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a b s t r a c t

Consider a connected graph G and let T be a spanning tree of G. Every edge e ∈ G− T
induces a cycle in T ∪{e}. The intersection of two distinct such cycles is the set of edges
of T that belong to both cycles. We consider the problem of finding a spanning tree
that has the least number of such non-empty intersections. In this article we analyze
the particular case of complete graphs, and formulate a conjecture for graphs that have
a universal vertex.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

In this article we present what we believe is a new problem in graph theory, namely the Minimum Spanning Tree
ycle Intersection (MSTCI) problem which arose while investigating a (yet unpublished) method for mesh deformation in
he area of digital geometry processing, see [2].

The problem can be expressed as follows. Let G be a graph and T a spanning tree of G. Every edge e ∈ G− T induces a
ycle in T ∪ {e}. The intersection of two distinct such cycles is the set of edges of T that belong to both cycles. Consider
he problem of finding a spanning tree that has the least number of such pairwise non-empty intersections.

The remainder of this section is dedicated to express the problem in the context of the theory of cycle bases, where
t has a natural formulation, and to describe an application. Section 2 sets some notation and convenient definitions. In
ection 3 the complete graph case is analyzed. Section 4 presents a variety of interesting properties, and a conjecture
n the slightly general case of a graph (not necessarily complete) that admits a star spanning tree. Section 5 explores
rogrammatically the space of spanning trees to provide evidence that the conjecture is well posed. Section 6 collects the
onclusions of the article.

.1. Cycle bases

The study of cycles of graphs has attracted attention for many years. To mention just three well known results consider
eblen’s theorem [15] that characterizes graphs whose edges can be written as a disjoint union of cycles,Maclane’s planarity
riterion [11] which states that planar graphs are the only to admit a 2-basis, or the polygon matroid in Tutte’s classical
ormulation of matroid theory [14].
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The set of cycles of a graph has a vector space structure over Z2, in the case of undirected graphs, and over Q, in the
ase of directed graphs [9]. A basis of such a vector space is denoted cycle basis and its dimension is the cyclomatic number
= |E| − |V | + |CC | where E, V ad CC are the set of edges, vertices and connected components of the graph, resp. Given
cycle basis B we can define its cycle matrix Γ ∈ K |E|×ν where K is the scalar field (i.e.: Z2 or Q), as the matrix that has

the cycles of B as columns.
Different classes of cycle bases can be considered. In [10] the authors characterize them in terms of their corresponding

cycle matrices and present a Venn diagram that shows their inclusion relations. Among these classes we can find the strictly
fundamental class.

The length of a cycle is its number of edges. The minimum cycle basis (MCB) problem is the problem of finding a cycle
basis such that the sum of the lengths (or edge weights) of its cycles is minimum. This problem was formulated by
Stepanec [13] and Zykov [16] for general graphs and by Hubicka and Syslo [8] in the strictly fundamental class context.
In more concrete terms this problem is equivalent to finding the cycle basis with the sparsest cycle matrix. In [9] a
unified perspective of the problem is presented. The authors show that the MCB problem is different in nature for each
class. For example in [3] a remarkable reduction is constructed to prove that the MCB problem is NP-hard for the strictly
fundamental class, while in [7] a polynomial time algorithm is given to solve the problem for the undirected class. Some
applications of the MCB problem are described in [1,3,7,9].

A related problem not covered in the literature (as far as we know) is to consider the sparsity of the grammian matrix of
a cycle matrix. Let B = (C1, . . . , Cν) be a cycle basis with corresponding cycle matrix Γ . The grammian of Γ is Γ̂ = Γ tΓ .
We will denote Γ̂ the cycle intersection matrix of B. It is easy to check that the ij-entry of Γ̂ is 0 if and only if the cycles
Ci and Cj do not intersect (i.e.: they have no edges in common). It can be formulated as follows:

Problem. Let G be a (directed) graph, find a cycle basis B with corresponding cycle matrix Γ such that the grammian
Γ̂ = Γ tΓ is sparsest.

In this context the MSTCI problem corresponds to the particular case of bases that belong to the strictly fundamental
class.

1.2. An application

Let G = (V , E) be a directed connected graph and w : E → R be an edge function. We call w a discrete 1-form on G.
Integrating w is the problem of finding a vertex function x : V → R minimizing the error:

E(x) =
∑
eij∈E

∥dx(eij)− w(eij)∥2.

where dx : E → Rn is defined as

dx(eij) := x(vj)− x(vi).

on every directed edge eij := vi → vj, and is called the differential of x. Note that w has the following property:
w(eij) = −w(eji), where eji is the same underlying edge eij with opposite direction.

Given some consistent enumeration of the vertices and edges, the integration problem can be expressed in a compact
form:

argmin
x
∥Dx−w∥22.

where D ∈ {0, 1,−1}|E|×|V | is the directed incidence matrix of G, w ∈ R|E| is the evaluation of w on the edges and x ∈ R|V|
is the solution. From a geometric perspective Dx can be visualized as the orthogonal projection of w onto the subspace
generated by D. The rank of the directed incidence matrix is |V | − 1, its kernel is generated by 1 ∈ R|V |, the vector of
all 1’s. This degree of freedom can be geometrically interpreted as a rigid translation in the solution space. If we fix the
value of the 0-form at some vertex, we can eliminate this degree of freedom. More precisely, we can fix the value of the
first component of our solution vector: x(v1) = 0. This will be equivalent to eliminating the first column of D. Let D̂ be
this new matrix of dimension |E| × |V | − 1.

An alternative way to solve the integration problem is to extend D̂ to a basis of R|E|×|E| and solve a linear system:

M
[
x̂
y

]
=

[
D̂ D̂⊥

] [
x̂
y

]
=

[
D̂ Γ

] [
x̂
y

]
= w.

where x̂ is the solution vector x without its first component (because x(v1) = 0) and D̂⊥ is a set of generators of the
rthogonal complement of D̂. In this setting, a natural question is: how can we choose D̂⊥ such that M is as sparse as
ossible? An answer is given by considering the cycle matrix Γ of the minimum cycle basis B of G. It is easy to check that
he columns of Γ are orthogonal to the columns of D̂.
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Yet another way of solving the integration problem is to consider the Gram matrix (i.e.: M tM) of M . More precisely,
we can left multiply by M t in the previous equation:

M tM
[
x̂
y

]
=

[
D̂ Γ

]t [
D̂ Γ

] [
x̂
y

]
=

[
L̂ 0
0 Γ̂

][
x̂
y

]
= M tw.

where L̂ = D̂t D̂ is the lower right |V | − 1 × |V | − 1 submatrix of the laplacian matrix of G and Γ̂ = Γ tΓ is the
cycle intersection matrix of B. The same question can be formulated in this setting: how can we choose B such that its
corresponding cycle intersection matrix Γ̂ is as sparse as possible? In the particular case where the cycle basis is in fact
a strictly fundamental cycle basis, namely a cycle basis induced by a spanning tree, this is precisely the MSTCI problem.

