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Abstract—Relating small-scale structures to large-scale appearance is a key element in material appearance design. Bi-scale material
design requires finding small-scale structures — meso-scale geometry and micro-scale BRDFs — that produce a desired large-scale
appearance expressed as a macro-scale BRDF. The adjustment of small-scale geometry and reflectances to achieve a desired
appearance can become a tedious trial-and-error process. We present a learning-based solution to fit a target macro-scale BRDF with a
combination of a meso-scale geometry and micro-scale BRDF. We confront challenges in representation at both scales. At the large
scale we need macro-scale BRDFs that are both compact and expressive. At the small scale we need diverse combinations of geometric
patterns and potentially spatially varying micro-BRDFs. For large-scale macro-BRDFs, we propose a novel 2D subset of a tabular BRDF
representation that well preserves important appearance features for learning. For small-scale details, we represent geometries and
BRDFs in different categories with different physical parameters to define multiple independent continuous search spaces. To build the
mapping between large-scale macro-BRDFs and small-scale details, we propose an end-to-end model that takes the subset BRDF as
input and performs classification and parameter estimation on small-scale details to find an accurate reconstruction. Compared with other
fitting methods, our learning-based solution provides higher reconstruction accuracy and covers a wider gamut of appearance.

Index Terms—reflectance, material appearance, bi-scale materials
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1 INTRODUCTION

Bringing virtually designed materials into the real world is a
challenging problem. Physical properties including structures and
reflectance behaviors determine the appearance of a material.
For manufacturing industries, small-scale geometric patterns are
introduced for molding textures ! in order to enhance material
performance and increase the gamut of appearance. However,
achieving a particular large-scale target appearance is challenging
given the diverse choices for meso-scale geometry and micro-scale
material reflectance. Without an automatic solution, the traditional
design process relies on tweaking parameters to match a specific
appearance, which can be a tedious (and computationally expensive)
process of trial and error.

Our goal is to solve this problem by providing an automatic
solution to fit a target large-scale macro-BRDF with a meso-scale
geometry and a micro-scale BRDF. We use the term “large-scale
appearance” to refer to the material appearance when viewed from
a relatively far away distance (typically measured by meters),
which can be modeled by a macro-BRDF. When we zoom in,
we can take a close up view of the “small-scale details,” which
are made up of the meso-scale geometric structures (typically
measured by millimeters). We use the micro-scale BRDF to define
the basic reflectance of each facet at this level. The difference in
the macro-BRDF and the micro-BRDF is caused by the shadowing
and masking effects created by the meso-scale geometries. Figure
2 shows an example of a physical material at two different scales.
We will refer to the combination of the meso-scale geometry
and the micro-scale BRDF as the “small-scale details.” We do
not seek a unique solution for the small-scale details but the
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reconstructed large-scale appearance should be identical (or very
close) to the target. At first glance, this is similar to previous BRDF
fitting problems [3], [4], [7], [18], [34], [38], [46], where a single
analytical model is fit to BRDF data and only a few parameters
need to be optimized. However, fitting bi-scale materials is different
because the search space of small-scale details is not completely
continuous. The meso-scale geometries are defined by different
categories, such as woven or bricks structures, and each category
has unique properties and representations. There is no “universal
formula” that can model the appearances of different categories,
which makes the fitting problem highly nonlinear. Therefore, it is
almost impossible to apply previous optimization-based solutions
in a straightforward manner.

In this paper, we propose a learning-based solution using a
convolutional neural network with synthetic data to learn the
mapping between two scales. There are major challenges at both
scales — the representation of materials at the large scale and the
diverse combinations of geometric patterns and basic BRDFs for
each facet at the small scale.

In computer vision and graphics the most common repre-
sentation for learning materials is an image of an instance of
the material in a particular context. Images are used due to the
simplicity of data collection. However, material appearance in
an image context depends on the scene description (including
lighting, camera angle, and geometric normals) that are irrelevant
to the the fitting and could produce unwanted bias in the result.
For reliability and efficiency in our method, we propose a novel
training pipeline to learn material properties directly from tabulated
BRDFs. However, due to its high dimension, it is inefficient
to conduct training on densely sampled tabulated BRDFs. We
propose a new sampling method to create 2D BRDF slices for
training. Compared with existing BRDF tabulations, our method
well preserves the spatial features of BRDF by taking advantage
of retro-reflection, which according to [14] provides an important
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Fig. 1: We present a new bi-scale material fitting framework. Given the large-scale appearance of materials (a), our framework predicts
the meso-scale geometry and micro-scale BRDF and uses them to accurately reconstruct the materials (b). The output can be used as a
starting point for material design (c) and (d). The predicted small-scale details provide a new material editing scheme to change the
large-scale appearance by varying meso-scale geometry (top), switching micro-scale BRDF (middle) and editing anisotropy (bottom).

Fig. 2: Example of bi-scale material in real life. The large-scale
appearance of the top of a step stool (left) that appears to have a
pattern with two materials, but actually it is the same micro-BRDF
with two different meso-scale geometries in the wavy pattern
(right).

cue to the microfacet normal distribution function. We analyze
the physical interpretations and compare the performance of other
BRDF tabular formats to provide explanations for our findings.

For small-scale details, we represent geometries and BRDFs
in different categories with different physical parameters to define
multiple independent continuous search spaces. According to [16],
[17], learning materials can be interpreted as two processes: clas-
sification and estimation. Classification identifies the boundaries
separating different material categories and estimation establishes
the true position within each category. We follow this framework
and put forward an end-to-end model that takes as input a 2D
BRDF slice and performs classification and parameter estimation
on the small-scale details. The classification is based on predefined
categories and the estimation is to fine-tune the corresponding
parameters in a continuous search space. This framework also
helps us to increase the generality of our model because the gamut
of the search space is enlarged. Theoretically, there is no limit on
the categories of geometric patterns and basic BRDFs that can be
used in training as long as the computational power is available.
This approach is not limited by the expressive power of a single
BRDF model and we can fit materials with diverse properties.

