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Fingers See Things Differently (FIST-D): An Object
Aware Visualization and Manipulation Framework
Based on Tactile Observations

Chenxi Xiao

Abstract—Planning object manipulation policies based on tactile
observations alone is a challenging task due to the multi-factorial
variances in the measured point cloud (e.g. sparsity, missing re-
gions, rotation, etc.) and the limited sensory information available
through tactile sensing. Nevertheless, the mainstream grasp plan-
ners are designed for well-structured point cloud data, and lack
the crucial ability to plan grasps in unexplored regions that are
common during tactile sampling. Hence, it is crucial to detect the
grasp regions from incomplete and unstructured tactile point cloud
data. To address this limitation, we propose a novel framework that
utilizes a support set of CAD models to augment the tactile observa-
tions, and thereby facilitate object recognition, visualization, and
developing manipulation policies solely using tactile samples. To
cope with the noise and sparsity of tactile observations, we propose
uGPIS, asurface reconstruction method that utilizes the occupancy
possibility function and the Gaussian Process Regression to recover
the underlying surface from tactile point clouds. Then, we complete
the partially observed tactile point cloud using the prior knowledge
obtained from the support set of full CAD models. This prior
information will provide the enriched geometric information that
is crucial to determine the grasp regions. Our experimental results
on a physical simulation show that our method can successfully
combine the prior knowledge from the database to enhance the
grasp success rate.

Index Terms—Deep learning in grasping and manipulation, force
and tactile sensing, perception for grasping and manipulation.

1. INTRODUCTION

ACTILE sensing can be an essential requirement in a
T variety of robotic applications, especially when visual
information is unavailable (e.g. occlusion, smoke and darkness,
reflective and transparent objects, etc.) [49]. For example, robots
with tactile sensing are deployed to explore objects buried under
the sand or seabed, or objects purposefully concealed to reduce
the exposure to risks for field technicians. Similarly, applications
in our daily lives and industrial fields are vast and disparate,
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Fig. 1. Tactile point clouds have complex point distributions that are in-
tractable to be modeled. (a) Ground-truth bowl CAD model, (b) Point cloud
sampled by discrete contacts, and (c) Continuous contacts.

such as manipulating objects inside paper or vinyl wrappers,
exploring and recognizing warehouse objects wrapped in shock-
absorbing fabric covers, inferring the shape of human bodies
dressed in clothes [21].

While humans can manipulate objects and comprehend their
properties purely based on tactile feedback, it is a challenging
task for robotic systems to achieve the same due to inherent
perceptual differences between robots and humans. One impor-
tant difference lies in how the prior knowledge about objects is
used. In contrast to robots that rely mostly on vision [15], [16],
[19], [40], human decision making is based on holistic sensory
information including visual, auditory and tactile modalities.
Furthermore, humans tend to effectively utilize abundant prior
knowledge about versatile objects acquired through life-long
learning to assess, plan and manipulate new objects [12]. In
contrast, most robots are trained on a much smaller set of objects
and they do not generalize sufficiently well to new or unseen
objects [7], [31].

Nevertheless, the local and discrete features acquired by ma-
chine tactile feedback are not as indicative of the object’s overall
properties as its visual counterparts. For example, Fig. 1(a) is
a more informative observation compared to the incomplete
counterparts depicted in the Fig. 1(b) and (c). This is evident
from the fact that tactile-based intelligent systems generally
perform poorly even though a learning system has been involved
[24]. Furthermore, in a teleoperation system, the insufficient
transparency of tactile feedback also degrades the teleoperator’s
decision-making performance due to the increased cognitive
load [30]. In this regard, we believe that a key question that
can push the limits of tactile reasoning is the following: how
can a robot use the loosely coupled tactile samples to infer the
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critical object-related properties (e.g. geometry, center of mass,
etc.) that can be used for decision making and motion planning?

We identified through experiments (refer to Section IV) that
making inferences based on a tactile point cloud is a difficult task
due to inductive bias produced by the following variances. First,
the distribution of tactile samples is a result of both the informa-
tion acquisition policies and the sensing modalities. Further, this
distribution alters greatly due to the inherent differences between
individuals (or autonomous agents), methods, decision variables
and even random factors [51]. The inductive bias is further
aggravated by several variances including point sparsity [50],
unknown object poses [45], positional offset, observed contact
regions and also the novelty of the object (a new object not seen
before by the user in the same context).

