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Abstract

Rotating spiral patterns in Rayleigh-Bénard convection are known to induce azimuthal flows,
which raises the question of how different neighboring spirals interact with each other in spiral
chaos, and the role of hydrodynamics in this regime. Far from the core, we show that spiral
rotations lead to an azimuthal body force that is irrotational and of magnitude proportional to the
topological index of the spiral and its angular frequency. The force, although irrotational, cannot
be included in the pressure field as it would lead to a nonphysical, multivalued pressure. We
calculate the asymptotic dependence of the resulting flow, and show that it leads to a logarithmic
dependence of the azimuthal velocity on distance r away from the spiral core in the limit of negligible
damping coefficient. This solution dampens to approximately 1/r when accounting for no-slip
boundary conditions for the convection cell’s plate. This flow component can provide additional
hydrodynamic interactions among spirals including those observed in spiral defect chaos. We show
that the analytic prediction for the azimuthal velocity agrees with numerical results obtained from
both two-dimensional generalized Swift-Hohenberg and three-dimensional Boussinesq models, and
find that the velocity field is affected by the size and charges of neighboring spirals. Numerically,
we identify a correlation between the appearance of spiral defect chaos and the balancing between

the mean-flow advection and the diffusive dynamics related to roll unwinding.

I. INTRODUCTION

An unexpected chaotic state near the onset of convection in a Rayleigh-Bénard config-
uration was discovered in COy gas (a low Prandtl number fluid) by Morris et al. [1], in
which rotating spirals are continuously nucleated and eliminated, yielding a state with per-
sistent dynamics (i.e., “spiral defect chaos”). Experimental evidence also suggests that, as
the fluid Prandtl number decreases or the aspect ratio of the experimental cell increases,
the chaotic state may emerge as the first bifurcation from the quiescent, conduction state
2], contrary to well established theory [3-5]. Classical stability theory is based on the
Boussinesq model of thermal convection in a simple fluid [4], and motion near the onset
of Rayleigh-Bénard convection is predicted to be variational, a fact that would preclude
the observed persistent dynamics. As was recognized early on, the chaotic state is enabled

through the coupling between the primary vertical velocity field mode that becomes unstable



at threshold, and weakly damped, long wavelength rotational flows on the horizontal plane.
That such near-marginal flows could be relevant in convection in large aspect ratio systems

had been proposed earlier by Siggia and Zippelius [6].

Following the discovery of spiral defect chaos, a class of theoretical and computational
analyses focused on two-dimensional (2D) models (the generalized Swift-Hohenberg models)
that explicitly include the coupling between the vertical vorticity and an order parameter
field appropriate for the convective instability (proportional to the vertical velocity or tem-
perature deviation on the mid plane of the convection cell) [7-9]. Numerical analysis of these
models confirmed the importance of the coupling to vortical flows to model the transition
to chaos [10-14], although it remains unclear what its precise role actually is in sustaining
the chaotic state. Extensive computational work also included direct numerical solution of
the governing equations for a Boussinesq fluid in a Bénard configuration [11, 14-16], and
also of the related problem of a single rotating spiral pattern filling the entire convection cell
[10, 17-19]. In particular, a detailed numerical investigation by Karimi et al. [14] has shown
that the flow structure around a spiral core in a fully three-dimensional (3D) numerical so-
lution of the Boussinesq equations is qualitatively similar to that of the simpler generalized
Swift-Hohenberg models that incorporate 2D rotational flows. Yet, the main question as
to the mechanisms underlying the appearance of the chaotic state and, in particular, the
role of any hydrodynamic interactions among rotating spirals in an extended system remain

unanswered.

In this work we present results based on both a generalized Swift-Hohenberg model in
terms of a 2D order parameter field ¥ (x, t), which represents the vertical velocity of the fluid
at the convection cell’s mid-plane, and a full 3D solution of the Boussinesq equations. We
begin by examining approximate solutions of the 2D model that correspond to a rotating
spiral pattern, focusing on the rotational horizontal flow induced by an effective body force
f = —(V*))V (where V is the 2D gradient operator on the horizontal plane) that plays
the role of the driving force of the vortical flow [10, 12]. It is through this term that the
curved convective rolls generate vertical vorticity, which in turn advects convective rolls.
From the form of the 1 field corresponding to a spiral pattern, we show that there exists an
irrotational contribution to f that leads to a long-ranged azimuthal velocity field around the
core of the spiral. For a laterally unbounded configuration, the azimuthal velocity decays

as v, ~ 1/r away from the core. If, instead, the azimuthal velocity is required to vanish
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at a finite distance r, from the core, we show that this asymptotic dependence is never
attained for typical spiral sizes. Furthermore, if damping at the bottom and top bounding
walls is neglected, we find v, ~ rIn(r/r,), where 1, is a cutoff distance at which the velocity
vanishes. These results are verified numerically for both a rigidly rotating spiral pattern
and the spiral defect chaotic state that are generated in the 2D generalized Swift-Hohenberg
model and the 3D Boussinesq equations.

In Sec. IT' A we introduce the generalized Swift-Hohenberg model, which is the starting
point of our asymptotic analysis. We expand the order parameter 1 as a function of a small
parameter in Sec. II B, which allows us to express the force f in terms of gradients of the
complex amplitude A of the ¢ field. Based on a dynamic equation for the amplitude, we
obtain the asymptotic form of f which exhibits both rotational and irrotational terms. We
derive in Sec. II C different components of the azimuthal velocity from the asymptotic form
of f, and show that they are dominated by the contribution from the irrotational force term.
The numerical methods used for both generalized Swift-Hohenberg and Boussinesq models
are detailed in Secs. IIT A and III B, respectively. In Sec. IV, we confirm the analytic results
for the dependence of the azimuthal velocity v, on damping by computing it for a range
of damping coefficients. While for relatively large damping the azimuthal flows are largely
confined near the core of each spiral, as damping decreases a hydrodynamic interaction
between neighboring spirals arises through the cutoff length r,. In Sec. V B, we discuss
the role of advection versus spiral arm unwinding in the rotation of the spiral. Finally, in
Sec. V C we present a comparison of the azimuthal velocity computed from the generalized

Swift-Hohenberg model and the full Boussinesq equations.

II. AZIMUTHAL FLOW INDUCED BY A ROTATING SPIRAL

A. The generalized Swift-Hohenberg model

The Swift-Hohenberg model for Rayleigh-Bénard convection [7] follows from a 2D pro-
jection of the governing fluid equations in the Boussinesq approximation that eliminates the
dependence of the temperature, pressure, and velocity fields on the vertical coordinate z
near the onset of convection. This results in a gradient model for an order parameter field

(x,t) [with x = (x,y)] that represents the vertical velocity on the mid-plane of the convec-
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tion cell [8, 20, 21]. The model was later generalized to account for the coupling between
the unstable mode at the onset of convection and 2D mean flows [8, 9], and is associated

with the equations

O +v - Vip = e — (V2 + ¢5)*¢ — 47, (1)
[at (V2 02)] V2 = g [V(v%) X w;] 3, 2)

where € is a bifurcation parameter that measures the dimensionless distance to the convection
threshold (in terms of the Rayleigh number), v(x,t) is the 2D incompressible mean flow
velocity, and ¢ is a rescaled Prandtl number. The mean flow velocity is obtained from
the vertical vorticity potential ((x,t) via v. = V x ((z), such that the vertical vorticity
Q, = (Vxv)z=-V?*. A momentum damping coefficient ¢? is introduced to model viscous
friction at the top and bottom bounding walls, and appears from averaging derivatives of
the flow in the vertical direction over the thickness of the convection cell. In the case of
free-slip (i.e., stress-free) boundary conditions, one would have ¢* = 0, while ¢ > 0 for
no-slip boundary conditions. The coefficient g,, controls the magnitude of the flow coupling
9, 20], which increases as the Prandtl number decreases and also appears from the averaging
process.