For evaluation, we conduct experiments to compare the training
performance of different tabular formats and explain why retro-
reflection provides a strong cue for the learning process. We
reconstruct large-scale appearance based on our fitting results
and compare with ground truth. The rendering results evaluated
with a user study demonstrate that there is no significant visual

difference. Experimental results also show that our method can
predict accurate small-scale details from real world materials.
In summary, this paper makes the following contributions:

¢ A new learning-based solution for bi-scale material fitting
that takes large-scale BRDF as input and predicts small-
scale details as output.

e A new method that efficiently learns materials using
sparsely sampled BRDF by taking advantage of spatial
features and retro-reflection.

« An end-to-end model to handle diverse representations and
combinations of meso-scale geometries and micro-scale
BRDFs by classification and parameter estimation.

« A prototype using our proposed method for material editing
and fabrication.

2 BACKGROUND

We present background on the bi-scale design problem, microfacet
models that relate geometry and appearance, previous work using
machine learning in material modeling, and work in BRDF fitting.

2.1

Bi-scale design plays an important role in manufacturing appear-
ance. In manufacturing, creating meso-scale geometry is called
texturing (in contrast with the graphics usage of the term texturing.)
Texturing molds to create meso-scale geometry such as leather
patterns or stipples can make a relatively inexpensive material
(such as plastic) look more luxurious, or can make a brand look
more distinctive. Meso-scale geometry can also have functional
properties such as hiding imperfections and making products easier
to grip. Maniscalchi et al. [44] provide an in-depth study of
the performance of various mold texture patterns. Several basic
template patterns are given by Wisconsin Engraving [50] that can
be used as the small-scale details for mold texturing, and St. Paul
Engraving [41] gives a step by step introduction to mold texturing.
These industry examples demonstrate how bi-scale materials can
enrich the gamut of manufactured material appearance.

Several research projects consider bi-scale design for manufac-
ture. Rouiller et al. [43] propose a method to 3D print spatially
varying BRDFs by optimizing the normal distribution function
(NDF) of discrete facets to match an analytical NDF. Weyrich et al.
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[49] optimize for a maximally-continuous and valley-minimizing
height field to generate a desired reflectance. Zhao et al. [57] create
volumetric models of woven cloth by matching an input weave
pattern to a sample from a small database of volumetric exemplars.
Lan et al. [30] present a method to 3D-print a surface with spatially-
varying opaque reflectance and shading frames. These projects all
consider specialized, rather than general bi-scale design. Wu et al.
[53] propose a solution to prefilter high-resolution displacement
maps and BRDFs jointly while preserving material appearance.
However, their pre-computation for each micro-structure is time-
consuming. Wu et al. [51] present a physically-based interactive
system to design large-scale materials by editing small-scale
geometry and BRDFs in low-rank matrix formulations. Their
system can efficiently simulate material appearance from small-
scale details with shadowing and masking effects. Their system
provides the basis for our simulation. However, their algorithm
suffers from a long pre-computation time and large memory
allocation. We improve their algorithm to efficiently simulate a
large number of materials for training.

2.2 Microfacet Material Modeling

Many analytical models describe large-scale material appearance
with the geometry of a microfacet-based BRDF [2], [10], [40].
Walter et al. [48] give a review of microfacet theory and extend it to
transmission through rough surfaces. Heitz [21] reviews different
masking-shadowing functions in microfacet-based BRDFs. These
papers illustrate basic microfacet theories and analytical models but
are not concerned with meso-scale structures and bi-scale mapping.
The methods in [22], [23] introduce scattering and diffraction
effects in microfacet material simulation. There also has been much
progress for different types of microfacet materials, such as Aliaga
et al. [1], Dong et al. [12], Nam et al. [37]. Belcour et al. [5]
introduce an extension to microfacet theory for rendering iridescent
effects caused by thin-films on a rough base layer. Dupuy et
al. [13] propose a method to relate an analytical microfacet BRDF
model to an input material by solving an eigenvector problem built
from backscattering samples. Zhao et al. [56] produce large-scale
fabric material appearance from small-scale structures measured
with micro CT imaging. Heidrich et al. [20] use precomputed
small-scale visibility to calculate large-scale BRDFs with indirect
illumination. Kuznetsov et al. [29] propose a method for microfacet
material rendering using generative models which can learn the
generalized normal distribution functions (GNDF) from latent
vectors. However, the geometric optics GNDF they used does not
provide an explicit definition for geometry patterns for editing and
the fabric GNDF only covers a small gamut of appearance. None
of these methods are suitable for systematically simulating a large
number of varying meso-scale structures for bi-scale training.

23

Traditional inverse rendering and BRDF fitting algorithms can also
be used to specify materials from a particular appearance. Li et al.
[31] derive a probabilistic formulation to jointly estimate the shape
and BRDF of objects under known lighting from a synthetic dataset.
Romeiro and Zickler [42] try to infer BRDF from a single image of
a known shape in an unknown lighting environment, by assuming
a statistical distribution of natural illumination. Many BRDF fitting
algorithms [3], [4], [7], [18], [34], [38], [46] have focused on using
analytical BRDF models to fit the MERL dataset [35]. Dupuy
et al. [13] proposed an iterative method to extract the microfacet
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parameters from anisotropic materials. All of these methods try to
map a material appearance to a specific BRDF model, which can
only cover a limited gamut of appearance. None of these algorithms
provide a bi-scale description. The study closest to our work is
Wu et al. [52]. They propose a search-based inverse rendering
method; they search through libraries of materials and meso-scale
geometries to find the best combination for a specified appearance.
However, the searching results are the “nearest neighbor” defined in
the training set, which limits reconstruction accuracy. We provide
a detailed comparison between our work and theirs in Section 5.2.

