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We consider node-weighted survivable network design (SNDP) in planar graphs and minor-closed families
of graphs. The input consists of a node-weighted undirected graph G = (V ,E) and integer connectivity
requirements r (uv ) for each unordered pair of nodes uv . The goal is to find a minimum weighted sub-
graph H of G such that H contains r (uv ) disjoint paths between u and v for each node pair uv . Three
versions of the problem are edge-connectivity SNDP (EC-SNDP), element-connectivity SNDP (Elem-SNDP),
and vertex-connectivity SNDP (VC-SNDP), depending on whether the paths are required to be edge, ele-
ment, or vertex disjoint, respectively. Our main result is an O (k )-approximation algorithm for EC-SNDP
and Elem-SNDP when the input graph is planar or more generally if it belongs to a proper minor-closed
family of graphs; here, k = maxuv r (uv ) is the maximum connectivity requirement. This improves upon the
O (k logn)-approximation known for node-weighted EC-SNDP and Elem-SNDP in general graphs [31]. We
also obtain an O (1) approximation for node-weighted VC-SNDP when the connectivity requirements are in
{0, 1, 2}; for higher connectivity our result for Elem-SNDP can be used in a black-box fashion to obtain a
logarithmic factor improvement over currently known general graph results. Our results are inspired by, and
generalize, the work of Demaine, Hajiaghayi, and Klein [13], who obtained constant factor approximations
for node-weighted Steiner tree and Steiner forest problems in planar graphs and proper minor-closed families
of graphs via a primal-dual algorithm.
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1 INTRODUCTION

Network design is an important area of discrete optimization with several practical applications.
Moreover, the clean optimization problems that underpin the applications have led to fundamental
theoretical advances in combinatorial optimization, algorithms, and mathematical programming.
In this article, we consider a class of problems that can be modeled as follows: Given an undirected
graph G = (V ,E) find a subgraph H of minimum weight/cost such that H satisfies certain desired
connectivity properties. A common costmodel is to assign a non-negativeweightw (e ) to each e ∈ E
and the weight of H is simply the total weight of edges in it. A number of well-studied problems
can be cast as special cases. Examples include polynomial-time solvable problems such as the
minimum weight spanning tree (MST) problem when H is required to connect all the nodes
of G, and the NP-hard Steiner Tree problem where H is required to connect only a given subset
S ⊆ V of terminals. A substantial generalization of these problems is the survivable network

design problem (SNDP), which is defined as follows: The input, in addition to G, consists of an
integer requirement function r (uv ) for each (unordered) pair of nodes uv inG; the goal is to find a
minimum-weight subgraphH such that it contains, for each pair of nodes uv , r (uv ) disjoint-paths
between u and v . We obtain two fundamental variants: If the r (uv ) paths for uv are required to
be edge-disjoint, then it is called edge-connectivity SNDP problem (EC-SNDP), and if they are
required to be internally vertex-disjoint the problem is called vertex-connectivity SNDP (VC-

SNDP). These problems are relevant in designing fault-tolerant networks. It is not hard to see
that VC-SNDP is a generalization of EC-SNDP. Moreover, VC-SNDP is known to be strictly harder
than EC-SNDP from an approximation point of view. A problem of intermediate complexity is the
element-connectivity SNDP problem (Elem-SNDP): Here, the vertex setV is partitioned into
reliable nodes R and non-reliable nodes V \R. The requirements are only between terminal nodes
T ⊆ R. The goal is to find a subgraphH of minimumweight such that each pair of terminalsuv has
r (uv ) element-disjoint paths, that is, paths that are disjoint in edges and non-reliable nodes. The
problems mentioned so far arise naturally in concrete applications. Algorithmic approaches for
these problems are in fact based on solving a larger class of abstract network design problems such
as covering proper and skew-supermodular cut-requirement functions that we describe formally
later.
Nodeweights: The cost of a network is dependent on the application. In connectivity problems,

as we remarked, a common model is the edge-weight model. A more general problem is defined
when each node v of G has a weight w (v ) and the weight of H is the total weight of the nodes in
H .1 Node weights are relevant in several applications, in particular telecommunication networks,
where they can model the cost of setting up routing and switching infrastructures at a given node.
There have also been several recent applications in wireless network design [33, 35] where the
weight function is closely related to that of node weights. We refer the reader to [13] for some
additional applications of node weights to network formation games.
The node-weighted versions of network design problems often turn out to be strictly harder

to approximate than their corresponding edge-weighted versions. For instance, the Steiner Tree
problem admits a 1.39-approximation for edge-weights [6]; however, Klein and Ravi [26] showed
via a simple reduction from the Set Cover problem that the node-weighted Steiner Tree prob-
lem on n nodes is hard to approximate to within an Ω(logn)-factor unless P = NP. They also
described a (2 logm)-approximation where m is the number of terminals. A more dramatic dif-
ference emerges for SNDP. While Jain gave a 2-approximation for EC-SNDP with edge-weights

1For many problems of interest including Steiner Tree and SNDP the version with weights on both edges and nodes can
be reduced to the version with only node weights; simply sub-divide an edge e by placing a new node ve and place the
weight of e on ve .
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Table 1. Approximation Ratios for SNDP and Related Problems

Edge Weighted Graphs Node Weighted Graphs
General Planar General Planar

Steiner Tree 1.39 [7] PTAS [5] O (logn) [26] 2.4 [4]
Steiner Forest 2 [1] PTAS [3] O (logn) [26] 2.4 [4]
{0, 1}-Proper Functions 2 [19] 2 [19] O (logn) [26] 6 [13]
EC-SNDP 2 [24] 2 [24] O (k logn) [31] 10k
Elem-SNDP 2 [15] 2 [15] O (k logn) [34] 10k
{0, 1, 2}-VC-SNDP 2 [15] 2 [15] O (logn) [31] 13
VC-SNDP O (k3 logn) [11] O (k3 logn) [11] O (k4 log2 n) [11] O (k4 logn)

The entries with no citation are from this article. There is an Ω(logn)-hardness for all the node-weighted problems
in the table for general graphs. The term k refers to the maximum connectivity requirement in the given instance.

[24], the best known approximation guarantee for EC-SNDP with node-weights isO (k logn) [31]
where k = maxuv r (uv ) is the maximum connectivity requirement. Moreover, Nutov [31] gives
evidence, via a reduction from the k-Densest-Subgraph problem, that for the node-weighted prob-
lem a dependence on k in the approximation ratio is necessary. Table 1 summarizes the known
approximation ratios and hardness results for some of the main problems considered in this ar-
ticle. One notices that the node-weighted version of problems have at least a logarithmic factor
worse approximation than the corresponding edge-weighted problem.
Demaine, Hajiaghayi, and Klein [13] considered the approximability of the node-weighted

Steiner Tree problem in planar graphs. They were partly motivated by the goal of overcoming
the Ω(logn)-hardness that holds in general graphs. They described a primal-dual algorithm that
is adapted from the well-known algorithm for the edge-weighted case [1, 19] and showed that it
gives a 6-approximation in planar graphs. Demaine et al. also showed that their algorithm works
for a more general class of {0, 1}-proper functions (first considered by Goemans and Williamson
[19]) that includes several other problems such as the Steiner Forest problem. Their analysis shows
that one obtains a constant factor approximation (the algorithm is the same) for any proper minor-
closed family of graphs where the constant depends on the family. In addition to their theoretical
values, these results have the potential to be useful in practice; the algorithm is simple and effi-
cient to implement, and it is reasonable to assume that real-work networks that arise in several
applications are close to being planar.

1.1 Our Results

In this article, we consider node-weighted network design problems in planar graphs for higher
connectivity. In particular, we consider EC-SNDP, Elem-SNDP, and VC-SNDP and show that the
basic insight in [13] can be built upon to develop improved approximation algorithms for these
more general problems as well. Although we follow the high-level outline of [13], our results
require susbtantial technical work. Our core result is for Elem-SNDP, which captures EC-SNDP as
a special case and can be used in a black box fashion for VC-SNDP.

Theorem 1.1. There is a 10k-approximation algorithm for node-weighted Elem-SNDP in planar

graphs where k is the maximum requirement. Moreover, anO (k ) approximation guarantee also holds

for graphs from a proper minor-closed family of graphs G where the constant in the approximation

factor only depends on the family G.
Node-weighted EC-SNDP can be reduced easily in an approximation preserving fashion to node-

weighted Elem-SNDP by choosing all nodes in the input graph to be reliable nodes. Thus, the pre-
ceding theorem applies to node-weighted EC-SNDP. Chuzhoy and Khanna [11] showed a generic
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reduction of VC-SNDP to Elem-SNDP that does not change the underlying graph. Using Theo-
rem 1.1 and the reduction in [11], we obtain the following corollary:

Corollary 1.2. There is an O (k4 logn)-approximation for node-weighted VC-SNDP in proper

minor-closed family of graphs.

We also obtain an O (1)-approximation algorithm for node-weighted VC-SNDP when the re-
quirements are in the set {0, 1, 2}.

Theorem 1.3. There is a 13–approximation algorithm for node-weighted VC-SNDP with {0, 1, 2}
connectivity requirements in planar graphs and, more generally, an O (1)-approximation for graphs

from a proper minor-closed family of graphs.

In summary, as mentioned in Table 1, our results show that provably better approximation guar-
antees can be obtained for node-weighted network design in planar graphs when compared to the
case of general graphs.

1.2 Overview of Technical Ideas and Contribution

There are two main algorithmic approaches for SNDP. The first approach is the augmentation

approach pioneered by Williamson et al. [37]. In this approach the desired network is built in k
phases; at the end of the first (� − 1) phases the connectivity of a pair uv is at least min{r (uv ), � −
1}. Thus, the optimization problem of �th phase is to increase the connectivity of certain pairs
by one; the advantage is that we need to work with a 0-1 covering function. In the case of EC-
SNDP, the augmentation problem is the problem of covering a skew-supermodular function. A
requirement function f : 2V → Z+ is skew-supermodular2 if for any A,B ⊆ V

f (A) + f (B) ≤ max{ f (A ∩ B) + f (A ∪ B), f (A \ B) + f (B \A)}.