2. Preliminaries

2.1. Overview

In the first part of this section we present some of the terms used in this article. Then, we define the notion of
closest-point and closest-point-set. Finally, we show a convenient cycle partition.

2.2. Notation

Let G = (V , E) be a graph and T a spanning tree of G. We will then refer to the edges e ∈ T as tree-edges and to the
e ∈ G− T ones as cycle-edges.

Every cycle-edge e induces a cycle in T ∪ {e}, which we will call a tree-cycle. We will name CT to the set of tree-cycles
of T .

The intersection of two tree-cycles is the set of edges of T that belongs to both cycles. We will define three functions
concerning the intersection of tree-cycles.

The first is ∩T (·, ·) : CT × CT → {0, 1}

∩T (ci, cj) :=
{
1 ci ∩ cj ̸= ∅ ∧ ci ̸= cj.
0 ci ∩ cj = ∅ ∨ ci = cj.

As every tree-cycle intersects with itself, the case ci = cj is excluded to focus on non-trivial intersections. This
consideration will simplify future computations.

The second is ∩T (·) : CT → N

∩T (ci) :=
∑
cj∈CT

∩T (ci, cj).

We will call ∩T (c) the cycle intersection number of c. Given a tree-cycle c we will denote ∩T ,c as the set of tree-cycles
that have non-empty intersection with c. More precisely:

∩T ,c ≡ {c ′ ∈ CT : ∩T (c, c ′) = 1}.

Note that |∩T ,c | = ∩T (c).
In order to define the third function, consider TG to be the set of spanning trees of G, therefore the definition will be

as follows: ∩G : TG → N

∩G(T ) :=
1
2

∑
c∈CT

∩T (c).

We will call ∩G(T ) the tree intersection number of T .
If the graph is clear from the context, we could remove the subindex and just write ∩(T ).
We shall call star spanning tree to one that has one vertex that connects to all other vertices, and Kn to the complete

raph on n nodes. If G = (V , E) we will say that |V | = n is the number of vertices of G, |c| = k is the length of the cycle
c and |p| is the length of the path p. Thus, uTv will denote the unique path between u, v ∈ V in the spanning tree T ; and
dT (v) will be the degree of v ∈ V relative to it. Whereas N(v) will be the set of neighbor nodes of v ∈ V and finally, the
terms ‘‘node’’ and ‘‘vertex’’ will be used interchangeably.

2.3. Closest point

In this section we prove the following simple fact: if G = (V , E) is a connected graph, T a spanning tree of G and c ∈ CT
a tree-cycle, then for every node v ∈ V there is a unique node w ∈ c that minimizes the distance to v in T . We shall
enote that node closest − point(v, c).
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emma 1. Let G = (V , E) be a connected graph, T a spanning tree of G and c ∈ CT a tree-cycle. Then for every node v ∈ V
here exists a unique node w ∈ c such that

|vTw| ≤ |vTu| ∀u ∈ c.

roof. The proof proceeds by contradiction. If v ∈ c , it is its own unique closest point. Suppose that v /∈ c and that there
are two distinct nodes w, w′ ∈ c such that |vTw| = |vTw′| ≤ |vTu| ∀u ∈ c , note that w′ /∈ vTw and w /∈ vTw′. We
conclude that vTw ∪ wTw′ ∪ vTw′ determines a cycle in T which contradicts the fact that T is a tree. □

The uniqueness of the closest − point(v, c) leads to the following definition.

Definition 2. Let G = (V , E) be a connected graph, T a spanning tree of G and c ∈ CT a tree-cycle, then the set of closest
points to a node w ∈ c is defined as follows:

closest − point − set(w, c) := {v ∈ V − c : closest − point(v, c) = w}.

2.4. Tree cycle intersection partition

Now we define a partition of the set ∩T ,c . More precisely, let G be a connected graph, T a spanning tree of G and c ∈ CT
tree-cycle. As mentioned above, the set ∩T ,c is the set of tree-cycles that have non-empty intersection with c.
Let us consider any tree-cycle c ′ ∈ ∩T ,c induced by a cycle-edge e = (v, w). In this setting we can define the following

artition:

• Internal tree-cycles: c ′ is internal if v, w ∈ c.
• External tree-cycles: c ′ is external if v /∈ c and w ∈ c.
• Transit tree-cycles: c ′ is transit if v, w /∈ c .

Let us denote the set of cycles of each type ∩i
T ,c , ∩

e
T ,c , ∩

t
T ,c , respectively. This partition will be convenient to simplify

he computation of the intersection number of c.

.5. Important remark

There is an alternative point of view that may clarify some of the proofs of this article. Instead of considering tree-cycles
s the central object, this point of view considers paths in the spanning tree. More precisely let G be a connected graph,
∈ TG a spanning tree and e1,= (v1, w1), e2 = (v2, w2) ∈ E two distinct cycle-edges with corresponding tree-cycles c1, c2.

Then the following holds: c1 ∩ c2 = (v1Tw1)∩ (v2Tw2). Consequently, it is equivalent to consider tree-cycle intersections
nd intersection of paths in the spanning tree.

. Tree cycles of complete graphs

.1. Overview

In this section we analyze the complete graph case G = Kn (n ≥ 3). First we deduce a formula to compute the cycle
ntersection number. Then we prove that the tree-cycles of a star spanning tree achieve the minimum cycle intersection
umber. Finally, we conclude that the star spanning trees are the unique solutions of the MSTCI problem.