2.4 Learning Materials in Image Space

Many projects relate appearance to material descriptions using
machine learning techniques. Most of them rely on image-based
training, where the same material sample is repeatedly rendered
with different scenes to cover different appearances [19], [24],
[27], [32], [33], [36], [47], [55]. They generate synthetic images as
training data, where the same material is repeatedly rendered using
a single BRDF model with different lighting and camera angles on
a fixed geometry (sphere or plane). Normally, the gamut of their
model is limited due to the single parametric BRDF model being
used (Ward or Phong in many cases). Furthermore, iterating over
different lighting conditions and other irrelevant factors is a waste
in terms of sampling, and significantly increases the computational
time and storage for the training set. Another disadvantage is the
possible overfitting of the rendered scenes since the objects and
lighting used for rendering could bias the training results. Zsolnai-
Feh’er et al. [58] present an image-based learning system to learn
shader parameters from rendered images with fixed lighting and
viewing angle. However, their setting is tied to the Disney Principal
Shader [9] and is customized for the input of their design system,
which cannot be applied to other scenarios. To avoid sampling
redundancies and reduce the dimension of the training set, we
propose a tabular BRDF training scheme to learn appearance
efficiently from BRDFs instead of from rendered scenes.

3 METHOD

Our goal is to find the combination of meso-scale geometries
and micro-scale BRDFs that can accurately reconstruct the input
material appearance. Our method takes as input macro-scale BRDFs
in 2D slice tabular format and outputs the categories and related
parameters for meso-scale geometry and micro-scale BRDF. We
conduct our training on synthetic data created from physically-
based simulation (Section 3.1). We define the tabular BRDF as a
2D slice subset from the complete 4D BRDF (Section 3.2). We
use an end-to-end model to find the small-scale representations
that can accurately reconstruct the large-scale appearance (Section
3.3). The training data is generated in gray-scale by averaging the
RGB of micro-scale BRDF for dimension reduction. Otherwise,
the dimension of the training set will increase polynomially. To
restore colors and enrich the gamut of our model, we propose a
method to predict the multi-color weights for different parts of the
meso-scale geometry after training (Section 3.4). In this paper, we
assume the macro-scale BRDF has been specified by the designer.

3.1

We use synthetic data for training since it can be collected from
computation easily (labeled bi-scale material data relating macro
BRDF to small-scale details is difficult to obtain for physical

Simulation
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Fig. 3: The pipeline of our bi-scale learning model and network architecture. Our model takes the 2D slice tabular BRDF as input and
outputs the meso-scale geometry and micro-scale BRDF. G and B represent the number of categories for classification and g and b
represent the dimension of parameters for regression. Given prediction results from the network, our pipeline runs the color restore
algorithm to compute color weights for different sides of the meso-scale geometry to reconstruct the large-scale appearance.

samples). However, a concern is the speed of the simulation.
State-of-art microfacet modeling methods focus on accuracy. The
underlying structure is resolved in pixels in the rendering to produce
very high-quality material appearance. However these methods
are not suitable in our case due to the lengthy rendering time
and implicitly defined meso-scale structures. Therefore, based on
previous work [8], [51], we improve the simulation to efficiently
approximate large-scale appearance using explicitly defined meso-
scale geometries. Our simulation method is physically correct in
accounting for shadowing and masking effects and runs at an
interactive speed.
Following [51], we define

@, 0,)= ﬁ /Szf(’“ 0;,0,)Y(n,0;,0,)dn (1)

where f, is the macro-scale BRDF, f is the micro-scale
BRDF, v is the Bidirectional Visible Normal Distribution Function
(BVNDF) computed from the normals of meso-scale geometry; ®;
is the incident direction and @, is the outgoing direction. a, (@, ) is
the visible projected area of a surface patch along @,, and $? is the
surface of unit sphere. We tabulate the BVNDF N and micro-scale
BRDF M as matrix format:
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Each row of N represents the distribution of normals of a patch
subset that are visible along @;,®,, and each column of M
stores a tabulation of cosine-weighted BRDF, where n; defines
the local frame. We can precompute the N and M and to perform
efficient simulation by querying values from the matrices. Refer to
[51] for details of the tabulation and applying SVD on matrix N

For matrix M, instead of uniformly mapping the rotated BRDF
to a 2D grid using paraboloid maps [6] as in the original method,
we use a data-driven method to importance sample the micro-scale
BRDF [14], which can significantly reduce the precomputation time
and artifacts in simulation. We first apply a log-relative mapping
for a given BRDF, p = log(pcosMap+¢€) [39] to reduce the order
of magnitude of the specular peak, where € is set to 1073 to avoid
a singularity at zero. For each incident direction, we calculate a

Reference Ours Wu et al.
Fig. 4: Comparison of simulations.