Williamson et al. [37] showed that a primal-dual algorithm achieves a 2-approximation for cov-
ering edge-weighted 0-1 skew-supermodular functions. For the node-weighted variant, Nutov
[31] gave an O (logn)-approximation. These results for covering 0-1 skew-supermodular func-
tions when combined with the augmentation give, respectively, 2k and O (k logn)-approximation
for the edge-weighted and node-weighted EC-SNDP.3 For solving edge-weighted Elem-SNDP in
the augmentation framework, [25] works with skew-bisupermodular functions that are more in-
volved although the achieved approximation ratios are similar. The second approach for SNDP
is the powerful iterative rounding technique pioneered by Jain that led to a 2-approximation for
EC-SNDP [24] and Elem-SNDP [15]. Iterative rounding does not quite apply to node-weighted
problems for a variety of technical reasons as well as known hardness of approximation results.
For this reason, the main approach for attacking node-weighted SNDP problems has been the
augmentation approach.
In this article, we follow the augmentation approach for node-weighted SNDP problems. De-

maine et al. adapted the primal-dual algorithm for edge-weighted 0-1 proper functions to the
node-weighted case. The novel technical ingredient in their analysis is to understand the prop-
erties of node-minimal feasible solutions instead of edge-minimal feasible solutions. The analysis
crucially relies on the average degree of a planar graph being constant. For the most part, problems
captured by 0-1 proper functions are very similar to the Steiner Forest problem, a canonical prob-
lem in this class. In this setting it is possible to visualize and understand node-minimal solutions

2This class of functions is also referred by other names such as uncrossable and weakly supermodular.
3The approximation for the edge-weighted version can be improved to 2Hk by doing the augmentation in the reverse order
[18].
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through connected components and basic reachability properties. In the augmentation approach
for higher-connectivity, as we remarked, the problem in each phase is no longer a proper function
but belongs to the richer class of skew-supermodular functions. The primal-dual analysis for this
class of functions is more subtle and abstract and proceeds via uncrossing arguments and laminar
witness families [37].
In a previous conference version of this work [8], we considered node-weighted EC-SNDP

(and more general problems) in planar and minor-closed families of graphs. Based on prop-
erties of node-minimal feasible solutions for 0-1 skew-supermodular families, we obtained an
O (1)-approximation. In this article, we extend the ideas to handle Elem-SNDP by considering
node-minimal feasible solutions of 0-1-skew-bisupermodular functions (based on bisets) that
arise in the augmentation framework for Elem-SNDP [10, 15, 25, 32]. An important and crucial
aspect of the algorithm, which also applied to the results in [8], is that our results only apply for
covering a restricted class of skew-bisupermodular functions that satisfy additional properties.
We provide an example later to illustrate the reason why this is necessary.
As in [13], planarity plays a role only in one step of the analysis where we rely on the property

that any minor4 of the original graph has bounded average degree. Recall that planar graphs are
a minor-closed family of graphs and the average degree is at most 6. This is the reason that the
algorithm and analysis generalize to any proper minor-closed family of graphs. In the interest
of clarity and exposition, we have not attempted to optimize the constants in the approximation
analysis; the bound could perhaps be improved with a more careful analysis.
Other related work: Moldenhauer [30] showed that an improved analysis of the algorithm of

Demaine et al. [13] reduces their 6-approximation guarantee of the node-weighted Steiner For-
est in planar graphs to a bound of 3, which is tight for the algorithm. Moreover, he claimed,
via a different algorithm, a 9/4-approximation. However, Berman and Yaroslavtsev [4] showed
that the result of [30] suffers from a mistake in the analysis and that the correct approximation
guarantee for the algorithm in [30] is 18/7. [4] developed an algorithm for the node-weighted
planar Steiner Forest with a 2.4-approximation. [4, 30] point out the connection between node-
weighted Steiner Forest and (Subset) Feedback Vertex Set in planar graphs for which Goemans
and Williamson [21] had developed primal-dual algorithms—more details can be found in the
papers.
Network design is a broad area that has been explored in depth over the years. We refer the

reader to [20] for a survey on designing algorithms for network design problems using the primal-
dual method, and to recent surveys cited in [23, 27] for an overview of the literature and references.
We borrow several ideas from work on Elem-SNDP [10, 15, 25, 32] and VC-SNDP [11, 32]. Some
variants of the SNDP problem such as Prize-collecting SNDP, Budgeted SNDP, and Network Ac-
tivation have been studied in node-weighted setting and we refer readers to [2, 9, 17, 31, 36] for
developments in these directions, several of which have happened after the conference version of
this article appeared.
We also refer to some past and more recent work on other problems such as connected dom-

inating set, connected vertex cover, and feedback vertex set that have been studied in the node-
weighted setting [12, 14, 16, 22]. For several of these problems, the approximation ratios are better
for graphs from proper minor-closed families compared to the ones for general graphs, and sev-
eral admit a polynomial-time approximation scheme. The techniques in these papers are based on
different lines of work and do not yet appear to apply to node-weighted Steiner tree problem, and
our work here addresses higher connectivity problems.

4A minor of a graph G is another graph obtained by a sequence of edge and vertex deletions and edge contractions.
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Organization: Section 2 sets up the relevant technical background on bisets and certain ab-
stract properties that play a critical role in the analysis. Section 3 outlines the augmentation frame-
work and the properties of the requirement function that arises in each phase of the augmentation
framework. Section 4 (in particular, 4.3) describes the main technical result of this article, which is
a constant factor approximation algorithm for the problem of covering node-weighted biuncross-
able functions that arise in the augmentation framework. In Section 5, we apply the framework to
handle {0, 1, 2}-VC-SNDP. We discuss some open problems and conclude in Section 6.

2 PRELIMINARIES

We formally define node-weighted EC-SNDP and Elem-SNDP. The input to node-weighted EC-
SNDP is an undirected graphG = (V ,E), a weight functionw : V → R+, and a non-negative inte-
ger requirement r (uv ) for each unordered pair of nodes uv . The goal is to find a minimum weight
subgraph H = (VH ,EH ) such that H has r (uv ) edge-disjoint paths for each node pair uv ; by the
weight of H , we mean w (VH ), since we are considering node-weights. Call a node u a terminal if
it participates in a pair uv such that r (uv ) > 0. Any feasible solution H contains all terminals and,
hence, we can assume without loss of generality that the weight of terminals is zero.
The input to node-weighted Elem-SNDP is an undirected graphG = (V ,E) alongwith a partition

ofV into reliable nodes R and non-reliable nodesV \R. The elements ofG are E ∪ (V \R). The input
also specifies a non-negative weight function w : V → R+ and integer requirements r (uv ) only
over pairs uv where both u,v are reliable nodes. The goal is to find a minimum weight subgraph
H = (VH ,EH ) ofG such that for each pairuv of reliable nodes,H has r (uv ) element-disjoint paths.
For simplicity, we can assume that R forms an independent set inG by sub-dividing each edge uv
where both u,v ∈ R and adding a new non-reliable node. Then element-disjoint paths correspond
to paths that are disjoint on non-reliable nodes. Once again, we can assume that any node u that
participates in a pair uv such that r (uv ) > 0 can be assumed to have zero weight, since it has to
be included in every feasible solution. It is straightforward to see that EC-SNDP is a special case
of Elem-SNDP in which all nodes in the input graph are reliable.
Following the general approach from prior work, we reduce SNDP to a more abstract problem of

covering certain set and biset requirement functions.We set up the desired notation and definitions
for this purpose and state several basic properties. We borrow extensively from past work [10, 15,
32] and give a few proofs here for the sake of completeness.
A key definition is that of biset. A biset is a pair of sets Ŝ = (Sin, Sout) ∈ 2V × 2V such that Sin ⊆

Sout. The set Sin is the inner part of Ŝ , Sout is the outer part of Ŝ , and Sout \ Sin is the boundary

of Ŝ which is also denoted by bd(Ŝ ). We define the ⊆ relation on the bisets as follows: We say
Ŝ ⊆ T̂ iff Sin ⊆ Tin and Sout ⊆ Tout. We use the terminology Ŝ ⊂ T̂ if Ŝ ⊆ T̂ and Ŝ � T̂ . Furthermore,
the union, intersection, and difference of Ŝ and T̂ are defined as Ŝ ∩ T̂ = (Sin ∩Tin, Sout ∩Tout),
Ŝ ∪ T̂ = (Sin ∪Tin, Sout ∪Tout), and Ŝ \ T̂ = (Sin \Tout, Sout \Tin).

The following two propositions are straightforward to verify:

Proposition 2.1. The ⊆ relation is a partial order over the bisets.

Proposition 2.2. Ŝ ∩ T̂ ⊆ Ŝ and Ŝ \ T̂ ⊆ Ŝ .

Definition 2.3 (Crossing Bifamily). A family of bisets P is crossing iff, for any bisets Ŝ and T̂ in
P, union, intersection, and differences of Ŝ and T̂ are in P.

Definition 2.4 (Bimaximal Function). Let P be a crossing bifamily. A function f : P → Z is bi-
maximal iff, for any Ŝ, T̂ ∈ P whose inner parts are disjoint (that is, Sin ∩Tin = ∅),

f (Ŝ ∪ T̂ ) ≤ max{ f (Ŝ ), f (T̂ )}. (1)
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Definition 2.5 (Bisubmodular Function). Let P be a crossing bifamily. A function f : P → Z is
bisubmodular iff for any Ŝ, T̂ ∈ P, both of the following inequalities hold5:

f (Ŝ ) + f (T̂ ) ≥ f (Ŝ ∩ T̂ ) + f (Ŝ ∪ T̂ ), (2)

f (Ŝ ) + f (T̂ ) ≥ f (Ŝ \ T̂ ) + f (T̂ \ Ŝ ). (3)

A function f is bisupermodular iff −f is bisubmodular.

Definition 2.6 (Skew-bisupermodular Function). Let P be a crossing bifamily. A function f : P →
Z is skew-bisupermodular iff for any Ŝ, T̂ ∈ P, one of the following holds:

f (Ŝ ∩ T̂ ) + f (Ŝ ∪ T̂ ) ≥ f (Ŝ ) + f (T̂ ), (4)

f (Ŝ \ T̂ ) + f (T̂ \ Ŝ ) ≥ f (Ŝ ) + f (T̂ ). (5)

Definition 2.7 (Biuncrossable Function). Let P be a crossing bifamily. A function f : P → Z is
biuncrossable iff for any Ŝ, T̂ ∈ P such that f (Ŝ ) > 0 and f (T̂ ) > 0, one of the following holds:

f (Ŝ ∩ T̂ ) + f (Ŝ ∪ T̂ ) ≥ f (Ŝ ) + f (T̂ ), (6)

f (Ŝ \ T̂ ) + f (T̂ \ Ŝ ) ≥ f (Ŝ ) + f (T̂ ). (7)

Proposition 2.8 (Lemma 3.8 in [15]). Let f be a skew-bisupermodular function and let д be a

bisubmodular function on the same domain. Then f − д is a skew-bisupermodular function.

Proposition 2.9. The |bd(.) | function is a bisubmodular function over the set of all bisets overV .

The proof of Proposition 2.9 follows from the following propositions:

Proposition 2.10. For any two bisets Ŝ and T̂ , |bd(Ŝ ) | + |bd(T̂ ) | ≥ |bd(Ŝ ∩ T̂ ) | + |bd(Ŝ ∪ T̂ ) |.

Proof. Consider a vertex v that contributes to RHS. Then one of the following cases holds:

• v ∈ bd(Ŝ ∩ T̂ ) \ bd(Ŝ ∪ T̂ ). This implies that v ∈ Sout ∩Tout and at least one of Sin and Tin
does not contain v . Thus, v ∈ bd(Ŝ ) ∪ bd(T̂ ).

• v ∈ bd(Ŝ ∪ T̂ ) \ bd(Ŝ ∩ T̂ ). This implies that v � Sin ∪Tin and at least one of Sout and Tout
contains v . Thus, v ∈ bd(Ŝ ) ∪ bd(T̂ ).

• v ∈ bd(Ŝ ∩ T̂ ) ∩ bd(Ŝ ∪ T̂ ). This implies that v ∈ Sout ∩Tout and v � Sin ∪Tin. Thus, v ∈
bd(Ŝ ) ∩ bd(T̂ ).

Hence, the contribution of each vertex to LHS is not less than its contribution to RHS and the
statement holds. �

Proposition 2.11. For any two bisets Ŝ and T̂ , |bd(Ŝ ) | + |bd(T̂ ) | ≥ |bd(Ŝ \ T̂ ) | + |bd(T̂ \ Ŝ ) |.

Proof. Consider a vertex v that contributes to RHS. Then it would be one the following cases:

• v ∈ bd(Ŝ \ T̂ ) \ bd(T̂ \ Ŝ ). This implies that v ∈ Sout \Tin. If we have also v � Sin, then v ∈
bd(Ŝ ). Otherwise; since v � (Sin \Tout), we must have v ∈ Tout. Thus, v ∈ bd(T̂ ).