The right hand side of Eq. (2) can be written as —g,,(V xf)-z, with f = —(V?)V. This
effective body force originates from projecting the advection nonlinearity in the Boussinesq
model onto the 2D order parameter model. This force has a functional analog in models of
active matter in which an active stress breaks equilibrium symmetry relations [22-24] and

hence directly allows non-variational flows.

B. Effective body force induced by a rotating spiral

Rotating spiral and target solutions are well known to emerge from Eq. (1) [25]. Away
from the core, the solution for the order parameter field in polar coordinates (7, ¢) has the
form ¢ = Ae'®" 4 c.c., where A is a slowly-varying complex amplitude that can be written
as A(r,o,t) = p(r)e?, with phase # = my — wt and a real amplitude p. Here w is the
angular frequency of the spiral, and the topological charge m is an integer representing the
index of the singularity [26] (which is the number of arms in the spiral in this case). While

target patterns with m = 0 present a single-valued 6, rotating spirals have a multivalued



phase 6 as m # 0. This has implications for their topological stability [26] as the circulation
of § around a contour 7 enclosing the spiral core has a quantized value that depends on the
topological charge, i.e., 3% V@ - dl = 2mm, where 1 is the vector function that defines the
path. Velocity fields induced by rotating spirals have been argued to decay with distance as
1/r, and to be negligible for spiral rotation as compared to motion induced by wavevector
frustration [12]. This implies that direct hydrodynamic interactions among rotating spirals
are negligible, and therefore the role of mean flows in inducing and sustaining the chaotic
state remains to be understood. We reexamine this issue by investigating the azimuthal
velocity generated by a rotating spiral by both asymptotic and numeric analyses.

We derive the asymptotic form of the body force f that appears in the 2D momentum
Eq. (2). Near the convection threshold ¢ < 1, we expand the order parameter ¢ into a

periodic base state in terms of a slowly varying amplitude of the form
¥ =e[AX,T)e™ ™ +c.c], (3)

where (X,T) denotes slow spatial and time scales upon which the amplitude A depends.
Assuming an isotropic expansion in which V — +ik + ¢V |k| = qo, and the gradient only

acts on the slow X scale, we find
V? [eA(X, T)e™™] = —ek? Ae™™ + 2i’k - VAe™™ + V2 Ae™,

which leads to the following resonant terms in the amplitude expansion of the force f (those

originated from a combination of wavevectors whose result is zero)
V2eA(X, T)e ¥V [eA* (X, T)e **] = ie’k?|A|* k — k2P AV A* 4+ 26 (k - VA) A*k
+2ie*(k - VA)VA* —ic? A*V2Ak + £ V2AV A*.
Explicitly adding the complex conjugate terms, we find
(V) Vi = —k2V A2 + 263 [(k CVAA + (k- VA*)A} k
24t [(k VAVA — (k- VA*WA} +iet (AVZA" — A'V?A) K
+€* (VPAVA* +cc.).
This expression can be further simplified by noting that in the radial direction the rigid

rotating spiral is approximately a solution of the governing equation for the order parameter.

That is, away from the spiral’s core we have k = ¢o7 and A = p(r)e, where § = my — wt.
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This leads to (AV?A* — A*V?A) = V - (AVA* — A*V A) = 0. By gathering terms up to

5

order € and rescaling all the quantities back to the original scales (x,t), we find that the

force can be written as

f=—(V)Vy
=@ V(AP —2p*) — 4qq

mp p'

¢ — (VPAVA* +cc.). (4)

r

The first term in the RHS is of gradient form and does not contribute to Eq. (2). In a
pressure-velocity formulation, it can be absorbed into the pressure term. The other two
terms contribute to the mean flow.

We begin with the last term of Eq. (4), which can be written as a function of the angular
frequency of the spirals. From Eq. (1), the corresponding amplitude equation [21, 27] can

be written in polar coordinates for curved rolls (targets or spirals) [28, 29],
A = €A+ 4q3(02 +r710,)A — 2iger (20, + 1" )OLA — r’48éA — 3|APA. (5)

This amplitude equation appears from a solvability condition at 0(63/ %) of the expansion,
with 1 expanded in power of e similarly to Eq. (3). Rearranging terms, we obtain the
following expressions for a rigidly rotating spiral with ;A = —iwA,
1
(02 +7r710,)A = vl (iw + €)A 4 2iger?(20, +r~ )92 A
4o

+r LA + 3|A|2A] : (6)

For the complex amplitude of a spiral given by A = p(r)e?, we have VA = (p'7 +
imr~1pp)e? and |VO| = m/r. Hence, from Eqgs. (4) and (6) we obtain
1

f—_
2q?

. mw  S8¢Empp’\ .
(3/)2—€—|—|V9|4—4q§|V9|2),0p/7°+(—pr + 200 pp)cp}. (7)

r

This is the central result of this section. The radial component in the RHS of Eq. (7) is
irrotational and can be included in a redefinition of the pressure. The azimuthal component
vanishes for targets with m = 0 (i.e., no angular dependence). It also vanishes near the core
(r — 0) since p — 0 as the core is approached. However, away from the core where p is
approximately constant, the term [—(p*mw/r)@] can be written as —p*mwV¢. This is an
azimuthal body force induced by the rotating spiral that is irrotational. This irrotational

force term cannot be eliminated by subsuming it into the pressure as the latter would become

7



multivalued. That is, the observed pressure is continuous, without a direct dependence on
¢, which would lead to a jump of 27 (see Fig. 1). The curl of this irrotational force
corresponds to a vorticity point source at the origin. No true divergence exists in this term
as the amplitude p vanishes at the core. We will retain this irrotational force, and calculate

its contribution to the azimuthal velocity explicitly.

C. Azimuthal velocity field

In order to compute the velocity field that results from the force given in Eq. (7), we
first obtain an asymptotic expression for the amplitude p by substituting A = p(r)e? in the

amplitude equation (5); in the stationary limit we find
Ag3 (02 +7710,)p + (e — |VO]" = 3p*)p = 0. (8)

For r > 1, using # = my — wt we obtain

11

2 4

PP = —e— - |Vt =
3¢ 31V

Substituting Eq. (9) into Eq. (7) yields

1 (p2 mw 8q8mpp’> 1 [emw _ m’w  16ggm°

- — i 10
2q§ r r r 7D 76 (10)

4 Am? . Am?

Ce— —— 2pp = —.
26T 3 2P =33 9)

 6¢?

fo

The radial component of f given in Eq. (7) can be written in a gradient form and absorbed
into the pressure term; thus we only need to consider f = f,¢. As shown in Eq. (10), this
azimuthal force consists of an irrotational contribution (the first term) and two rotational
contributions.