.2. Cycle intersection number formula

In this subsection we consider the problem of finding a formula to count tree-cycle intersections. More precisely, let
= Kn, T a spanning tree of G and c a tree-cycle, we intend to derive a formula to calculate ∩T (c).
The idea behind the formula is to consider the partition of ∩T ,c , defined in the previous section, and then by

ombinatorial arguments, compute the number of elements in each class.
We shall analyze in turn the three classes: ∩i

T ,c , ∩
e
T ,c , ∩

t
T ,c . In this section we will consider c ′ ∈ ∩T (c) to be a tree-cycle

nduced by a cycle-edge e = (v, w).
The simplest case is the internal tree-cycles class: ∩i

T ,c . Let c
′ be an internal tree-cycle. By definition the nodes v and

belong to c , so the following holds: (c ′ ∩ T ) ⊂ c because there is a unique path from v to w in T . So basically counting
he number of internal tree-cycles reduces to counting the pairings on the nodes of c excluding some obvious cases such
s the pairing of a node with itself and with its neighbors in c . Then the number of internal tree-cycles is:

|∩
i
T ,c | =

(k− 3)k
2

.

where k is, as before, equal to |c|. The quotient is obviously due to the fact that every cycle is counted twice.
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Next we consider the class of external tree-cycles. Now let c ′ be an external tree-cycle. In this case, by definition,
either v or w belong to c. Without loss of generality (as we are considering undirected edges), suppose that v /∈ c and
w ∈ c. Clearly w ̸= closest − point(v, c) because in that case c ′ ∩ c = ∅ and consequently c ′ /∈ ∩T ,c which contradicts
ur hypothesis. Since the aforementioned is the only particular case that should be excluded, the number of external
ree-cycles is:

|∩
e
T ,c | = (n− k)(k− 1).

where n = |V | is the number of vertices of G and k = |c| is the length of c .
Last we consider the class of transit tree-cycles. In this case the key observation depends on the closest − point − set

definition of the previous section. Let us define two classes of cycle-edges:

1. A cycle-edge e = (v, w) is called intraset cycle-edge if both v, w ∈ closest − point − set(ui, c) for some ui ∈ c
2. A cycle-edge e = (v, w) is called interset cycle-edge if v ∈ closest−point−set(ui, c) and w ∈ closest−point−set(uj, c)

where ui, uj ∈ c and ui ̸= uj

Then:

• Every intraset cycle-edge induces a tree-cycle c ′ such that c ′ ∩ c = ∅
• Every interset cycle-edge induces a tree-cycle c ′ such that c ′ ∩ c ̸= ∅

So we should consider interset cycle-edges or equivalently, the pairing of the nodes that are in different sets. Let
qi = |closest − point − set(wi, c)| be defined for all wi ∈ c , then the number of transit tree-cycles is:

|∩
t
T ,c | =

∑
i<j

qiqj =
1
2

k∑
i=1

qi(n− k− qi).

Finally, the intersection number formula is the aggregation of the three classes:

∩T (c) = |∩T ,c | = |∩
i
T ,c | + |∩

e
T ,c | + |∩

t
T ,c | =

(k− 3)k
2

+ (n− k)(k− 1)+
1
2

k∑
i=1

qi(n− k− qi).

here n is the number of vertices of G, k = |c| and qi = |closest − point − set(wi, c)| for wi ∈ c.

.3. Main result

In this subsection we start by defining transitless tree-cycles. Then we prove two lemmas. The first one shows that
or every cycle c ∈ G = Kn we can build a spanning tree T such that c is a tree-cycle of T and the intersection number
T (c) is minimum. And the second one calculates the intersection number of tree-cycles of star spanning trees. Finally,
e prove the main result of this section, namely that star spanning trees minimize ∩(·) in the case of complete graphs.

efinition 3. Let G = (V , E) be a connected graph, T a spanning tree of G and c ∈ CT a tree-cycle, we call c a transitless
ree-cycle if |∩t

T ,c | = 0.

As an important remark, note that the number of elements in the internal and external classes of c are independent
f the spanning tree because they depend exclusively on n = |V | and k = |c|. Thus, two spanning trees, T1 and T2, which
ave c as a tree-cycle, induce an intersection number (for c) that only differs in the quantity of elements in their transit
lasses. We conclude that transitless tree-cycles have minimum intersection number.

emma 4. Let G = Kn and c a cycle of G. Then, the following construction leads to a spanning tree T that minimizes the
ntersection number of c:

• Let e ∈ E such that e ∈ c.
• Let v ∈ V such that v ∈ c.
• Define the set of edges of T as follows:

E(T ) = {e′ ∈ E : e′ ∈ (c − e)} ∪ {(v, w) ∈ E : w ∈ V ∧ w /∈ c}.

roof. Note that T is a spanning tree of G, and c is a tree-cycle of T . Therefore, if we prove that |∩t
T ,c | = 0 then the

ntersection number ∩T (c) is minimum. This is the case:

• |closest − point − set(w, c)| = 0 ∀w ∈ c, w ̸= v.
• |closest − point − set(v, c)| = n− k.

So |∩t
T ,c | =

∑
i<j qiqj = 0. □
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emma 5. Let G = Kn and let Ts be a star spanning tree of G. Then the following property holds

∩Ts (c) = 2(n− 3).

or any tree-cycle c of Ts.

roof. Clearly the tree-cycles in Ts have the same intersection number (by symmetry). Let c be a tree-cycle of Ts. Note
hat c is a triangle (|c| = 3), so the corresponding internal tree-cycle class is empty: |∩i

T ,c | = 0. Being c a transitless
ree-cycle because its nodes are: the central node and two leaf nodes of Ts. Thus the external tree-cycle class is the only
on-empty one:

∩Ts (c) = |∩
e
Ts,c | = 2(n− 3).

roposition 6. Let G = Kn and let Ts be a star spanning tree of G. Then the following property holds

∩Ts (·) ≤ ∩T (·).

here T is any spanning tree of G.

roof. We shall proceed by contradiction. Suppose that a spanning tree T and a tree-cycle c of T exist such that:

∩T (c) < ∩Ts (·) = 2(n− 3).

We can assume that c is transitless because, if this were not the case, by Lemma 4 we could build a spanning tree T ′
uch that ∩T ′ (c) < ∩T (c). In this context the inequality can be expressed as

∩T (c) = |∩i
T ,c | + |∩

e
T ,c | =

(k− 3)k
2

+ (n− k)(k− 1) < 2(n− 3).

Expanding and simplifying the expression we have

−1
2

k2 + (n−
1
2
)k− 3n+ 6 < 0.

