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Abstract

Rotating spiral patterns in Rayleigh-Bénard convection are known to induce azimuthal flows,

which raises the question of how different neighboring spirals interact with each other in spiral

chaos, and the role of hydrodynamics in this regime. Far from the core, we show that spiral

rotations lead to an azimuthal body force that is irrotational and of magnitude proportional to the

topological index of the spiral and its angular frequency. The force, although irrotational, cannot

be included in the pressure field as it would lead to a nonphysical, multivalued pressure. We

calculate the asymptotic dependence of the resulting flow, and show that it leads to a logarithmic

dependence of the azimuthal velocity on distance r away from the spiral core in the limit of negligible

damping coefficient. This solution dampens to approximately 1/r when accounting for no-slip

boundary conditions for the convection cell’s plate. This flow component can provide additional

hydrodynamic interactions among spirals including those observed in spiral defect chaos. We show

that the analytic prediction for the azimuthal velocity agrees with numerical results obtained from

both two-dimensional generalized Swift-Hohenberg and three-dimensional Boussinesq models, and

find that the velocity field is affected by the size and charges of neighboring spirals. Numerically,

we identify a correlation between the appearance of spiral defect chaos and the balancing between

the mean-flow advection and the diffusive dynamics related to roll unwinding.

I. INTRODUCTION

An unexpected chaotic state near the onset of convection in a Rayleigh-Bénard config-

uration was discovered in CO2 gas (a low Prandtl number fluid) by Morris et al. [1], in

which rotating spirals are continuously nucleated and eliminated, yielding a state with per-

sistent dynamics (i.e., “spiral defect chaos”). Experimental evidence also suggests that, as

the fluid Prandtl number decreases or the aspect ratio of the experimental cell increases,

the chaotic state may emerge as the first bifurcation from the quiescent, conduction state

[2], contrary to well established theory [3–5]. Classical stability theory is based on the

Boussinesq model of thermal convection in a simple fluid [4], and motion near the onset

of Rayleigh-Bénard convection is predicted to be variational, a fact that would preclude

the observed persistent dynamics. As was recognized early on, the chaotic state is enabled

through the coupling between the primary vertical velocity field mode that becomes unstable
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at threshold, and weakly damped, long wavelength rotational flows on the horizontal plane.

That such near-marginal flows could be relevant in convection in large aspect ratio systems

had been proposed earlier by Siggia and Zippelius [6].

Following the discovery of spiral defect chaos, a class of theoretical and computational

analyses focused on two-dimensional (2D) models (the generalized Swift-Hohenberg models)

that explicitly include the coupling between the vertical vorticity and an order parameter

field appropriate for the convective instability (proportional to the vertical velocity or tem-

perature deviation on the mid plane of the convection cell) [7–9]. Numerical analysis of these

models confirmed the importance of the coupling to vortical flows to model the transition

to chaos [10–14], although it remains unclear what its precise role actually is in sustaining

the chaotic state. Extensive computational work also included direct numerical solution of

the governing equations for a Boussinesq fluid in a Bénard configuration [11, 14–16], and

also of the related problem of a single rotating spiral pattern filling the entire convection cell

[10, 17–19]. In particular, a detailed numerical investigation by Karimi et al. [14] has shown

that the flow structure around a spiral core in a fully three-dimensional (3D) numerical so-

lution of the Boussinesq equations is qualitatively similar to that of the simpler generalized

Swift-Hohenberg models that incorporate 2D rotational flows. Yet, the main question as

to the mechanisms underlying the appearance of the chaotic state and, in particular, the

role of any hydrodynamic interactions among rotating spirals in an extended system remain

unanswered.

In this work we present results based on both a generalized Swift-Hohenberg model in

terms of a 2D order parameter field ψ(x, t), which represents the vertical velocity of the fluid

at the convection cell’s mid-plane, and a full 3D solution of the Boussinesq equations. We

begin by examining approximate solutions of the 2D model that correspond to a rotating

spiral pattern, focusing on the rotational horizontal flow induced by an effective body force

f = −(∇2ψ)∇ψ (where ∇ is the 2D gradient operator on the horizontal plane) that plays

the role of the driving force of the vortical flow [10, 12]. It is through this term that the

curved convective rolls generate vertical vorticity, which in turn advects convective rolls.

From the form of the ψ field corresponding to a spiral pattern, we show that there exists an

irrotational contribution to f that leads to a long-ranged azimuthal velocity field around the

core of the spiral. For a laterally unbounded configuration, the azimuthal velocity decays

as vϕ ∼ 1/r away from the core. If, instead, the azimuthal velocity is required to vanish
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at a finite distance rb from the core, we show that this asymptotic dependence is never

attained for typical spiral sizes. Furthermore, if damping at the bottom and top bounding

walls is neglected, we find vϕ ∼ r ln(r/rb), where rb is a cutoff distance at which the velocity

vanishes. These results are verified numerically for both a rigidly rotating spiral pattern

and the spiral defect chaotic state that are generated in the 2D generalized Swift-Hohenberg

model and the 3D Boussinesq equations.

In Sec. IIA we introduce the generalized Swift-Hohenberg model, which is the starting

point of our asymptotic analysis. We expand the order parameter ψ as a function of a small

parameter in Sec. II B, which allows us to express the force f in terms of gradients of the

complex amplitude A of the ψ field. Based on a dynamic equation for the amplitude, we

obtain the asymptotic form of f which exhibits both rotational and irrotational terms. We

derive in Sec. II C different components of the azimuthal velocity from the asymptotic form

of f , and show that they are dominated by the contribution from the irrotational force term.

The numerical methods used for both generalized Swift-Hohenberg and Boussinesq models

are detailed in Secs. III A and III B, respectively. In Sec. IV, we confirm the analytic results

for the dependence of the azimuthal velocity vϕ on damping by computing it for a range

of damping coefficients. While for relatively large damping the azimuthal flows are largely

confined near the core of each spiral, as damping decreases a hydrodynamic interaction

between neighboring spirals arises through the cutoff length rb. In Sec. VB, we discuss

the role of advection versus spiral arm unwinding in the rotation of the spiral. Finally, in

Sec. VC we present a comparison of the azimuthal velocity computed from the generalized

Swift-Hohenberg model and the full Boussinesq equations.

II. AZIMUTHAL FLOW INDUCED BY A ROTATING SPIRAL

A. The generalized Swift-Hohenberg model

The Swift-Hohenberg model for Rayleigh-Bénard convection [7] follows from a 2D pro-

jection of the governing fluid equations in the Boussinesq approximation that eliminates the

dependence of the temperature, pressure, and velocity fields on the vertical coordinate z

near the onset of convection. This results in a gradient model for an order parameter field

ψ(x, t) [with x = (x, y)] that represents the vertical velocity on the mid-plane of the convec-
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tion cell [8, 20, 21]. The model was later generalized to account for the coupling between

the unstable mode at the onset of convection and 2D mean flows [8, 9], and is associated

with the equations

∂tψ + v ·∇ψ = εψ − (∇2 + q2
0
)2ψ − ψ3, (1)

[

∂t − σ(∇2 − c2)
]

∇2ζ = gm

[

∇(∇2ψ)×∇ψ
]

· ẑ, (2)

where ε is a bifurcation parameter that measures the dimensionless distance to the convection

threshold (in terms of the Rayleigh number), v(x, t) is the 2D incompressible mean flow

velocity, and σ is a rescaled Prandtl number. The mean flow velocity is obtained from

the vertical vorticity potential ζ(x, t) via v = ∇ × (ζ ẑ), such that the vertical vorticity

Ωz = (∇×v)·ẑ = −∇2ζ. A momentum damping coefficient c2 is introduced to model viscous

friction at the top and bottom bounding walls, and appears from averaging derivatives of

the flow in the vertical direction over the thickness of the convection cell. In the case of

free-slip (i.e., stress-free) boundary conditions, one would have c2 = 0, while c2 > 0 for

no-slip boundary conditions. The coefficient gm controls the magnitude of the flow coupling

[9, 20], which increases as the Prandtl number decreases and also appears from the averaging

process.