The calculation of the azimuthal velocity is simplified by using a pressure-velocity repre-

sentation of Eq. (2) for Stokes flow,
~Vp+o(V?—A)v+g.f=0. (11)

Since this equation is linear in v we solve separately for the three components of f, in
Eq. (10), which leads to the three velocity contributions vy, vo, and vs. The component vy

satisfies

—Vp+ (V- Ay + 696";(2% ~0. (12)

This flow component is induced by the irrotational part of the azimuthal force. In the

vorticity and stream function formulation of Eq. (2), the corresponding term is zero except
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for a point source of vorticity at the origin. In this configuration, the pressure changes only
along the radial direction (as observed in Fig. 1c), so that the azimuthal component of the

velocity satisfies an inhomogeneous modified Bessel equation

1 EGm MW

1
63’0150 + ;87«?}1@ - (02 + ﬁ)vl(p = (13)

 6g2or
Assuming Dirichlet boundary conditions, so that the velocity approaches zero at the spiral’s

core r = 0 and vanishes at some distance r,, we find

oy, = T F N (cKl(rbc) _ l) Lier) CK1(C7")]a (14)

6gioc? |r T

where [; and K, are modified Bessel functions of first and second type, respectively. In
the limit of ¢ — 0, for which damping at the top and bottom bounding walls is negligible

(free-slip), the solution for vy, reduces to [30]

MWEG,
12¢30

rin(r/m). (15)

Vip =

For ¢ > 0, in the limit 7, — oo the contributions from the parts containing the modified
Bessel functions in Eq. (14) become negligible at long distance, so that vy, ~ 1/r, in
agreement with the result in Ref. [12]. Recall that several approximations made here hold
only away from the spiral core, and therefore this solution must be regarded as an outer
solution for the flow.

It is possible to obtain analytically a solution for the rotational component of the flow

Vg, although only when ¢ = 0. The corresponding flow equation is given by

gmm’w

—Vp + U(VQ — CQ)VQ — W(‘O =0. (16)

It can be rewritten in terms of ( in polar coordinates, i.e.,

B 2G,mm°w

2 1 1 1 1 1
o+ ;6?( — ﬁafg + ﬁa,( + T—garagg + T—Qafa;g — 2 (;8,( + 8,%) === (17)

3q2ars ’

where ¢ = ((r) due to vy = va,¢. At large distances and ¢ = 0, we find

5

Jmm°w
Therefore, since vy, = —0,( we obtain
Gon 17 (19)
v =
2 A8qEor?



Similar to vs,, we are able to obtain a solution for the other rotational component v,
generated by the last term in Eq. (10), also for ¢ = 0. Following the same steps, we obtain

o 8gmm5(ﬂ]
e st

(20)

In summary, the azimuthal flow induced by a rotating spiral can be decomposed into two
separate contributions arising from irrotational and rotational force components respectively.
The former, vy, as given by Eq. (14), leads to a long ranged logarithmic dependence of the
azimuthal velocity when ¢ = 0, and to a 1/r decay at finite damping with ¢ > 0 as r, — co.
Rotational forces lead to azimuthal velocities va, and vs, that decay as power laws (1/r?
and 1/r?) for ¢ = 0, as shown in Egs. (19) and (20), and therefore decay much faster than

the flow vy, created by the irrotational component of the force. We will use these results to

interpret the numerical calculations in the next section.

III. NUMERICAL METHODS
A. 2D generalized Swift-Hohenberg model

Computations of the generalized Swift-Hohenberg model were based on the vorticity for-
mulation, Egs. (1) and (2). We also conducted spot checks with an equivalent 2D pressure-
velocity formulation based on Eqgs. (1) and (11), and computed the effective pressure field as
shown in Fig. lc. The results obtained for the velocity field are identical within numerical
accuracy. For all the results presented, the equations have been solved on an equally spaced,
square grid of 5122 nodes, with gy = 1 and the grid spacing Ax = 27/16. We used a pseudo-
spectral method, where gradient terms are computed in Fourier space with a second-order
implicit iteration scheme, and nonlinearities are computed in real space through an explicit
second-order Adams-Bashforth scheme. The time step used is At = 1073, The algorithm
was implemented by using the parallel FFTW routine with associated MPIT libraries. Pe-
riodic boundary conditions were used throughout. In our calculations the parameters were
chosen as ¢, = 50, 0 = 1, and € = 0.7. Further details about the influence of the vari-
ous parameters on the qualitative nature of the patterns obtained have been given in Refs.
[12, 14]. From the pressure-velocity formulation, the pressure has been computed through
the pressure Poisson equation which follows from the longitudinal projection of the underly-

ing momentum conservation equation (by taking the divergence of Eq. (11) and accounting
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for incompressibility V - v = 0). The same grid setup, model parameters, and boundary
conditions were used in this case.

Figure 1a shows a typical configuration of the v field inside the regime of spiral defect
chaos. It is obtained by time integration of the model equations from a random initial
condition of uniformly distributed ¢» € (—0.05,0.05) and zero initial velocity. The figure
shows multiple one-armed spirals, obtained at time ¢ = 10° for ¢ = 2. Following the
algorithm of Egolf et al. [31], we show in Fig. 1b the corresponding spatial distribution of
phase 6, and observe the expected discontinuity of 27 when enclosing a full circle around
the core of each spiral. Although the phase is multivalued, the body force is continuous and
the resulting pressure (illustrated in Fig. 1c) is also continuous. Note that the pressure is

mostly radially symmetric, with its local maximum near the core of every spiral.

8

(c) Pressure

FIG. 1: Spatial pattern of (a) the order parameter field ¢ comprising several one-armed
spirals, (b) the corresponding local phase 6, and (c) the pressure. The model parameters

used are € = 0.7, ¢, = 50, ¢> =2, and 0 = 1.

From each spatial configuration, such as the one shown in Fig. la, we extract the locations
of spiral cores by plotting the magnitude of the velocity v and searching for the location
inside the vortices where |v| = 0. The flow generated by each spiral has the form of a
vortex [14]; hence well-formed spirals are detectable through axially symmetric rings in |v|
or smooth spikes in the vorticity potential (for which the core is located at the maximum of
).

Figure 2 shows two neighboring spirals rotating in the same direction, with cores located
at positions (104,56) and (156,81) of Fig. la. By setting the origin, r = 0, of a polar
coordinate system at the core of the left spiral at (104,56), the figure also shows the radial
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FIG. 2: Left: Two clockwise rotating spirals with cores located at approximately (104, 56)

and (156,81). The blue line has a length of 58, which is roughly the distance between the
cores. Right: Azimuthal component of the force f = —V?9 V1 (solid line), with 7 = 0 at
the (104,56) core. The dashed line is a guide to the eye showing the approximate 0.44/r

decay of the force amplitude.

dependence of the azimuthal component of the force f up to the edge of the spiral. The
amplitude of the force decays slowly with distance r, and for » > 5 oscillates with periodic
wavelength slightly larger than 7/q, half of the approximate stripe/roll periodicity g from
the linear solution, as expected from f = —V?2¢V1). The velocity generated by this rotating
spiral will be investigated in Sec. 11 C.