BRDF slice of possible outgoing directions weighted by the VNDF,
which is computed from the retro-reflection. To importance sample
the BRDF, we warp uniform variates on a unit grid so that their
density is proportional to the luminance of the associated BRDF
slice. To evaluate the BRDF values in M, we first compute the
half-direction vector and map it to local coordinates. Then we
apply the inverse warp by the NDF and use the results to perform
a lookup in the original BRDF slices to compute the BRDF value.
The warp function details can be found in [14]. After filling the
BRDF values in M, we apply random-projection to accelerate
SVD for the matrix. During the simulation, we first reconstruct M
from SVD, and then apply linear interpolation between samples
and undo the log-relative mapping to get the BRDF value for
the specific rotated normals. Figure 4 demonstrates a comparison
between our improved simulation and the original [51] using gold-
metallic-paint3 from the MERL dataset. The result shows that our
method provides better reconstruction accuracy due to importance
sampling. Also since our method does not need to compute every
single direction, the pre-computation time is decreased from the
original 24 hours [51] to 40 minutes for this example.

Our simulation is an approximation for bi-scale materials, and
we only use it to build the mapping between the material scales in
our training. For meso-scale structures with steep slopes coupled
with high-albedo micro-scale BRDFs interreflections, which are not
accounted for in our simulation, would have a noticeable impact.
However, as we will demonstrate in Section 6.3, our simulation
works well with our model to predict small-scale details for real
world materials. Alternative simulation methods could be used if
sufficient computational power is available.

3.2 Tabular BRDF Representation

The reflectance properties of a material are embedded in a 4D
macro-scale BRDF, which includes millions of entries when
incident and outgoing directions are densely sampled. It is almost
impossible to directly learn from such a representation. We need to
intelligently sample the BRDF and keep its important features for
learning. We represent macro-scale BRDF as a 2D tabular format,
where each entry represents the BRDF value corresponding to
a specific combination of incident and outgoing directions. The
benefit of the 2D format is that the directions vary continuously,



which allows us to learn BRDF gradients. We examine four tabular
BRDF representations by analyzing their physical interpretations.
We denote r, ¢ as row and column index of the tabular BRDF and
;, @, as incident and outgoing directions respectively.

Sphere Table. The sphere table is constructed by fixing viewing
direction and varying incident direction sampled from a hemisphere
[19], [45]. Figure 5 shows the specular peak concentrates on the
center of the table and the diffuse part is located around the
specular peak. The edge of the sphere represents the BRDF values
of grazing angles. In the following equations, resolution # is used
for normalization.
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Retro-Reflectance Table. This table samples retro-reflectance
directions along the hemisphere to stress the contribution of meso-
scale facets whose normals are oriented towards the incident
direction. Hence, we can see that the specular peak is more
converged to the center compared with the Sphere Table.
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Dense-Sampled Table. Adapted from the UTIA parameteriza-

tion [15], the Dense-Sampled Table uniformly samples p = 45
from the azimuthal angles 6 € [0, 5] and ¢ = 36 from the polar
angle ¢ € [0,2x] for both incident (rows) and outgoing (columns)
directions. We increase p and g from the original parameterization
to avoid significant discontinuities and “aliasing” problems. We use
fewer samples for ¢ because BRDF values vary smoothly along this
direction. The left top corner of this format represents the specular
peak. The longest diagonal line represents the retro-reflective
measurements and its value decreases when 6 increases. Other
highlighted diagonal lines represent specular lobes at different
angles. The right and bottom parts represent the grazing angles.
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Half-Angle Table. The Half-Angle Table is constructed using
the 2D slice in the Rusinkiewicz coordinate system. The slice is
taken at ¢, = 90° because it maximizes the valid region of the
0,4-6), slice. The square root of 6, is uniformly sampled from O to
7/2, which provides denser sampling close to 0, in the region of
the specular highlight. The physical meaning of this representation
has been introduced in [9].
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We visualize different tabular BRDFs using two examples from
the MERL dataset and demonstrate their physical interpretation in
Fig. 5. We compare the training performance of these formats for
learning bi-scale representations in section 5.1. We use the result
of the comparison to choose the BRDF representation for our final
bi-scale training.

0, = ( 0y

3.3 Network Architecture

Figure 3 shows our end-to-end training pipeline. Given a target
macro-scale BRDF, we first create the 2D tabular format and

#Grazing
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Sphere
Fig. 5: Examples of different tabular BRDF formats. The first and
second rows show the physical interpretations and the last two rows
are examples of blue-metallic-paint2 and pink-fabric. The BRDFs
are averaged over RGB-channels for the intensity comparison.

feed it into the network. Our model learns the spatial features
from tabular BRDFs, then categorizes the meso-scale geometry
and micro-scale BRDF into pre-defined categories and fine-tunes
their corresponding parameters within each category. Based on
our observations, different categories can significantly change the
appearance while the physical parameters influence the details,
such as the shape of the highlight. For the micro-scale BRDF,
the pre-defined categories include measured BRDFs (each one
is a single category) and analytical ones (a separate category).
Introducing measured BRDFs can significantly increase the gamut
of our fitting model due to their complex and special reflectance
behaviors. The physical parameters for the the micro-scale BRDF
are only defined for analytical models including roughness, diffuse
and specular albedo. For the meso-scale geometry, the category is
defined by different primitives that are procedurally modeled, such
as grooves, woven threads and so on. Geometries generated from
texture height maps are not included since they are not intuitive for
editing, and they are left to future work.

Our network includes three units. The first is an analysis
subnetwork of six convolution layers, each followed by a batch-
normalization layer and an ReLu activation layer [25]. Each
convolution has a kernel size of 7 x 7 and a stride of 2. The
analysis subnetwork is designed to extract the spatial features from
tabular BRDFs, which are fed into the following subnetworks
in separate branches. The second is a meso-scale geometry unit,
which includes three convolution layers and two fully connected
layers. Then we split the features into two sub-branches, each of
which goes through an extra fully connected output layer with G
(number of categories) and g (dimension of physical parameters)
hidden units respectively. The third, micro-scale BRDF, unit shares
a similar branch structure (B denotes the number of category and
b represent the parameters of analytical model) but with fewer
convolutional layers to prevent overfitting due to its smaller search
space. We find the joint learning on classification and parameter
estimation have a better performance than learning separately,
because the training errors on either side will be propagated to the
other and back-propagated to the network. It also explains why
the joint training of meso-scale geometry and micro-scale BRDF



performs better than other network structures. We will presents the
results of ablation tests in Section 5.2.