The right hand side of Eq. (2) can be written as−gm(∇×f)·ẑ, with f = −(∇2ψ)∇ψ. This

effective body force originates from projecting the advection nonlinearity in the Boussinesq

model onto the 2D order parameter model. This force has a functional analog in models of

active matter in which an active stress breaks equilibrium symmetry relations [22–24] and

hence directly allows non-variational flows.

B. Effective body force induced by a rotating spiral

Rotating spiral and target solutions are well known to emerge from Eq. (1) [25]. Away

from the core, the solution for the order parameter field in polar coordinates (r, ϕ) has the

form ψ = Aeiq0r + c.c., where A is a slowly-varying complex amplitude that can be written

as A(r, ϕ, t) = ρ(r)eiθ, with phase θ = mϕ − ωt and a real amplitude ρ. Here ω is the

angular frequency of the spiral, and the topological charge m is an integer representing the

index of the singularity [26] (which is the number of arms in the spiral in this case). While

target patterns with m = 0 present a single-valued θ, rotating spirals have a multivalued
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phase θ as m 6= 0. This has implications for their topological stability [26] as the circulation

of θ around a contour γ enclosing the spiral core has a quantized value that depends on the

topological charge, i.e.,
∮

γ
∇θ · dl = 2πm, where l is the vector function that defines the

path. Velocity fields induced by rotating spirals have been argued to decay with distance as

1/r, and to be negligible for spiral rotation as compared to motion induced by wavevector

frustration [12]. This implies that direct hydrodynamic interactions among rotating spirals

are negligible, and therefore the role of mean flows in inducing and sustaining the chaotic

state remains to be understood. We reexamine this issue by investigating the azimuthal

velocity generated by a rotating spiral by both asymptotic and numeric analyses.

We derive the asymptotic form of the body force f that appears in the 2D momentum

Eq. (2). Near the convection threshold ε � 1, we expand the order parameter ψ into a

periodic base state in terms of a slowly varying amplitude of the form

ψ = ε
[

A(X, T )eik·x + c.c.
]

, (3)

where (X,T) denotes slow spatial and time scales upon which the amplitude A depends.

Assuming an isotropic expansion in which ∇ → ±ik + ε∇, |k| = q0, and the gradient only

acts on the slow X scale, we find

∇2
[

εA(X, T )eik·x
]

= −εk2Aeik·x + 2iε2k ·∇Aeik·x + ε3∇2Aeik·x,

which leads to the following resonant terms in the amplitude expansion of the force f (those

originated from a combination of wavevectors whose result is zero)

∇2[εA(X, T )eik·x]∇[εA∗(X, T )e−ik·x] = iε2k2|A|2 k− ε3k2A∇A∗ + 2ε3(k ·∇A)A∗k

+2iε4(k ·∇A)∇A∗ − iε4A∗∇2Ak+ ε5∇2A∇A∗.

Explicitly adding the complex conjugate terms, we find

(∇2ψ)∇ψ = −ε3k2∇|A|2 + 2ε3
[

(k ·∇A)A∗ + (k ·∇A∗)A
]

k

+2iε4
[

(k ·∇A)∇A∗ − (k ·∇A∗)∇A
]

+ iε4
(

A∇2A∗ − A∗∇2A
)

k

+ε5
(

∇2A∇A∗ + c.c.
)

.

This expression can be further simplified by noting that in the radial direction the rigid

rotating spiral is approximately a solution of the governing equation for the order parameter.

That is, away from the spiral’s core we have k = q0r̂ and A = ρ(r)eiθ, where θ = mϕ− ωt.
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This leads to (A∇2A∗ − A∗∇2A) = ∇ · (A∇A∗ − A∗
∇A) = 0. By gathering terms up to

order ε5 and rescaling all the quantities back to the original scales (x,t), we find that the

force can be written as

f = −(∇2ψ)∇ψ

= q2
0
∇(|A|2 − 2ρ2)− 4q0

mρρ′

r
ϕ̂−

(

∇2A∇A∗ + c.c.
)

. (4)

The first term in the RHS is of gradient form and does not contribute to Eq. (2). In a

pressure-velocity formulation, it can be absorbed into the pressure term. The other two

terms contribute to the mean flow.

We begin with the last term of Eq. (4), which can be written as a function of the angular

frequency of the spirals. From Eq. (1), the corresponding amplitude equation [21, 27] can

be written in polar coordinates for curved rolls (targets or spirals) [28, 29],

∂tA = εA+ 4q2
0
(∂2r + r−1∂r)A− 2iq0r

−2(2∂r + r−1)∂2ϕA− r−4∂4ϕA− 3|A|2A. (5)

This amplitude equation appears from a solvability condition at O(ε3/2) of the expansion,

with ψ expanded in power of ε similarly to Eq. (3). Rearranging terms, we obtain the

following expressions for a rigidly rotating spiral with ∂tA = −iωA,

(∂2r + r−1∂r)A =
1

4q2
0

[

− (iω + ε)A+ 2iq0r
2(2∂r + r−1)∂2ϕA

+r−4∂4ϕA+ 3|A|2A

]

. (6)

For the complex amplitude of a spiral given by A = ρ(r)eiθ, we have ∇A = (ρ′r̂ +

imr−1ρϕ̂)eiθ and |∇θ| = m/r. Hence, from Eqs. (4) and (6) we obtain

f = −
1

2q2
0

[

(

3ρ2 − ε+ |∇θ|4 − 4q2
0
|∇θ|2

)

ρρ′r̂ +

(

−
ρ2mω

r
+

8q3
0
mρρ′

r

)

ϕ̂

]

. (7)

This is the central result of this section. The radial component in the RHS of Eq. (7) is

irrotational and can be included in a redefinition of the pressure. The azimuthal component

vanishes for targets with m = 0 (i.e., no angular dependence). It also vanishes near the core

(r → 0) since ρ → 0 as the core is approached. However, away from the core where ρ is

approximately constant, the term [−(ρ2mω/r)ϕ̂] can be written as −ρ2mω∇ϕ. This is an

azimuthal body force induced by the rotating spiral that is irrotational. This irrotational

force term cannot be eliminated by subsuming it into the pressure as the latter would become
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multivalued. That is, the observed pressure is continuous, without a direct dependence on

ϕ, which would lead to a jump of 2π (see Fig. 1). The curl of this irrotational force

corresponds to a vorticity point source at the origin. No true divergence exists in this term

as the amplitude ρ vanishes at the core. We will retain this irrotational force, and calculate

its contribution to the azimuthal velocity explicitly.