B. 3D Boussinesq equations

Rayleigh-Bénard convection is the buoyancy driven convection that occurs when a shallow
and horizontal layer of fluid is heated from below. The fluid motion is described by the
Boussinesq equations [5], which represent the conservation of momentum, energy, and mass,

and are given as

Pr! (2—1;—|—u : Vu> =—Vp+V?u+RaTz, (21)
%—f +u-VT = VT, (22)
V.u=0. (23)
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In these equations, u(zx,y, z,t) = (u,v,w) is the velocity vector with components (u, v, w)
in the (x,y, z) directions, respectively. The pressure is given by p(z,y, z,t), the temperature
field is denoted by T'(z,y, z,t), and z is a unit vector in the positive z direction which opposes
the direction of gravity. Equations (21)—(23) have been nondimensionalized using the depth
of the convection layer d as the length scale and the vertical heat diffusion time d?/k as
the time scale, where k is the thermal diffusivity. The vertical diffusion time represents
the time required for heat to diffuse from the bottom to the top of the convection layer.
Additionally, the constant temperature difference between the bottom and top boundaries,
AT, is set as the temperature scale. Using this convention, 0 < 7' < 1 where T(2=0)=1
at the bottom boundary and T(z=1)=0 at the top boundary. The Rayleigh number Ra=
Bgd®AT/(vk) is often the control parameter used in experiments and represents the ratio of
buoyancy to thermal and viscous dissipation, where (§ is the thermal expansion coefficient
and v is the kinematic viscosity. It is often convenient to use the reduced Rayleigh number
¢ = (Ra—Ra,)/Ra. to describe the degree of driving beyond the convective threshold, where
Ra, is the critical Rayleigh number. The way this number rescales to € in Eq. (1) is detailed
in Appendix A. For an infinite layer of fluid with no-slip boundaries Ra, = 1707.76 and the
nondimensional critical wave number of the convection rolls is ¢, = 3.1165 [5]. Therefore, the

width of a single convection roll will be approximately unity after the nondimensionalization.

The Prandtl number of the fluid Pr = v/k is the ratio of the momentum diffusivity to the
thermal diffusivity. The connection between Pr and the rescaled Prandtl number ¢ used in
the generalized Swift Hohenberg equation is described in Appendix A. The Prandtl number
is inversely related to the magnitude of the mean flow [32, 33] which has been shown to
have a significant effect upon the state of spiral defect chaos [16, 34-36]. In the numerical
simulations presented here, we use Pr = 1 which is typical of the compressed gases often
used in Rayleigh-Bénard convection experiments [1, 36]. The aspect ratio of the domain
I' is the ratio of the lateral extent of the convection layer to its depth. We have used two
different geometries in our exploration reported here: a periodic box domain with I' = 100
to study spiral defect chaos and a cylindrical domain with I' = 40 to study a single rotating
giant spiral. Schematics of these two domains are shown in Fig. 3(a) and Fig. 3(b) for the
box and cylindrical domains, respectively. We note that the spatial scale in this figure is
different from the one used for Fig. 1 by a factor of 1/q., as later detailed in the text and
Appendix A.
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FIG. 3: Schematics of the two domains used for the numerical simulations of the
Boussinesq equations. The Cartesian coordinates (z,y, z) are in the directions shown and
gravity acts in the direction opposing 2. (a) The box domain with a square planform of
side length L and a depth d with an aspect ratio of I' = L /d = 100. The sidewall boundary
conditions are periodic and the bottom and top walls are no-slip surfaces. This domain
was used to generate a state of spiral defect chaos, with a sample flow field shown in
Fig. 4. (b) The cylindrical domain of radius ry and depth d with an aspect ratio of
I' = ro/d = 40. All material surfaces are no-slip boundaries and the sidewalls are heated as
part of the procedure to develop a giant rotating spiral as described in the text. A sample
flow field image is shown in Fig. 9 (left). Both schematics are drawn to scale and are

shown slightly tilted with respect to the horizontal for perspective.

For the box domain, we used periodic boundary conditions at all the sidewalls while the
bottom and top walls are no-slip surfaces. For the thermal driving we used ¢ = 0.7. In
this case, our intention was to study the state of spiral defect chaos in a domain where the
effects of the sidewall boundary conditions were reduced. For a box geometry with a square
platform it is typical to define the aspect ratio as I' = L/d, where L is the length of the side of
square domain. Using this convention we have I' = 100 for the results presented here for the
box domain. We used initial conditions composed of small random thermal perturbations of

magnitude 07 = 0.01 to an otherwise quiescent layer of fluid. We then evolved the dynamics
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forward in time for approximately 930 time units to allow initial transients to decay.

We note that this duration of time is less than a nondimensional horizontal heat diffusion
time 75, which is often used as a rough benchmark for determining the length of time required
for a simulation to achieve a sufficient reduction of transients [32]. 73, is the amount of
time required for heat to diffuse from the center of the domain to a sidewall. For the
box domain this yields 75, = (L/2)?=2500. A simulation of this duration requires significant
computational expense. We found that a duration of 930 time units was sufficient to establish
a steady state of spiral defect chaos. We are interested in the instantaneous features of the
patterns, in particular in the features of the relatively short lived spiral structures, and not
in the long time statistics of the global pattern dynamics. As a result, we anticipate that
a time of 930 time units is sufficient to study the mean flow field and the azimuthal flows
that are generated around the spiral structures. An example flow field from a numerical

simulation is shown in Fig. 4.

In order to study a single rotating spiral we used a cylindrical domain of aspect ratio
I' = ro/d = 40, where ry is the radius of the domain. To generate a large spiral in this
domain we follow the approach used in the experiment of Plapp et al. [37]. We initialize
the simulation by starting with a quiescent layer of fluid where the lateral sidewalls are
slightly heated while the thermal driving of the layer is just above threshold at ¢ = 0.054.
Specifically, the temperature at the sidewalls are set to the constant value of T" = 0.1 for
all z, i.e., a hot sidewall boundary condition. The hot sidewall creates an up-flow at the
wall which initializes the formation of a curved convection roll that aligns with the sidewall
boundary. We then evolve the system forward in time for approximately 500 time units;
during this time curved convection rolls grow inward towards the geometric center of the
domain, resulting in a stable and stationary target pattern. We next restart the simulation
further from threshold with e = 0.405 and allow it to evolve for approximately 300 time units.
During this time, the center of the target pattern slowly drifts away from the geometric
center of the domain to yield a stationary and time-independent skewed target-like pattern.
We then restart the simulation further from threshold with ¢ = 0.464 and let the system
evolve for another 800 time units. This causes the center of the target-like pattern to drift
further from the geometric center of the domain where the pattern eventually undergoes a
complex transition of instabilities that eventually yield the giant one-armed spiral with a

single dislocation as shown in Fig. 9. Both the giant spiral and the dislocation are rotating
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in the clockwise direction for these results. This procedure appears to be a flexible and
reliable way to generate giant spirals. However, the specific parameters and sequence we
used were determined by trial and error with the goal of generating a giant spiral and are
by no means meant to describe a unique procedure.

All of our numerical simulations of Eqgs. (21)—(23) were conducted using the high-order,
highly parallelized, and open-source spectral element solver nek5000 [38-40]. The code uses a
semi-implicit operator splitting approach that is third-order accurate in time and converges
exponentially in space. A hallmark of the approach is its geometric flexibility while also
permitting explorations of large spatially extended systems. The nek5000 solver has been
used to explore a broad range of fluids problems [40]. More details regarding its use to study

spatiotemporal chaos in Rayleigh-Bénard convection can be found in Refs. [35, 41-44].
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FIG. 4: Left: Temperature field at the mid plane of the convection cell obtained by
integrating the Boussinesq fluid model in time with periodic boundary conditions. The
convection cell is a box domain with I' = 100, e = 0.7 and Pr = 1. The temperature field is

shown at time t = 914.69. Right: A close-up view of a rotating spiral.