The loss function for our network includes category loss
(gGeomClass and zBRDF Class) and parameters loss (zGeomPamms and
LBRDFParams)- We apply a softmax layer at the end of the network
to calculate the Cross-Entropy for category loss, and define the
L2 loss between the predicted parameters and the input labels as
parameter loss. All the parameters are normalized into the same
range for training. We combine those loss terms using a weighted
sum. The total loss function is defined as:

zotal = l1 fGeomClass + A’ZXBRDF Class (5)
+)L3 XGeamPamms + )L4$BRDF Params

where A} =1, 4, = 10, A3 = A4 = 20.We assign more weight

to the BRDF category loss to improve the network performance for

distinguishing between the measured and analytical BRDFs. We

found that by adding up the loss functions, the classification and

regression results are penalized by each other resulting in lower
training loss.

3.4 Color Restoration

Given the predicted achromatic results, we need to restore the
color to match the target material. One advantage of fitting bi-scale
materials is that we can can assign different colors to different facets
to introduce spatially varying and anisotropic effects. We denote C
as a color matrix defined in RGB and each row ¢; = (¢} ,¢j.¢,Cjp)
is a color weight for a facet. To apply the color weight, we first
cluster the facets into different groups based on their normals using
the BVNDF obtained from Equation 3. We can use the geometric
partition to guide the clustering, where each group represents a
component of geometric structure, such as the face, ridge, slope
and so on. We then apply the corresponding color weights to the
facets in each group by replacing the BVNDF matrix N with
(C--N,Cy-N,Cp,-N), where

and

Nyj—cj;-Nygj l€{rgb} (6)

Assigning color weights can significantly change the appear-
ance. For example it can introduce color variation at grazing angles.
To obtain the color matrix, we use an image-based optimization
with the following objective function:

mind(f. f;) )

Where d is the distance metric, f is the target BRDF and f, is
defined by plugging Eq. 6 into Eq. 2.
_ 1
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We optimize the color weights in image space, where a perfect
sphere is used and lit by an environment map [11] under
orthographic projection. We define the distance metric as

d(fi,f2)=I|R- fi—R- 2|2 )

where R is the light transport matrix transferring a BRDF into an
image. Please refer to Sun et al. [46] for a detailed evaluation of
different metric functions. We compute the per-pixel difference for
the entire sphere to take into consideration the BRDF values at
both the specular peak and the grazing angles. After optimization
we can collect the color weights and reconstruct the chromatic
large-scale appearance.

Fig. 6: Examples of different meso-scale geometry primitives used
for simulation.

TABLE 1: Evaluation of Different Tabular BRDFs (8500 samples)

Sphere  Retro-Reflectance  Dense-Sampled ~ Half-Angle Table
BRDF Mismatches 13 7 17 15
Geom. Mismatches 25 5 10 50
Parameter MSE 0.0064 0.0042 0.0041 0.0065

4 IMPLEMENTATION

We use the algorithm from Section 3.1 to create a bi-scale training
set. For micro-scale BRDFs, we include 100 materials from the
MERL dataset and 300 analytical BRDFs sampled from GGX
Cook-Torrance models. These analytical BRDFs are created by
randomly sampling roughness, diffuse and specular albedo in [0,1].
For meso-scale geometries, we procedurally generate 2000 meso-
scale geometries by randomly sampling their physical parameters
in their valid ranges (i.e. no collision and global scale) from 8 basic
geometry categories (Fig. 6). The details of the range and definition
of physical parameters can be found in supplemental materials. All
the physical parameters are normalized to [0,1] during training and
denormalized for reconstruction.

For comparison, we train four different networks using the
same training samples but with the different tabular BRDF formats
described in Section 3.2. The resolution for all tabular BRDFs is
defined as n = 256. The Dense-Sampled Table is first created in
its original resolution (45 x 36) and then down-sampled to 256
(directly creating Dense-Sampled Table in low resolution may lead
to discontinuities and jumps). To reduce the size of the training
set and time for simulation, we use achromatic tabular BRDF by
averaging the color channels for measured BRDFs and sampling
parameters in gray-scale for analytical BRDFs. The simulation
requires roughly a week on a standard machine for each dataset.
We will open source these datasets for future research projects.

We implement our network using Caffe2 [26] and the ADAM
optimizer [28] with a learning rate of 107>, The total training
process took around 18 hours for 250000 iterations with a batch
size of 32 on a computer with an AMD Ryzen 7 1700X 8-core
CPU, 16 GB RAM and an NVIDIA GeForce GTX 1070 GPU.

5 RESULTS

We first evaluate the proposed tabular BRDF training by comparing
the performance of different tabular formats and analyzing their
spatial features (Section 5.1). Then we provide the experimental
results from our bi-scale fitting model and conduct an ablation
study (Section 5.2). We then compare our method with existing
solutions (Section 5.3) and validate our method with real-world
materials (Section 5.4).