In this letter, we propose FIST-D, the first known compre-
hensive framework for visualizing, recognizing and planning
manipulation strategies based purely on tactile observations. In
contrast to previous works, our framework is robust to inductive
bias and can effectively plan grasps based on the objects inferred
from a support set. We further extend the framework’s ability to
generalize to unknown objects by proposing uGPIS algorithm,
a novel surface estimator that utilizes partially observed tactile
point clouds to facilitate both contact point visualization and
grasp planning. The main contributions of this work are as
follows:

® We propose FIST-D, a framework for planning manipula-

tion strategy based on tactile observations.

® We propose a method that is robust towards inductive bias

for identifying similar objects from a support set.

® We introduce the uGPIS algorithm, a surface estimator

that can reconstruct non-watertight surfaces based on oc-
cupancy possibility.

® We implement a grasp generator for a two-finger non-

parallel jaw gripper, and evaluate the algorithm on a simu-
lated Taurus robot gripper.

® We develop an interactive simulation environment for tac-

tile sampling.

II. RELATED WORK
A. Robot-Assisted Tactile Sampling & Exploration

Tactile sensing has been popularly used to explore environ-
ments when vision is either not applicable (e.g. dimmed areas,
underwater, or when objects are concealed) or not accurate.
For this reason, previous works have focused on exploring the
workspace by either visuo-tactile integration [38], [42], or purely
using tactile sensing [11], [24]. The latter case can be categorized
into four sub-categories by the way the tactile exploration is
performed: 1) Exploration based on pre-defined motion [24],
2) Exploration over regions with high positional uncertainty
[6], [11], [35], 3) Exploration through minimization of the
action cost by efficient sampling [50], and 4) Human-guided
exploration through teleoperation [39]. In our approach, ahuman
operator guides or teleoperates the remotely located robot to
explore the surface, and thereby, our model falls into the fourth
category.
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B. Tactile-Based Shape Estimation

In general, information sampled by tactile sensors consists of
discrete points that only contain local information [17]. There-
fore, inferring the underlying geometries behind multiple con-
tact points is a crucial step towards developing reasoning ability
and creating visualization to facilitate tactile based human-robot
interaction [46]. To infer the geometric structures from contacts,
Charlebois et al. [4] obtained the local surface by fitting and
combining B-spline patches. Meier ef al. [20] performed tactile
shape reconstruction by using the Kalman filter. More recently,
Ottenhaus ef al. and Rosales et al. showed that Gaussian Process
Implicit Surface [44] is an attractive method to pursue due to the
smoothness of the regressed surface as well as the robustness
towards sparsity [29], [35]. However, all previous approaches
still rely on the Signed Distant Field (SDF) function, which is not
directly accessible and can only be acquired by estimation [29].
Nevertheless, estimating the SDF robustly is a challenging task
due to the noisy surface normal measurements, inconsistentlocal
curvatures, presence of thin structures, etc. As an improvement,
we propose uGPIS algorithm that reconstructs objects by utiliz-
ing the occupancy possibility function rather than the estimated
SDF samples.

C. Grasp Detection

Grasping is a primitive action for robots to interact with
objects. As mentioned in the survey conducted by Shimoga
etal. [37], grasp detection is a persistent challenge in object ma-
nipulation. The grasp detection task requires an algorithm to gen-
erate the manipulator’s target state conditioned on the object’s
observation. Among works that utilized two-finger grippers, a
majority of them focus on grasp detection on parallel jaws [16],
[40]. In comparison, we designed a grasp detection algorithm
and the corresponding evaluation metric for non-parallel jaws.

Grasps are generally being planned using either of the two
approaches: model-based grasping and model-free grasping.
Model-based grasping [13]-[15] often relies on a set of “tem-
plate” objects (i.e. support set) with pre-planned grasps. During
testing, the pre-planned grasps are retrieved and aligned with the
observation from the sensor. However, this approach is hindered
by any type of mismatches in alignment (e.g. shape discrepancy,
alignment error in object pose, etc). For this reason, it is not
feasible to plan grasps for novel objects. To tackle this issue,
model-free grasping has been developed, which plans grasps
without database priors. In this paradigm, grasps are either gen-
erated by searching [16], [40] or deep generative models [23].