C. Azimuthal velocity field

In order to compute the velocity field that results from the force given in Eq. (7), we

first obtain an asymptotic expression for the amplitude ρ by substituting A = ρ(r)eiθ in the

amplitude equation (5); in the stationary limit we find

4q2
0
(∂2r + r−1∂r)ρ+ (ε− |∇θ|4 − 3ρ2)ρ = 0. (8)

For r � 1, using θ = mϕ− ωt we obtain

ρ2 =
1

3
ε−

1

3
|∇θ|4 =

4

3
ε−

4m4

3r4
, 2ρρ′ =

4m4

3r5
. (9)

Substituting Eq. (9) into Eq. (7) yields

fϕ =
1

2q2
0

(

ρ2 mω

r
−

8q3
0
mρρ′

r

)

=
1

6q2
0

[

εmω

r
−
m5ω

r5
−

16q3
0
m5

r6

]

. (10)

The radial component of f given in Eq. (7) can be written in a gradient form and absorbed

into the pressure term; thus we only need to consider f = fϕϕ̂. As shown in Eq. (10), this

azimuthal force consists of an irrotational contribution (the first term) and two rotational

contributions.

The calculation of the azimuthal velocity is simplified by using a pressure-velocity repre-

sentation of Eq. (2) for Stokes flow,

−∇p+ σ(∇2 − c2)v + gmf = 0. (11)

Since this equation is linear in v we solve separately for the three components of fϕ in

Eq. (10), which leads to the three velocity contributions v1, v2, and v3. The component v1

satisfies

−∇p+ σ(∇2 − c2)v1 +
εgmmω

6q2
0
r

ϕ̂ = 0. (12)

This flow component is induced by the irrotational part of the azimuthal force. In the

vorticity and stream function formulation of Eq. (2), the corresponding term is zero except
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for a point source of vorticity at the origin. In this configuration, the pressure changes only

along the radial direction (as observed in Fig. 1c), so that the azimuthal component of the

velocity satisfies an inhomogeneous modified Bessel equation

∂2rv1ϕ +
1

r
∂rv1ϕ − (c2 +

1

r2
)v1ϕ = −

εgmmω

6q2
0
σr

. (13)

Assuming Dirichlet boundary conditions, so that the velocity approaches zero at the spiral’s

core r = 0 and vanishes at some distance rb, we find

v1ϕ =
mωεgm
6q2

0
σc2

[

1

r
+

(

cK1(rbc)−
1

rb

)

I1(c r)

I1(rbc)
− cK1(c r)

]

, (14)

where I1 and K1 are modified Bessel functions of first and second type, respectively. In

the limit of c2 → 0, for which damping at the top and bottom bounding walls is negligible

(free-slip), the solution for v1ϕ reduces to [30]

v1ϕ = −
mωεgm
12q2

0
σ
r ln(r/rb). (15)

For c2 > 0, in the limit rb → ∞ the contributions from the parts containing the modified

Bessel functions in Eq. (14) become negligible at long distance, so that v1ϕ ∼ 1/r, in

agreement with the result in Ref. [12]. Recall that several approximations made here hold

only away from the spiral core, and therefore this solution must be regarded as an outer

solution for the flow.

It is possible to obtain analytically a solution for the rotational component of the flow

v2ϕ, although only when c2 = 0. The corresponding flow equation is given by

−∇p+ σ(∇2 − c2)v2 −
gmm

5ω

6q2
0
r5

ϕ̂ = 0. (16)

It can be rewritten in terms of ζ in polar coordinates, i.e.,

∂4r ζ +
2

r
∂3r ζ −

1

r2
∂2r ζ +

1

r3
∂rζ +

1

r3
∂r∂

2

ϕζ +
1

r2
∂2r∂

2

ϕζ − c2
(

1

r
∂rζ + ∂2r ζ

)

=
2gmm

5ω

3q2
0
σr6

, (17)

where ζ = ζ(r) due to v2 = v2ϕϕ̂. At large distances and c2 = 0, we find

ζ(r) =
gmm

5ω

96q2
0
σr2

. (18)

Therefore, since v2ϕ = −∂rζ we obtain

v2ϕ =
gmm

5ω

48q2
0
σr3

. (19)
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Similar to v2ϕ, we are able to obtain a solution for the other rotational component v3ϕ

generated by the last term in Eq. (10), also for c2 = 0. Following the same steps, we obtain

v3ϕ =
8gmm

5q0
45σr4

. (20)

In summary, the azimuthal flow induced by a rotating spiral can be decomposed into two

separate contributions arising from irrotational and rotational force components respectively.

The former, v1ϕ as given by Eq. (14), leads to a long ranged logarithmic dependence of the

azimuthal velocity when c2 = 0, and to a 1/r decay at finite damping with c2 > 0 as rb → ∞.

Rotational forces lead to azimuthal velocities v2ϕ and v3ϕ that decay as power laws (1/r3

and 1/r4) for c2 = 0, as shown in Eqs. (19) and (20), and therefore decay much faster than

the flow v1ϕ created by the irrotational component of the force. We will use these results to

interpret the numerical calculations in the next section.

III. NUMERICAL METHODS

A. 2D generalized Swift-Hohenberg model

Computations of the generalized Swift-Hohenberg model were based on the vorticity for-

mulation, Eqs. (1) and (2). We also conducted spot checks with an equivalent 2D pressure-

velocity formulation based on Eqs. (1) and (11), and computed the effective pressure field as

shown in Fig. 1c. The results obtained for the velocity field are identical within numerical

accuracy. For all the results presented, the equations have been solved on an equally spaced,

square grid of 5122 nodes, with q0 = 1 and the grid spacing ∆x = 2π/16. We used a pseudo-

spectral method, where gradient terms are computed in Fourier space with a second-order

implicit iteration scheme, and nonlinearities are computed in real space through an explicit

second-order Adams-Bashforth scheme. The time step used is ∆t = 10−3. The algorithm

was implemented by using the parallel FFTW routine with associated MPI libraries. Pe-

riodic boundary conditions were used throughout. In our calculations the parameters were

chosen as gm = 50, σ = 1, and ε = 0.7. Further details about the influence of the vari-

ous parameters on the qualitative nature of the patterns obtained have been given in Refs.

[12, 14]. From the pressure-velocity formulation, the pressure has been computed through

the pressure Poisson equation which follows from the longitudinal projection of the underly-

ing momentum conservation equation (by taking the divergence of Eq. (11) and accounting
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for incompressibility ∇ · v = 0). The same grid setup, model parameters, and boundary

conditions were used in this case.

Figure 1a shows a typical configuration of the ψ field inside the regime of spiral defect

chaos. It is obtained by time integration of the model equations from a random initial

condition of uniformly distributed ψ ∈ (−0.05, 0.05) and zero initial velocity. The figure

shows multiple one-armed spirals, obtained at time t = 105 for c2 = 2. Following the

algorithm of Egolf et al. [31], we show in Fig. 1b the corresponding spatial distribution of

phase θ, and observe the expected discontinuity of 2π when enclosing a full circle around

the core of each spiral. Although the phase is multivalued, the body force is continuous and

the resulting pressure (illustrated in Fig. 1c) is also continuous. Note that the pressure is

mostly radially symmetric, with its local maximum near the core of every spiral.

(a) ψ (b) θ (c) Pressure

FIG. 1: Spatial pattern of (a) the order parameter field ψ comprising several one-armed

spirals, (b) the corresponding local phase θ, and (c) the pressure. The model parameters

used are ε = 0.7, gm = 50, c2 = 2, and σ = 1.

From each spatial configuration, such as the one shown in Fig. 1a, we extract the locations

of spiral cores by plotting the magnitude of the velocity v and searching for the location

inside the vortices where |v| = 0. The flow generated by each spiral has the form of a

vortex [14]; hence well-formed spirals are detectable through axially symmetric rings in |v|

or smooth spikes in the vorticity potential (for which the core is located at the maximum of

ζ).