TABLE 2: Ablation Study (8500 samples)

Our Model Model 1  Model 2
BRDF Mismatches 7 42 8
Geom. Mismatches 5 32 7
BRDF Parameter MSE 0.0037 0.0076 0.0081
Geom. Parameter MSE 0.0043 0.0056 0.0051
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Fig. 7: Comparison of reconstructed anisotropic appearance for
different tabular formats. The bottom row shows the 10 times
difference between predictions and the ground truth.
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5.1 Tabular BRDF Analysis

We consider the training results for different tabular formats and
evaluate the embedded features. Similar to the creation of the
training set, we generate 8500 test samples by randomly sampling
the parameters and create a test set for each format. To avoid bias,
there is no overlap between test samples and training samples. We
use two metrics to evaluate network performance. For classification,
we measure the number of mismatches between the predicted
category and ground truth used to generate the test sample. For the
parameter estimation, we compute the mean squared error for each
normalized dimension between the prediction and ground truth.

We list the prediction errors in Table 1. In Fig. 7, we visualize
an example of our fitting results using different tabular BRDFs.
The bottom row shows the difference between the prediction and
the ground truth magnified by 10 times. The results show that the
Retro-Reflectance Table and the Dense-Sampled Table have better
performance compared with the other two. The difference between
the Sphere Table and the Retro-Reflectance Table is the shape and
intensity of the specular peak. The Sphere Table has a relatively
larger specular peak area and blurry boundary, which indicates that
BRDF values decrease smoothly as 6; gradually increases (small
BRDF gradients). By contrast, the Retro-Reflectance Table has
a smaller specular peak area and clear cut-off on the boundary,
which indicates larger BRDF gradients in the retro-reflective angles.
The large gradient comes from a significant jump of BRDF value,
which is often caused by the change of sampling directions from
the specular domain to the non-specular domain. Also note that
the Retro-Reflectance Table has a higher range of BRDF values
(larger intensity for specular areas and lower for diffuse areas)
compared with the Sphere Table. For the Dense-Sampled Table, the
sharp boundaries between highlighted diagonal lines and dark areas
indicate large BRDF gradients, separating the specular and diffuse
area. As for the Half-Angle Table, the specular area smoothly
blends into the diffuse area with a blurry boundary due to the
small gradients in both the 6, and 6, increasing directions. Similar
to the Sphere Table, the construction of the Half-Angle Table
forces the BRDF value varies slowly between neighbors. These
observations, combined with the training results, suggest that the
large gradient components displayed in the Retro-Reflectance Table
and the Dense-Sampled Table are important features to learn and
distinguish BRDF in training.

To further explain our observations, we display the feature
maps from the fifth convolutional layer of the analysis sub-network
in Fig. 8. As we can see, after five convolutions, basically only
the shape of the specular area remains on the feature maps. We
also notice that the pattern in the Retro-Reflectance Table and
the Dense-Sampled Table are much clearer and the shape is more

Retro Dense Half

Reference

Sphere

Fig. 8: Two example materials and the feature maps of tabular
formats from the fifth convolutional layer. The Retro-Reflectance
table and Dense-Sampled Table better maintain the shape of the
specular peak compared to the other two representations.

consistent with the input, while the patterns in the Sphere Table
and the Half-Angle Table’s feature maps look blurry. For example,
the Sphere Table has a distorted circle for the specular peak
with non-uniform intensity in both examples, while the Retro-
Reflectance Table maintains a relatively clear and uniform circle.
This indicates that the small gradients vanish and the large gradient
components can remain after convolutions. Similarly, for the Half-
Angle Table, most of the feature maps almost lose the pattern
from the input, while the Dense-Sampled Table displays sharp
diagonal line patterns in the feature maps. These results largely
match with our observation: the large gradient components in the
original tables lead to distinguishable patterns in the feature maps
and contribute to learning material appearance.

We also experimented with 20 network settings, including
different hyperparameters, weights, optimizer and number of con-
volutional layers, and the results can be found in the supplemental
materials. Although the absolute errors vary for each experiment,
the Retro-Reflectance Table in most cases maintains the lowest
errors. Although our conclusion is based on experiments and
observations, we still want to stress the unique property of retro-
reflectance for learning materials, which has been used in recent
work such as Dupuy et al. [14] to retrieve the microfacet NDF.
Our experimental results can provide insights for studying retro-
reflection behavior in material learning and fitting. For the rest of
the paper, we use the Retro-Reflectance Table for our evaluation.

5.2 Training results

Neural network training. To evaluate bi-scale fitting results, we
randomly select and render 200 samples from the previous test
set. In Fig. 9, we display three of the best- and worst-cases and
their four times difference from the ground truth. We use PSNR
to measure the difference between our results and ground truth
materials in image space. Also, we display the rendered small-scale
details for comparison. In each case, the predicted images were
close to indistinguishable from the ground truth for both scales.
Ablation Study. We compare our end-to-end model with two
alternative structures and present results in Table 2. The first one is
a separate training model, where we use three different networks to
learn parameters, meso-scale geometry categories and micro-scale



TABLE 3: Comparison of 200 randomly sampled materials

Time(sec)  Isotropic PSNR(db)  Anisotropic PSNR(db)
Ours 0.71 42.36 34.65
Wau et al. 26.78 38.43 30.38
Sun et al. 30.68 42.81 31.67

BRDF categories respectively (denoted as Model 1). We split the
loss function defined in Equation 5 and use them for each network.
The second one is a “one Branch” model, where no subnetwork
exists and the input features go through the exact same network
to output the meso-scale geometry and micro-scale BRDF (Model
2). The same loss function in Equation 5 is used. We visualize
the network structures in supplemental materials. Each model is
trained on the same training set and evaluated on the same test
set. Compared with the results of Model 1, our network has a
better performance in both classification and parameter estimation
due to the existence of the shared analysis subnetwork and joint
optimization. The loss of all branches back-propagates to the shared
analysis subnetwork and optimize the weights together. Compared
with Model 2, our network outperforms in parameter estimation
with smaller MSE for micro-scale BRDF parameters. Using a single
branch network to predict the meso-scale geometry and micro-scale
BRDF together may cause overfitting because the search space of
the micro-scale BRDF is much smaller. Our model, on the contrary,
uses different subnetworks to process the meso-scale geometry and
micro-scale BRDF to handle the two components, which provides
more accurate fitting results.