The roots of this quadratic polynomial are: r1 = 3 and r2 = 2(n− 2). We should consider two cases depending on the
relation of the roots:

1. r1 < r2.
2. r1 > r2.

The case r1 = r2 can be discarded because it leads to a fractional number of nodes (n = 7
2 ). In the first case the

nequality holds for k < r1 = 3 or k > r2 = 2(n−2). The case k < 3 is an obvious contradiction since the size of the cycle
must be |c| = k ≥ 3. The case k > 2(n− 2) combined with the fact that k ≤ n induces the following inequality

r1 = 3 < r2 = 2(n− 2) < k ≤ n.

hich implies a contradiction: 3 < n < 4, because n is a positive integer.
The second case (r1 = 3 > r2 = 2(n− 2)) implies n < 7

2 . So the only case that should be considered is k = n = 3 since
≤ n. However, this case makes the inequality false because k = 3 is a root of the quadratic polynomial. □

orollary 7. Let G = Kn and let Ts be a star spanning tree of G. Then the following property holds

∩(Ts) ≤ ∩(T ).

here T is any spanning tree of G.

roof. As expressed by Proposition 6, a tree-cycle of a star spanning tree has the minimum intersection number among
ll tree-cycles. Since any tree-cycle of a star spanning tree has the same intersection number, we conclude that the tree
ntersection number of a star spanning tree ∩(Ts) is minimum among all spanning trees. □

This corollary can be further improved to a strict inequality. In other words: star spanning trees are the unique
inimizers of ∩(T ).

orollary 8. Let G = (V , E) = Kn where |V | = n > 4 and let Ts be a star spanning tree of G. Then, the following property
olds

∩(Ts) < ∩(T ).

here T is any non-star spanning tree of G.
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roof. A careful reading of Proposition 6 leads to the conclusion that the equality ∩Ts (c) = ∩T (c) is achieved when k is
ither r1 = 3 or r2 = 2(n− 2) (the roots of the quadratic polynomial). If k = r2 = 2(n− 2), and taking into account that
≤ k ≤ n, we conclude that 7

2 ≤ n ≤ 4; this case is explicitly excluded from our hypotheses (in fact, it is not difficult to
check that the three non-isomorphic spanning trees of K4 have all the same tree intersection number).

The other possibility is k = r1 = 3. As all the tree-cycles of Ts fall into this category, it is enough to show that T has
tree-cycle c such that |c| = k > 3 to conclude our thesis. Let w ∈ V be a node with maximum degree in T . And let
T (w) denote the degree of w in T and N(w) to the set of neighbors of w in T . Since T is a non-star spanning tree then
≤ dT (w) < n − 1. So there is a node u ∈ V such that u /∈ N(w) in T , and there is a node k ∈ N(w) such that k /∈ wTu.
otice that the edge e = (u, k) /∈ T (as it would induce a cycle). Hence, it is a cycle-edge. Note that the tree-cycle induced
y e has length at least 4. □

This result can be summarized in the following way: star spanning trees are the unique solutions for the MSTCI problem
or complete graphs.

. Further generalization

.1. Overview

Now we explore some aspects of a slightly more general case, namely: the MSTCI problem in the context of a graph
not necessarily complete) G = (V , E) that admits a star spanning tree Ts. In the first part we present a formula to calculate
(Ts). In the second one we show that ∩(Ts) is a local minimum in the domain of what we refer to as the ‘‘spanning tree
raph’’. In the third we prove a result that suggests a general observation: the fact that a spanning tree of a graph G is a
olution for the MSTCI problem does not depend on an intrinsic property of T but on the particular embedding of T in G.
inally we conjecture a generalization of Corollary 7: ∩(Ts) ≤ ∩(T ) for every spanning tree T of G.

.2. Formulas for star spanning trees

In this subsection we present two formulas for graphs G = (V , E) that admit a star spanning tree Ts. Let us denote
∈ V to the central node of Ts.
The first formula corresponds to the cycle intersection number of a tree-cycle c = (u, v, w) ∈ CTs , namely ∩Ts (c).

Recall from the previous section that c intersects neither transit nor internal tree-cycles: |∩t
T ,c | = 0 and |∩i

T ,c | = 0. So its
on-empty intersections are the tree-cycles in the set ∩e

T ,c . Note that the remaining incident edges to u and w, are the
nly source of tree-cycles that have non-empty intersection with c . So the formula is straightforward:

∩Ts (c) = d(u)− 2+ d(w)− 2.

here d(u) and d(w) are the degrees of u and w, resp.
Now we shall deduce a formula for the tree intersection number ∩(Ts). Each edge (u, v) ∈ T is contained in d(u) − 1

ree-cycles, choosing two of them gives all the possible intersections equal to (u, v). The formula is as follows:

∩(Ts) =
∑

u∈V−{v}

(
d(u)− 1

2

)
=

1
2

∑
u∈V−{v}

(d(u)− 1)(d(u)− 2) =
1
2

∑
u∈V−{v}

d(u)2 − 3d(u)+ 2.

If we denote d as the degree vector of G, that is, a vector that has in the ith component the degree of the ith vertex.
nd taking into account that

∑
u∈V d(u) = 2m then, the formula can be expressed as:

∩(Ts) =
1
2
[∥d∥22 − 6m− (n− 1)(n− 6)].

4.3. Star spanning tree as a local minimum

In this subsection we prove that a star spanning tree is a local minimum respect to the tree intersection number in the
domain of the spanning tree graph. We start by defining this second order graph of the original one G = (V , E). Then we
analyze the structure of the neighbors of a star spanning tree Ts. Finally we demonstrate the result by a bijection between
tree-cycles to conclude that ∩(Ts) is a local minimum.

Definition 9. Let G = (V , E) be a graph, and S a subgraph of G. We denote as e ↔ e′ to the operation of replacing the
edge e ∈ S with the edge e′ ∈ G− S. We call this operation edge replacement on S.