Figure 2 shows two neighboring spirals rotating in the same direction, with cores located

at positions (104, 56) and (156, 81) of Fig. 1a. By setting the origin, r = 0, of a polar

coordinate system at the core of the left spiral at (104, 56), the figure also shows the radial
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FIG. 2: Left: Two clockwise rotating spirals with cores located at approximately (104, 56)

and (156, 81). The blue line has a length of 58, which is roughly the distance between the

cores. Right: Azimuthal component of the force f = −∇2ψ∇ψ (solid line), with r = 0 at

the (104, 56) core. The dashed line is a guide to the eye showing the approximate 0.44/r

decay of the force amplitude.

dependence of the azimuthal component of the force f up to the edge of the spiral. The

amplitude of the force decays slowly with distance r, and for r > 5 oscillates with periodic

wavelength slightly larger than π/q0, half of the approximate stripe/roll periodicity λ0 from

the linear solution, as expected from f = −∇2ψ∇ψ. The velocity generated by this rotating

spiral will be investigated in Sec. II C.

B. 3D Boussinesq equations

Rayleigh-Bénard convection is the buoyancy driven convection that occurs when a shallow

and horizontal layer of fluid is heated from below. The fluid motion is described by the

Boussinesq equations [5], which represent the conservation of momentum, energy, and mass,

and are given as

Pr−1

(

∂u

∂t
+u ·∇u

)

=−∇p+∇2u+RaT ẑ, (21)

∂T

∂t
+ u ·∇T = ∇2T, (22)

∇ · u = 0. (23)
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In these equations, u(x, y, z, t) = (u, v, w) is the velocity vector with components (u, v, w)

in the (x, y, z) directions, respectively. The pressure is given by p(x, y, z, t), the temperature

field is denoted by T (x, y, z, t), and ẑ is a unit vector in the positive z direction which opposes

the direction of gravity. Equations (21)–(23) have been nondimensionalized using the depth

of the convection layer d as the length scale and the vertical heat diffusion time d2/κ as

the time scale, where κ is the thermal diffusivity. The vertical diffusion time represents

the time required for heat to diffuse from the bottom to the top of the convection layer.

Additionally, the constant temperature difference between the bottom and top boundaries,

∆T , is set as the temperature scale. Using this convention, 0 ≤ T ≤ 1 where T (z=0)=1

at the bottom boundary and T (z=1)=0 at the top boundary. The Rayleigh number Ra=

βgd3∆T/(νκ) is often the control parameter used in experiments and represents the ratio of

buoyancy to thermal and viscous dissipation, where β is the thermal expansion coefficient

and ν is the kinematic viscosity. It is often convenient to use the reduced Rayleigh number

ε = (Ra−Rac)/Rac to describe the degree of driving beyond the convective threshold, where

Rac is the critical Rayleigh number. The way this number rescales to ε in Eq. (1) is detailed

in Appendix A. For an infinite layer of fluid with no-slip boundaries Rac = 1707.76 and the

nondimensional critical wave number of the convection rolls is qc = 3.1165 [5]. Therefore, the

width of a single convection roll will be approximately unity after the nondimensionalization.

The Prandtl number of the fluid Pr = ν/κ is the ratio of the momentum diffusivity to the

thermal diffusivity. The connection between Pr and the rescaled Prandtl number σ used in

the generalized Swift Hohenberg equation is described in Appendix A. The Prandtl number

is inversely related to the magnitude of the mean flow [32, 33] which has been shown to

have a significant effect upon the state of spiral defect chaos [16, 34–36]. In the numerical

simulations presented here, we use Pr = 1 which is typical of the compressed gases often

used in Rayleigh-Bénard convection experiments [1, 36]. The aspect ratio of the domain

Γ is the ratio of the lateral extent of the convection layer to its depth. We have used two

different geometries in our exploration reported here: a periodic box domain with Γ = 100

to study spiral defect chaos and a cylindrical domain with Γ = 40 to study a single rotating

giant spiral. Schematics of these two domains are shown in Fig. 3(a) and Fig. 3(b) for the

box and cylindrical domains, respectively. We note that the spatial scale in this figure is

different from the one used for Fig. 1 by a factor of 1/qc, as later detailed in the text and

Appendix A.
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FIG. 3: Schematics of the two domains used for the numerical simulations of the

Boussinesq equations. The Cartesian coordinates (x, y, z) are in the directions shown and

gravity acts in the direction opposing z. (a) The box domain with a square planform of

side length L and a depth d with an aspect ratio of Γ = L/d = 100. The sidewall boundary

conditions are periodic and the bottom and top walls are no-slip surfaces. This domain

was used to generate a state of spiral defect chaos, with a sample flow field shown in

Fig. 4. (b) The cylindrical domain of radius r0 and depth d with an aspect ratio of

Γ = r0/d = 40. All material surfaces are no-slip boundaries and the sidewalls are heated as

part of the procedure to develop a giant rotating spiral as described in the text. A sample

flow field image is shown in Fig. 9 (left). Both schematics are drawn to scale and are

shown slightly tilted with respect to the horizontal for perspective.

For the box domain, we used periodic boundary conditions at all the sidewalls while the

bottom and top walls are no-slip surfaces. For the thermal driving we used ε = 0.7. In

this case, our intention was to study the state of spiral defect chaos in a domain where the

effects of the sidewall boundary conditions were reduced. For a box geometry with a square

platform it is typical to define the aspect ratio as Γ = L/d, where L is the length of the side of

square domain. Using this convention we have Γ = 100 for the results presented here for the

box domain. We used initial conditions composed of small random thermal perturbations of

magnitude δT = 0.01 to an otherwise quiescent layer of fluid. We then evolved the dynamics
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forward in time for approximately 930 time units to allow initial transients to decay.

We note that this duration of time is less than a nondimensional horizontal heat diffusion

time τh which is often used as a rough benchmark for determining the length of time required

for a simulation to achieve a sufficient reduction of transients [32]. τh is the amount of

time required for heat to diffuse from the center of the domain to a sidewall. For the

box domain this yields τh=(L/2)2=2500. A simulation of this duration requires significant

computational expense. We found that a duration of 930 time units was sufficient to establish

a steady state of spiral defect chaos. We are interested in the instantaneous features of the

patterns, in particular in the features of the relatively short lived spiral structures, and not

in the long time statistics of the global pattern dynamics. As a result, we anticipate that

a time of 930 time units is sufficient to study the mean flow field and the azimuthal flows

that are generated around the spiral structures. An example flow field from a numerical

simulation is shown in Fig. 4.

In order to study a single rotating spiral we used a cylindrical domain of aspect ratio

Γ = r0/d = 40, where r0 is the radius of the domain. To generate a large spiral in this

domain we follow the approach used in the experiment of Plapp et al. [37]. We initialize

the simulation by starting with a quiescent layer of fluid where the lateral sidewalls are

slightly heated while the thermal driving of the layer is just above threshold at ε = 0.054.

Specifically, the temperature at the sidewalls are set to the constant value of T = 0.1 for

all z, i.e., a hot sidewall boundary condition. The hot sidewall creates an up-flow at the

wall which initializes the formation of a curved convection roll that aligns with the sidewall

boundary. We then evolve the system forward in time for approximately 500 time units;

during this time curved convection rolls grow inward towards the geometric center of the

domain, resulting in a stable and stationary target pattern. We next restart the simulation

further from threshold with ε = 0.405 and allow it to evolve for approximately 300 time units.