While the model-free method has reportedly achieved stafe-
of-the-art performance with visual observations, it is intractable
to be applied directly to the point clouds of low quality (e.g.
incomplete, sparse, and noisy, as is often the case with tactile
points) [36], [40], [41]. To detect grasps reliably on tactile points,
we use a mixed paradigm for grasp detection. First, we leverage
a model-based method to detect grasps on models that match
the tactile observation. We use point cloud registration metric
as an indicator of whether the model-based grasp detection is
successful. When grasp detection is unsuccessful, we rely on
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Fig.2. The flowchart of our proposed framework. Our approach can compre-
hend the object geometries in two conditions: 1) Matching with the object models
from the support set. If successful, the CAD templates can provide superior
performance in visualization and grasp detection; 2) If template objects are not
available in the support set, we leverage uGPIS to reconstruct the underlying
surface of tactile observations.

TABLE 1
COMPARISON OF CLASSIFICATION ACCURACY (IN %) ON THE TACTILE POINT
CLouD DATA FROM INTERACTIVE TACTILE SAMPLING

Method PointNet[33] DGCNN[44] Triangle-Net[46]
Top-1 Acc (w/o aug) 12.3 82 438
Top-5 Acc (w/o aug) 37.0 30.1 67.1
Top-1 Acc (aug) 19.2 15.1 47.9
Top=5 Acc (aug) 38.4 39.7 76.7

model-free grasp planner to detect grasps on high-resolution
surfaces reconstructed by uGPIS algorithm.

III. METHODS

Our framework is focused on the geometric information in-
ferred from contacts. The proposed approach can be summarized
in the flowchart shown in Fig. 2. After receiving the tactile point
cloud as an input, we leverage on uGPIS algorithm (refer to the
Section III-B) to create an implicit surface representation of the
object with infinitely high resolution. Using such an augmented
surface representation is beneficial in at least two aspects: 1) The
sparse and noisy points can be visualized with enhanced quality,
and 2) It allows the grasp detection algorithm to use dense point
clouds rather than the sparse tactile point clouds.

Next, we utilize the support set to complete the partially
observed tactile point cloud. We attribute the partial point cloud
to the most similar CAD models in the support set, and then align
the partial observation with CAD models by point cloud registra-
tion (refer to Section ITI-A). If the registration is successful, then
we perform grasp detection on the full CAD model, which helps
to detect grasps on regions that have not been explored. When
the registration fails (e.g. large registration error for an object
from an unseen category), we detect grasps using the extracted
implicit surface obtained from the uGPIS.

A. Object-Aware Shape Inference

In order to expand the region where grasp detection can be ap-
plied, we infer the completed shape from partially observed point
cloud data. However, the variances discussed in the Section I can
result in severe inductive bias that has apparent negative effects
for many deep learning approaches (refer to Table I). To acquire
robustness to the inductive bias, we propose a two-stage shape
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Fig. 3. Qualitative comparison of full CAD objects (row 1), generated partial
observations by Alg. 1 (row 2), and tactile observations (row 3).

inference method. First, we use a robust point cloud classifier
to propose a candidate object set { X1, X5, ..., Xi}, with each
object being represented as a point cloud. Next, we align the
tactile observation XP with each candidate object by rigid point
cloud registration.

Since we align X with multiple candidate objects, we find
that ICP loss (Eq. 1) can effectively distinguish the correctly
aligned object from the others. A match is successful if an
object has the minimum loss among all candidate objects (loss is
defined in Eq. 1). Otherwise, the alignment failure is recognized
and the object model is represented by the implicit surface
obtained by the uGPIS algorithm.