• v ∈ bd(T̂ \ Ŝ ) \ bd(Ŝ \ T̂ ). Similar to the above case either v ∈ bd(Ŝ ) or v ∈ bd(T̂ ).
• v ∈ bd(T̂ \ Ŝ ) ∩ bd(Ŝ \ T̂ ). This implies that v ∈ Tout \ Sin and v ∈ Sout \Tin. Thus, v ∈

bd(Ŝ ) ∩ bd(T̂ ).

5Note that these inequalities hold for symmetric submodular set functions and we work with symmetric biset functions
throughout the article, since the graphs are undirected.
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Hence, the contribution of a vertex to LHS is at least the contribution of the vertex to RHS and
the statement holds. �

Let G = (V ,E) be a graph and let Ŝ be a biset over V . We say an edge e crosses Ŝ = (Sin, Sout) if
e has one endpoint Sin and the other endpoint in V \ Sout. For any F ⊆ E, we let δF (Ŝ ) denote the
set of all edges in F that cross Ŝ . We define ΓF (Ŝ ) to be the set of all vertices u ∈ V \ Sout for which
there exists an edge uv ∈ F that crosses Ŝ . For a subgraph H , we abuse notation and use δH (Ŝ ) to
denote δE (H ) (Ŝ ) and ΓH (Ŝ ) to denote ΓE (H ) (Ŝ ).

Lemma 2.12 (Lemma 3.7 in [15]). For any graphG = (V ,E) and any subset of edges F ⊆ E, |δF (.) |
is bisubmodular over P where P is any crossing family of bisets over V .

Definition 2.13 (Feasible Cover). LetG = (V ,E) be a graph and let f be an integer-valued function
defined on a collection of bisetsP overV .We say that F ⊆ E is a feasible cover of f if |δF (Ŝ ) | ≥ f (Ŝ )
for each Ŝ ∈ P.We say that a subgraphH = (V (H ),E (H )) is a feasible cover of f if E (H ) is a feasible
cover of f . A subgraph H is a node-minimal cover of f if H \ {v} is not a feasible cover of f for
any v ∈ V (H ).

Definition 2.14 ((Minimal) Violated Biset). Let G = (V ,E) be a graph and let f be an integer-
valued function defined on a collection of bisets P over V . For F ⊆ E, we say that a biset Ŝ ∈ P is
violated with respect to F if |δF (Ŝ ) | < f (Ŝ ). We say that Ŝ is a minimal violated biset with respect
to F if Ŝ is violated and there is no violated biset T̂ such that T̂ ⊂ Ŝ . These definitions extend to
violation with respect to a subgraph H of G.

Definition 2.15 (Non-Overlapping Bisets). Two distinct bisets Ŝ and T̂ are non-overlapping iff one
of the following holds:

(i) Ŝ ⊆ T̂ or T̂ ⊆ Ŝ .
(ii) The sets Sout ∩Tin and Sin ∩Tout are empty.

If the bisets do not satisfy any of the above conditions, then they are overlapping.

A useful observation that we will need later is that minimal violated bisets do not overlap with
other (not necessarily minimal) violated bisets.

Lemma 2.16. Let h be a {0, 1}-biuncrossable function. Let Ĉ be a minimal violated biset of h and let

Ŝ be a violated biset of h. Then, Ĉ and Ŝ do not overlap. In particular, the inner parts of the minimal

violated bisets of h are disjoint.

Proof. Since h(Ĉ ) = h(Ŝ ) = 1 and h is a biuncrossable function, h(Ĉ ∩ Ŝ ) = h(Ŝ ∪ Ŝ ) = 1 or
h(Ĉ \ Ŝ ) = h(Ŝ \ Ĉ ) = 1. Suppose that the former case holds. Since Ĉ ∩ Ŝ ⊆ Ĉ , it follows from the
minimality of Ĉ that Ĉ ∩ Ŝ = Ĉ . Thus, Ĉ ⊆ Ŝ and hence Ĉ and Ŝ are non-overlapping. Therefore,
we may assume that h(Ĉ \ Ŝ ) = h(Ŝ \ Ĉ ) = 1. Since Ĉ \ Ŝ ⊆ Ĉ , it follows from the minimality of
Ĉ that Ĉ \ Ŝ = Ĉ . Thus, the sets Cin ∩ Sout and Cout ∩ Sin are empty, and hence Ĉ and Ŝ are non-
overlapping.
If Ĉ and D̂ are both minimal violated bisets of h, then none of them is a subset of the other one;

hence, Cin ∩ Dout = ∅, which implies that Cin ∩ Din is empty as well. �

Since we are interested in node-weighted problems the subgraphs that arise in our algorithms
and analysis are typically node-induced subgraphs. We use the standard terminology of G[S] to
denote the subgraph of G induced by a node subset S ⊆ V (G ). We use E[S] to denote the set of
edges with both end points in S . The graphG[S] = (S,E[S]) is the subgraph induced by the vertex
set S . We frequently need to consider the graph (V ,E[S]), and when there is no confusion, we use
G[S] to denote this graph as well.
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3 ALGORITHM FOR NODE-WEIGHTED ELEM-SNDP

In this section, we formally set up the augmentation framework for node-weighted Elem-SNDP.
We point out the specific features of the optimization problem that arises in each phase of the
augmentation framework. Our main technical result that provides anO (1)-approximation for the
augmentation problem of each phase is formally described and analyzed in Section 4.

3.1 Elem-SNDP and Covering Skew-bisupermodular Functions

We set up Elem-SNDP as a special case of covering skew-bisupermodular functions usingMenger’s
theorem for element connectivity. Given an instance of Elem-SNDP over a graphG = (V ,E) with
requirements specified by r , we extend the requirements to bisets as follows: For each biset Ŝ de-
fined on V , relem (Ŝ ) is defined as maxu ∈Sin,v ∈V \Sout r (uv ); in other words, relem (Ŝ ) is the maximum
connectivity requirement over all pair of vertices that are separated by Ŝ . Note that we only have
connectivity requirement over pairs of reliable nodes. Let Pelem be the collection of all bisets de-
fined onV whose boundaries only contain non-reliable nodes. Then, we define felem : Pelem → Z+
as felem (Ŝ ) = relem (Ŝ ) − |bd(Ŝ ) |. The following theorem is not hard to prove and can be found in [10,
15]:

Theorem 3.1 (Menger’s Theorem for Element Connectivity). Let G = (V ,E) be an undi-

rected graph withV partitioned into reliable nodes R and non-reliable nodesV \R. Two distinct nodes
s, t ∈ R are k-element connected iff for each biset Ŝ ∈ Pelem separating s and t , |δ (Ŝ ) | + |bd(Ŝ ) | ≥ k .

Applying Menger’s theorem, solving node-weighted Elem-SNDP is equivalent to finding a min-
imum node-weighted (feasible) cover of felem.

Proposition 3.2. Pelem is a crossing bifamily.

Proof. Ŝ ∩ T̂ ⊆ Ŝ and Ŝ \ T̂ ⊆ Ŝ , which implies that bd(Ŝ ∩ T̂ ) ⊆ bd(Ŝ ) and bd(Ŝ \ T̂ ) ⊆ bd(Ŝ );
hence, intersection and difference preserve the property that the boundary does not contain any re-
liable nodes. Recall that Ŝ ∪ T̂ = (Sin ∪Tin, Sout ∪Tout) and hence bd(Ŝ ∪ T̂ ) = (Sout ∪Tout) \ (Sin ∪
Tin) ⊆ bd(Ŝ ) ∪ bd(T̂ ); therefore, if both Ŝ, T̂ ∈ Pelem, then Ŝ ∪ T̂ ∈ Pelem as well. �

Proposition 3.3. Let relem be the requirement function arising from an instance of Elem-SNDP (in

other words, relem is defined on the crossing bifamily Pelem). Then,

• relem (Ŝ ) = 0 for all bisets Ŝ such that Sin = ∅ or Sout = V .

• relem is skew-bisupermodular and bimaximal.

Proof. It is straightforward to see that if Sin = ∅ or Sout = V , then Ŝ does not separate any pair
of terminals and relem (Ŝ ) = 0.

Fleischer et al. proved that relem is skew-bisupermodular on Pelem (see Lemma 3.11 in Refer-
ence [15]). Further, we show that relem is bimaximal on Pelem. Let Ŝ, T̂ ∈ Pelem and let (s, t ) be a
pair of terminals that have the maximum connectivity requirement among all terminal pairs sepa-
rated by Ŝ ∪ T̂ , i.e., relem (Ŝ ∪ T̂ ) = r (s, t ). Since s ∈ Sin ∪Tin, we have s ∈ Sin or s ∈ Tin; without loss
of generality, assume s ∈ Sin. Since t ∈ V \ (Sout ∪Tout), the pair (s, t ) is separated by Ŝ and thus
relem (Ŝ ∪ T̂ ) ≤ relem (Ŝ ) ≤ max{relem (Ŝ ), relem (T̂ )}. �

3.2 Augmentation Framework

Now, we turn our attention to the proof of Theorem 1.1. We alert the reader that, to cover the
function felem, we need to pick a set of edges. But, since the weights are (only) on the nodes, we
pay for a set of nodes and we can use any of the edges in the graph induced by the selected nodes
to cover felem. More precisely, our goal is to select a minimum-weight subgraph H = G[X ] that
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covers felem, where X is a subset of the vertex set ofG. We will always assume that X contains all
terminals.
Our algorithm for covering felem uses the augmentation framework introduced by Williamson

et al. [37] for edge-weighted EC-SNDP. For a non-negative integer � consider the requirement
function r� where r� (Ŝ ) = min{�, relem (Ŝ )}. Similarly, we define f� where f� (Ŝ ) = r� (Ŝ ) − |bd(Ŝ ) |.
The algorithm performs k phases with the following property: At the end of phase �, the algorithm
constructs a subgraphH� that covers f� . In phase �, the algorithm starts with the subgraphH�−1 =
(V ,E[X�−1]) that covers f�−1 and adds a new set of vertices to H�−1 to obtain H� = (V ,E[X�]).
We elaborate on this augmentation process. It is convenient to assume that all vertices in X�−1
have zero weight, since they have already been paid for. Let G� = (V ,E (G ) \ E (H�−1)). The goal
in phase � is to select a minimum-weight subgraph H of G� that covers the function h� , where
h� (Ŝ ) = max{0, f� (Ŝ ) − |δH�−1 (Ŝ ) |} for each Ŝ ∈ Pelem. Note that h� (Ŝ ) ≤ 1 for all Ŝ . Moreover, it is
an uncrossable and bimaximal function and satisfies certain other properties that we will formally
specify later.
The phase � augmentation problem is then the following: Given a subgraph H�−1 that covers

f�−1, find a minimum weight subset of nodes A such that (V ,EG� [X�−1 ∪A]) covers h� .

Theorem 3.4. Suppose there is a λ(�)-approximation algorithm for the phase � augmentation prob-

lem for each 1 ≤ � ≤ k . Then there is a
∑k

�=1 λ(�)-approximation for node-weighted Elem-SNDP.

The preceding theorem is an easy consequence of the augmentation framework and the fact
that the optimum cost of any instance of the augmentation problem that arises in phase � is upper
bounded by the optimum cost of the solution for the original instance of Elem-SNDP.Wewill show
that λ(�) ≤ 10 ifG is planar. For proper minor-closed family of graphs, we prove that λ(�) = O (1)
where the constant depends on the family. This leads to the claimedO (k )-approximation for node-
weighted Elem-SNDP that proves Theorem 1.1.