During this time, the center of the target pattern slowly drifts away from the geometric

center of the domain to yield a stationary and time-independent skewed target-like pattern.

We then restart the simulation further from threshold with ε = 0.464 and let the system

evolve for another 800 time units. This causes the center of the target-like pattern to drift

further from the geometric center of the domain where the pattern eventually undergoes a

complex transition of instabilities that eventually yield the giant one-armed spiral with a

single dislocation as shown in Fig. 9. Both the giant spiral and the dislocation are rotating
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in the clockwise direction for these results. This procedure appears to be a flexible and

reliable way to generate giant spirals. However, the specific parameters and sequence we

used were determined by trial and error with the goal of generating a giant spiral and are

by no means meant to describe a unique procedure.

All of our numerical simulations of Eqs. (21)–(23) were conducted using the high-order,

highly parallelized, and open-source spectral element solver nek5000 [38–40]. The code uses a

semi-implicit operator splitting approach that is third-order accurate in time and converges

exponentially in space. A hallmark of the approach is its geometric flexibility while also

permitting explorations of large spatially extended systems. The nek5000 solver has been

used to explore a broad range of fluids problems [40]. More details regarding its use to study

spatiotemporal chaos in Rayleigh-Bénard convection can be found in Refs. [35, 41–44].

FIG. 4: Left: Temperature field at the mid plane of the convection cell obtained by

integrating the Boussinesq fluid model in time with periodic boundary conditions. The

convection cell is a box domain with Γ = 100, ε = 0.7 and Pr = 1. The temperature field is

shown at time t = 914.69. Right: A close-up view of a rotating spiral.

IV. AZIMUTHAL FLOWS IN THE CHAOTIC REGIME

We address in this section the extent to which the asymptotic results of Sec. II C can shed

some light on the role of hydrodynamic flows on spiral defect chaos. There are a number

of factors that preclude a precise comparison between these analytic predictions and our

numerical results. First, the typical size of a spiral in the chaotic state is relatively small
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(a few rolls), making a determination of the asymptotic decay of the azimuthal velocity

questionable. Second, the results of Sec. II C have been derived for the generalized Swift-

Hohenberg model, and they exhibit a strong dependence on the damping parameter c2. This

makes a comparison with results from the Boussinesq model difficult as this parameter is

largely phenomenological, although it has been estimated for the case of no-slip boundary

conditions (see Ref. [20] and Appendix A). Third, we have not explored the dynamics using

the Boussinesq model for the case of free-slip (stress-free) boundary conditions. In this case

c2 = 0, and the logarithmic dependence of Eq. (15) might be apparent, and with it strong

mean flows and interactions between spirals. Nevertheless, we will argue that the azimuthal

velocity field within a given spiral depends strongly on the cutoff radius rb for small values

of c2, thereby providing a mechanism for the hydrodynamic interaction of spirals.

We first use a chaotic configuration obtained from the solution of the the generalized

Swift-Hohenberg model, to analyze the r-dependence of the azimuthal velocity vϕ as given

in Eqs. (14)-(15). We use the same spiral configuration of Fig. 1a obtained with the following

values of model parameters: ε = 0.7, gm = 50, c2 = 2, and σ = 1. We then compute the

corresponding vϕ from Eq. (2) from the instantaneous velocity field, for a range of values of

c2. That is, by setting the time derivative of Eq. (2) to zero [or equivalently, from the curl

of Eq. (11)], we obtain the velocity field in the Stokes limit for various values of c2 from

the same order parameter ψ configuration. This way, we are able to follow the evolution

of vϕ as a function of c2 only, and evaluate if the transition from the −rln(r/rb) behavior

based on Eq. (15) to the damped profiles of Eq. (14) is observed. Note, however, that for

these parameter values we do not observe spirals in the simulation transients when c2 ≤ 0.1;

rather, we observe target defects (see also discussions in Sec. VB).

Figure 5 shows the azimuthal velocity vϕ away from r = 0 at the core of the spiral located

at coordinate (104, 56) in Fig. 2, up to the midpoint between this spiral and the other one

at (156, 81). The figure shows the numerical solution for c2 = 0, c2 = 0.1, c2 = 0.4 and

c2 = 2 (solid lines). In order to compare the numerical solution with the analytic result of

Eq. (14) with c2 > 0, we define

g(r) =
1

c2

[

1

r
+

(

cK1(rbc)−
1

rb

)

I1(c r)

I1(rbc)
− cK1(c r)

]

, (24)

and fit the function vϕ = α g(r)+β, where α and β are two fitting coefficients. The function

g(r) depends on two parameters, the damping parameter c2 and a cutoff radius rb which is
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taken to be of the order of the spiral size.

For c2 = 0 and the two rotating spirals of Fig. 2, we set rb = 30, the mid point between

the two spirals (we see that vϕ changes sign approximately at r = 30). The asymptotic

relation vϕ = −1.3r ln(r/30) is shown in the top two panels of Fig. 5 (dashed lines), where

the constant −1.3 is the single fitting parameter. There is good agreement away from the

core. Figure 5 also shows our results for c2 > 0. We have set rb = 35 in all these cases,

and fit the parameters α and β. From Eq. (14) we note that α = mωεgm/6q
2

0
σ, where the

only unknown is the angular frequency of rotation ω. Using our current parameter values,

we have α = 5.83ω, where ω is not known a priori. The order of magnitude of the angular

frequency will be further discussed in Sec. VB, where we find it to be on the order of

10−1 − 1. We have assumed that the constant α is largely independent of c2, and chosen

α = 5/σ for all the values of c2 > 0 in Fig. 5, where the rescaled Prandtl number is σ = 1.

Therefore the only fitting parameter used in Fig. 5 for c2 > 0 is the constant β. We note

that Eq. (14) is valid away from the core, and is obtained with the boundary condition of

vanishing velocity at the core. Hence the constant β can be rationalized as being related to

the velocity near the core that should be used as a known boundary condition for the outer

solution. The fitted β value also contributes to the large radius at which vϕ vanishes. For

finite damping, the azimuthal velocity does not completely decay to zero, so that we need

a negative β to capture such effect. For small values of c2, the value of rb is relatively easy

to determine, and is closely related to β in order to obtain a good fit. As c2 increases, the

velocity field decays quickly, and the fitting becomes less dependent on the value of cutoff

rb as long as rb remains greater than the size of the spiral.

By increasing the damping coefficient from c2 = 0 to c2 = 0.1, the magnitude of the

azimuthal velocity diminishes by a factor of four, and its asymptotic decay changes from

convex to concave, as expected from Eq. (14). Figure 5 shows that our analytic prediction

from Eq. (14) appropriately describes the behavior of vϕ far enough from the spiral core for

all the c2 > 0 cases. We also note that in every case v1ϕ is sufficient to describe the form

of the numerical curves, while v2ϕ and v3ϕ do not provide any major contribution to the

observed results.