Object Recognition: Human-guided exploration involves
proactive sampling which may generate tactile samples with
complex distributions that are different from either full CAD
models or visual perceptions (refer to Fig. 1). Though the
object’s CAD models are available, an effective deep learning
method that utilizes these models does not exist due to the
inductive bias resulting from the human-guided exploration
patterns. We show that the inductive bias can be mitigated by
training a network using the algorithm shown in Alg. 1. For
results, please refer to our quantitative evaluation in Table I.
This algorithm takes in a set of anchor points located on the
surface of a CAD object model M. Next, we perform “Expand”
operation (Alg. 1 line 2) which collects the vertices in the CAD
model M that are close to the anchor points in breadth-first order
sequence. The collection stops when the number of collected
points has reached r; percentile of all vertices in M. Then,
we perform “Erosion” operation on the point set P, acquired
from “Expand”. In “Erosion,” we remove 7, percentile of the
total points from P, that are close to the anchor points P2 in a
breadth-first order sequence. We qualitatively demonstrate the
visual effect of generated meshes in the Fig. 3.

Registration: Next, the obtained tactile observations are
aligned with the candidate CAD models via registration. Several
methods have been used in the literature to accomplish registra-
tion, including ICP [1], CPD [26], FilterReg [8], SVR [3], etc.
Since the tactile point cloud is sparse and incomplete, it can
potentially result in noisy and non-expressive features that are
not suitable for matching point correspondences [10]. To resolve
this issue, the alignment is reinitialized and repeated with a large
number of different initial poses. The best alignment is chosen
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Algorithm 1: Generate Training Data.
Input: M: A CAD mesh model
Py: A set of anchor points in M
r;: Ratio of Expand operation
rs: Ratio of Erosion operation
Result: Pg: Object’s partially observed point cloud
1 Algorithm generate_ruptured_mesh
Py=Expand(M, Py, ry)
P} + random select k anchor points from P;
Pg = Pg U Erosion(P;, P3, 1)
return Py

L2 S

according to the following loss function (1):

1
Zicp(T)=— > |p—Tq|? 1)
9 (p,a)ex

Where p, q are the source and target point clouds respectively, ng
is the number of points in g, 7is the correspondence relationship
between p and q (e.g. nearest neighbourhood), and T is the
transform matrix. Since the matrix T obtained from SVR [3]
already includes the scaling factor, our approach remains robust
to the variations in the object scale.

B. Implicit Surface Reconstruction

Gaussian Process Implicit Surface (GPIS) [44] is an approach
that has been widely adopted to estimate the underlying continu-
ous manifold from the noisy and sparse tactile point clouds [19],
[35]. The working principle of GPIS can be explained in two
steps: 1) Fit an implicit function of the Signed Distant Field
(SDF) s = f(x) by the Gaussian Process Regression [33], and
then, 2) Extract the O-isosurface of the function f by Marching
Cubes [28].

Nevertheless, we notice that GPIS has a few drawbacks that
limit its performance in terms of robustness and representation
ability. First, GPIS is only applicable to watertight surfaces, but
many objects cannot be identified as watertight objects when
the thickness cannot be measured well (e.g. a piece of paper,
thin cable, etc.), especially when the spatial resolution of many
tactile sensors is not sufficiently high. For example, a cable wire
may be observed as a one-dimensional point array with zero
thickness. In that case, the watertight property may no longer
hold true, which would result in a failed reconstruction by GPIS
approach. Second, GPIS requires SDF samples from both sides
of the surface, but the points beneath the object are usually
inaccessible by touches [29]. Previous works tackled this issue
by generating SDF anchor points beneath the object surface by
shifting the detected contact points along the contact normal
vectors at a distance d,, [19], [35]. However, choosing the value
of d,, requires careful parameter tuning. Otherwise, it may lead
to either convergence issues during regression, or undesirable
reconstruction results (e.g. inaccurate surface curvatures, refer to
the experiment in Section I'V-C). For this reason, the expressive
ability of GPIS is limited for tactile observations.
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In this regard, we propose unilateral GPIS (uGPIS), a robust
surface reconstruction method based on the estimation of the
occupancy possibility function f, : R! € [0, 1], indicating the
possibility that a position is occupied. The use of the occupancy
possibility function can potentially address the previous con-
cerns as it allows objects to be non-watertight, and it does not
discriminate between inner and outer surfaces. Therefore, it is
feasible to reconstruct surfaces without using samples that are
beneath the object surface. For this, we define a point set U with
fo(U) =u, we[0,1), where u indicates the possibility of a
region being occupied in unexplored spatial regions. Then, we
specify U as a 3D point grid within an interval distance d;; € R3
(in our implementation, each entry in dy; is automatically cal-
culated as % of the corresponding dimension of the object’s
Axis-Aligned Bounding Box).