Definition 10. Let G = (V , E) be a graph. We denote SPG to the graph that has one node for every spanning tree of G
and an edge between two nodes, if the corresponding spanning trees differ in exactly one edge replacement. We call this
graph the spanning tree graph of G.
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.3.1. Neighborhood of Ts
Let G = (V , E) be a graph that admits a star spanning tree Ts with v ∈ V as its center. Let αTs

be the node corresponding
o Ts in SPG and let αT (with corresponding spanning tree T ) be any neighbor of αTs

. By definition Ts and T differ in exactly
ne edge replacement e ↔ e′ where e = (v, w) ∈ Ts and e′ = (u, w) ∈ T . Note that T is exactly the same as Ts except
hat the node w is no longer connected to the central node v but to the intermediate node u. This similar structure has
irect consequences in the intersection numbers of both trees.
Now we prove the result of this section.

heorem 11. Let G = (V , E) be a graph that admits a star spanning tree Ts with v ∈ V as its center. Then, Ts is a local
inimum with respect to the tree intersection number in the domain of SPG .

roof. Let T be a spanning tree corresponding to a neighbor of Ts in SPG . We want to prove that ∩(Ts) ≤ ∩(T ). Therefore,
e shall proceed by defining a bijection between the tree-cycles of both trees {c ↔ d : c ∈ CTs

∧ d ∈ CT } such that
Ts
(c) ≤ ∩T (d), this strategy clearly implies the thesis since by definition:

∩(Ts) =
1
2

∑
c

∩Ts (c) ≤
1
2

∑
d

∩T (d) = ∩(T ).

Let eTs ↔ eT with eTs = (v, w) ∈ Ts and eT = (u, w) ∈ T be the edge replacement in SPG . Consider the following simple
facts:

• eT is a cycle-edge in Ts, with corresponding tree-cycle c.
• eTs is a cycle-edge in T , with corresponding tree-cycle d.
• Except for eTs and eT , Ts and T have the same set of cycle-edges. For every e ∈ E− Ts− T we denote ce and de to the

corresponding tree-cycles in Ts and T , resp.

According to this naming convention, we can define the following ‘‘natural’’ bijection between tree-cycles:

{c ↔ d} ∪ {ce ↔ de : e ∈ E − Ts − T }.

In order to compare the intersection numbers of the bijected pairs it is convenient to distinguish the following partition:

• Case 1: the pair induced by the edge replacement, {c ↔ d}.
• Case 2: pairs induced by cycle-edges non-incident to u nor to w, {ce ↔ de : e ∈ E − Ts − T ∧ u /∈ e ∧ w /∈ e}.
• Case 3: pairs induced by cycle-edges incident to u or w, {ce ↔ de : e ∈ E − Ts − T ∧ (u ∈ e ∨ w ∈ e)}.

Case 1 is the easiest: note that c and d are the same tree-cycle (u, v, w), which is a transitless triangle, so its intersection
number is determined by its external intersections:

∩Ts
(c) = d(u)− 2+ d(w)− 2 = ∩T (d).

Case 2 is similar, let e = (h, k) be a cycle-edge non-incident to u or to w and ce ↔ de its corresponding pair of bijected
tree-cycles. Clearly e determines the transitless triangle (h, v, k) both in Ts and T and as dTs

(h) = dTs
(k) = dT (h) = dT (k) =

1, then every other edge incident to h or k induces a tree-cycle that intersects (h, v, k). We conclude that:

∩Ts
(ce) = d(h)− 2+ d(k)− 2 = ∩T (de).

Case 3 is the one that should be analyzed more carefully. As we already know how to calculate intersection numbers
of tree-cycles in Ts, we will focus on the tree-cycles of T and divide this partition in two sub-partitions:

• Case 3.1: pairs induced by cycle-edges incident to u, {ce ↔ de : e ∈ E − Ts − T ∧ u ∈ e}.
• Case 3.2: pairs induced by cycle-edges incident to w, {ce ↔ de : e ∈ E − Ts − T ∧ w ∈ e}.

In case 3.1 the situation is as follows: the cycle-edge e = (u, k) defines the tree-cycle ce = de = (u, v, k) (both in T
and Ts). The important details are:

• dT (u) = 2: u induces d(u)− 3 intersections.
• dT (k) = 1: k induces d(k)− 2 intersections.
• dT (w) = 1: w induces d(w)− 1 intersections.
• d(w) ≥ 2 since it is connected at least to u and v in G.
• w may have an incident cycle-edge connecting it to k, so we should avoid counting twice that intersection.

Now we claim that

∩T (de) ≥ d(u)− 3+ d(k)− 2+ d(w)− 1− ϵ(w, k) ≥ d(u)− 2+ d(k)− 2 = ∩Ts
(ce).

where

ϵ(w, k) =
{
1 (w, k) ∈ E.
0 otherwise.
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The inequality follows since d(w)− 1− ϵ(w, k) ≥ 1.
In case 3.2 the situation is as follows: the cycle-edge e = (w, h) defines the tree-cycle de = (w, u, v, h) in T and

e = (w, v, h) in Ts. The important details are:

• dT (u) = 2: u induces d(u)− 2 intersections.
• dT (h) = 1: h induces d(h)− 2 intersections.
• dT (w) = 1: w induces d(w)− 2 intersections.
• u may have an incident cycle-edge connecting it to h, so we should avoid counting twice that intersection.

And we claim that

∩T (de) ≥ d(w)− 2+ d(h)− 2+ d(u)− 2− ϵ(u, h) ≥ d(w)− 2+ d(h)− 2 = ∩Ts
(ce).

The inequality follows since d(u)− 2− ϵ(u, h) ≥ 0. □

.4. Intrinsic tree invariants

In this subsection we consider the following question: is there any correlation between an intrinsic tree invariant
nd the tree intersection number of the spanning trees for every graph? If so we could formulate an alternative
haracterization of the MSTCI problem expressed in terms of the invariant.
By intrinsic tree invariant we denote a map f : T → R on the set of all trees. Of particular interest are the degree-based

opological indices [6]. The topological index that motivated our question is the atom-bond connectivity (ABC) index [4].
s shown by [5] the star trees are maximal among all trees respect to the ABC index. In the previous section we proved
hat in the complete graph the star spanning trees are minimal respect to the tree intersection number. Consequently we
an formulate a natural question: is there a negative correlation between the ABC index of the spanning trees and their
orresponding intersection numbers?
We will prove that the answer to our question is negative. Without loss of generality we will consider positive

orrelation (negative correlation is analogous). The underlying idea of the proof is as follows: suppose that there exists
n intrinsic tree invariant f : T → R such that for every graph G the intersection number ∩(·) is positively correlated
ith f . This can be expressed as:

f (T1) ≤ f (T2) ⇐⇒ ∩G(T1) ≤ ∩G(T2),∀G, T1, T2.