As c2 increases, the flow field becomes increasingly localized within the vicinity of the

spiral cores, thereby reducing any interaction between velocity fields generated by different

spirals. This is illustrated in Fig. 5 when comparing the cases of c2 = 0.4 and c2 = 2. As
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FIG. 5: Azimuthal velocity for the spiral located at (104, 56) in Fig. 2 with r = 0 at its

core, for gm = 50, σ = 1, and ε = 0.7. Left column compares numerical results with our

analytic predictions, and right column is in logarithmic scale. First row: c2 = 0, using

vϕ = −1.3r ln(r/30) for the analytic curve. Second row: c2 = 0.1, using α = 5/σ and

β = −1.75. Third row: c2 = 0.4, using α = 5/σ and β = −0.5. Fourth row: c2 = 2, using

α = 5/σ and β = −0.1. For all the cases of c2 > 0, rb = 35 is used.
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the flow damping increases, the velocity becomes more short-ranged, and the magnitude of

the azimuthal velocity decreases significantly: for c2 = 2, the flow magnitude is only 4%

of the flow obtained for c2 = 0. Note that while rb is of the order of the spiral’s size, the

velocity for larger values of c2 reaches zero well before r = 30, and that due to the small

size of the spirals we do not observe a 1/r decay at long distances. In this range of c2, the

velocity field within each spiral is largely independent of the existence of other spirals, and

does not depend on the value of rb [12].

In summary, we have observed the transition of the azimuthal velocity from a −rln(r/rb)

profile to the damped convex profiles when the damping coefficient c2 increases, as suggested

by our predictions in Sec. II C. As c2 approaches zero, given the longer range of the flows

the cutoff parameter rb has the same value as the spiral’s radius when there are spirals

of the same topological charge in the vicinity. By increasing c2, as long as rb is greater

than this radius, varying the cutoff makes little quantitative difference to the fits, since the

azimuthal velocity decays quickly to zero. In addition, the azimuthal velocity field within

a spiral strongly depends on the existence of neighboring spirals, and their presence affects

the fit parameters rb and β. The topological charge of the spirals also plays a role in this

observation, as will be discussed in Sec. VA for the case of neighboring counter-rotating

spirals.

V. DISCUSSION

A. Azimuthal flow between two counter rotating spirals

In the spiral chaos regime the flow field within each spiral depends on the spiral size,

which in turns is determined by the presence of neighboring spirals and other defects through

the cutoff parameter rb. In particular, the decay of vϕ with distance r is faster than the

asymptotic 1/r. For stress free boundary conditions, c2 = 0, or small damping (e.g., c2 = 0.1)

there is a strong and long ranged azimuthal velocity component spanning the entire spiral,

which decays to zero at a scale determined by neighboring spirals of the same topological

charge. For low damping, rb is approximately the spiral’s radius. We present here an

analysis of the flow between two counter rotating spirals (with opposite topological charge),

as the flow would interact constructively along a line connecting them. Figure 6 shows the
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azimuthal velocity between two neighboring counter rotating spirals, centered at coordinates

(104, 56) and (139, 25) in Fig. 1a. We again use the same ψ configuration shown in Fig. 1a

to compute the azimuthal velocities in the absence of inertia for two different values of the

damping coefficient c2. In the absence of damping, c2 = 0, the azimuthal velocity is nonzero

in the region between the two spirals, as the vorticity generated by the two cores adds up

constructively. For c2 = 2, the flow once again becomes concentrated at each spiral, with

small or no flow interaction between them.
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FIG. 6: Azimuthal velocity between two spirals of opposite topological charge using the

generalized Swift-Hohenberg equation. At r = 0 we find the core of the spiral located at

(104, 56) from Fig. 2, and at r = 47 the core of the spiral is located at (139, 25). Using this

same order parameter configuration, we compute the instantaneous velocity for c2 = 0

(middle panel) and c2 = 2 (right panel), and plot the azimuthal velocity between the two

spirals.

B. Advection versus roll unwinding in spiral dynamics

We address here the possible relevance of the mean flows discussed to the chaotic state

itself, based on the generalized Swift-Hohenberg model. It has been established that spiral

defect chaos is only observed for a specific range of c2 and scaled Prandtl number σ. For the

parameter set used here, gm = 50, ε = 0.7 and σ = 1 ∼ 2, spiral defect chaos has been found

in the range 0.1 < c2 < 5 [10, 12, 14]. For c2 > 4, the leading-order Lyapunov exponent

of the flow approaches zero [14]. In the opposite range of small damping, c2 ≤ 0.1, spiral

defects are no longer observed while the system dynamics is chaotic. In our calculations,
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if c2 = 0 the magnitude and range of the mean flow increase significantly and we are only

able to achieve spiral defect chaos for this free-slip condition by reducing gm significantly to

gm ∼ 5 (or, similarly, by increasing σ).

We examine here the relative contribution to the overall time variation rate ∂tψ from

the mean flow advection v · ∇ψ, and the diffusive pattern dynamics given by the RHS of

Eq. (1), leading to roll unwinding [12, 45]. The magnitude of the latter depends on the value

of the local wavenumber when it is maintained away from the critical value (i.e., wavevector

frustration) [12, 13], and also from the curvature of the rolls [28]. Both contributions have

been estimated theoretically [12, 46].

We use the same configuration of the order parameter field shown in Fig. 2, and analyze

the flow field around the spiral with core located at (104, 56). We obtain the velocity field

by solving Eq. (2) with the time derivative set to zero, and for a range of values of c2

and σ. The overall time variation ∂tψ, advection v · ∇ψ, and the relaxational part (i.e.,

the RHS of Eq. (1) yielding diffusive dynamics) oscillate nonuniformly as a function of the

radial coordinate r. We extract the characteristic magnitude of each quantity by finding its

maximum absolute value between r = 5 (away from the core) and r = 28 (the approximate

radius of the spiral). Other measures, such as choosing the values from the first peak of

these functions, lead to similar results. Our results are shown in Fig. 7 for a range of values

of c2 for fixed σ = 2, and also as a function of σ for fixed c2 = 1. As described in Appendix

A, the value of σ = 2 corresponds to a Prandtl number of Pr = 1 (consistent with the CO2

experiments of Ref. [1]). We have conducted calculations across the range 0 ≤ c2 ≤ 100, and

find that advection and diffusion contributions are of similar value around c2 = 1. When

rescaling the critical wavenumber to q0 = 1, the value c2 = 1 is the one estimated for no-slip

boundary conditions on the cell’s plates, as detailed in Ref. [20] and Appendix A. Next, we

fix c2 = 1 and compute the same ratios for a range of 0.125 ≤ σ ≤ 64. Interestingly, both

advection and diffusion contributions have approximately the same magnitude at σ = 2 (i.e.,

at the experimentally used Prandtl number Pr = 1).

These results indicate three distinct regimes which can be correlated with the qualitative

nature of the system dynamics obtained from the generalized Swift-Hohenberg model. (i)

For very small c2 (. 0.1) at σ = 2, the observed defect patterns are chaotic but without

any observable spirals, other than some transient target defects (similarly for σ . 0.25 at

c2 = 1). As seen in the left panel of Fig. 7, when c2 ≤ 0.1 the dynamics are mainly driven by
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FIG. 7: Ratios of advection and roll unwinding [the RHS of Eq. (1)] to the overall time

variation ∂tψ, as a function of the damping coefficient c2 and the rescaled Prandtl number

σ. Values are computed based on the spiral located at (104, 56) in Fig. 1a, with ε = 0.7

and gm = 50. The blue line with circle symbols shows the ratio for the spiral’s

characteristic advection contribution (v ·∇ψ), and the red line with square symbols shows

the ratio for its characteristic roll unwinding contribution (RHS). Left: Ratios are plotted

as a function of c2, for σ = 2. Right: Ratios are plotted as a function of σ, for c2 = 1.

