation results, we
compare the quality of the segmented objeds in terms of
object/region detection as well as the accuracy in preserving
the ground-truth boundaries. For that, we get a number of
well-known metrics, namely: Rand Index (RI) [112], Variation
of Information (VoI) [113], Boundary Displacement Error
(BDE) [114], Dice Coefficient (Dice) [40], F-Score [115], and
Precision x Recall curves [115]. We performed a battery of
experiments employing these metrics to assess the segmenta-
tion results in two widely used benchmarks in the context of
seed-based image segmentation: the Grabcut Microsoft
Research (MSRC) dataset [30], and the BSD dataset [116]. Both
benchmark datasets are publicly available for non-commer-
cial purposes. MSRC dataset contains 50 real-wordd images
with corresponding ground-truth segmentations (obtained by
manual human labeling) and seeded maps marking the fore-
ground and background regions of the images. BSD database
contains a larger number of segmented images (96 real-world
scenes) colleded from the Berkeley Segmentation dataset
[117], most of them bearing patterns that make the segmenta-
tion a harder task, as for example the presence of textures,
cluttering and different types of lighting conditions.

To go further in our analysis, we also make use of two
variants of the MSRC with very sparsely seeded images, as
described by Andrade & Carrera [118]. These sets of scrib-
bles, namely here as 51 and 52, allow us to better check the
level of assertiveness of the methods in certain pragmatic
scenarios where only a limited amount of seeds are avail-
able for use. Finally, we also compute the time performance
of SPLCH on the INRIA Holidays [119] data set, which con-
tains 500 image groups of large size photos.

5.2 The Classic MSRC Benchmark

We start our experimental analysis by building Table 1 with
some statistics such as median, mean and standard deviation
for the metrics BRI, Vol, BDE and Dice coefficient when
applied to assess the segmentations of the images in the
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TABLE 1
RI, Vol, BDE and Dice Scores Obtained from the Original MSRC Dataset for Each Segmentation Method

Rand Index (RI)

Variation of Information (Vol)

Boundary Displ. Error (BDE) Dice Coefficient (Dice)

Method Median (1) Mean () Std () | Median (}]) Mean () Std (J) | Median () Mean (}) Std (}) | Median (f) Mean (1) Std (})
GRO 0.9767 0.9742 0.0165 0.1632 0.1725 0.0884 1.9669 3.2309 5.9175 0.9807 0.9760 0.0184
IFTS 0.9746 0.9683 0.0189 0.1804 0.2060 0.1014 2.4261 3.3637 2.9908 0.9762 0.9704 0.0215
MSFK 0.9746 0.9689 0.0205 0.1833 0.2012 0.1074 2.1856 3.1917 2.9824 0.9763 0.9714 0.0219
NLRW 0.9770 0.9733 0.0146 0.1640 0.1792 0.0811 1.9631 2.9225 2.9511 0.9791 0.9742 0.0192
NRW 0.9769 0.9733 0.0147 0.1642 0.1793 0.0812 2.1117 2.8833 2.9108 0.9792 0.9741 0.0193
ONE 0.9707 0.9651 0.0237 0.1920 0.2120 0.1181 3.1892 4.1075 3.6868 0.9737 0.9645 0.0303
PWS 0.9761 0.9703 0.0203 0.1745 0.1931 0.1079 2.1909 3.1284 3.0549 0.9776 0.9725 0.0225
RW 0.9745 0.9699 0.0194 0.1738 0.1933 0.1022 2.1888 3.4522 3.5499 0.9784 0.9715 0.0235
LC 0.9774 0.9745 0.0155 0.1561 0.1691 0.0829 1.8768 2.7421 3.0259 0.9813 0.9759 0.0224
LCH 0.9802 0.9752 0.0159 0.1437 0.1687 0.0859 1.8551 2.5852 2.9124 0.9822 0.9763 0.0220
SPLCH 0.9778 0.9764 0.0133 0.1559 0.1611 0.0726 1.7730 2.3079 1.9647 0.9825 0.9770 0.0182

Values in bold indicate the best scores while the red ones indicate the second best.
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Fig. 6. Quantitative evaluation concerning the boundary-based metrics Recall, Precision and F-measure score over different neighborhood radius

R [115] for the MSRC dataset with usual seeds.