Next, we transform the tactile observations into training data.
We denote the points in occupied regions as O, with f,(0) =1,
and points in void regions as V, with f,( V') = 0. To update the
uncertainty set U according to the observation sets V and O, we
remove the grid points in U that are close to points in V and O
(i.e. for all p,, with ||py, — puoll2 < d, pu € U and pyo € V U
0). The final training datais 2 = {x,y} withy = QU VU U
and y = {£,(0) = 1} U {£o(V) = 0} U {£o(U) = u}.

We use Gaussian Process Regression [33] to learn the implicit
function from the training data 2. We denote the training points
in x as x € R3, and test points as x, € R3. The f*(x.) € R!,a
posterior distribution of the occupancy function at x., is subject
to the a Gaussian function, which is described in (2)—(4),

p(f (%) | D) ~ H(u(x.),0% (%)) (2
pix) =k! (K+02I) 'y 3)
02 (%.) = kve — KT (K +021) 'k, 4)

Where k is the kernel function, k., is a scalar calculated by
ke = k(X4, %), ks is the vector of covariances between the
test point and the n training points, and K is a n x n matrix
with entries K;; = k(x;,X;), Xs, X; € x. Using the regressed
function f*, the surface can be extracted by calculating the
c-isosurface where ¢ € [minyy, ey f*(X;), maxyx, ey f(X;)]. In
practice, we calculate ¢ by the (5) with oo = 0.05.

c=a min f*(x;) + (1 —a) max f*(x;) (5)
VxiEX VxiEX

In addition, the surface normal at x, can be estimated as
— %. We implemented the differential calculation by using

the auto-differential function in GPyTorch [9].

C. Grasp Detection

The proposed grasp detection can be performed on two kinds
of augmented tactile data: CAD model to align with tactile sam-
ples, or the implicit surface obtained from uGPIS. The latter case
is only used when the minimum alignment error w.r.t all CAD
models in the support set has exceeded the threshold. While the
proposed framework is compatible with other types of grippers,
our approach is tested on the gripper of the Taurus Dexterous
Robot (SRI International). Based on the axis definition of the
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(a) (b)

Fig. 4. (a) Axis definition of the gripper (b) Annotations of contact normals
(n1, n2) and angles (ag, B5) in a planar case.

Algorithm 2: Grasp Detection For Taurus Gripper.
Input: F,;: Object point cloud
Pinteresr: Interest points on the object surface
Ninteresr: Surface normals of Piyeres
Result: Bgrasp: A set of feasible grasps
1 for each Pi, in (Pinteresr:Nmi‘eres!) do
Define Darboux Frame O) at p;
for y € ¥ do
for A € A do
for d € D do
g = Gripper(Op,y,A,—dn;)
if Contact_Filter(g, Fop;) then
g'=GraspRefine(g, Py;)
Bgm.sp — Bgrasp Uglr
end
end
end
13 end
14 end

o e = & R W

—
=

-
==y

-
2]

Taurus gripper (refer to Fig. 4), the grasp detection algorithm is
given in Alg. 2.

1) Generate Grasps: The grasp is generated by performing
exhaustive search on all the interest points P;nterest (€.2. points
from Farthest Point Sampling [22]). The coordinate definition of
the gripperis shown in the Fig. 4 (a). For point p; € Pinterest, We
first align the gripper’s = axis with the corresponding surface nor-
mal n; € Ninteres:, and construct the Darboux Frame O, to fa-
cilitate searching on the following parameters: the gripper’s roll
1 € U, the gripper’s open degree A € A, and the distance from
the gripper’s center to Op: d € D. For the gripper of the Taurus
robot, we choose the parameter as: ¥ = {0, %, Z T 21 57
A = {%,%}inrad, and D = {0.02,0.04} in meters.

2) Grasp Refinement: A grasp can be fully determined by a
tuple of 4 elements: (Op, 1, A, —dn;). After generating a grasp
g by the previous step, we filter out grasps that collide with the
object or have low grasping quality (as explained below).