3.3 Properties of the Function h�

We now discuss some properties of the function that arises in the augmentation process.

Lemma 3.5. The functions r� , f� , and f� − |δH�−1 | are skew-bisupermodular on Pelem.

Proof. Note that r� can be defined as the biset function corresponding to the Elem-SNDP
instance in which r� (s, t ) = min{�, r (s, t )}. By Proposition 3.3, r� is a skew-bisupermodular func-
tion. Since |bd(Ŝ ) | is a bisubmodular function (Proposition 2.9), by Proposition 2.8, f� is skew-
bisupermodular as well. Moreover, using the fact that f� is skew-bisupermodular and |δH�−1 (.) | is
bisubmodular, by Proposition 2.8, f� − |δH�−1 | is skew-bisupermodular as well. �

For each biset Ŝ ∈ Pelem, let h′� (Ŝ ) = f� (Ŝ ) − |δH�−1 (Ŝ ) |. From the preceding lemma h′
�
is skew-

bisupermodular and moreover for each Ŝ ∈ Pelem, h′� (Ŝ ) ≤ 1. Note that h� (Ŝ ) = max{0,h′
�
(Ŝ )}.

We claim that h� is bi-uncrossable. To see this, suppose h� (Ŝ ) = 1 and h� (T̂ ) = 1, then by skew-
supermodularity ofh′

�
, we haveh′

�
(Ŝ ∪ T̂ ) + h′

�
(Ŝ ∩ T̂ ) ≥ 2 orh′

�
(Ŝ \ T̂ ) + h′

�
(T̂ \ Ŝ ) ≥ 2; this is pos-

sible only if h� (Ŝ ∪ T̂ ) + h� (Ŝ ∩ T̂ ) ≥ 2 or h� (Ŝ \ T̂ ) + h� (T̂ \ Ŝ ) ≥ 2, because both h� and h′� are at
most 1 on any biset.

Proposition 3.6. Consider an integer � ≤ k . Then h� (Ŝ ) = 1 iff relem (Ŝ ) ≥ � and |bd(Ŝ ) | +
|δH�−1 (Ŝ ) | = � − 1.

Proof. If relem (Ŝ ) ≥ � and |bd(Ŝ ) | + |δH�−1 (Ŝ ) | = � − 1, then by definition, h� (Ŝ ) = max{0, � −
bd(Ŝ ) − |δH�−1 (Ŝ ) |} = 1.
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We now consider the other direction. Suppose that h� (Ŝ ) = 1. This implies that f� (Ŝ ) −
|δH�−1 (Ŝ ) | = 1. Since H�−1 covers f�−1, we have |δH�−1 (Ŝ ) | ≥ f�−1 (Ŝ ). Thus, f� (Ŝ ) ≥ f�−1 (Ŝ ) + 1 and
hence r� (Ŝ ) ≥ r�−1 (Ŝ ) + 1. It follows that relem (Ŝ ) ≥ � and |bd(Ŝ ) | + |δH�−1 (Ŝ ) | ≤ r� (Ŝ ) − 1 = � − 1.
Moreover, since |δH�−1 (Ŝ ) | + |bd(Ŝ ) | ≥ r�−1 (Ŝ ) = � − 1, |δH�−1 (Ŝ ) | + |bd(Ŝ ) | = � − 1. �

Recall thatH�−1 covers f�−1 andG� = G (V ,E (G ) \ E (H�−1)). FurtherH�−1 = (V ,E[X�−1]) where
X�−1 is the set of nodes paid for in the first � − 1 phases.

Lemma 3.7. For any X ⊃ Xi−1 let HX = (V ,EG� [X ]) be a subgraph of G� . Suppose Ĉ ∈ Pelem is a

violated biset of HX with respect to h� . Then bd(Ĉ ) ⊆ X .

Proof. Suppose for the sake of contradiction there is a violated biset Ĉ and a vertex u ∈ bd(Ĉ )
such that u � X . Consider the biset Ĉ1 = (C, bd(Ĉ ) \ {u}). Since u is not a terminal, r� (Ĉ1) =
r� (Ĉ ) = �. Since h� (Ĉ ) = 1, we have r� (Ĉ ) = � and |bd(Ĉ ) | + |δH�−1 (Ĉ ) | = � − 1. In the graph H�−1,
the vertex u has no edges incident to it, since H�−1 = (V ,E[X�−1]) and u � X�−1. Therefore,
δH�−1 (Ĉ1) = δH�−1 (Ĉ ). Since |bd(Ĉ1) | = |bd(Ĉ ) | − 1, we have |bd(Ĉ1) | + |δH�−1 (Ĉ1) | = � − 2, which
implies that H�−1 is not a feasible cover for r�−1, a contradiction. �

Lemma 3.8. For any X ⊃ Xi−1 let HX = (V ,EG� [X ]) be a subgraph of G� . Suppose Ĉ ∈ Pelem is a

minimal violated biset of HX with respect to h� . Then the following properties hold:

• Cout ⊆ X .

• G[Cin] is a connected subgraph of G.

Proof. For ease of notation, we let H denote the subgraph HX . Note that since Ĉ is a violated
biset inH , we have h� (Ĉ ) = 1 and |δH (Ĉ ) | = 0. From Proposition 3.6, since h� (Ĉ ) = 1, r (Ĉ ) = � and
|bd(Ĉ ) | + |δH�−1 (Ĉ ) | = � − 1. Suppose there is a vertex u ∈ Cout such that u � X . By Lemma 3.7,
u ∈ Cin. First, u is not a terminal, since all terminals are in Xi−1 (and hence in X ). Second, u is
an isolated vertex in H , since the only edges in H are between nodes in X . Consider the biset
Ĉ1 = (Cin − u,Cout − u) obtained from Ĉ by removingu from both inner and outer parts of Ĉ . Since
u is not a terminal, we have r (Ĉ ) = r (Ĉ1). And, since u is isolated in H , we have δH (Ĉ1) = δH (Ĉ ),
since we movedu out ofC ′, bd(Ĉ1) ⊆ bd(Ĉ ). These facts imply thath� (Ĉ1) = 1 and Ĉ1 is a violated
biset in H . This contradicts minimality of Ĉ . Therefore, C ′ ⊆ X .
Second, we now prove thatG[Cin] is connected. For sake of contradiction, suppose it is not. Let

C1,C2 be two non-empty sets that partitionCin such that there is no edge betweenC1 andC2 inG;
such a partition exists ifG[Cin] is not connected. Note that EH (C1,C2) = ∅, sinceH is a subgraph of
G. Define Ĉ1 = (C1,C1 ∪ bd(Ĉ )) and Ĉ2 = (C2,C2 ∪ bd(Ĉ )). Since r is bimaximal (Proposition 3.6),
r (Ĉ ) ≤ max{r (Ĉ1), r (Ĉ2)}. Thus, without loss of generality, we can assume that r (Ĉ1) ≥ r (Ĉ ) ≥ �.
Since EH (C1,C2) = ∅, we have δH (Ĉ1) ⊆ δH (Ĉ ). Since bd(Ĉ1) = bd(Ĉ ) and Ĉ was a violated biset,
it follows that Ĉ1 is also a violated biset with respect to h� in H . This contradicts the minimality
of Ĉ . �

The collection of minimal violated bisets in HX with respect to h� are disjoint (due to the bi-
uncrossability), and they can computed in polynomial time via Menger’s theorem for element-
connectivity and standard maxflow algorithms. We refer the reader to [15, 25].

4 APPROXIMATION ALGORITHM FOR THE AUGMENTATION PROBLEM

In this section, we design an O (1)-approximation algorithm for minimum node-weighted cover
for the augmentation problem that needs to be solved in each of the k phases of the augmentation
framework that was described in the preceding section. We recall the problem arises in the phase
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� of the augmentation framework. We are givenX�−1 ⊆ V such that the graphH�−1 = (V ,E[X�−1])
is a feasible cover for f�−1. The goal is to find a minimum-weight subset of nodes A ⊆ V \ X�−1
such that H� = (V ,E[X�−1 ∪A]) covers f� . This is recast as the problem of covering the {0, 1}-
biuncrossable function h� in the graph G� = (V ,E (G ) \ E (H�−1)).

In the edge-weighted case, one can obtain a 2-approximation for covering a {0, 1}-biuncrossable
function in a general undirected graph provided the function has some reasonable computational
properties such as the ability to efficiently find the minimal violated sets with respect to any subset
of the given edges of a graph. In particular, a natural LP relaxation has an integrality gap of at most
2. However, in the node-weighted setting, a natural LP relaxation that we will discuss shortly has
an unbounded integrality gap. However, the functionh� that arises in the augmentation framework
for Elem-SNDP has additional properties that allow us to prove a constant factor approximation
in planar graphs. One can also prove anO (logn)-approximation in general graphs and this cannot
be improved, since node-weighted Steiner tree is a special case that generalizes the Set Cover
problem.
In this section, we prove the following theorem:

Theorem 4.1. Let G = (V ,E) be a node-weighted graph from a proper minor-closed family of

graphsG. Leth� be {0, 1}-biuncrossable function that arises in phase � of the augmentation framework

for an instance of Elem-SNDP defined over the graphG. There exists anO (1)-approximation algorithm

for the problem of finding a minimum-weight node subset to cover h� .

We remark that our result applies to a class of {0, 1}-biuncrossable functions that is more general
than the class of functions that arise from Elem-SNDP. Characterizing the precise class for which
the algorithm applies is not quite as clean as we would like and, hence, we do not attempt to do
so.
Our algorithm is a primal-dual algorithmmodeled after the well-studied algorithm for the edge-

weighted case [1, 19]. The adaptation of the primal-dual algorithm to the node-weighted case in
planar graphs was done in [13] but were concerned with Steiner forest and {0, 1} proper functions
while our setting is more general.

4.1 A Primal-dual Algorithm

Instead of focusing on the specific setting of covering the restricted class of functions that arise in
Elem-SNDP, we will work in an abstract framework where we have a general {0, 1}-biuncrossable
function h defined over a crossing bifamily P in a node-weighted graph G = (V ,E). The goal is
to find a minimum weight subset X ⊆ V such that the subgraph H = (V ,E[X ]) covers h, that is,
|δH (Ŝ ) | ≥ h(Ŝ ) for each Ŝ ∈ P.
LP relaxation. We consider a natural LP-relaxation of the problem and its dual, which are

shown in Figure 1. There is a variable x (v ) that in the integer programming formulation indicates
whether v is chosen and in the LP relaxation x (v ) is relaxed to be in the interval [0, 1]. Consider a
biset Ŝ ∈ P such that h(Ŝ ) = 1. Then any subgraph H of G that covers h needs to contain an edge
e ∈ δG (Ŝ ), which implies that there is an endpoint v of e such that v ∈ Γ(Ŝ ); therefore, at least one
vertex in Γ(Ŝ ) needs to be included in any feasible cover of h. This justifies the constraint in the
LP relaxation. Note that we omitted the constraint x (v ) ≤ 1 from the primal, since it is redundant.

Lemma 4.2. The Primal-LP is a valid relaxation of the problem of covering 0-1 biset functions on

node-weighted graphs.