TABLE 2
RI, Vol, BDE and Dice Scores Obtained from the MSRC With the S1 Seed Set for Each Segmentation Method

Rand Index (RI)

Variation of Information (Vol)

Boundary Displ. Error (BDE) Dice Coefficient (Dice)

Method Median (1) Mean (1) Std () | Median () Mean (}) Std (}) | Median (}) Mean (]) Std () | Median () Mean (1) Std ()
GRO 0.8128 0.8025 0.1061 0.7566 0.7893 0.3131 22.4489 26.8187 17.8120 0.8260 0.8203 0.0862
IFTS 0.8040 0.7992 0.1166 0.7573 0.7734 0.3544 22.9537 26.2728 16.6349 0.7986 0.8022 0.1067
MSFK 0.8468 0.8064 0.1258 0.6339 0.7388 0.3848 21.4500 23.4021 13.5844 0.8181 0.8147 0.0980
NLRW 0.8882 0.8534 0.1045 0.5022 0.6039 0.3304 17.1275 19.1723 13.4278 0.8580 0.8522 0.0916
NRW 0.8868 0.8513 0.1087 0.5090 0.6084 0.3341 16.6015 19.0219 13.2143 0.8595 0.8498 0.0974
ONE 0.7377 0.7552 0.1345 0.6688 0.6409 0.2603 51.5384 56.7088  34.1423 0.5114 0.5993 0.1812
PWS 0.8380 0.8127 0.1239 0.6386 0.7167 0.3829 20.8103 22.6402 14.2947 0.8054 0.8190 0.1070
RW 0.8458 0.8174 0.1266 0.6035 0.6907 0.3802 23.1282 24.7029 16.4130 0.8212 0.8168 0.1075
LC 0.8809 0.8394 0.1189 0.5467 0.6601 0.3774 18.3263 19.9549 14.2795 0.8612 0.8525 0.0987
LCH 0.8900 0.8584 0.1015 0.5555 0.6022 0.3462 15.2866 17.4865 13.2537 0.8772 0.8729 0.0911
SPLCH 0.8904 0.8678 0.1130 0.5052 0.5566 0.3622 13.2476 15.3452  12.1757 0.8803 0.8700 0.1096

Values in bold indicate the best scores while the red ones indicate the second best.

MSRC dataset. From the collected statistics, one can see that
both Laplacian Coordinates approaches in the hard ver-
sions, LCH and SPLCH, outperform existing competitors in
almost all the quality measurements, mainly regarding the
median and mean scores. In fact, for these particular sum-
maries, LCH and SPLCH obtain either the best or the sec-
ond best scores in all numerical verifications.

The Precision-Recall curves plotted in Fig. 6a endorses
the previous claim, but now assessing how well a certain
segmentation method behaves in terms of boundary fitting
capability. Here, the higher the Precision and Recall, the bet-
ter the method’s performance. A composite index that bal-
ances the Precision and Recall is the F-score, whose values
are exposed in Fig. 6b. LCH, SPLCH, and GRO are the
methods that produce higher F-scores in all the four evalu-
ated scenarios.

5.3 MSRC Benchmark With Sparse Seed Maps
A. S1 Seed Set

We also performed a deeper and more comprehensive
evaluation of the segmentation techniques when they
take as input sets of sparsely seeded annotations. Table 2
summarizes the comparative analysis when using the
sparsely seeded of MSRC called S1 set [118]. By analyz-
ing the tabulated scores, one may conclude that LCH
and SPLCH lead to better accuracies for the mean and
median calculations for most of the validation metrics,
attesting their efficiency when handling images with a
small portion of annotated pixels. They also yield the
best scores, being followed by NLRW and NRW, when
one computes boundary adherence criteria, as shown in
the Precision-Recall curves in Fig. 7a and F-score compu-
tations in Fig. 7b.
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Fig. 7. Quantitative evaluation concerning the boundary-based metrics Recall, Precision and F-measure score over different neighborhood radius

R [115] for the MSRC with the S1 seed set.