5.3 Comparison

We compare our method with existing solutions, including the
inverse bi-scale design Wu et al. [52] and Sun et al. [46] to
demonstrate the fitting capability and gamut of different models.
Wu et al. use a data-driven search based solution while Sun et
al. fit BRDF into the GGX model using numerical optimization.
We first randomly sample 200 BRDFs with uniform color-weights
using our simulation method. Four randomly selected examples
are presented in Fig. 10 and the statistics averaged over the 200
samples are listed in Table 3. We use the same training data for
Wau et al. and our model. Based on the rendered results and PSNR
value, we can observe the limited accuracy of their predictions
since their results are exactly taken from the training samples. In
our case, meso-scale geometries and micro-scale BRDFs are jointly
optimized and defined in a continuous search space, which leads
to higher reconstruction accuracy. Note that their method could
be improved using their original dataset, but it is not available.
We believe the comparison is still fair because the two methods
are evaluated on the same training and test set. For Sun et al.,
the results from the two methods share similar visual appearance.
However, their method does not provide small-scale details and
requires more time to converge.

We also sampled 200 anisotropic materials for comparison,
which are created using either anisotropic micro-scale BRDFs or
multi-color weights for meso-scale geometries. Fig. 11 presents
the selected results. As we can see from the zoomed images,
compared with the other two methods, our method largely recovers
the Fresnel effect at the grazing angle and faithfully maintains the
color of the specular area from the ground truth. For Wu et al., the
homogeneous color is selected from a predefined set of random
colors. We can see that the discrete samples are not enough to
cover a large gamut of appearances, leading to inaccurate colors
for reconstruction. Sun et al. does not reconstruct BRDFs with
varying color and can only yield an average color. Due to the

8

limited gamut of the analytical model, their algorithm also fails to
capture anisotropic effects. For both of these two methods, uniform
colors are used to scale the achromatic BRDFs resulting in less
variation in appearance. Our method, on the contrary, optimizes the
spatially varying color weights on the small-scale details, leading
to a wide variety of possible appearance.

We conduct a user study to further compare the three methods
using Amazon Mechanical Turk. During the experiment, we gave
users four images (one ground truth and three candidates) with
materials rendered in the same settings, similar to the examples in
Fig. 11 but without micro-structures on the corner. We asked users
to compare and select the candidates in order based on the visual
similarity to the ground truth (most similar to least similar). We
randomly selected forty groups of materials from the previous test
set with half isotropic and half anisotropic materials. We presented
the candidates anonymously and in random orders. Each group of
materials was evaluated by 30 users independently without a time
constraint. Fig. 12 demonstrates the results. Our method gets most
of the votes for most similar to ground truth in both the isotropic
and anisotropic cases (76.0%), significantly outperforming the
other two methods. The percentage of isotropic materials voted
for our method (70.5%) is slightly less than that of anisotropic
materials (81.3%). It is interesting to see that our method shares
similar PSNR value with Sun et al. for isotropic materials but still
gets more votes from users. We believe it is because some of the
reconstructions from Sun et al. have color off on the edge of the
globe (see supplemental materials). Overall, the results from the
user study match with the quantitative evaluation in Table 3. See
supplemental materials for all examples in the user study.

5.4 Validation on measured materials

We also validate our algorithm using 41 measured BRDFs from the
material library created by Dupuy et al. [14], which are not included
in the training set. Fig. 13 demonstrates the bi-scale prediction and
reconstruction results. We show the rendered image of reference
BRDFs, our reconstruction and predicted micro-scale BRDFs and
meso-scale geometries. The average PSNR for the differences
between our predictions and ground truth is 31.57dB, where the
maximum is 50.56dB and the minimum is 20.75dB. From the
results, we can see that our predictions capture both the intensity
and color to a large extent. In Fig. 14, we qualitatively compare
our results with ground truth over RGB channels separately using a
slice of BRDF along the mirror direction, where we vary 6, while
fix 6, at 0. We also show the comparison of the BRDF lopes at
different angles. Our method is accurate by largely following the
curve of the ground truth BRDFs in the specular part and the area
of grazing angles. Refer to supplemental materials for more results.

6 APPLICATIONS
6.1

The proposed bi-scale fitting provides a new material editing
scheme to fine-tune a given material appearance in an intuitive
way. Our algorithm supports users in designing materials with
visualized small-scale details and maps them back to the large-scale
appearance. Fig. 15 gives an example. Given a target material as
input, our method can predict the meso-scale geometry and micro-
scale BRDF, which can be used as a starting point for editing.
We can let the appearance turn dimmer and duller by making the
surface in the meso-scale rougher (Design 1), and increase its

Bi-scale design
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Fig. 9: The best (left side) and worst-case (right side) predictions on a set of 200 images. Averaged PSNR: 42.36dB, minimum: 22.94dB,

maximum: 49.28dB
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Fig. 10: Qualitative comparison (4 x difference) between our method and previous work.

gloss and brightness by smoothing the surface (Design 2). Apart
from adjusting the meso-scale geometry, we can also switch the
micro-scale BRDF to change the appearance (Design 3). Fig. 16
demonstrates another example to design anisotropic materials from
the isotropic ones. Given fabric materials on the left, our method
predicts the woven thread structures and provides reconstructions
in the middle. Using the prediction results, we can adjust the colors
of different woven threads to generate anisotropic silk or fabric
materials displayed on the right. Overall, our method provides a
bi-scale design scheme that can help users intuitively edit materials
to create a large variety of appearance.