Our grasping quality metric is an expansion of the force
closure condition [18], [25], [27] i.e. whether a grasp can resist
external wrenches .. given the wrench basis &, as shown in

(6).
F k4 Fexe =0 st. k>0 (6)

Evaluating force closure condition in a spatial case requires three
contact points. However, for our two-finger gripper, we can only
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guarantee the existence of two contact points and therefore, we
evaluate the grasps using antipodal grasping theorem [25] which
defines a sufficient condition for the force closure condition.
In this theorem, a spatial grasp with two soft-finger contacts
is force-closure if and only if the line connecting the contact
point lies inside both the friction cones [25]. Note that the
antipodal grasping theorem gives a binary criterion. However,
we want to quantify the grasping quality as a continuous numer-
ical value to facilitate comparisons between different grasps.
For this, we transform the antipodal grasping theorem into a
likelihood scoring function as given in (7) where a4 and 3, are
the angles between contact normals 1y, ng and the line E;Eo
(Fig. 4(b)), and, cos(ag) and cos(f3y) are empirical likelihoods
that line E; E lies within the two friction cones, respectively.

s = cos(ay) - cos(By) ™

Nevertheless, recent studies suggest that the force closure con-
dition is not a perfect grasp quality metric [40]. For this, we filter
out grasps that are empirically not reliable using the following
criteria. Note that the soft contact criterion and the mass dis-
tribution criterion are only applicable when the position of the
center of mass is available.

Grasp Quality Criterion: Grasps with s < 0.5 are discarded.
Further, both of the two angles a4, 3, are required to be smaller
than % considering the limited friction coefficient.

Soft Contact Criterion: The soft finger contact may not
generate sufficient torque to counteract %.,.. We discard a grasp
if the gravity center is more than 5 cm away from E,, (the
midpoint of E;E,, as depicted in Fig. 4 (b)), and if the spatial
angle between g x (E,, — Cp,) and the y axis is smaller than
%, where Cyy, is the position of object’s center of mass.

Mass Distribution Criterion: The antipodal grasp theorem
does not consider the object’s mass distribution. In practice,
balancing the mass distribution contributes to the grasp quality
by avoiding the in-gripper rotation [5]. The gripper’s xy plane
splits the object’s Oriented Bounding Box (OBB) into two
regions. The grasp is discarded if the maximum volume ratio
of two regions is larger than 3.

IV. EXPERIMENTS AND RESULTS
A. Tactile Sampling

A description of the meta-configuration of tactile sampling
is given as follows. In the workspace W, there exists a tactile
sensor probe and an unknown object .J. The probe’s position p,,
can always be observed. When the probe has contact with J, the
coordinates of the contact point set P, and its normal vectors
N . can be detected.

Inspired by Ting et al. [51], we created an interactive simula-
tion environment corresponding to this tactile sampling config-
uration, as shown in the Fig. 5 (a). The purple sphere attached to
the gripper is the sensor probe. The object models used in this
work for tactile sampling are a subset of objects presented in
YCB dataset [2]. Fig. 5 (b) corresponds to our real experiment
scenario, in which a Taurus robot is collecting tactile signatures
for an object being concealed inside the soft plastic cover by
pressing the regions of interest.
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(a) Simulation

(b) Real Exploration

Fig. 5. (a) Simulation environment for interactively obtaining tactile sam-
ples. (b) Tactile exploration using Taurus dexterous telepresence manipulation
system.

B. Object Recognition

This section addresses the problem of inductive bias in the
classifier network which is used to propose candidate objects
from a support set. To indicate the negative effects of induc-
tive bias, we performed the classification task on the point
cloud data obtained from tactile sampling. We compared the
Triangle-Net approach with two other baselines that do not
have robustness towards multi-factorial variances: PointNet [32]
and DGCNN [43]. All approaches are trained with point cloud
patches obtained from 24 objects that belong to the YCB dataset
(512 points per object). The data variation is augmented by:
1) applying SO(3) rotation to the objects, which simulates real
scenarios where object pose is not known in advance, 2) using the
proposed data augmentation (Alg. 1) to generate partial observa-
tions as it is expensive to obtain large amounts of human-guided
tactile samples. The network is tested on YCB objects observed
by interactive tactile exploration (Section IV-A) guided by a
human (74 observations in total). To ensure sample diversity,
each object is sampled with at least three observations from
different sampling patterns. Some examples can be found in the
Fig. 3. We down-sampled the test observations to 512 points per
object since the accuracy would otherwise be affected by the
number of points [45]. The mean test accuracies are reported in
Table I.