Integrality gap example. Before we describe the primal-dual algorithm, we describe a simple
example to demonstrate that the integrality gap of the LP is unbounded for general biuncrossable
functions. Let G = (V ,E) be a complete graph on n ≥ 3 nodes. Consider the case when P is the
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Fig. 1. LP-relaxation of the optimization problem of covering biset functions on node-weighted graphs and

its dual program.

set of all bisets over V and h is the function such that h(Ŝ ) = 1 for a biset Ŝ where Sin = {v1} and
Sout = {v1}; h(T̂ ) = 0 for all other bisets. It is easy to see that h is biuncrossable. Letw (v1) = 1 and
w (vi ) = 0 for all i ≥ 2. The only way to coverh is to pickv1 and one other node and hence the opti-
mum solution has weight 1. However, the LP relaxation is forced to only pick a neighbor ofv1 and
pays 0. This is true even if the variables are required to be integer and in fact the integer solution
is not necessarily even feasible for the original problem. The technical issue here is that there is no
notion of “terminals” when working with a general biuncrossable function. However, when work-
ing with Elem-SNDP the terminals are always included in a solution and can be assumed to have
weight 0. As the algorithm proceeds, the newly added vertices can be treated as terminals and the
connectivity properties satisfied by h� help in this regard. This will become clearer in the analysis.
Primal-dual algorithm.We now describe the primal-dual algorithm. It is inspired by the one

in [13], which is an adaptation to the node-weighted setting of the standard primal-dual algorithm
for the edge-weighted case [1, 19]. The algorithm selects a subset of vertices P such that the graph
(V ,E[P]) covers h. However, we need to include, at the start of the algorithm, a prespecified sub-
set of vertices whose weight will not be counted in analyzing the performance of the algorithm;
alternatively, we can assume that these nodes have weight 0. In [13] the prespecified subset is the
set of terminals. In the augmentation framework this is the set of all the vertices that have been
selected in the previous phases (for phase 1 this is the set of terminals).
The algorithm has two high-level stages. In the first stage it starts with P0, the set of all zero

weight vertices, and iteratively adds vertices to P0 as long as there are violated bisets. This state
is guided by maintaining a dual feasible solution y that is implicitly initialized to zero. The iter-
ations proceed as follows: Consider iteration i and let Pi−1 be the set of all nodes selected in the
first i − 1 iterations. Let Ci be the collection of all minimal violated bisets of h with respect to
graphGi = (V ,E[Pi−1]). Ci can be computed in polynomial-time, and any two bisets in this family
do not cross by the biuncrossability property of h. The algorithm assumes access to a procedure
ViolatedBisets that outputs the minimal violated bisets with respect to a given subgraph. The
first stage of the algorithm stops when Ci is empty. Otherwise, in iteration i it increases the dual
variables {y (Ĉ )}Ĉ ∈Ci uniformly until a dual constraint for a vertex v becomes tight, that is, we

have
∑

Ŝ :v ∈Γ(Ŝ ) y (Ŝ ) = w (v ). If the dual constraint corresponding to v becomes tight, then we add
v to Pi−1 to obtain Pi and move to iteration i + 1. If several vertices become tight at the same time,
then we pick one of them arbitrarily.
The second stage of the algorithm is a reverse-delete step. Let P be the set of vertices selected by

the primal-dual algorithm. We select a subsetQ of P as follows: We start withQ = P . We order the
vertices ofQ in the reverse of the order in which they were selected by the primal-dual algorithm.
Let v be the current vertex. If (V ,E[Q \ {v}]) is still a feasible cover for h, then we remove v from
Q . The algorithm outputs the vertices that remain in Q .

ACM Transactions on Algorithms, Vol. 17, No. 2, Article 14. Publication date: May 2021.



14:14 C. Chekuri et al.

Fig. 2. A primal-dual algorithm for covering restricted {0, 1}-biuncrossable functions.

A formal description of the described primal-dual algorithm is given in Figure 2. As we dis-
cussed earlier, the algorithm is not guaranteed to output a feasible solution for an arbitrary {0, 1}-
biuncrossable function. However, we argue below that it returns a feasible solution for the func-
tions that arise in the augmentation framework. We will assume that the algorithm is run on graph
G� with function h� and P0 = X�−1.

Proposition 4.3. At the start of iteration i of the first while loop, we have Pi−1 ∩ Γ(Ĉ ) = ∅ for
every Ĉ ∈ Ci .

Proof. Each biset Ĉ ∈ Ci is a minimal violated biset with respect to the graph G�[Pi−1]. From
Lemma 3.8 it follows that Cout ⊆ Pi−1 and hence Γ(Ĉ ) can only contain vertices in V \ Pi−1. �

The lemma below shows that the algorithmmaintains dual feasibility with respect to the primal
solution P .

Lemma 4.4. The dual solutiony constructed by the primal-dual algorithm satisfies the primal com-

plementary slackness conditions. More precisely, for each v ∈ P , ∑Ŝ :v ∈Γ(Ŝ ) y (Ŝ ) = w (v ).

Proof. We prove the lemma by induction on the number of iterations of the first while loop. Ini-
tially,y is zero and P0 consists of all zero-weight vertices. Thus, the complementary slackness con-
ditions are satisfied at the beginning of the algorithm. Now consider iteration i > 0. From Proposi-
tion 4.3, no vertex in Pi−1 is adjacent, in the graphG� , to any biset in Ci . Thus, increasing the dual
variables corresponding to bisets of Ci do not violate the tightness of vertices in Pi−1. And the only
vertex added to Pi in iteration i is the one that becomes tight with respect to the dual increase in
iteration i . Thus, at the end of iteration i , the required condition holds for Pi . �

Lemma 4.5. The primal-dual algorithm returns a feasible cover for h� in G� when all vertices of

X�−1 are included in P0.
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Proof. Proposition 4.3 and Lemma 4.4 show that the algorithm inductively maintains the prop-
erty that Ci is the collection of minimal violated bisets with respect to the graph G�[Pi−1]; hence,
when the first while loop terminates, we have the property that there are no minimal violated
bisets with respect to G�[P], and thus G�[P] is a feasible cover. The reverse-delete step explicitly
ensures that G�[Q] is a feasible cover. �

4.2 Analysis of the Approximation Ratio

We now analyze the approximation ratio. We will assume that the function h comes from an aug-
mentation problem and that the algorithm is well-defined and returns a feasible cover. The basic
lemma that underlies the primal-dual analysis is similar to that of the edge-weighted case and
relies on the uniform-growth property of the dual variables.

Lemma 4.6. Let Q be the set of vertices output by the primal-dual algorithm. Suppose that there

exists a fixed value γ such that, for each iteration i of the primal-dual algorithm,
∑
Ĉ ∈Ci |Q ∩ Γ(Ĉ ) | ≤

γ |Ci |. Thenw (Q ) is at most γ times the value of an optimal solution of Primal-LP(G,P,h).

The content of the preceding lemma is the following: Consider the minimal violated bisets in
iteration i , Ci . Let Qi = Q \ Pi−1. From the reverse-delete step, we can see that Qi forms a node-

minimal set that together with Pi−1 covers h. We are interested in γ , the “average degree”6 of the
bisets in Ci , with respect to nodes in Qi . In general graphs, γ can be Ω(n) in the worst case and
we will not be able to prove any reasonable guarantee on the performance of the primal-dual
algorithm. However, planar graphs and more generally the graphs from minor-closed families are
sparse. Thus, we can bound the average degree if we upper bound the number of nodes inQi that
are neighbors of a biset in Ci . The following proof follows a standard template in the context of
primal-dual analysis, but we give it here for the sake of completeness:

Proof of Lemma 4.6. By Lemma 4.4,y satisfies the primal complementary slackness conditions.
Therefore, we have ∑

v ∈Q
w (v ) =

∑

v ∈Q

∑

Ŝ ∈P:v ∈Γ(Ŝ )

y (Ŝ ) =
∑

Ŝ ∈P

y (Ŝ ) |Q ∩ Γ(Ŝ ) |.

Note that, if we can show that
∑

Ŝ ∈P y (Ŝ ) |Q ∩ Γ(Ŝ ) | ≤ γ
∑

Ŝ ∈P y (Ŝ )h(Ŝ ), then it will follow that

we have a γ -approximation: Since y is feasible,
∑

Ŝ ∈P y (Ŝ )h(Ŝ ) is a lower bound on the fractional
optimum, which in turn is a lower bound on the integral optimum.
We show by induction on the number of iterations of the primal-dual algorithm that

∑

Ŝ ∈P

y (Ŝ ) |Q ∩ Γ(Ŝ ) | ≤ γ
∑

Ŝ ∈P

y (Ŝ )h(Ŝ ).

Note that y (Ŝ ) > 0 only if h(Ŝ ) = 1. Therefore,
∑

Ŝ ∈P y (Ŝ )h(Ŝ ) =
∑

Ŝ ∈C y (Ŝ ) where C is the collec-
tion of violated bisets with respect to G. In the primal-dual algorithm, we only increase the dual
values of violated bistes and thus it suffices to prove that

∑

Ŝ ∈C

y (Ŝ ) |Q ∩ Γ(Ŝ ) | ≤ γ
∑

Ŝ ∈C

y (Ŝ ).

Initially, all dual variables y (Ŝ ) are zero and therefore the inequality holds. Now consider iteration
i of the primal-dual algorithm. Recall that Pi−1 is the set of all vertices selected in the first i − 1

6Here, we are abusing the term slightly and we refer to the ratio
∑
Ĉ∈Ci |Qi ∩ Γ(Ĉ ) |/ |Ci | as the average degree of the

bisets in Ci .
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iterations of the primal-dual algorithm, and Ci is the set of all minimal violated bisets with respect
to G�[Pi−1].

Let ϵ denote the amount by which we increased y (Ŝ ) for Ŝ ∈ Ci in iteration i . The left-hand side
increases by

∑
Ĉ ∈Ci ϵ |Q ∩ Γ(Ĉ ) |, and the right-hand side increases by γϵ |Ci |. Therefore, it suffices

to show that ∑

Ĉ ∈Ci

|Q ∩ Γ(Ĉ ) | ≤ γ |Ci |.

Recall thatQi = Q \ Pi−1. By Proposition 4.3, for each Ĉ ∈ Ci , Γ(Ĉ ) ∩ Pi−1 is empty and thus Γ(Ĉ ) ∩
Q = Γ(Ĉ ) ∩Qi . Therefore, we can rewrite the inequality above as:

∑

Ĉ ∈Ci

|Qi ∩ Γ(Ĉ ) | ≤ γ |Ci |,

which holds by the assumption in the statement of the lemma. �

The key technical contribution of the article is to bound γ , and it is captured by the following
theorem whose proof is in Section 4.3:

Theorem 4.7. Consider phase � of the augmentation algorithm. For X ⊃ Xi−1 let HX = (V ,E[X ])
be a subgraph of G� . Let C be the collection of minimal violated bisets of h� with respect to HX .

Suppose Q ⊆ V \ X is a node-minimal set such that G�[X ∪Q] is a feasible cover for h� . Then |Q ∩
(
⋃

Ĉ ∈C Γ(Ĉ )) | ≤ 4|C|.

Exploiting the sparsity of planar graphs and more generally minor-closed families of graphs
together with the preceding theorem, we obtain the following lemma:

Lemma 4.8. Consider an instance of Elem-SNDP over a graph G that belongs to a proper minor-

closed family of graphs G. Suppose we run the primal-dual algorithm in phase � to cover h = h� . Let
Qi = Q \ Pi−1. Then,

∑
Ĉ ∈Ci |Qi ∩ Γ(Ĉ ) | ≤ cG |Ci |, where cG is a constant that depends only on the

family G. In particular, if G is a planar graph, then
∑
Ĉ ∈Ci |Qi ∩ Γ(Ĉ ) | ≤ 10|Ci |.