advection and the diffusive dynamics contribution from the RHS of Eq. (1) to ∂tψ becomes

very small. At c2 = 0 we still observe a few transient targets. (ii) At the other extreme with

large c2, the calculations in Ref. [14] showed that the leading-order (and positive) Lyapunov

exponent of the flow approaches zero, indicating very weak or even non chaotic state. The

patterns are dominated by slowly coarsening, large target and spiral defects, mixing with

small spirals or targets. Similar results can be obtained for large enough σ at c2 = 1 in

the right panel of Fig. 7. In this regime, diffusive roll unwinding mainly determine spiral

rotation, as can be seen in Fig. 7. (iii) In the intermediate parameter range (e.g., around

0.1 < c2 < 5 for σ = 1 ∼ 2 or in the mid-range values of the σ dependence at c2 = 1)

spiral defect chaos is observed in the numerical solutions. In this range the contributions

from advection and diffusive relaxation are comparable. In particular, both contributions

are nearly the same around c2 = 1 and σ = 2, the parameter values that correspond to the

experiment of Ref. [1], and to the previous study of the Boussinesq equations [14–16, 41].
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These results also help explain why spiral defect chaos was not observed when c2 = 0 and

gm = 50, but did appear by reducing the latter to gm = 5, as shown in Fig. 8. That is,

reducing gm would roughly translate into moving the curves shown in Fig. 7 to the left. In

summary, the results suggest a correlation between the existence of spiral defect chaos and

the relative balance between advection and order parameter diffusion.

FIG. 8: Patterns of order parameter field ψ obtained from the generalized Swift-Hohenberg

model for ε = 0.7, σ = 2, and c2 = 0, at time t = 2× 103. Left: gm = 50, showing a chaotic

state without the emergence of spirals. Right: gm = 5, showing spiral defect chaos.

Characteristic values of the spiral rotation rate ω can be obtained from the numerical

solutions. We estimate ω ∼ O(10−1) in dimensionless units, with its maximum value close

to 1. This is consistent with the values of α used in the fits of Fig. 5.

C. Comparison with spirals obtained from the Boussinesq equations

We have explored spiral defect chaos in the Boussinesq model only for no-slip boundary

conditions. From the numerical results, as in Fig. 4, we observed that the size of the spirals

in the range of parameters where chaos exists is fairly small, as is the case in experiments.

Therefore, we cannot examine the asymptotic decay of vϕ ∼ 1/r as has been predicted for

large r, nor can we conclusively obtain the spatial dependence of long-range flows at small

damping as argued above. We do present, however, results for a large, single rotating spiral

(see Sec. III B), and evidence that the azimuthal velocity field obtained agrees, without any

adjustable parameters, with vϕ obtained from direct integration of the generalized Swift-

Hohenberg equation and in the regime of spiral defect chaos. We therefore expect that the
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asymptotic behavior of Fig. 5 at small damping would carry over to the full Boussinesq

model.

A configuration comprising a single rotating spiral as given by the Boussinesq model with

Prandtl number Pr = 1 is shown in Fig. 9. It has been obtained by adding a lateral forcing

thermal boundary term in a cylindrical cell (a hot sidewall) while setting no-slip boundary

conditions at all material surfaces, as described in Sec. III B. The temperature field at mid

cell of a slowly rotating spiral and an accompanying dislocation is shown in Fig. 9. Lengths

are made dimensionless by the cell thickness, so that the critical wavenumber is qc = 3.1165,

which can be obtained from the marginal stability problem at the critical Rayleigh number.

The size of the spiral in Fig. 9 is 14 wavelengths, before reaching the dislocation. According

to the derivation by Manneville [20], given no-slip boundary conditions and a cell with

dimensionless thickness h = 1, a Galerkin expansion of the flow indicates that the mean

flow becomes Poiseuille-like at lowest order. By averaging the governing equations over the

height, a vorticity equation analogous to Eq. (2) can be obtained, with a damping coefficient

c2 = 10 corresponding to qc = 3.1165. More details are given in Appendix A, including how

the length, time and various parameters are mapped from the Boussinesq model with no-slip

conditions and qc = 3.1165, to the generalized Swift-Hohenberg model, Eqs. (1) and (2) with

q0 = 1. The value of c2 is further rescaled by 1/q2c , so that c2 ≈ 1. Since the length scales as

1/qc and for Pr = 1 the time scale is 2.05/q2c , the Boussinesq velocity is rescaled by 2.05/qc

to agree with our dimensionless units. Finally, based on the Prandtl and Rayleigh numbers

of the Boussinesq solution, we have σ = 2, ε = 0.7, and gm = 50, with scaling also given in

Appendix A.

Figure 9 (middle) shows the rescaled azimuthal velocity vϕ computed at the mid plane

of the cell as a function of qcr, so that we can compare it directly with the result from the

generalized Swift-Hohenberg model. The coordinate origin has been placed at the spiral’s

core. Following an initial rise from zero at the core, the velocity appears to decay with

distance as r−2 between qcr = 3 and qcr = 20, until it quickly decays to zero at about

qcr = 46. This decay is faster than the expected asymptotic behavior of 1/r, although we

must note that for the time shown, there still is a difference between the rotation velocities

of the core and the dislocation given in the simulation.

Figure 9 (right) compares the azimuthal velocity of the large spiral obtained from the

Boussinesq model with that of a rotating spiral in the fully chaotic regime given by the
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FIG. 10: Rescaled azimuthal velocity for the enlarged spiral in Fig. 4 obtained from the

Boussinesq model (BSQ), with r = 0 at its core. The corresponding rescaled parameters

are σ = 2, c2 = 1, and ε = 0.7. Left: Comparison of numerical results with analytic

predictions. Right: The same results using a logarithmic scale. Parameters of c2 = 1,

α = 5/σ, β = −0.1 and rb = 4.5 are used for the analytic curve.

We finally analyze the azimuthal velocity in the chaotic regime of the Boussinesq model,

with results presented in Fig. 10. We show the azimuthal velocity of the spiral of Fig. 4,

with r = 0 centered at the core of the spiral. This result is compared with our analytic

prediction of Eq. (14), with c2 = 1, gm = 50, σ = 2, and ε = 0.7. Instead of fitting both α

and β as previously discussed in Sec. IIIA, we set α = 5/σ (the same value used in Fig. 5).

Since α = mωεgm/6q
2

0
σ, all the parameters used in Sec. IIIA are the appropriate ones for

the Boussinesq model with no-slip boundary conditions as described in Sec. III B. In both

cases we obtain one-armed spirals (m = ±1). Here we use rb = 4.5 (the approximate size of

the spiral) and β = −0.1. Note that due to the small size of the spiral, vϕ does not reach

zero at the edge of the spiral, as this is a small defect constrained by other features of the

disordered pattern. Even under these circumstances, there is good agreement between the

result of the Boussinesq model and the analytic solution, when using the same parameters

estimated from the data fit with the generalized Swift-Hohenberg model.

VI. CONCLUSIONS

An irrotational azimuthal body force proportional to ϕ̂/r in the generalized Swift-

Hohenberg model induces an azimuthal velocity vϕ for a configuration of a rigidly rotating
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spirals. At zero damping (free-slip), this force leads to long ranged flows proportional to

−r ln(r/rb), where rb needs to be determined independently. For the more realistic case

of no-slip boundary conditions, the azimuthal velocity would be expected to decay as 1/r

instead at a scale r � 1 when rb → ∞. For realistic spiral sizes in the regime of spiral

defect chaos, q0rb is of order one, and this asymptotic regime is never reached. Instead, the

velocity flow depends strongly on the value of rb, which in turn depends on the characteristic

separation between neighboring spirals.