We observe significant differences in performance between
Triangle-Net and other methods. For top-1 accuracy, Triangle-
Net achieves 47.9% while PointNet and DGCNN achieve only
19.2% and 15.1%, respectively. Similarly, this performance gap
also exists in top-5 accuracy. This indicates that the robustness
towards multi-factorial disturbances is crucial to reduce the in-
ductive bias. To quantify the effectiveness of data augmentation,
we show the degraded classification accuracy when the data
augmentation method is removed (i.e. “w/o aug” in Table I,
which trains network on YCB objects with SO(3) rotation but
without missing regions).

C. Surface Reconstruction

First, we show the necessity of uGPIS algorithm by visually
comparing the reconstruction results with GPIS (Fig. 6). In this
experiment, we analyze the tactile sampling scenario where the
SDF value cannot be directly observed. For GPIS, the SDF
value is estimated from the surface normal (refer to [19], [29]).
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Fig. 6. Comparison of surface reconstruction results by uGPIS (row 1) and
GPIS (row 2).

(a) mug cup (b) scissors (c) banana (d) bowl
Fig. 7. High resolution implicit surface from uGPIS on non-watertight

samples.

Since d,, in GPIS is a hyper-parameter that is related to the
individual object scale, the parameter sets for GPIS have to be
carefully tuned for each object, while uGPIS can robustly work
on all objects using a unified set of parameters. Overall, the
GPIS works well for watertight objects with simple geometries
(e.g. a banana). However, the reconstructed surface is distorted
as the estimated SDF is inaccurate when thin structures exist
(e.g. a screwdriver, spatula, wrench), or completely fail when
the watertight assumption does not hold (e.g. mug cup, as it can
be touched from both inside and outside).

Next, we conduct experiments to show that uGPIS algorithm
is capable of upsampling sparse and discrete tactile point clouds
that are not considered to be watertight. The results obtained are
shown in the Fig. 7. The first row depicts our tactile sampling en-
vironment, where the green regions are the contact regions made
by the tactile probe. The second row shows the high-resolution
implicit surface reconstructed by the uGPIS algorithm. The
point cloud is shown in red color and the reconstruction surface
is visualized in blue color. Results indicate that uGPIS can
successfully represent the non-watertight and discrete contacts
as continuous surfaces with infinite resolution.

D. Grasp Detection

Next, we compare the quality of the grasp detection under
three scenarios: 1) Directly using the low-resolution and par-
tially observed point clouds, 2) Using upsampled point clouds
generated by uGPIS (16 384 points per object), and 3) Using the
CAD models aligned with the partially observed objects. We
evaluated the grasp detection algorithm on three objects from
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TABLE II
GRASP QUALITY EVALUATION ON 3 SCENARIOS: (1) RAW TACTILE POINT
CLOUDS, (2) UPSAMPLED POINT CLOUDS BY UGPIS, (3) FULL OBJECT

MODELS
[©)] @
Data type | Object ;‘;;‘;15 C“‘gi;‘;;:m"’ S‘E‘;:ss DI
AT 101 29 %29  178%
(1) Raw points| B | 64 21 1321 203%
c | 269 44 2530 13.6%
A 204 80 17/30 22.2%
@QuGPIS | B | 993 668 2030 493%
c | 844 276 2330 25.1%
A | 7 73 2600 86.7%
(3)Fullmodel| B | 1816 1816 26030  86.7%
c | 1085 1085 2530  83.3%

the YCB dataset: (A) mug cup, (B) scissors, and (C) Phillips
screwdriver. We built a simulation based on V-Rep [34] for
evaluating the stability of the grasps. A grasp is successful if
the object does not fall under gravity.