IV. AZIMUTHAL FLOWS IN THE CHAOTIC REGIME

We address in this section the extent to which the asymptotic results of Sec. II C can shed
some light on the role of hydrodynamic flows on spiral defect chaos. There are a number
of factors that preclude a precise comparison between these analytic predictions and our

numerical results. First, the typical size of a spiral in the chaotic state is relatively small
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(a few rolls), making a determination of the asymptotic decay of the azimuthal velocity
questionable. Second, the results of Sec. I1 C have been derived for the generalized Swift-
Hohenberg model, and they exhibit a strong dependence on the damping parameter ¢2. This
makes a comparison with results from the Boussinesq model difficult as this parameter is
largely phenomenological, although it has been estimated for the case of no-slip boundary
conditions (see Ref. [20] and Appendix A). Third, we have not explored the dynamics using
the Boussinesq model for the case of free-slip (stress-free) boundary conditions. In this case
c? = 0, and the logarithmic dependence of Eq. (15) might be apparent, and with it strong
mean flows and interactions between spirals. Nevertheless, we will argue that the azimuthal
velocity field within a given spiral depends strongly on the cutoff radius 7, for small values
of ¢, thereby providing a mechanism for the hydrodynamic interaction of spirals.

We first use a chaotic configuration obtained from the solution of the the generalized
Swift-Hohenberg model, to analyze the r-dependence of the azimuthal velocity v, as given
in Eqgs. (14)-(15). We use the same spiral configuration of Fig. 1a obtained with the following
values of model parameters: € = 0.7,g,, = 50,¢* = 2, and ¢ = 1. We then compute the
corresponding v, from Eq. (2) from the instantaneous velocity field, for a range of values of
c?. That is, by setting the time derivative of Eq. (2) to zero [or equivalently, from the curl
of Eq. (11)], we obtain the velocity field in the Stokes limit for various values of ¢ from
the same order parameter ¢ configuration. This way, we are able to follow the evolution
of v, as a function of ¢* only, and evaluate if the transition from the —rln(r/r}) behavior
based on Eq. (15) to the damped profiles of Eq. (14) is observed. Note, however, that for
these parameter values we do not observe spirals in the simulation transients when ¢? < 0.1;
rather, we observe target defects (see also discussions in Sec. V B).

Figure 5 shows the azimuthal velocity v,, away from r = 0 at the core of the spiral located
at coordinate (104, 56) in Fig. 2, up to the midpoint between this spiral and the other one
at (156,81). The figure shows the numerical solution for ¢* = 0, ¢*> = 0.1, ¢ = 0.4 and
c* = 2 (solid lines). In order to compare the numerical solution with the analytic result of

Eq. (14) with ¢® > 0, we define
111 1\1
-+ (cKl(rbc) = —> i(er) = cKl(cr)] , (24)

Q(T)Zg

r ry | 11(1pc)

and fit the function v, = avg(r)+ 3, where a and j are two fitting coefficients. The function

g(r) depends on two parameters, the damping parameter ¢? and a cutoff radius r, which is
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taken to be of the order of the spiral size.

For ¢ = 0 and the two rotating spirals of Fig. 2, we set 7, = 30, the mid point between
the two spirals (we see that v, changes sign approximately at r = 30). The asymptotic
relation v, = —1.3rIn(r/30) is shown in the top two panels of Fig. 5 (dashed lines), where
the constant —1.3 is the single fitting parameter. There is good agreement away from the
core. Figure 5 also shows our results for ¢2 > 0. We have set r, = 35 in all these cases,
and fit the parameters @ and 3. From Eq. (14) we note that o = mweg,,/6g3co, where the
only unknown is the angular frequency of rotation w. Using our current parameter values,
we have o = 5.83 w, where w is not known a priori. The order of magnitude of the angular
frequency will be further discussed in Sec. V B, where we find it to be on the order of
10~' — 1. We have assumed that the constant « is largely independent of ¢, and chosen
a = 5/c for all the values of ¢ > 0 in Fig. 5, where the rescaled Prandtl number is o = 1.
Therefore the only fitting parameter used in Fig. 5 for ¢*> > 0 is the constant 3. We note
that Eq. (14) is valid away from the core, and is obtained with the boundary condition of
vanishing velocity at the core. Hence the constant § can be rationalized as being related to
the velocity near the core that should be used as a known boundary condition for the outer
solution. The fitted 3 value also contributes to the large radius at which v, vanishes. For
finite damping, the azimuthal velocity does not completely decay to zero, so that we need
a negative 3 to capture such effect. For small values of ¢?, the value of 7, is relatively easy
to determine, and is closely related to 3 in order to obtain a good fit. As ¢? increases, the
velocity field decays quickly, and the fitting becomes less dependent on the value of cutoff
rp as long as 1, remains greater than the size of the spiral.

By increasing the damping coefficient from ¢*> = 0 to ¢ = 0.1, the magnitude of the
azimuthal velocity diminishes by a factor of four, and its asymptotic decay changes from
convex to concave, as expected from Eq. (14). Figure 5 shows that our analytic prediction
from Eq. (14) appropriately describes the behavior of v, far enough from the spiral core for
all the ¢ > 0 cases. We also note that in every case vy, is sufficient to describe the form
of the numerical curves, while vy, and vz, do not provide any major contribution to the
observed results.

As ¢? increases, the flow field becomes increasingly localized within the vicinity of the
spiral cores, thereby reducing any interaction between velocity fields generated by different

spirals. This is illustrated in Fig. 5 when comparing the cases of ¢ = 0.4 and ¢? = 2. As
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FIG. 5: Azimuthal velocity for the spiral located at (104, 56) in Fig. 2 with » = 0 at its

core, for g,, = 50, 0 = 1, and € = 0.7. Left column compares numerical results with our
analytic predictions, and right column is in logarithmic scale. First row: ¢ = 0, using
v, = —1.3r1In(r/30) for the analytic curve. Second row: ¢* = 0.1, using @ = 5/0 and

= —1.75. Third row: ¢ = 0.4, using o = 5/0 and 3 = —0.5. Fourth row: ¢* = 2, using

a=5/c and B = —0.1. For all the cases of ¢ > 0, r, = 35 is used.
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the flow damping increases, the velocity becomes more short-ranged, and the magnitude of
the azimuthal velocity decreases significantly: for ¢ = 2, the flow magnitude is only 4%
of the flow obtained for ¢ = 0. Note that while r; is of the order of the spiral’s size, the
velocity for larger values of ¢? reaches zero well before » = 30, and that due to the small
size of the spirals we do not observe a 1/r decay at long distances. In this range of ¢?, the
velocity field within each spiral is largely independent of the existence of other spirals, and
does not depend on the value of r;, [12].

In summary, we have observed the transition of the azimuthal velocity from a —rIn(r/ry)
profile to the damped convex profiles when the damping coefficient ¢? increases, as suggested
by our predictions in Sec. IIC. As ¢? approaches zero, given the longer range of the flows
the cutoff parameter r, has the same value as the spiral’s radius when there are spirals
of the same topological charge in the vicinity. By increasing ¢?, as long as 7, is greater
than this radius, varying the cutoff makes little quantitative difference to the fits, since the
azimuthal velocity decays quickly to zero. In addition, the azimuthal velocity field within
a spiral strongly depends on the existence of neighboring spirals, and their presence affects
the fit parameters 7, and . The topological charge of the spirals also plays a role in this
observation, as will be discussed in Sec. V A for the case of neighboring counter-rotating

spirals.