Proof. LetNi = Qi ∩ (
⋃

Ĉ ∈Ci Γ(Ĉ )). By Theorem 4.7, |Ni | ≤ 4|Ci |. Let Ci = {Ĉ1 = (C1,C
′
1), Ĉ2 =

(C2,C
′
2), . . . , Ĉr = (Cr ,C

′
r )} where for each i ∈ [r ],Ci ,C

′
i are, respectively, the inner and outer part

of the biset Ĉi . Since Ci is the collection ofminimal violated ofh� andh� is a biuncrossable function,
the collection of inner setsC1,C2, . . . ,Cr are pairwise disjoint. We also have the property thatNi ∩
Cj = ∅ for 1 ≤ j ≤ r . Further, from Lemma 3.8,G[Cj ] is connected for 1 ≤ j ≤ r . Next, we construct
a minor K of G as follows: Let V ′ = (

⋃
Ĉ ∈Ci C ) ∪ Ni . Note that we do not include the boundary

vertices of the bisets of Ci in V ′. We start with K = G[V ′]. For each biset Ĉj ∈ Ci , we shrink the
set Cj to a single vertex vj . We also remove parallel edges to get a simple graph. The resulting
graph is indeed a minor of G, since (i) G[Cj ] is connected for each j, and (ii) C1,C2, . . . ,Cr ,Ni are
pairwise disjoint. The total number of nodes in K is |Ni | + |Ci | ≤ 5|Ci |. In K , we also remove the
edges with both endpoints in Ni , which results in a bipartite graph with Ni on one side, and the
verticesv1,v2, . . . ,vr corresponding toC1,C2, . . . ,Cr on the other side. Note thatK is still a minor
of G.
Recall that we have Qi ∩ Γ(Ĉ ) ⊆ Ni for each Ĉ ∈ Ci . Therefore,

∑
Ĉ ∈Ci |Qi ∩ Γ(Ĉ ) | is equal to

the number of edges in the bipartite graphK . SinceK is from a minor-closed family G, from [28] it
follows that there is a constant c ′G that depends only on the family such that |E (K ) | ≤ c ′G |V (K ) | ≤
5c ′G |Ci |. Suppose G is a planar graph. Then K is a bipartite planar graph and in this case it is
well-known that |E (K ) | ≤ 2|V (K ) | ≤ 10|Ci |. �
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4.3 Proof of Theorem 4.7

In this section, we prove Theorem 4.7 using a counting argument that is a generalization of the
counting argument of [8]. We use H in place of HX to simplify the notation. We use K to denote
the graph (V (G ),E (G ) \ E (H )). Consider the biset function h′ where h′(Ŝ ) = 1 iff h� (Ŝ ) = 1 and
δH (Ŝ ) = ∅. By Proposition 2.8 and Lemma 2.12, h′ is a {0, 1}-biuncrossable function. Note that h′ is
the residual function ofh� in the graphH . LetQ ′ = Q ∪ X . Recall thatQ a is node-minimal set such
that G�[Q ′] covers h� . Equivalently this means that Q is a node-minimal set such that K[Q ∪ X ]
covers h′.

The main idea in the proof is to pick a subset M of the edges of K[Q ′] such that M is an edge-

minimal feasible cover for h′. An edge-minimal set allows us to use an approach that was intro-
duced by Williamson et al. [37] for the edge-weighted SNDP problem. More precisely, for each
edge e ∈ M , we can pick a witness biset that is a violated biset of h′ such that e is the only edge of
M that is leaving the biset. Moreover, we can pick a laminar family of witness bisets for all edges
inM that allows us to upper bound the number of edges inM incident to the components of C in
terms of |C|.

SinceK[Q ′] is a node-minimal cover ofh′ and not an edge-minimal cover, it is possible that there
is a vertex u ∈ Q connected to a component of C in K[Q ′] but none of the edges connecting u to
components of C are in M . Thus, we cannot use the family of witness bisets of an edge-minimal
cover of h′ to bound the number of these vertices. We address this issue by counting these vertices
separately using a witness family of bisets for a different set of non-redundant edges.
We refer to the vertices in Q ∩

( ⋃
Ĉ ∈C ΓG (Ĉ )

)
as critical vertices; these are the vertices of Q

that are adjacent to at least one biset in C and the goal is to show that there are at most 4|C| of
them. We refer to the edges in ∪Ĉ ∈CδK (Ĉ ) as red edges and all other edges of K as blue edges.
Every critical vertex is incident to at least one red edge. We define two subsets of edges F and F ′

below.
We start with F = E (K ) and we remove some of the edges as follows: We consider the blue edges

in an arbitrary order. Let e be the current edge. If F \ {e} is a feasible solution for h′, then we
remove e from F . This procedure gives us a set of edges in which each blue edge is necessary, in
the sense that removing any blue edge from F will make it an infeasible cover for h′. As we will
see shortly, we can use the blue edges in F to upper bound the number of critical vertices that are
incident to at least one blue edge of F . We refer to critical vertices that are incident to a blue edge
of F as regular vertices, and we refer to all other critical vertices as special vertices.

To count the special vertices, we pick a subset F ′ of F as follows: We start with F ′ = F and
consider the red edges of F ′ in some arbitrary order. Let e be the current edge. If F ′ \ {e} is a
feasible cover of h′, then we remove e from F ′. We can use the red edges in F ′ to upper bound the
remaining critical vertices. Since Q is a node-minimal cover for h′, each special vertex is incident
to at least one red edge of F ′.
We consider the regular and special vertices separately. Theorem 4.7 follows from the following

lemmas:

Lemma 4.9. The number of regular vertices is at most 2|C|.
Lemma 4.10. The number of special vertices is at most 2|C|.
First, we formally define the notion of witness bisets and discuss the existence of a family of

non-overlapping bisets that is a key part in the counting argument.

Definition 4.11 (Witness Biset). Let G = (V ,E) be an input graph and let h be a {0, 1}-
biuncrossable function defined on a crossing bifamily P ⊆ 2V × 2V . Let F ⊆ E be a feasible cover
of h. Then, Ŝe is an F -witness biset of e ∈ F iff h(Ŝe ) = 1 and δF (Ŝe ) = {e}.
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Definition 4.12 (Laminar Bifamily). A family of bisets F is laminar iff for any Ŝ, T̂ ∈ F , Ŝ and T̂
are non-overlapping.

Given a feasible cover F for a requirement functionh, we say that an edge e ∈ F is non-redundant
if F \ {e} is not a cover. A set M ⊆ F is non-redundant if each edge e ∈ M is non-redundant. The
following lemma is known from past work and we provide a proof for the sake of completeness:

Lemma 4.13. Let F be a feasible cover of a 0-1 bi-uncrossable function h. Let M ⊆ F be a set of

non-redundant edges with respect to F . There exists a laminar family of bisets L = {Ŝe | e ∈ M } such
that Ŝe is an F -witness biset for e .

To prove Lemma 4.13, our first observation is that, if M is a set of non-redundant edges, then
we can pick a witness biset for each edge ofM .

Lemma 4.14 (Lemma 4.1 in [15]). Let Ŝe1 , Ŝe2 be F -witness bisets for e1 and e2, respectively. Then
one of the following holds:

(i) The bisets Ŝe1 ∩ Ŝe2 and Ŝe1 ∪ Ŝe2 are F -witness bisets for distinct edges in {e1, e2}.
(ii) The bisets Ŝe1 \ Ŝe2 and Ŝe2 \ Ŝe1 are F -witness bisets for distinct edges in {e1, e2}.

Using the following lemma, we can show that, if we replace two overlapping witness bisets with
the witness bisets guaranteed by Lemma 4.14, the number of pairs of overlapping bisets decreases
and, thus, we are making progress towards a laminar family of witness bisets:

Lemma 4.15 (Lemma 4.3 in [15]). Let Ŝ1, Ŝ2 be two overlapping bisets and T̂ be an arbitrary

biset. Then the number of pairs of {(Ŝ1, Ŝ2), (Ŝ1, T̂ ), (Ŝ2, T̂ )} that overlap is at least the number of

pairs of {(Ŝ1 ∩ Ŝ2, Ŝ1 ∪ Ŝ2), (Ŝ1 ∩ Ŝ2, T̂ ), (Ŝ1 ∪ Ŝ2, T̂ )} that overlap. Similarly, the number of pairs

of {(Ŝ1, Ŝ2), (Ŝ1, T̂ ), (Ŝ2, T̂ )} that overlap is at least the number of pairs of {(Ŝ1 \ Ŝ2, Ŝ2 \ Ŝ1), (Ŝ1 \
Ŝ2, T̂ ), (Ŝ2 \ Ŝ1, T̂ )} that overlap.

Proof of Lemma 4.13. Let F be the initial family of F -witness bisets of edges in M . If no two
bisets in F overlap, then F is the desired family. Otherwise, let Ŝe1 and Ŝe2 be two bisets that
overlap. By Lemma 4.14 and Lemma 4.15, we can replace Ŝe1 and Ŝe2 with either Ŝe1 ∩ Ŝe2 and
Ŝe1 ∪ Ŝe2 or by Ŝe1 \ Ŝe2 and Ŝe2 \ Ŝe1 . The resulting family is an F -witness family ofM that has fewer
overlapping bisets. Thus, we can repeat this process until we get a non-overlapping F -witness
family. �

Our approach is to use laminar families of witness bisets for the blue edges of F and the red
edges of F ′ to count the regular and special vertices. Before we turn our attention to the counting
arguments, we describe some properties of laminar families of witness bisets that we will need.
Laminar witness tree. For a laminar collection of bisets L defined on setV , let L+ denote the

extended laminar family of L, L+ := L ∪ {(V ,V )}. We associate a tree TL+ with the family L+ as
follows: The tree TL+ has a node νŜ for each biset Ŝ ∈ L+. For any two bisets Ŝ and T̂ of L such
that Ŝ ⊂ T̂ , we add an edge from the node of T representing Ŝ to the node representing T̂ iff there
is no biset X̂ ∈ L such that T̂ ⊂ X̂ ⊂ Ŝ . We view the tree TL+ as a rooted tree whose root is the
node corresponding to the biset (V ,V ).
In the following, we consider a biuncrossbale function h : P → {0, 1}, a cover F for h, and a

set of non-redundant edges M ⊆ F . We also fix a laminar family L of F -witness bisets for M and
denote the tree associated with L+ by T .

Definition 4.16. A biset Ŝ ∈ L+ owns u ∈ V iff Ŝ is the minimal biset in L+ that contains u in
its inner part.
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Proposition 4.17. For each vertex u ∈ V , there is a unique biset in L+ that owns u.

Proof. Note that (V ,V ) contains u in its inner part, and thus there is a biset in L ∪ {(V ,V )}
that owns u. Suppose for contradiction that two distinct bisets X̂ and Ŷ of L ∪ {(V ,V )} own u.
Note that the set Xin ∩ Yin is non-empty, since u ∈ Xin ∩ Yin. Since X̂ and Ŷ do not overlap, we
must have X̂ ⊆ Ŷ or Ŷ ⊆ X̂ . Therefore, one of X̂ , Ŷ does not own u, which is a contradiction. �

Proposition 4.18. Let Ĉ be a minimal violated biset. Then all vertices of Cin are owned by the

same biset in L+.