TABLE 3
RI, Vol, BDE and Dice Scores Obtained from the MSRC With the S2 Seed Set for Each Segmentation Method

Method Rand Index (RI)

Variation of Information (VoI)

Boundary Displ. Error (BDE) Dice Coefficient (Dice)

Median (1) Mean (1) Std () | Median (}) Mean (}) Std () | Median () Mean (}) Std (}) | Median () Mean (1) Std (})
GRO 0.8585 0.8485  0.0969 0.7057 0.6600 03347 | 14.3006 16.8822  11.1239 | 0.8892 08714  0.0794
IFTS 0.9115 0.8817  0.0962 0.4636 05269  0.3228 8.2894 103872 7.1862 0.9274 0.8980  0.0825
MSFK 0.9370 09021  0.0814 0.3461 04602 0.2960 6.1550 89817  6.9261 0.9376 09156  0.0637
NLRW 0.9471 0.9208  0.0799 03114 03936 0.2920 4.6857 6.8990  6.3904 0.9527 0.9329  0.0607
NRW 0.9480 0.9205  0.0806 0.3157 03941  0.2938 47458 69122 64770 0.9534 0.9327  0.0615
ONE 0.9642 09286  0.0964 0.2268 03126  0.2528 4.1616 83735  14.1352 |  0.9614 09189  0.1199
PWS 0.9461 09181  0.0726 0.3085 04031 02728 5.5394 73470 5.5165 0.9505 09308  0.0546
RW 0.9309 0.8980  0.0888 0.3665 04682 0.3080 7.0661 9.1247  7.7347 0.9375 09138 0.0651
LC 0.9319 0.8937  0.0959 0.3623 04964  0.3594 6.5975 91522  8.1019 0.9389 09120  0.0728
LCH 0.9495 0.9300  0.0723 0.3027 03102 02672 4.0952 6.6815  6.4085 0.9512 09392 0.0482
SPLCH 0.9510 09336 0.0609 0.3032 0.3053  0.2509 4.0650 57406 4.2043 0.9562 09442 0.0426

Values in bold indicate the best scores while the red ones indicate the second best.
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Fig. 8. Quantitative evaluation concerning the boundary-based metrics Recall, Precision and F-measure score over different neighborhood radius

R [115] for the MSRC with the S2 seed set.

B. 52 Seed Set

Table 3 and Fig. 8 show another comparison involving
the 50 MSRC images, but on a different set of sparse seeds,
the S2 set, as previously described in [118]. The proposed
LCH and SPLCH approaches surpass other image segmen-
tation methods acquiring higher average and lower std val-
ues. For the median, the One Cut algorithm performs better
than others in three assessments, however, one may note
that LCH and SPLCH give rise to the second-best scores
for these particular cases. Considering the boundary preser-
vation criteria, the LCH and SPLCH clearly overcome all
the nine competitors, specially the LCH, as one can see by
the F-Score values exposed in Fig. 8b.

5.4 The BSD Benchmark
5.4.1 Quantitative Assessments

Table 4 shows RI, Vol, BDE, Dice of the eleven analyzed
techniques when applied to the classic BSD data set [116].
Notice that the new proposed methods, LCH and SPLCH,
resulted in the best mean and std scores for most of the
quality metrics. Regarding the median, LCH yields the
higher scores, while the SPLCH turns out to be very com-
petitive with the recently released image segmentation
methods NRW and NLRW. Similarly, the Recall-Precision
curves and the F-score chart displayed in Fig. 9 also empha-
size the suitable performance of our LC Hard-based frame-
works, but in the sense of quality boundary metrics as well.
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TABLE 4
Rl, Val, BDE and Dice Scores Obtained from the BSD Dataset for Each Segmentation Method

Method Rand Index (RI} Variation of Information {Vol) Displ. Error (BDE} Dice Coetficient (Dice)