V. DISCUSSION
A. Azimuthal flow between two counter rotating spirals

In the spiral chaos regime the flow field within each spiral depends on the spiral size,
which in turns is determined by the presence of neighboring spirals and other defects through
the cutoff parameter r,. In particular, the decay of v, with distance r is faster than the
asymptotic 1/r. For stress free boundary conditions, ¢? = 0, or small damping (e.g., ¢ = 0.1)
there is a strong and long ranged azimuthal velocity component spanning the entire spiral,
which decays to zero at a scale determined by neighboring spirals of the same topological
charge. For low damping, r, is approximately the spiral’s radius. We present here an
analysis of the flow between two counter rotating spirals (with opposite topological charge),

as the flow would interact constructively along a line connecting them. Figure 6 shows the
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azimuthal velocity between two neighboring counter rotating spirals, centered at coordinates
(104, 56) and (139,25) in Fig. 1la. We again use the same ¢ configuration shown in Fig. la
to compute the azimuthal velocities in the absence of inertia for two different values of the
damping coefficient ¢2. In the absence of damping, ¢? = 0, the azimuthal velocity is nonzero
in the region between the two spirals, as the vorticity generated by the two cores adds up
constructively. For ¢? = 2, the flow once again becomes concentrated at each spiral, with

small or no flow interaction between them.
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FIG. 6: Azimuthal velocity between two spirals of opposite topological charge using the
generalized Swift-Hohenberg equation. At r = 0 we find the core of the spiral located at
(104, 56) from Fig. 2, and at r = 47 the core of the spiral is located at (139,25). Using this
same order parameter configuration, we compute the instantaneous velocity for ¢ = 0
(middle panel) and ¢ = 2 (right panel), and plot the azimuthal velocity between the two

spirals.

B. Advection versus roll unwinding in spiral dynamics

We address here the possible relevance of the mean flows discussed to the chaotic state
itself, based on the generalized Swift-Hohenberg model. It has been established that spiral
defect chaos is only observed for a specific range of ¢? and scaled Prandtl number o. For the
parameter set used here, g, = 50, ¢ = 0.7 and 0 = 1 ~ 2, spiral defect chaos has been found
in the range 0.1 < ¢ < 5 [10, 12, 14]. For ¢* > 4, the leading-order Lyapunov exponent
of the flow approaches zero [14]. In the opposite range of small damping, ¢* < 0.1, spiral

defects are no longer observed while the system dynamics is chaotic. In our calculations,
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if ¢2 = 0 the magnitude and range of the mean flow increase significantly and we are only
able to achieve spiral defect chaos for this free-slip condition by reducing g, significantly to
gm ~ 5 (or, similarly, by increasing o).

We examine here the relative contribution to the overall time variation rate 0,3 from
the mean flow advection v - Vi, and the diffusive pattern dynamics given by the RHS of
Eq. (1), leading to roll unwinding [12, 45]. The magnitude of the latter depends on the value
of the local wavenumber when it is maintained away from the critical value (i.e., wavevector
frustration) [12, 13], and also from the curvature of the rolls [28]. Both contributions have
been estimated theoretically [12, 46].

We use the same configuration of the order parameter field shown in Fig. 2, and analyze
the flow field around the spiral with core located at (104,56). We obtain the velocity field
by solving Eq. (2) with the time derivative set to zero, and for a range of values of ¢?
and 0. The overall time variation 0,1, advection v - V4, and the relaxational part (i.e.,
the RHS of Eq. (1) yielding diffusive dynamics) oscillate nonuniformly as a function of the
radial coordinate r. We extract the characteristic magnitude of each quantity by finding its
maximum absolute value between r = 5 (away from the core) and r = 28 (the approximate
radius of the spiral). Other measures, such as choosing the values from the first peak of
these functions, lead to similar results. Our results are shown in Fig. 7 for a range of values
of ¢ for fixed 0 = 2, and also as a function of ¢ for fixed ¢* = 1. As described in Appendix
A, the value of o = 2 corresponds to a Prandtl number of Pr = 1 (consistent with the COq
experiments of Ref. [1]). We have conducted calculations across the range 0 < ¢ < 100, and
find that advection and diffusion contributions are of similar value around ¢> = 1. When
rescaling the critical wavenumber to gy = 1, the value ¢® = 1 is the one estimated for no-slip
boundary conditions on the cell’s plates, as detailed in Ref. [20] and Appendix A. Next, we
fix ¢2 = 1 and compute the same ratios for a range of 0.125 < o < 64. Interestingly, both
advection and diffusion contributions have approximately the same magnitude at o = 2 (i.e.,
at the experimentally used Prandtl number Pr = 1).

These results indicate three distinct regimes which can be correlated with the qualitative
nature of the system dynamics obtained from the generalized Swift-Hohenberg model. (i)
For very small ¢? (< 0.1) at o = 2, the observed defect patterns are chaotic but without
any observable spirals, other than some transient target defects (similarly for o < 0.25 at

¢ = 1). Asseen in the left panel of Fig. 7, when ¢? < 0.1 the dynamics are mainly driven by
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FIG. 7: Ratios of advection and roll unwinding [the RHS of Eq. (1)] to the overall time
variation 9,1, as a function of the damping coefficient ¢ and the rescaled Prandtl number
0. Values are computed based on the spiral located at (104, 56) in Fig. la, with ¢ = 0.7
and g,, = 50. The blue line with circle symbols shows the ratio for the spiral’s
characteristic advection contribution (v - V), and the red line with square symbols shows
the ratio for its characteristic roll unwinding contribution (RHS). Left: Ratios are plotted

as a function of ¢?, for o = 2. Right: Ratios are plotted as a function of o, for ¢? = 1.

advection and the diffusive dynamics contribution from the RHS of Eq. (1) to 0,4 becomes
very small. At ¢? = 0 we still observe a few transient targets. (i) At the other extreme with
large ¢?, the calculations in Ref. [14] showed that the leading-order (and positive) Lyapunov
exponent of the flow approaches zero, indicating very weak or even non chaotic state. The
patterns are dominated by slowly coarsening, large target and spiral defects, mixing with
small spirals or targets. Similar results can be obtained for large enough o at ¢ = 1 in
the right panel of Fig. 7. In this regime, diffusive roll unwinding mainly determine spiral
rotation, as can be seen in Fig. 7. (iii) In the intermediate parameter range (e.g., around
0.1 < c¢® <5 foroc =1~ 2orin the mid-range values of the o dependence at ¢ = 1)
spiral defect chaos is observed in the numerical solutions. In this range the contributions
from advection and diffusive relaxation are comparable. In particular, both contributions
are nearly the same around ¢ = 1 and o = 2, the parameter values that correspond to the

experiment of Ref. [1], and to the previous study of the Boussinesq equations [14-16, 41].
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These results also help explain why spiral defect chaos was not observed when ¢? = 0 and
gm = 50, but did appear by reducing the latter to g,, = 5, as shown in Fig. 8. That is,
reducing ¢g,, would roughly translate into moving the curves shown in Fig. 7 to the left. In
summary, the results suggest a correlation between the existence of spiral defect chaos and

the relative balance between advection and order parameter diffusion.
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FIG. 8: Patterns of order parameter field ) obtained from the generalized Swift-Hohenberg
model for € = 0.7, 0 = 2, and ¢ = 0, at time t = 2 x 103. Left: g,, = 50, showing a chaotic

state without the emergence of spirals. Right: g,, = 5, showing spiral defect chaos.

Characteristic values of the spiral rotation rate w can be obtained from the numerical
solutions. We estimate w ~ O(107!) in dimensionless units, with its maximum value close

to 1. This is consistent with the values of o used in the fits of Fig. 5.