Proof. Let Ĉ be a minimal violated biset ofh. If Ĉ ∈ L+, then we are done. Consider any Ŷ ∈ L;
it is a violated biset. By Lemma 2.16, Ĉ and Ŷ do not overlap. Thus, either Cin ⊆ Yin or Cin ∩ Yin is
empty. Consider the minimal biset Ŷ ∈ L+ such that Ĉ ⊂ Ŷ (since Ĉ ⊂ (V ,V ) such a biset exists).
Then Ŷ owns all vertices of Cin. �

It is convenient to abuse the notation and say that the node νŜ of T owns u if Ŝ owns u. Addi-
tionally, we say that Ŝ owns Ĉ if it owns the inner part of Ĉ . Consider an edge e = uv in M , and
assume that Ŝ, T̂ ∈ L+ own u and v , respectively. The lemma below shows that either νŜ is an
ancestor of νT̂ or vice versa. It is possible for T̂ to be a proper ancestor of Ŝ (that is, there is another
biset Ŷ in the family such that Ŝ ⊂ Ŷ ⊂ T̂ ) or vice versa.

Lemma 4.19. Let e = uv be an edge of M . Let Ŝe be the F -witness biset of e in L and suppose

Ŝ, T̂ ∈ L+ own u and v , respectively.

• Then Ŝe = Ŝ and Ŝ ⊂ T̂ , or Ŝe = T̂ and T̂ ⊂ Ŝ .
• Suppose, in addition, u is not contained in the boundary of any bisets in L+. If T̂ ⊂ Ŝ , then T̂

is a child of Ŝ , that is, there is no Ŷ ∈ L+ such that T̂ ⊂ Ŷ ⊂ Ŝ .

Proof. We consider the first part. Letw be the endpoint of e that is contained in the inner part
of Ŝe . Suppose for contradiction that Ŝe does not ownw . Then there exists a biset X̂ ⊂ Ŝe inL such
that w ∈ X . Note that e ∈ δF (X̂ ). However, X̂ is an F -witness biset for an edge in M \ {e}, which
is a contradiction. Therefore, Ŝe ownsw . Thus, Ŝe = Ŝ or Ŝe = T̂ . Without loss of generality let us
assume that Ŝe = Ŝ and that u ∈ Sin. To complete the proof, we need to show that Ŝ ⊂ T̂ . Note that
we may assume that T̂ � (V ,V ); otherwise, Ŝ ⊂ T̂ trivially holds. Moreover, Ŝ � T̂ , since v is in
V \ Sout andv ∈ Tin. Since Ŝ is an F -witness biset for e , it follows that T̂ is an F -witness biset for an
edge of M \ {e}. Therefore, e � δF (T̂ ) and, since v ∈ Tin, we must have u ∈ Tout. Since Ŝ and T̂ do
not overlap and u ∈ S ∩Tout, either Ŝ ⊂ T̂ or T̂ ⊂ Ŝ . However, since v ∈ Tin \ Sout, we cannot have
T̂ ⊂ Ŝ . Thus, Ŝ ⊂ T̂ .

We now consider the second part where we assume that u is not in the boundary of any biset of
L+. If T̂ ⊂ Ŝ , then from the preceding part, we have Ŝe = T̂ and v ∈ Tin. Suppose for contradiction
that there exists a biset Ŷ ∈ L \ {Ŝ, T̂ } such that T̂ ⊂ Ŷ ⊂ Ŝ . Since Ŷ is an F -witness biset for an
edge of M \ {e}, we must have e � δF (Ŷ ). Therefore, since u ∈ Sin \Tin and v ∈ Tin, u ∈ Yout; since
u is owned by Ŝ and not by Ŷ it implies that u ∈ bd(Ŷ ). However, by assumption u is not in the
boundary of any biset of L+, which implies there is no such Ŷ . �

The following lemma is an important one that underlies the analysis:

Lemma 4.20. Let e = uv be an edge of F \M such that e ∈ δF (Ĉ ) for a minimal biset Ĉ . Let u be

the endpoint of e that is in V \Cout. Let Ŝ be the biset of L+ that owns Ĉ . If u is not contained in the

boundary of any biset of L+, then Ŝ owns u.
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Proof. First, we claim that u ∈ Sin. If Ŝ = (V ,V ), then the claim holds trivially. Therefore, we
may assume that Ŝ ∈ L. Since v ∈ Cin andCin ⊂ Sin, we have v ∈ Sin. If u � Sout, then e ∈ δ (Ŝ ) but
Ŝ is an F -witness biset for some e ′ ∈ M and e � e ′, which is a contradiction.

Now suppose for contradiction that Ŝ does not own u. Then there is a biset T̂ ∈ L such that
T̂ ⊂ Ŝ , andu ∈ Tin. Since T̂ is an F -witness biset for an edge inM andu ∈ Tin, wemust havev ∈ Tout,
which implies thatCin ∩Tout � ∅. By Lemma 2.16, Ĉ and T̂ are non-overlapping, and, therefore, we
must have Cin ⊆ Tin, which contradicts the fact that Ŝ owns Ĉ . Hence, Ŝ owns u. �

Proposition 4.21. If νŜ is a leaf of T , then Ŝ owns a minimal violated biset.

Proof. Since Ŝ is a violated biset with respect to h, there exists a minimal violated biset Ĉ ∈ C
such that Ĉ ⊆ Ŝ . Moreover, Ŝ is a minimal biset of L+; thus, Ŝ owns Ĉ . �

Bijection between the edges of M and T . We define the following bijection between the
edges of T and the edges of M . Let e be an edge of M and let Ŝe be the witness biset for e . The
node νŜe has a parent νT̂ in T , and we associate e with the edge (νT̂ ,νŜe ) in T . We say that the
edge ecorresponds to the edge (νT̂ ,νŜe ).

Proposition 4.22. Let Ĉ be a minimal violated biset that is owned by νŜ ∈ T . Then each edge

e ∈ δM (Ĉ ) whose endpoints are not in the boundary of any violated bisets, corresponds to an edge of

T incident to νŜ .

Proof. Let e = uv be an edge in δM (Ĉ ) and let u ∈ Cin andv � Cout. Since Ŝ owns Ĉ , u is owned
by Ŝ . If v ∈ V \ Sout, then {e} = δM (Ŝ ), which implies that Ŝ = Ŝe and in this case e corresponds to
(νŜ ,νT̂ ) where T̂ is the parent of Ŝ . Otherwise,v ∈ Sout and, since e ∈ M , it follows that {e} = δM (T̂ )

for some descendant of Ŝ . Since u is not on the boundary of any violated biset by the assumption
of the proposition, from the second part of Lemma 4.19, T̂ is a child of Ŝ , which implies that e
corresponds to (νT̂ ,νŜ ), which is incident to νŜ . �

Counting argument for regular vertices. Let Lb = {Ŝe | e is a blue edge in F } be a laminar
family of F -witness bisets of the blue edges in F that is guaranteed by Lemma 4.13. Let Tb be the
tree associated with L+

b
.

Recall that each regular vertex is incident to at least one blue edge of F . Additionally, recall that
F contains all the red edges of K[Q ′]. Therefore, for each regular vertex u, there is a red edge in
F that is incident to u. Moreover, by Lemma 3.7, no violated biset contains a critical vertex in its
boundary.
We charge each regular vertex u as follows: Let Ĉ ∈ C be a minimal violated biset for which

there exists a red edge wu ∈ δG (Ĉ ) such that w ∈ Cin and u ∈ V \Cout. Moreover, let e = uv be a
blue edge of F and let Ŝe ∈ Lb be the F -witness biset for e . Suppose that Ŝ and T̂ be the bisets that
own u and v , respectively.
By Lemma 4.20 and the fact that u is not on the boundary of any violated biset, Ŝ owns Ĉ .

Additionally, by Lemma 4.19, we have either Ŝ ⊂ T̂ or T̂ ⊂ Ŝ , and we consider each of these cases
separately. Suppose that Ŝ ⊂ T̂ . It follows from Lemma 4.19 that Ŝ = Ŝe . We chargeu to Ĉ . We refer
to such a charge as a parent charge. Next, suppose that T̂ ⊂ Ŝ . By Lemma 4.19 and the fact that u is
not on the boundary of any violated biset, νT̂ is a child of νŜ . Since, by Proposition 4.21, each leaf
of Tb owns a biset of C, there is a descendant of νT̂ (possibly νT̂ itself) that owns a biset of C. Let
νX̂ be the closest such descendant, i.e., a descendant whose distance to νT̂ is minimized. (If there
are several descendants whose distance to νT̂ is minimum, then we pick one of them arbitrarily.)
We charge u to one of the bisets of C that νX̂ owns. We refer to this charge as a subtree charge,
since u is charged in a subtree rooted at a child of the node νŜ that owns u.
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Lemma 4.23. There is at most one parent charge to each biset Ĉ ∈ C.

Proof. Let Ŝ be the biset ofL+
b
that owns Ĉ . Suppose that Ĉ incurs a parent charge from a vertex

u. Then u is in S and there is a blue edge e = uv ∈ F such that Ŝ = Ŝe . Since Ŝ is an F -witness biset
for exactly one edge, there is at most one parent charge to Ĉ . �

Lemma 4.24. There is at most one subtree charge to each biset Ĉ ∈ C.

Proof. Let X̂ be the biset of L+
b
that owns Ĉ . Suppose that there is a descendant charge to Ĉ

corresponding to a vertex u1. Then there is a blue edge e1 = u1v1 whose endpoints are owned by
Ŝ1 and T̂1 (respectively) and νT̂1 is a child of νŜ1 . By the way, we choose X̂ , νX̂ and νŜ1 are the only

nodes on the path in Tb from νŜ1 to νX̂ that own a biset of C. Moreover, T̂1 is the witness biset
of e1.
Suppose for contradiction that there is another descendant charge to Ĉ from u2 � u1. Let Ŝ2 and

T̂2 be the bisets of L+ that own u2 and v2 (respectively). By the same argument as above, νŜ2 is a
child of νT̂2 and there is no node in the path from νŜ2 to νX̂ other than its endpoints that owns a

biset of C. Moreover, T̂2 is the witness biset of e2 = u2v2 (which is different from e1).
Since T̂1 and T̂2 are distinct bisets ofL+b that both contain X̂ , either T̂1 ⊂ T̂2 or T̂2 ⊂ T̂1. Moreover,

since for each i ∈ {1, 2}, X̂ ⊂ Ŝi , Ŝi � T̂2−i and νT̂i is a child of νŜi , we must have Ŝ1 = Ŝ2. Thus, νT̂1
and νT̂2 are children of Ŝ , which contradicts the fact that either T̂1 ⊂ T̂2 or T̂2 ⊂ T̂1. Hence, there is
at most one subtree charge to each minimal violated biset Ĉ . �

Proof of Lemma 4.9. By Lemma 4.23 and 4.24, each biset of C is charged at most twice and
thus the number of regular vertices is at most 2|C|. �

Counting argument for special vertices. Recall that F ′ is an edge-minimal cover of h′. More-
over, a critical vertex v is special only if there is a red edge e incident to v such that e ∈ δF ′ (Ĉ )
for a minimal violated biset Ĉ where v ∈ V \C ′. Thus, the total number of special vertices is
upper bounded by

∑
Ĉ ∈C |δF ′ (Ĉ ) |. Next, we adopt the argument of Jain et al. [25] to show that,

for any edge-minimal cover F ′,
∑
Ĉ ∈C |δF ′ (Ĉ ) | is at most 2|C|. Let Lr be the laminar family of

witness bisets of the red edges with respect to F ′ and let Tr be the tree representation of L+r .
Let A denote the set of vertices in Tr that own a minimal violated biset. By Proposition 4.22,∑
Ĉ ∈C |δF ′ (Ĉ ) | ≤

∑
ν ∈A deg(ν ). Here, deg(ν ) refers to the degree of node ν in Tr. Note that by

Proposition 4.21, all leaf vertices are in A and there is at most one node in V (Tr) \ A with de-
gree less than 2; the root node. Hence,∑

Ĉ ∈C

|δF ′ (Ĉ ) | ≤
∑

ν ∈A
deg(ν )

≤
∑

ν ∈V (Tr )
deg(ν ) −

∑

ν ∈V (Tr )\A
deg(ν )

≤ 2( |V (Tr) | − 1) − 2( |V (Tr) | − |A| − 1)
≤ 2|A| ≤ 2|C|.