The proposed tabular BRDF training can also be extended to
solve analytical fitting problems. We provide a detailed implemen-

tation and compare the results with other analytical fitting solutions
in the supplemental materials.

6.2 Fabrication

The small-scale details obtained from our method could be used
for material fabrication, and we show two woven examples in
Fig. 17. Given a target appearance based on a fabric sample from
real world, we first tabulate the BRDF and use our method to
predict small-scale details. Then we render the prediction results
and compare with real world sample in both scales. The same
directional light and camera configurations are used to make it
consistent between the rendering and photographs in large scale.
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Fig. 11: Qualitative comparison (4 x difference) between our method and previous work for multi-color materials.
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Fig. 12: Results of user study using Amazon Mechanical Turk,
where we asked workers to select the images of materials from
different methods in order based on the visual similarity to the
ground truth. A > B represents A is more similar to the ground
truth than B.

Notice the inconsistency of shading for small scale is caused
by the unknown lighting and camera setup of the close-up-view
photographs. However, in terms of colors and structures, the
predicted small-scale details largely match details of the woven
fabric materials. Also considering large scale appearance, the
reconstruction results are visually similar to the designed materials
and the real world sample.

7 DISCUSSION

Even with a larger fitting gamut, our bi-scale fitting model is
still constrained by the diversity and complexity of training data,
which could be solved by using alternative simulation methods.
Fig. 18 shows a failure case. The reconstruction of material iris-
purple-gem from the material library in Dupuy et al. [14] is less
accurate due to the iridescent effect. Our simulation does not take
into consideration the complex reflection effects like subsurface
scattering and iridescent effects due to the limited computational
power. We have experimented with alternative simulation solutions
such as Wu et al. [53] to introduce inter-reflection, but the long
precomputation time makes it impossible to simulate a large-scale
training set like ours. As a trade-off, we use this relatively simple
but efficient method and take different BRDF models or measured
data into our training set to cover the larger fitting gamut. For future

work, we could push the fitting gamut even further by introducing
more diverse and complex materials or SVBRDF and find an
efficient way to simulate materials with complex reflection effects.

Another limitation of our method is using a separate post-
learning optimization to restore the material color. Although the
optimization can produce anisotropy and multi-color at Fresnel
angles, it is difficult to reconstruct the varying color in specular
lobes, as demonstrated in Fig. 18. This is because the colors are
assigned based on the facet groups of meso-scale geometry, which
is not continuous and is low dimension. Furthermore, the local
minimum of the optimization could also lead to the blending or
averaging of the color of the ground truth. Ideally, given adequate
computing resources, an end-to-end network that learns from
chromatic data and fits colors as high dimension feature vectors
would replace the optimization.

Moreover, although the focus of this paper is BRDF fitting and
acquisition is out of the scope, we want to mention that the macro-
scale input to our model may not be easily acquired compared with
an image or photograph with target appearance. Many existing
solutions [39], [54] demonstrate the possibility to reconstruct full
BRDFs using sparse samples from a given image. In supplemental
materials, we provide a solution to reconstruct BRDFs from the
given images and then use tabular BRDFs for fitting, which enjoys
higher accuracy compared with learning appearance in image space.

Finally, we want to discuss how our method fits into the real
world fabrication setting. To provide a larger fitting gamut and
push the boundaries, we considered many cases in this paper, such
as using synthetic and measured BRDF for training and varying
the color of different parts of the meso-scale geometry. Although
for real life, only a limited palette of materials can be accessed,
we do not consider this as a limitation. The key point of this paper
is to demonstrate the possibility of using a neural representation
for material fitting, which releases the traditional constraints of
using a single BRDF model with a limited gamut. In other words,
the fitting gamut is now defined by the training data. Therefore,
simple adjustments to our method can be considered to fit in the
real-world scenarios, including using the available materials as
training data since measured BRDF are supported, specifying the
degree of freedom for colors and varying the meso-scale geometry
that is available for fabrication. Although using the limited palette
of materials for fitting may lead to lower reconstruction accuracy,
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Fig. 15: Bi-scale design. Given a target material, our model can predict small-scale details, where both meso-scale geometry and
micro-scale BRDF can be adjusted to create new appearances. Increasing the roughness of the surface makes the appearance more
diffuse (Design 1) while smoothing the meso-scale surface makes the appearance glossy(Design 2). Users can also edit the micro-scale
BRDF to change the large-scale appearance (Design 3). For each design, we present the large-scale appearance (left), micro-scale BRDF

(right-top) and meso-scale geometry (right bottom).

a possibly close solution will be provided within the gamut for
further iteration.

8 CONCLUSION

We present a learning-based solution to fit large-scale appearance
using small-scale details, which provides a recipe for material
design and fabrication. To accurately learn the properties from a
given appearance, we introduce a new pipeline using tabular BRDF
as a representation for training. Our method allows the network to
directly learn the spatial features from tabular BRDFs without the
bias of a particular context. Without redundant sampling for lighting
and geometry, we can significantly reduce the required amount of

training data and prevent overfitting to the rendering contexts. We
demonstrated the effectiveness of our method by comparing with
existing solutions and fitting real world materials. We believe our
method can be widely used for research in efficiently and accurately
learning material appearances. We also believe our bi-scale network
can be used for physically realizing virtually designed materials.
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