C. Comparison with spirals obtained from the Boussinesq equations

We have explored spiral defect chaos in the Boussinesq model only for no-slip boundary
conditions. From the numerical results, as in Fig. 4, we observed that the size of the spirals
in the range of parameters where chaos exists is fairly small, as is the case in experiments.
Therefore, we cannot examine the asymptotic decay of v, ~ 1/r as has been predicted for
large r, nor can we conclusively obtain the spatial dependence of long-range flows at small
damping as argued above. We do present, however, results for a large, single rotating spiral
(see Sec. III B), and evidence that the azimuthal velocity field obtained agrees, without any
adjustable parameters, with v, obtained from direct integration of the generalized Swift-

Hohenberg equation and in the regime of spiral defect chaos. We therefore expect that the
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asymptotic behavior of Fig. 5 at small damping would carry over to the full Boussinesq
model.

A configuration comprising a single rotating spiral as given by the Boussinesq model with
Prandt]l number Pr = 1 is shown in Fig. 9. It has been obtained by adding a lateral forcing
thermal boundary term in a cylindrical cell (a hot sidewall) while setting no-slip boundary
conditions at all material surfaces, as described in Sec. III B. The temperature field at mid
cell of a slowly rotating spiral and an accompanying dislocation is shown in Fig. 9. Lengths
are made dimensionless by the cell thickness, so that the critical wavenumber is q. = 3.1165,
which can be obtained from the marginal stability problem at the critical Rayleigh number.
The size of the spiral in Fig. 9 is 14 wavelengths, before reaching the dislocation. According
to the derivation by Manneville [20], given no-slip boundary conditions and a cell with
dimensionless thickness h = 1, a Galerkin expansion of the flow indicates that the mean
flow becomes Poiseuille-like at lowest order. By averaging the governing equations over the
height, a vorticity equation analogous to Eq. (2) can be obtained, with a damping coefficient
c? = 10 corresponding to g, = 3.1165. More details are given in Appendix A, including how
the length, time and various parameters are mapped from the Boussinesq model with no-slip
conditions and ¢, = 3.1165, to the generalized Swift-Hohenberg model, Egs. (1) and (2) with
go = 1. The value of ¢? is further rescaled by 1/¢2, so that ¢ ~ 1. Since the length scales as
1/q. and for Pr = 1 the time scale is 2.05/¢?, the Boussinesq velocity is rescaled by 2.05/¢.
to agree with our dimensionless units. Finally, based on the Prandtl and Rayleigh numbers
of the Boussinesq solution, we have ¢ = 2, ¢ = 0.7, and g,, = 50, with scaling also given in
Appendix A.

Figure 9 (middle) shows the rescaled azimuthal velocity v, computed at the mid plane
of the cell as a function of ¢.r, so that we can compare it directly with the result from the
generalized Swift-Hohenberg model. The coordinate origin has been placed at the spiral’s
core. Following an initial rise from zero at the core, the velocity appears to decay with
distance as =2 between ¢.r = 3 and ¢.r = 20, until it quickly decays to zero at about
q.r = 46. This decay is faster than the expected asymptotic behavior of 1/r, although we
must note that for the time shown, there still is a difference between the rotation velocities
of the core and the dislocation given in the simulation.

Figure 9 (right) compares the azimuthal velocity of the large spiral obtained from the

Boussinesq model with that of a rotating spiral in the fully chaotic regime given by the
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FIG. 9: Left: Temperature field at the midplane for a cylindrical convection cell obtained
by time integration of the Boussinesq (BSQ) equations where g. = 3.1165, I' = 40,
€ = 0.4637, and Pr = 1. Middle: Rescaled azimuthal velocity v, from the Boussinesq
model with = 0 at the spiral core (solid line). The straight dashed line illustrates the
power law fit v, ~ r~2. The red dashed line is the result of Eq. (14), using ¢* =1, o = 2,
a = 1.4383, 8 = —0.04328, and r, = 35¢.. Right: v, as a function of g.r obtained from the
generalized Swift-Hohenberg model (SH) with ¢*> =1, 0 =2, ¢ = 0.7, and g, = 50, for the
spiral located at (104,56) in Fig. 2, as compared to that of the Boussinesq equations. The
x axis is scaled with ¢. = 3.1165 for the Boussinesq result, and g. = qo for the

Swift-Hohenberg model. No adjustable parameters have been used.

generalized Swift-Hohenberg model. We have mapped the physical values of the parameters
in the Boussinesq model to the parameters of the generalized Swift-Hohenberg model, as ex-
plained in Appendix A. Therefore there are no adjustable parameters. The Swift-Hohenberg
result was obtained by computing the adiabatic flow (by eliminating the time derivative in
Eq. (2)) associated with ¢ in Fig. la, for ¢* =1, 0 = 2, ¢ = 0.7, and g,,, = 50, and the spiral
located at the coordinate (104,56). The azimuthal velocity obtained from the Boussinesq
model agrees quantitatively with the result of the generalized Swift-Hohenberg model, even
when comparing an isolated spiral in the former to one in the chaotic regime in the latter.
This lends credence to the observation that the asymptotic calculation of Sec. 11 C, which is
based on a rigidly rotating spiral, is a good approximation to the flow induced by a spiral in
the chaotic state, albeit in the range of moderate to large values of the damping parameter
c2. For the value of ¢* = 1 used in the comparison, the azimuthal velocity within a rotating

spiral depends only weakly on whether the spiral is isolated or surrounded by other spirals.
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FIG. 10: Rescaled azimuthal velocity for the enlarged spiral in Fig. 4 obtained from the
Boussinesq model (BSQ), with » = 0 at its core. The corresponding rescaled parameters
are 0 =2, ¢ =1, and € = 0.7. Left: Comparison of numerical results with analytic
predictions. Right: The same results using a logarithmic scale. Parameters of ¢ = 1,

a=5/c, B =—0.1 and 1, = 4.5 are used for the analytic curve.

We finally analyze the azimuthal velocity in the chaotic regime of the Boussinesq model,
with results presented in Fig. 10. We show the azimuthal velocity of the spiral of Fig. 4,
with » = 0 centered at the core of the spiral. This result is compared with our analytic
prediction of Eq. (14), with ¢ =1, g,, = 50, 0 = 2, and € = 0.7. Instead of fitting both «
and [ as previously discussed in Sec. IIT A, we set « = 5/0 (the same value used in Fig. 5).
Since a = mweg,,/6g3o, all the parameters used in Sec. IITA are the appropriate ones for
the Boussinesq model with no-slip boundary conditions as described in Sec. IIIB. In both
cases we obtain one-armed spirals (m = £1). Here we use 1, = 4.5 (the approximate size of
the spiral) and § = —0.1. Note that due to the small size of the spiral, v, does not reach
zero at the edge of the spiral, as this is a small defect constrained by other features of the
disordered pattern. Even under these circumstances, there is good agreement between the
result of the Boussinesq model and the analytic solution, when using the same parameters

estimated from the data fit with the generalized Swift-Hohenberg model.

VI. CONCLUSIONS

An irrotational azimuthal body force proportional to ¢/r in the generalized Swift-

Hohenberg model induces an azimuthal velocity v, for a configuration of a rigidly rotating
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spirals. At zero damping (free-slip), this force leads to long ranged flows proportional to
—rlIn(r/ry), where 1, needs to be determined independently. For the more realistic case
of no-slip boundary conditions, the azimuthal velocity would be expected to decay as 1/r
instead at a scale r > 1 when r, — oo. For realistic spiral sizes in the regime of spiral
defect chaos, ggry is of order one, and this asymptotic regime is never reached. Instead, the
velocity flow depends strongly on the value of r;,, which in turn depends on the characteristic
separation between neighboring spirals.