Thus, we can upper bound the number of special vertices by 2|C|, which proves Lemma 4.10.
We remark that some of the regular vertices are counted in this step as well, but this can only
help us.

5 ALGORITHM FOR {0, 1, 2}-VC-SNDP

In this section, we prove the following theorem family of graphs.
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Theorem 5.1. There is anO (1)-approximation for node-weighted VC-SNDPwhen the requirements

are in {0, 1, 2} and the input graph belongs to a proper minor-closed family of graphs.

We construct a solution in two stages. In the first stage, we use an algorithm for node-weighted
Steiner forest to find a setX1 ⊆ V of nodes such thatG[X1] connects each pairuv with r (u,v ) ≥ 1.
A constant factor approximation for this in proper minor-closed families of graphs follows from
prior work that we already discussed [13, 30]. Letting OPT denote the weight of an optimum solu-
tion for the initial instance, it is straightforward to see thatw (X1) = O (OPT). Let F be the edge set
of the graph E[X1]. In the second stage, we augment X1 to 2-connect pairs (s, t ) with connectivity
requirement 2. For the second stage, as with Elem-SNDP, we define a {0, 1}-biuncrossable function
h and a graphG ′ = (V ,E \ F ). Let Pvc be the collection of all bisets overV . The requirement func-
tion rv : Pvc → {0, 1, 2} for each biset Ŝ is defined as the maximum connectivity requirement over
all pair of vertices that are separated by Ŝ . Leth : Pvc → {0, 1} be the function such thath(Ŝ ) = 1 iff
rv (Ŝ ) = 2 and |δF (Ŝ ) | + |bd(Ŝ ) | = 1. By Menger’s theorem on vertex connectivity, a feasible cover
of hv together with F is a feasible solution for the VC-SNDP instance. For the second stage, we
are only interested in those pairs (s, t ) such that r (s, t ) = 2 while s and t are only 1-connected in
G[X1]. We call a vertex u a terminal for the second stage if it participates in such a pair.

Proposition 5.2 (Lemma 5.1 in [15]). The function rv is biuncrossable.

Proposition 5.3. The function rv is bimaximal.

Proof. Let Ŝ, T̂ ∈ Pvc and let (s, t ) be a pair of terminals that have the maximum connectivity
requirement among all terminal pairs separated by Ŝ ∪ T̂ , i.e., rv (Ŝ ∪ T̂ ) = r (s, t ). Since s ∈ Sin ∪Tin,
we have s ∈ Sin or s ∈ Tin; without loss of generality, assume s ∈ Sin. Since t ∈ V \ (Sout ∪Tout), the
pair (s, t ) is separated by Ŝ and thus rv (Ŝ ∪ T̂ ) ≤ rv (Ŝ ) ≤ max{rv (Ŝ ), rv (T̂ )}. �

Lemma 5.4. The function h is biuncrossable.

Proof. By Lemma 2.12, |δF (.) | is bisubmodular and by Proposition 2.9, |bd(.) | is bisubmodular.
If h(Ŝ ) = h(T̂ ) = 1, then rv (Ŝ ) = rv (T̂ ) = 2, and |δF (Ŝ ) | + |bd(Ŝ ) | = |δF (T̂ ) | + |bd(T̂ ) | = 1.
Since rv is biuncrossable (Proposition 5.2),

rv (Ŝ ) + rv (T̂ ) ≤ max{rv (Ŝ ∩ T̂ ) + rv (Ŝ ∪ T̂ ), rv (Ŝ \ T̂ ) + rv (T̂ \ Ŝ )}.

Without loss of generality, assume that rv (Ŝ ) + rv (T̂ ) ≤ rv (Ŝ ∩ T̂ ) + rv (Ŝ ∪ T̂ ), which by the upper
bound of 2 on the connectivity requirements implies that rv (Ŝ ∩ T̂ ) = rv (Ŝ ∪ T̂ ) = 2.
Moreover, since |δF (.) | and |bd(.) | are both bisubmodular, |δF (Ŝ ) | + |bd(Ŝ ) | + |δF (T̂ ) | +
|bd(T̂ ) | ≥ |δF (Ŝ ∩ T̂ ) | + |bd(Ŝ ∩ T̂ ) | + |δF (Ŝ ∪ T̂ ) | + |bd(Ŝ ∪ T̂ ) |. Since the edge set F connects all
pair of terminals with non-zero connectivity requirements, both |δF (Ŝ ∩ T̂ ) | + |bd(Ŝ ∩ T̂ ) |, |δF (Ŝ ∪
T̂ ) | + |bd(Ŝ ∪ T̂ ) | are at least 1. Hence, |δF (Ŝ ∩ T̂ ) | + |bd(Ŝ ∩ T̂ ) | = |δF (Ŝ ∪ T̂ ) | + |bd(Ŝ ∪ T̂ ) | = 1.

The other case holds similarly and thus h is biuncrossable. �

Next, we prove analogues of Lemmas 3.7 and 3.8, which show that h satisfies the key properties
that allowed us to use and analyze the primal-dual algorithm from Section 4.

Lemma 5.5. For any X ⊃ X1 let H
′
X
= (V ,EG′[X ]) be a subgraph of G ′. Suppose Ĉ is a violated

biset of H ′
X
with respect to h. Then bd(Ĉ ) ⊆ X .

Proof. We useH ′ in place ofH ′
X
for ease of notation. Suppose Ĉ is a violated biset with respect

toh inH ′ and there is a vertexu ∈ bd(Ĉ ) such thatu � X . Consider the biset Ĉ1 = (C, bd(Ĉ ) \ {u}).
Note that u is not a terminal and hence rv (Ĉ1) = rv (Ĉ ) = 2. Since Ĉ is a violated biset in H ′, we
have |bd(Ĉ ) | + δH ′ (Ĉ ) = 1 and, since |bd(Ĉ ) | ≥ 1 (sinceu is in the boundary), we have δH ′ (Ĉ ) = ∅.
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Consider the bisets Ĉ and Ĉ1 in the graph H1 = (V ,E[X1]). Since rv (Ĉ ) = 2 and Ĉ is violated in H ′,
we have |bd(Ĉ ) | + |δH1 (Ĉ ) | = 1 but then |bd(Ĉ1) | + |δH1 (Ĉ1) | = 0, since u has no edges incident to
it in H1. Since rv (Ĉ1) = 2 this implies that H1 is not a feasible solution to 1-connect the terminals
in the first stage, a contradiction. �

Lemma 5.6. For any X ⊃ X1 let H
′
X
= (V ,EG′[X ]) be a subgraph of G ′. Suppose Ĉ is a minimal

violated biset of H ′
X
with respect to h. Then the following properties hold:

• Cout ⊆ X .

• G[Cin] is a connected subgraph of G.

Proof. For ease of notation, we letH ′ denote the graphH ′
X
. Since Ĉ is a violated biset inH ′, we

have h(Ĉ ) = 1 and |δH ′ (Ĉ ) | = 0. From the definition of h, rv (Ĉ ) = 2 and |bd(Ĉ ) | + |δG[X ] (Ĉ ) | = 1.
Suppose there is a vertexu ∈ Cout such thatu � X . By Lemma 5.5,u ∈ Cin. First,u is not a terminal,
since all terminals are in X1 (and hence in X ). Second u is an isolated vertex in H ′, since the
only edges in H ′ are between nodes in X . Consider the biset Ĉ1 = (Cin \ {u},Cout \ {u}) obtained
from Ĉ by removing u from both inner and outer parts of Ĉ . Since u is not a terminal, we have
rv (Ĉ ) = rv (Ĉ1). And, since u is isolated in H ′, we have δH ′ (Ĉ1) = δH ′ (Ĉ ), and bd(Ĉ1) ⊆ bd(Ĉ ).
These facts imply that Ĉ1) = 1 and Ĉ1 is a violated biset in H ′. This contradicts minimality of Ĉ .
Therefore, Cout ⊆ X .
Next, we prove that G[Cin] is connected. For sake of contradiction, suppose it is not. Let C1,C2

be two non-empty sets that partition Cin such that there is no edge between C1 and C2 in G;
such a partition exists if G[Cin] is not connected. Note that EH ′ (C1,C2) = ∅, since H ′ is a sub-
graph ofG. Define Ĉ1 = (C1,C1 ∪ bd(Ĉ )) and Ĉ2 = (C2,C2 ∪ bd(Ĉ )). Since rv is bimaximal, rv (Ĉ ) ≤
max{rv (Ĉ1), rv (Ĉ2)}. Thus, without loss of generality, we can assume that rv (Ĉ1) ≥ rv (Ĉ ) ≥ 2. Since
EH ′ (C1,C2) = ∅, we have δH ′ (Ĉ1) ⊆ δH ′ (Ĉ ). Since bd(Ĉ1) = bd(Ĉ ) and Ĉ was a violated biset it
follows that Ĉ1 is also a violated biset with respect to h in H ′. This contradicts the minimality
of Ĉ . �

For any X ⊇ X1 finding minimal violated bisets of h with respect to the graph H ′
X
can be easily

done in polynomial time via Max-Flow algorithms.
The function h satisfies the same properties as those that arise in the augmentation framework

for Elem-SNDP and, hence, we can apply the primal-dual algorithm and analysis as captured by
Theorem 4.1. The algorithm outputs a node setQ such thatG[Q] coversh andw (Q \ X ) = O (OPT).
Sincew (X ) = O (OPT), we have thatw (Q ∪ X ) = O (OPT). For planar graphs, we can obtain a con-
crete upper bound of 13OPT using the 3-approximation for the first stage and a 10-approximation
for the second stage.

6 CONCLUDING REMARKS

We obtained approximation algorithms for node-weighted network design in planar and minor-
closed families of graphs when the connectivity requirements are larger than one. We built upon
the insights from [13] as well as prior work via the augmentation framework for SNDP. The anal-
ysis of the primal-dual algorithm that we present is probably not tight and it would be interesting
to obtain the tightest bound one can prove for the algorithm. It may be possible to borrow ideas
from [4] and alter the algorithm to obtain improved approximation ratios. For general VC-SNDP,
we obtain an improvement over the general graph case via our algorithm for EC-SNDP and a
black-box reduction of [11]. For two important special cases of VC-SNDP, namely, Rooted-VC-
SNDP and Subset-VC-SNDP,O (k logk )-approximations are known in the edge-weighted case [29,
32] and the node-weighted case requires an additional O (logn)-factor. It would be interesting
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to show that this additional factor is unnecessary in planar graphs—we note that the results
in [29, 32] are based on the augmentation framework and hence some of our ideas may be
applicable.
Finally, it is an interesting question whether there is anO (1)-approximation for node-weighted

EC-SNDP and other network design problems in planar graphs. Is the dependence on k necessary?
Recall that, for general graphs, we expect a dependence on k via the hardness reduction from the
k-Densest-Subgraph problem [31]. However, k-Densest-Subgraph is constant-factor approximable
in planar graphs.
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