Median (1) Mean (1) Std (J) | Median ([)  Mean (J)  Std () | Median (J)  Mean () S ([) | Median () Mean (1) S (J)
GRO 0.9464 09291 00685 | 03037 03635  O.2476 | 54402 THSA1  ID.I368 | 09343 09240  0.0707
IFIS 09522 0933 00716 | 03042 0.M00 02429 | 47352 62361 5.5460 0.9408 09257 00733
MSFK 09538 09329 00718 | 0.2880 03383 02462 | 4.5200 66009 68137 09435 09256 00731
NLEW 0.9691 09560 00424 | 02039 02997 01810 | 33820 42788 3.5083 0.9579 09496 00314
NEW 0.9691 09561 0425 | 0.2033 02991  0.1901 3.3761 42653 3T 09575 09498 00315
ONE 0.9530 09263 00831 0.2516 03236 02340 | 61044 91217 100022 | 09280 08598 0.1154
PWS 0.9561 09391 00604 | 02766 03199 02354 | 44855 59641 49819 09492 09341 00505
RW 0.9559 09446 00483 | 02919 03018 02041 | 4.5958 56490 48573 09471 09381  0.419
LC 0.9654 0.9498 00598 | 02220 02735 00986 | 40386 51452 58171 09538 09419 00659
LCH 0.9720 0.9629 00351 | 01889 0.2265  0.1653 |  3.0905 38497 30547 0.9671 09535  0.0276
SPLCH 0.9664 0.9581  0.0297 | 0.2201 0.2548 0.1533 | 37065 40702 15653 19589 09521 00334

Values in bold indicate the best scores while the red ones indicate the second best.
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(a) Precision-Recall curves
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Fig. 9. Quantitative evaluation concerning the boundary-based metrics Recall, Predsion and F-scome over different neighborhood radius R [115] for

the BSD dataset.

5.4.2 Qualitative Results

To further examine the performance of the state-of-the-art
methods in another light on the BDS dataset, we depict in
Fig. 10 the segmentation obtained by the techniques for nine
sample images. Overall, many of the methods produce simi-
lar results, but there are nuances that deserve to be
highlighted. For instance, in the church image, ONE, RW,
LC, LCH, and SPLCH produced the best results. When com-
paring the result of NLR and NLRW in the starfish picture
against other methods, one can notice that the three techni-
ques produce good results, but slightly worse than LCH
and SPLCH. Comparing the results of proposed approaches
in the remaining images, one can clearly notice that LC and
SPLC deliver more accurate outputs, giving rise to best con-
tour adherence and full object segmentation.

5.5 SeedQuantity and Placement Invariance

We also evaluate the sensitivity of LCH and SPLCH as to seed
quantity and seed placement, following the protocd given
in [25], [45], [120]. More predsely, we first take as benchmark
the segmentations from the original trimaps as provided by
the MSRC dataset. From the input trimaps, seeds are ran-
domly chosen from 50 to 1 percent of total seeds. The segmen-
tations are then computed from the “perturbed” seeds and
compared against the ground-truth. The normalized ovedap

FynF
MEeasure a; =

P is applied to check the amount of over-
lap between the computed and ground-truth segmentations,
where F; and F; account for the set of pixels labeled as fore-
ground in the two segmentations [45].

Table 5presents the normalized overlap averages when the
amount of seeds is reduced to 50, 30, 10 and 1 percent of total
input seeds. Notice that for reductions of 50 and 30 percent,
the methods produce similar results. However, when the
number of seeds is dropped to 10 and 1 percent, both LCH
and SPLCH approaches produce considerably better results,
thus being less dependent on user-inputs than other methods.

5.6 Superpixel Laplacian Coordinates = High-
Resolution Images

We also attested the performance of the superpixel version
of the LC method for large size images. We use as bench-
mark the INRIA Holidays dataset [119],” which is formed
by several high-resolution photos covering both natural and
man-made scenes. Fig. 11 shows the accuracy of SPLCH for
different choices of superpixel sizes in six of these images.
Inour tests, we noticed that satisfactory results are obtained
for superpixel sizes ranging from 100 to 600.

The main advantage of the SPLCH is that the segmentation
can be done at interactive rates. Fig. 12 presents the imings of
the main steps of the SPLCH when applied to segment images
from the INRIA dataset. Our approach took less than 1 second
to segment an image of size 1600 = 1200, and around 1 second
for images with size 2048 x 1536. For images with resolution
as large as 2560 x 1920, our approach took approximately 1.5
seconds and, in the scenario with superpixel size of 100 pixels,
the method took around 23 seconds to segment the image

completely.