This dependence of the azimuthal velocity has been compared with direct numerical so-
lution in a chaotic state both for the 3D Boussinesq equations and for the 2D generalized
Swift-Hohenberg equations. For free-slip boundary conditions in the latter, the velocity
behaves as —r In(r/ry,), which is long-ranged and necessarily crosses zero between neighbor-
ing spirals of the same topological charge, while for neighboring spirals of opposite charge
the velocity interacts constructively. When no-slip conditions are considered (with a finite
damping parameter), the velocity profile qualitatively changes. This agrees with our pre-
dictions that the velocity decay is governed by a combination of modified Bessel functions.
When damping is sufficiently high, we confirm the earlier suggestions that the flow within
a spiral is largely independent of the background in which it is immersed. For moderate
damping the flow within a spiral is a function of the spiral’s size, and hence of the dis-
tance to neighboring spirals and their topological charges. This observation is consistent
with an earlier suggestion of spiral defect chaos as a form of invasive chaos [12], except that
hydrodynamic flows also play a role.

For the 2D generalized Swift-Hohenberg model, we identify two contributions to the spiral
rotating dynamics: Mean flow advection and diffusive dynamics with wavevector frustration
and roll unwinding. We have performed a series of calculations by varying the damping
coefficient and the Prandtl number to identify three distinct regimes: Chaos without spiral
patterns, diffusive pattern dynamics with extremely weak or no chaos, and spiral defect
chaos. The latter appears in the range in which order parameter advection and diffusive
relaxation are of similar magnitude. In particular, we find that both contributions are
approximately the same at a damping coefficient about ¢* = 1, and a rescaled Prandtl
number of ¢ = 2 (with Pr = 1), which correspond to the experimental conditions for
convection in CO4 gas.

The 3D Boussinesq equations have been integrated in a rectangular geometry with pe-
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riodic sidewalls and no-slip conditions at top and bottom surfaces. By analyzing the flow
field around a small spiral in the chaotic state, we found that the analytic result based
on a rigidly rotating spiral agrees reasonably well with the Boussinesq azimuthal velocity,
and that the remaining fit coefficients are consistent with those used with the generalized
Swift-Hohenberg results under corresponding values of the physical parameters. Finally,
we obtained a large spiral using the Boussinesq model in a cylindrical configuration, and
analyzed the azimuthal flow around the core of the spiral. The azimuthal velocity agrees
with the generalized Swift-Hohenberg result without any adjustable parameters. We con-
clude that for large values of the damping parameter, the flow field induced by a rotating
spiral is the same regardless of whether it is isolated or surrounded by other spirals. When
the damping parameter is reduced, the flow field depends on the distance to neighboring
spirals and the relative sign of their topological charge, therefore providing a means for their

interaction.
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Appendix A: Parameter values of the generalized Swift-Hohenberg model

A generalized Swift-Hohenberg model that includes advection by the solenoidal mean

flow velocity v has been derived by Manneville [8, 20] from the Boussinesq equations, which

29



has the following form

&

70 (@0/0+ v V) = |e = 15 (V2 +ab)” | v — g(Pr)Nu) (A1)
[8/0t — Pr(V? — )] VX = g,. [V(V*) x VY] - 2, (A2)

where
v =V x((2) = (0,(, —0:() . (A3)

In Manneville’s model, the nonlinearity N[¢] has the form N[¢] = |V|?)+¢*)3. However,
the threshold expansion of the Boussinesq equations leads to the cubic sum of Fourier modes,
with no counterpart in real space [48]. Therefore, there is no systematic way for which N[¢]
can be derived for a real-space expression, and its form depends on boundary conditions and
arbitrarities of expansions [49]. In this work we use the simplest form N[¢)] = ¢?3. The
model parameters depend on boundary conditions for the top and bottom of the convection
cell. In the case of no-slip (rigid) boundary conditions, where ¢ > 0 accounting for hard-

mode oscillatory instabilities, these parameters are given by [20]

¢ = (Ra — Ra.)/Ra,, Ra, = 1750 (exact value: 1708), =10
ge = 3.1165 (~ exact value), & = 0.1497 (exact value : 0.148),

7o = (1.9425 + Pr™1)/38.2927 [exact value: (1.9544 + Pr™')/38.4429],
o = 2/(21qc),  g(Pr) = g+ Bo/Pr + 70/Pr?, (A4)

where ay, By, are some unknown expansion coefficients. Note that the above parameters
such as R, q., &, and 7y were derived from the Galerkin expansion by Manneville [8; 20]
and well agree with the known exact values; also the length scale used above should be the
vertical thickness d, and hence the dimensional ¢, — g.d and ¢? — c?d? after rescaling.

In our simulations (and most other research), the dimensionless model equations are used.

Setting a length scale 1/¢., a time scale 47y /(£2¢?), the rescaled variables o' = 1+/4g(Pr) /&2,
¢ = ((470/&2), as well as

4 Ra — Ra 4
I _ c 2 _ 272 A5
‘g2 Ra, (53(13) =/ (45)

and omitting all the primes, the generalized Swift-Hohenberg model equations (A1) and

€

(A2) can be rescaled as

[0t +v- Vi = [e = (V2 + )| ¥ — N[y (A6)
0/0t = 3(V2 = )] V¢ = g [V (T20) x VY] - 2, (A7)
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as used in our study. Here

41 473
= —Pr, Im = ———500q.- A8
& g(Pr)&g7™ (A8)

From the values given in Eq. (A4), the parameters in the above equations (A6) and (A7)

qul, o

can be estimated as

e = 2.7511(Ra — Ra.)/Ra., ?=10/q*> = 1.03,
o =0.6978(1 + 1.9425Pr), g, = 1.7868 x 107%(1.9425 + Pr™")2/g(Pr).  (A9)

If the Prandtl number Pr = 1 as set in experiments and the simulations of the Boussinesq
model, we have o ~ 2. Also if choosing g(Pr) = 3.0941 x 1075, we get g,, = 50 as used in our
calculations. In many calculations e is set as 0.7, which corresponds to (Ra — Ra.)/Ra, =
0.2544. This choice started from the first theoretical paper of spiral defect chaos [10], based
on the experimental results showing the onset of spiral chaos at (Ra — Ra.)/Ra. > 0.25 for
Pr = 1 and in systems of large enough aspect ratio [1, 2]. The value of ¢* [= 10 (unscaled)
or equivalently ~ 1 after rescaling] comes from the approximation process based on no-slip
boundary condition [20]; after rescaling it is independent of the Prandtl number or the
length scale chosen. Values of g(Pr), g, , and hence g,, also depend on the approximation
of expansion (or the averaging over vertical thickness). As pointed out by Manneville [20],
their values would be different if using a different averaging procedure (e.g., the unscaled c?
would change from 10 to 12, and g, from 2/21¢q, to 4/35q.).

We note that in most of previous studies using the generalized Swift-Hohenberg equations,
usually o is set as 1 which actually corresponds to Pr ~ 0.22; also ¢? = 2 was first chosen in
Ref. [10] and then followed in almost all the later work except for Ref. [14] which explored

a range of possible ¢? values.
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