According to this property if we consider two trees T1 and T2 and two graphs G and H such that T1, T2 ∈ TG and
1, T2 ∈ TH , then this equivalence follows:

∩G(T1) ≤ ∩G(T2) ⇐⇒ ∩H (T1) ≤ ∩H (T2).

So it suffices to show that there exist T1, T2, G and H such that the equivalence is not satisfied to answer the question
egatively.
First we prove a simple lemma regarding the tree intersection number of a spanning tree T under the removal of a

ycle-edge. Namely, if a cycle-edge e is removed from G then the tree intersection number of T decreases exactly in the
ntersection number of its corresponding tree-cycle.

emma 12. Let G = (V , E) be a graph, T ∈ TG a spanning tree, e ∈ G− T a cycle-edge, and c the corresponding tree-cycle,
hen the following holds:

∩G−e(T ) = ∩G(T )− ∩T (c).

roof. As the spanning tree T is the same in both G and G− e, the remaining cycle-edges define the same tree-cycles so
heir pairwise intersection relations are identical. As c is not a cycle in G− e then the equality follows. □

heorem 13. There is no intrinsic tree invariant f : T → R positively correlated with the intersection number ∩G(·) for
very graph G.

roof. We will proceed by contradiction: let f be such an intrinsic tree invariant. Then by definition for arbitrary graphs
and H the following equivalences hold

f (T1) ≤ f (T2) ⇐⇒ ∩G(T1) ≤ ∩G(T2).

f (T1) ≤ f (T2) ⇐⇒ ∩H (T1) ≤ ∩H (T2).
here T1, T2 ∈ TG and T1, T2 ∈ TH . This in turn implies that

∩G(T1) ≤ ∩G(T2) ⇐⇒ ∩H (T1) ≤ ∩H (T2).

The proof will be based on showing two graphs and two spanning trees such that the latter equivalence is not valid.
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• Let G be the complete graph Kn.
• Let H be the graph Kn − {ei,1, . . . , ei,n−3}. where the edges ei,1, . . . , ei,n−3 are n− 3 edges incident to some arbitrary

node vi. We will refer to vi as the almost disconnected node of H . Note that d(vi) = 2.
• Let T1 be the star spanning tree Ts.
• Let T2 be the spanning tree defined as Ts − {ei} ∪ {ei,j}, where ei is the edge that connects some arbitrary node vi (in

H this role will be played by the almost disconnected node) to the center of the star and ei,j is an edge that connects
vi to a different node vj.

It is easy to check that T1 and T2 are spanning trees of both G and H . If we also suppose that |V | = n > 4 then by
Corollary 8

∩G(T1) < ∩G(T2).

By the previous equivalence it is expected that ∩H (T1) < ∩H (T2) as well. But we will show that this is not the case.
By a suitable labeling of the nodes of H we can refer to: the center of the star spanning tree as v1, the almost

isconnected node of H as v2 and the other neighbor of v2 as v3. By Lemma 12 we have that

∩H (T1) = ∩H−e2,3
(T1)+ ∩T1 (c2,3 ).

∩H (T2) = ∩H−e1,2
(T2)+ ∩T2 (c1,2 ).

here c2,3 and c1,2 are the tree-cycles induced by e2,3 and e1,2 in T1 and T2, resp. The remaining tree-cycles corresponding
o both trees are the same then

∩H−e2,3
(T1) = ∩H−e1,2

(T2).

And this implies the following

∩H (T1)− ∩H (T2) = ∩T1 (c2,3 )− ∩T2 (c1,2 ).

It is an easy exercise to check that

∩T1 (c2,3 ) = ∩T2 (c1,2 ) = d(v3)− 2 = n− 3.

At this point we can conclude that

∩H (T1) = ∩H (T2).

Contradicting the fact that f is positively correlated with the tree intersection number for every graph. □

The underlying key fact of this result is that a spanning tree T that solves the MSTCI problem for a graph G does not
epend on intrinsic properties of T but on the embedding of T in G.
Note that as an interesting side effect this demonstration shows that a star spanning tree is not necessarily a strict

ocal minimum in the spanning tree graph (see previous subsection).

.5. Intersection number conjecture

In this subsection we present the conjecture ∩(Ts) ≤ ∩(T ) for every spanning tree T which generalizes Theorem 11.
hen we explore two ideas to simplify a hypothetical counterexample of the conjecture. The first is based on the notion
f interbranch cycle-edge. We show that if a non-star spanning tree T exists such that ∩(T ) < ∩(Ts), then the inequality
ust hold if we remove the interbranch cycle-edges. The second is based on the notion of principal subtree. In this case
e show that the inequality must hold for some principal subtree of T . These ideas will be of practical use in the next
ection.

.5.1. The conjecture statement
We present below the conjecture that generalizes the case of complete graphs.

onjecture 14. Let G = (V , E) be a graph that admits a star spanning tree Ts, then

∩(Ts) ≤ ∩(T ).

or every spanning tree T ∈ TG.

As an important remark, a demonstration of this result seems difficult if approached by a local-to-global strategy as
n the complete graph case exposed previously.
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.5.2. Counterexample simplification
In this part we consider some ideas to simplify a hypothetical counterexample of Conjecture 14.
Below we define the notion of interbranch cycle-edge.

efinition 15. Let G = (V , E) be a graph that admits a star spanning tree Ts and let v ∈ V be the center of Ts. Let T ∈ TG be
spanning tree. We call interbranch cycle-edge of T to any cycle-edge of T , e = (u, w), such that closest−point(v, c) ̸= u, w,
here c is the induced tree-cycle of e in T .

The intuition behind this definition is that the paths vTu and vTw belong to different branches with respect to v, more
recisely, vTu ̸⊂ vTw and vTw ̸⊂ vTu. The following lemmas show that if we can find a counterexample to Conjecture 14
i.e.: ∩(T ) < ∩(Ts)) then we can build a simpler one removing the interbranch cycle-edges of T from G.

emma 16. Let G = (V , E) be a graph that admits a star spanning tree Ts with v ∈ V as its center. Let T ∈ TG be a spanning
ree and e = (u, w) ∈ ∆T an interbranch cycle-edge of T , then e is a cycle-edge of Ts.

roof. Since v ̸= u, w by definition of interbranch cycle-edge, then u and w are leaves of Ts and consequently e is a
ycle-edge of Ts. □

emma 17. Let G = (V , E) be a graph that admits a star spanning tree Ts with v ∈ V as its center. Let T ∈ TG be a spanning
tree and e = (u, w) ∈ ∆T an interbranch cycle-edge of T , then

∩Ts
(c) ≤ ∩T (c

′).

where c and c ′ are the tree-cycles induced by e in Ts and T , resp.