2. Publicly available at http: / /lear.inrial pes.fr/ ~jegou / data.php
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Fig. 10. From top to bottom: sample images + scribbles from BSD dataset, and the outputs produced by each method.

An important aspect that one may take into consider-
ation from Fig. 12 is that the SLIC pre-partitioner [111] is the
most time-consuming task of our pipeline and it is not tied
to the size of superpixel, but rather to the image resolution.
In future versions, other superpixel pre-clusterizers can be
used, including hardware-accelerated implementations as

well. Finally, it is worth mentioning that, in our prototype,
the computation of Superpixel Graph, Features and the System
Setup has not been optimized to support parallelism, a feasi-
ble architecture which could turn the implementation even
faster in practice, and no effective computational gain was
found between the pixel and superpixel versions for images

Authorized licensed use limited to: Brown University. Downloaded on September 06,2021 at 15:35:15 UTC from IEEE Xplore. Restrictions apply.
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TABLE 5
Sensitivity of the Segmentation Methods w.r.t. Seed Quantity
and Seed Placement When Measured by the Average of ag
Overlap Measure

Perturbed seed quantity

Method | 550"~ 30 10% 1%

GRO 0.9968  0.9938 0.9880 0.9648
IFTS 0.9988 0.9964 0.9867 0.9540
MSFP 0.9969  0.9968 0.9880  0.9565
NLRW 0.9932 0.9932 0.9654  0.9632
NRW 0.9924 09932 0.9653  0.9629
ONE 0.9928 0.9914 0.9806 0.8770
PWS 0.9975  0.9963  0.9870  0.9630
RW 0.9984  0.9966 0.9892  0.9630
LC 0.9974  0.9967 0.9886  0.9694
LCH 0.9992  0.9969 0.9928 0.9815
SPLCH | 0.9972 0.9941 0.9894 0.9700

The percentages regulate the quantity of seeds used to produce the segmenta-
tions by the methods. Values in bold indicate the best scores while the red ones
indicate the second best.

1600 X 1200 2048 X 1536 2048 X 1536
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with small and moderate sizes. We ran our tests on a Mac-
Book Pro Intel Core i7 Quad Core with 2.2 GHz and 16 GB
of RAM. Our superpixel prototype was implemented in C+
+ using the Qt framework with the Eigen Library to solve
the linear system, and OpenCYV for image routines.

6 CONCLUSION

In this paper we propose Laplacian Coordinates, a quadratic
energy minimization framework which combines simplicity,
uniqueness of solution and accuracy into a new seeded image
segmentation approach. Our formulation enables freely man-
aging the seeds as both soft or hard constraints into the opti-
mization problem so that the minimizer lies in the solution of
a sparse system of linear equations, making the technique
mathematically concise and simpler to be coded and run.
Moreover, its solution is not prone to be trapped in local min-
ima, on the contrary, it is guaranteed to be globally optimal,

2048 x 1536 2048 x 1536

2560 x 1920

Fig. 11. From top to bottom: Six seeded high-resolution images from the INRIA dataset, ground-truth images, and SPLCH segmentations for super-

pixels of size 100, 300, and 600, respectively.
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Fig. 12. Time measurements (on average) of the main steps of the Superpixel Laplacian Coordinates.
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an important trait not always present in many other image
segmentation methods. We also extend the hard version of
Laplacian Coordinates to perfarm superpixel segmentation
on highresolution images at interactive rates, which is
another issue not always confronted by several interactive
segmentation methods in practice. Our energy model mini-
mizes the average of distances between image nodes instead
of the pairwise nodes as other existing methods, which was
found experimentally to have high contour adherence and

full object segmentation.

We attested the performance of our framework against
several state-of-the-art methods, from well-established bench-
marks and quantitative measures systematically used in the
image segmentation field. The technique remains stable and
quite assertive for a great variety of seed sets, including very
popular data sets. All those properties render Laplacian Coor-
dinates a useful and compelling graph clustering framework
to segmentimages interactively.
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