Table II shows the percentage of successful grasps in three
aforementioned scenarios. We can draw three conclusions from
this table. First, as the column (1) and (2) indicate, for all 3 ob-
jects, using raw tactile point cloud data for grasp detection yields
an insufficient number of grasps due to the sparsity. Using up-
sampled point cloud obtained from uGPIS, or using fully aligned
CAD models yields a significantly larger number of grasps.
Second, column (1) and (2) also indicate that, grasp detection on
partially observed point clouds yields a large number of grasps
that may collide with the unobserved parts of the objects. This
problem can be solved by using the completed models that are
aligned with the tactile observations. In addition, using a full
CAD model also facilitates grasp detection on unobserved parts.
Third, our overall framework achieves superior performance in
terms of success rate of collision-free grasps (column (3)) and
the overall success rate (column (4)). Hence, we conclude that
utilizing both the surface reconstruction from uGPIS and the
fully observed models from the support set are beneficial to the
quality of planned grasps, while the latter approach has more
significant advantages.

E. Framework Evaluation

Next, we evaluated the performance of the whole framework.
The support set has 14 CAD models chosen from the YCB
dataset. The evaluation is conducted under two scenarios: 1)
Grasp 14 objects from the support set, and 2) Grasp 10 objects
from YCB dataset that do not belong to the support set. For each
object, we collected three observations by tactile exploration
(refer to Section IV-A). Since each observation is evaluated for
three grasps, it results in 9 grasps for each object, 126 grasps
for objects in the support set, and 90 grasps for novel objects. In
these experiments, uGPIS is considered as a regression model
and is trained with RBF kernel for 200 epochs at a learning
rate of 0.1. We trained the Triangle-Net with the artificial data
obtained from data augmentation (Alg. 1). we set M € [3,4, 5],
r; = 0.6, 7 = 0.4, and for ICP, we registered the Top-5 objects
proposed by the Triangle-Net.
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TABLE III
EVALUATION RESULTS OF THE WHOLE FRAMEWORK

Object Type Total Model-based Model-free Success
grasps grasps grasps rate

Support set objects | 126 59/78 21/48 63.5%

Novel Objects 90 1/3 31/87 35.6%

The obtained results are shown in the Table III. In scenario
1 (support set objects), 78 observations are successfully regis-
tered to CAD models, resulting in 59 successful grasps. For
the remaining 48 observations, the classification/registration
algorithm cannot attribute it to the correct CAD model and thus,
the grasp detection is performed based on the implicit surface
reconstructed by uGPIS. For this, 21 of 48 grasps are successful.
The overall success rate for support set objects is % =63.5%.
In the second scenario (novel objects), we achieve 32 successful
grasps out of 90 trials, showing the framework’s generalization
abilities to new or unseen objects. We notice a case where one
observation of “small clamp” model is incorrectly registered to
“large clamp” model due to partial similarity and triggered the
model-based grasping. This issue can be avoided by adding more
tactile points to distinguish an object from other candidates.

V. CONCLUSION

To tackle the intractability of object inference and planning
manipulation policies based purely on the tactile signatures, we
propose FIST-D, a tactile-based decision-making framework
that augments tactile observations by integrating knowledge
from a support set of CAD models. The main challenge of
utilizing tactile point clouds is the inductive bias induced by the
multifactorial variances in the tactile measurements. To address
this issue, our proposed framework adaptively integrates two so-
lutions: 1) An object-aware approach that proposes high-quality
CAD objects from the support set, and 2) uGPIS, an occupancy
possibility-based object reconstruction method that transforms
discrete contact points into the implicit surface representation,
enabling generalization to unseen objects. Further, we propose a
simulation paradigm that allows tactile sampling to be conducted
interactively. By utilizing the above framework, we managed
to plan grasps directly based on tactile points. In the future
work, we will relax the assumption that the configuration of
the object needs to remain unchanged during tactile exploration,
and develop techniques to tackle this challenge. This issue can be
potentially addressed by using sensors that require low contact
force such as a triboelectric sensor [47]. Lastly, there is a risk that
the success rate may be hampered when the tactile measurements
are very noisy. This can be mitigated by utilizing the recent
advancements in high resolution tactile sensors such as GelSight
[48].
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