Proof. By the intersection number formula we have that ∩Ts
(c) = d(u)− 2+ d(w)− 2.

In order to prove that ∩Ts
(c) = d(u) − 2 + d(w) − 2 ≤ ∩T (c

′) we have to consider the set of neighbors of u and w
n G. We will consider only the set N(w) because the same argument is valid for N(u). Below we will show that N(w)
ontributes with at least d(w)− 2 tree-cycles to ∩T (c

′).
Let h ̸= u ∈ N(w) be the other neighbor of w in c ′(i.e. (h, w) ∈ c ′). Note that the edge (h, w) ∈ vTw because

he definition of interbranch cycle-edge requires that closest − point(v, c ′) ̸= w. More concretely, h is the immediate
redecessor of w in vTw. We intend to show that for every vertex k ∈ N(w) − {h, u} there is a distinct tree-cycle in T
ith non-empty intersection respect to c’, thus achieving the claimed bound. We will consider the following cases:

1. vTw ⊂ vTk.
2. vTk ⊂ vTw.
3. vTw ̸⊂ vTk and vTk ̸⊂ vTw.

In the first case vTw is a subpath of vTk, then the edge (v, k) is a cycle-edge of T that determines a tree-cycle that
ontains the edge (h, w).
In the second case vTk is a subpath of vTw, then the edge (w, k) is a cycle-edge of T that determines a tree-cycle that

ontains the edge (h, w).
In the third case there is no proper inclusion between vTw and vTk, then the edge (w, k) is a cycle-edge of T that

etermines a tree-cycle that contains the edge (h, w).
To check that the tree-cycles induced in this way by N(w) and N(u) are all distinct, note that in cases 2 and 3 the

orresponding cycle-edges are incident either to u or to w. And case 1 cannot occur simultaneously (vTw ⊂ vTk and
Tu ⊂ vTk) because closest − point(v, c ′) ̸= u, w.
So the claimed inequality follows. □

emma 18. Let G = (V , E) be a graph that admits a star spanning tree Ts with v ∈ V as its center. Let T ∈ TG be a spanning
ree such that ∩G(T ) < ∩G(Ts) and let ∆T be the set of interbranch cycle-edges of T , then

∩G−∆T
(T ) < ∩G−∆T

(Ts).

roof. Let e = (u, w) ∈ ∆T , c and c ′ the tree-cycles induced by e in Ts and T , resp. By Lemma 12 the following holds:

∩G−e(Ts) = ∩G(Ts)− ∩Ts (c).

∩G−e(T ) = ∩G(T )− ∩T (c ′).
nd by Lemma 17 we have that:

∩Ts
(c) ≤ ∩T (c

′).

e conclude that
′

∩G−e(T ) = ∩G(T )− ∩T (c ) < ∩G(Ts)− ∩Ts (c) = ∩G−e(Ts).
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Applying this edge removal for every edge in ∆T , the claimed inequality follows. □

Definition 19. Let T = (V , E) be a rooted tree graph with root v ∈ V . Let w ∈ N(v) then we call principal subtree with
respect to w to the subtree spanned by v and the nodes u ∈ V such that w ∈ vTu.

The next lemma expresses the intersection number of a spanning tree (without interbranch cycle-edges) as the sum
of the intersection number of its principal subtrees.

Lemma 20. Let G = (V , E) be a graph that admits a star spanning tree Ts with v ∈ V as its center. Let T be a spanning tree
of G without interbranch cycle-edges (i.e.: ∆T = ∅), then the following holds

∩G(T ) =
∑

w∈N(v)

∩Gw (Tw).

where Tw is the principal subtree of w ∈ N(v) considering T as a rooted tree with v as its root. And Gw is the subgraph spanned
by Tw .

Proof. As ∆T = ∅ there are no cycle-edges connecting any two such principal subtrees. This implies that the non-empty
intersections between tree-cycles of T must occur inside each subtree. This determines a partition of CT and the claimed
expression follows. □

The following corollary, in line with Lemma 18, further simplifies a hypothetical counterexample of Conjecture 14.

Corollary 21. Let G = (V , E) be a graph that admits a star spanning tree Ts with v ∈ V as its center. Let T be a spanning
tree of G without interbranch cycle-edges (i.e.: ∆T = ∅) such that ∩(T ) < ∩(Ts) then

∩(Tw) < ∩(Gw ∧ Ts).

for some Gw , where Tw is the principal subtree of w ∈ N(v) considering T as a rooted tree with v as its root; Gw is the subgraph
of G spanned by Tw; Gw ∧ Ts is the subtree of Ts restricted to Gw , namely the intersection between Gw and Ts.

Proof. First note that the Gw ’s are edge disjoint since ∆T = ∅. This partition of the edges of G also determines a partition
of Ts such that ∩(Ts) =

∑
w∈N(v) ∩(Gw ∧ Ts). As the parts are in a natural bijective relation because they are the subtrees

of T and Ts restricted to each Gw , we can express the intersection number of T and Ts as follows

∩(T ) =
∑

w∈N(v)

∩(Tw) <
∑

w∈N(v)

∩(Gw ∧ Ts) = ∩(Ts).

And from the bijection we can deduce that ∩(Tw) < ∩(Gw ∧ Ts) for some Gw . □

5. Programmatic exploration

5.1. Overview

In this section we present some experimental results to reinforce Conjecture 14. We proceed by trying to find a
counterexample based on our previous observations. In the first part, we focus on the complete analysis of small graphs,
that is: graphs of at most 9 nodes. In the second part, we analyze larger families of graphs by random sampling instances.

5.2. General remarks

In the previous section we showed that the space of candidate counterexamples of Conjecture 14 can be reduced. The
general picture is as follows:

• Let G = (V , E) be a graph that admits a star spanning tree Ts with v ∈ V as its center.
• In the case that we can find some non-star spanning tree T of G such that ∩(T ) < ∩(Ts) then, we can ‘‘simplify’’

the instance by removing the interbranch cycle-edges with respect to T in G without affecting the inequality (see
Lemma 18).
• We can further reduce the instance by focusing on the case where dT (v) = 1, that is: the degree of v restricted to T

is 1 (see Corollary 21).

These considerations can be used to implement algorithms to explore the space of spanning trees more efficiently,
since the algorithms will generate instances in this ‘reduced’ form instead of a brute force approach.
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Table 1
Results for small instances.
Nodes Instances (approx.)

4 5
5 33
6 251
7 4200
8 125000
9 7900000

5.3. Complete analysis of small graphs

In this subsection we present an algorithm to explore the spanning tree space. The algorithm proceeds by exhaustively
nalyzing all the reduced graphs of a given number of nodes. The size of the space increases exponentially with respect to
he number of nodes, so it has a major limitation: it can only be used to analyze small graphs. The main part is sketched
n Algorithm 1.

The details of the algorithm are the following:

• The input parameter n is the number of nodes of the graphs to explore.
• GenerateAllTrees(n− 1) is a function that returns the list of all trees of n− 1 nodes.
• GenerateGraph(w, T ′) is a function that builds a graph G. Based on the tree T ′, it adds a new node (v), which will

play the role of the central node of a star spanning tree, and then the edge (v, w), to define our candidate tree
counterexample T . Finally adds all the other edges that link v to the rest of the nodes to obtain G. It returns the
graph G and (∆̄) the set of ‘‘possible’’ non-interbranch cycle edges.
• IntersectionNumber(φ,G) is a function that calculates the intersection number of T in G∪φ, where φ ⊂ ∆̄ is a subset

of supplementary edges of G.
• StarIntersectionFormula(φ,G) is a function that calculates the intersection number of the star spanning tree in G∪φ.
• The algorithm finds a counterexample of the conjecture if

IntersectionNumber(φ,G) < StarIntersectionFormula(φ,G).

Note that the analyzed graphs are reduced in the sense previously explained. The cycle-edges are non-interbranch by
construction and dT (v) = 1 since v is only connected to w in T (i.e. there is a single principal subtree). As the algorithm
iterates over all possible spanning subtrees T ′ and all the combinations of possible non-interbranch cycle-edges, every
instance is guaranteed to be explored at least once.

Algorithm 1 CounterexampleSearch(n)
T ← GenerateAllTrees(n− 1)
for each tree T ′ ∈ T do

for each node w ∈ T ′ do
G, ∆̄← GenerateGraph(w, T ′)
for each subset φ ⊂ ∆̄ do

check (IntersectionNumber(φ,G) <

StarIntersectionFormula(φ,G))

In order to generate all non-isomorphic trees of |V | − 1 nodes, we used the package nauty [12].
The proposed algorithm did not find a counterexample of the intersection conjecture. Table 1 shows the size of the

experiments. Column Nodes is the number of nodes of the graph family, i.e.: |V |. Column Instances is the number of
instances processed.

5.4. Random sampling of large graphs

In this section we present another algorithm to explore the spanning tree space. The strategy in this case is to sample
reduced graphs of a given number of nodes. The main part is sketched in Algorithm 2.

The details of the algorithm are the following:

• The input parameters are: n the number of nodes of the graphs and k the size of the sample.
• GenerateRandomTree(n) is a function that returns a random tree T of n nodes, where the node v, that will play the

role of center of the star, has degree 1 restricted to T .
• GenerateGraph(T ) is a function that builds a reduced graph G. Based on the tree T , it adds all the edges that link v

to the rest of the nodes to obtain G. It returns the graph G and (∆̄) a random set of non-interbranch cycle edges.
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Table 2
Results for random instances.
Nodes Instances

25 3000000
50 300000

100 30000
200 15000
400 300

• IntersectionNumber(φ,G) same as Algorithm 1.
• StarIntersectionFormula(φ,G) same as Algorithm 1.
• The algorithm finds a counterexample of the conjecture if:

IntersectionNumber(φ,G) < StarIntersectionFormula(φ,G).

Algorithm 2 CounterexampleRandomSearch(n, k)
for i := 1..k do

T ← GenerateRandomTree(n)
G, ∆̄← GenerateRandomGraph(T )
check (IntersectionNumber(φ,G) <

StarIntersectionFormula(φ,G))

We used a uniformly distributed random number generator. To generate trees we used a simple algorithm that
randomly connects a new node to an already connected tree. The non-interbranch cycle-edge set is built by associating a
Bernoulli trial to each possible edge. To achieve some diversity for each tree we built three different sets to obtain sparse,
medium and dense ones based on corresponding probabilities 0.1, 0.5, 0.9.

The proposed algorithm did not find a counterexample of the intersection conjecture. Table 2 shows the size of the
experiments. Column Nodes is the number of nodes of the graph family, i.e.: |V |. Column Instances is the number of
instances processed.

6. Conclusion

In this article we introduced the Minimum Spanning Tree Cycle Intersection (MSTCI) problem.
We proved by enumerative arguments that the star spanning trees are the unique solutions of the problem in the

context of complete graphs.
We conjectured a generalization to the case of graphs (not necessarily complete) which admit a star spanning tree. In

this sense we showed that such tree is a local minimum in the domain of the spanning tree graph. We deduced a closed
formula for the tree intersection number of star spanning trees in this setting. We proposed two ideas to reduce the
search space of a counterexample of the conjecture. Those ideas were the basis of two strategies to programmatically
explore the space of solutions in the pursuit of a counterexample. The negative result of the experiments suggests that
the conjecture is well posed. Unlike the complete graph context, in this slightly more general case star spanning trees are
not unique; there are other spanning trees T such that ∩(Ts) = ∩(T ).

We proved a general result that shows that spanning trees that solve the MSTCI problem do not depend on some
intrinsic property but on their particular embedding in the ambient graph.

An interesting direction of research is to consider the MSTCI problem for other families of graphs, i.e.: graphs that do
not admit a star spanning tree. Of particular interest for us is the class of triangular meshes, i.e.: graphs that model the
immersion of compact surfaces in the 3D Euclidean space.

Another interesting line of research is to analyze the complexity class of the MSTCI problem. In case of belonging to
the NP-hard class, it will be necessary to find approximate, probabilistic and heuristic algorithms.

In the introduction of this article we mentioned that the MSTCI problem is a particular case of finding a cycle basis
with sparsest cycle intersection matrix. Another possible analysis would be to consider this in the context of the cycle
basis classes described in [10].
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