This dependence of the azimuthal velocity has been compared with direct numerical so-

lution in a chaotic state both for the 3D Boussinesq equations and for the 2D generalized

Swift-Hohenberg equations. For free-slip boundary conditions in the latter, the velocity

behaves as −r ln(r/rb), which is long-ranged and necessarily crosses zero between neighbor-

ing spirals of the same topological charge, while for neighboring spirals of opposite charge

the velocity interacts constructively. When no-slip conditions are considered (with a finite

damping parameter), the velocity profile qualitatively changes. This agrees with our pre-

dictions that the velocity decay is governed by a combination of modified Bessel functions.

When damping is sufficiently high, we confirm the earlier suggestions that the flow within

a spiral is largely independent of the background in which it is immersed. For moderate

damping the flow within a spiral is a function of the spiral’s size, and hence of the dis-

tance to neighboring spirals and their topological charges. This observation is consistent

with an earlier suggestion of spiral defect chaos as a form of invasive chaos [12], except that

hydrodynamic flows also play a role.

For the 2D generalized Swift-Hohenberg model, we identify two contributions to the spiral

rotating dynamics: Mean flow advection and diffusive dynamics with wavevector frustration

and roll unwinding. We have performed a series of calculations by varying the damping

coefficient and the Prandtl number to identify three distinct regimes: Chaos without spiral

patterns, diffusive pattern dynamics with extremely weak or no chaos, and spiral defect

chaos. The latter appears in the range in which order parameter advection and diffusive

relaxation are of similar magnitude. In particular, we find that both contributions are

approximately the same at a damping coefficient about c2 = 1, and a rescaled Prandtl

number of σ = 2 (with Pr = 1), which correspond to the experimental conditions for

convection in CO2 gas.

The 3D Boussinesq equations have been integrated in a rectangular geometry with pe-
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riodic sidewalls and no-slip conditions at top and bottom surfaces. By analyzing the flow

field around a small spiral in the chaotic state, we found that the analytic result based

on a rigidly rotating spiral agrees reasonably well with the Boussinesq azimuthal velocity,

and that the remaining fit coefficients are consistent with those used with the generalized

Swift-Hohenberg results under corresponding values of the physical parameters. Finally,

we obtained a large spiral using the Boussinesq model in a cylindrical configuration, and

analyzed the azimuthal flow around the core of the spiral. The azimuthal velocity agrees

with the generalized Swift-Hohenberg result without any adjustable parameters. We con-

clude that for large values of the damping parameter, the flow field induced by a rotating

spiral is the same regardless of whether it is isolated or surrounded by other spirals. When

the damping parameter is reduced, the flow field depends on the distance to neighboring

spirals and the relative sign of their topological charge, therefore providing a means for their

interaction.
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Appendix A: Parameter values of the generalized Swift-Hohenberg model

A generalized Swift-Hohenberg model that includes advection by the solenoidal mean

flow velocity v has been derived by Manneville [8, 20] from the Boussinesq equations, which
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has the following form

τ0 (∂ψ/∂t+ v ·∇ψ) =

[

ε−
ξ2
0

4q2c

(

∇2 + q2
0

)2

]

ψ − g(Pr)N [ψ], (A1)

[

∂/∂t− Pr(∇2 − c2)
]

∇2ζ = gqc
[

∇(∇2ψ)×∇ψ
]

· ẑ, (A2)

where

v = ∇× (ζẑ) = (∂yζ,−∂xζ) . (A3)

In Manneville’s model, the nonlinearity N [ψ] has the form N [ψ] = |∇ψ|2ψ+q2cψ
3. However,

the threshold expansion of the Boussinesq equations leads to the cubic sum of Fourier modes,

with no counterpart in real space [48]. Therefore, there is no systematic way for which N [ψ]

can be derived for a real-space expression, and its form depends on boundary conditions and

arbitrarities of expansions [49]. In this work we use the simplest form N [ψ] = q2cψ
3. The

model parameters depend on boundary conditions for the top and bottom of the convection

cell. In the case of no-slip (rigid) boundary conditions, where c2 > 0 accounting for hard-

mode oscillatory instabilities, these parameters are given by [20]

ε = (Ra− Rac)/Rac, Rac = 1750 (exact value: 1708), c2 = 10

qc = 3.1165 (∼ exact value), ξ2
0
= 0.1497 (exact value : 0.148),

τ0 = (1.9425 + Pr−1)/38.2927 [exact value: (1.9544 + Pr−1)/38.4429],

gqc = 2/(21qc), g(Pr) = α0 + β0/Pr + γ0/Pr
2, (A4)

where α0, β0, γ are some unknown expansion coefficients. Note that the above parameters

such as Rc, qc, ξ0, and τ0 were derived from the Galerkin expansion by Manneville [8, 20]

and well agree with the known exact values; also the length scale used above should be the

vertical thickness d, and hence the dimensional qc → qcd and c2 → c2d2 after rescaling.

In our simulations (and most other research), the dimensionless model equations are used.

Setting a length scale 1/qc, a time scale 4τ0/(ξ
2

0
q2c ), the rescaled variables ψ′ = ψ

√

4g(Pr)/ξ2
0
,

ζ ′ = ζ(4τ0/ξ
2

0
), as well as

ε′ = ε
4

ξ2
0
q2c

=
Ra− Rac

Rac

(

4

ξ2
0
q2c

)

, c′2 = c2/q2c , (A5)

and omitting all the primes, the generalized Swift-Hohenberg model equations (A1) and

(A2) can be rescaled as

∂ψ/∂t+ v ·∇ψ =
[

ε− (∇2 + q2
0
)
2

]

ψ −N [ψ], (A6)

[∂/∂t− σ(∇2 − c2)]∇2ζ = gm [∇(∇2ψ)×∇ψ] · ẑ, (A7)
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as used in our study. Here

q2
0
= 1, σ =

4τ0
ξ2
0

Pr, gm =
4τ 2

0

g(Pr)ξ2
0

gqc . (A8)

From the values given in Eq. (A4), the parameters in the above equations (A6) and (A7)

can be estimated as

ε = 2.7511(Ra− Rac)/Rac, c2 = 10/q2c = 1.03,

σ = 0.6978(1 + 1.9425Pr), gm = 1.7868× 10−4(1.9425 + Pr−1)2/g(Pr). (A9)

If the Prandtl number Pr = 1 as set in experiments and the simulations of the Boussinesq

model, we have σ ' 2. Also if choosing g(Pr) = 3.0941×10−5, we get gm = 50 as used in our

calculations. In many calculations ε is set as 0.7, which corresponds to (Ra − Rac)/Rac =

0.2544. This choice started from the first theoretical paper of spiral defect chaos [10], based

on the experimental results showing the onset of spiral chaos at (Ra− Rac)/Rac ≥ 0.25 for

Pr = 1 and in systems of large enough aspect ratio [1, 2]. The value of c2 [= 10 (unscaled)

or equivalently ' 1 after rescaling] comes from the approximation process based on no-slip

boundary condition [20]; after rescaling it is independent of the Prandtl number or the

length scale chosen. Values of g(Pr), gqc , and hence gm also depend on the approximation

of expansion (or the averaging over vertical thickness). As pointed out by Manneville [20],

their values would be different if using a different averaging procedure (e.g., the unscaled c2

would change from 10 to 12, and gqc from 2/21qc to 4/35qc).

We note that in most of previous studies using the generalized Swift-Hohenberg equations,

usually σ is set as 1 which actually corresponds to Pr ' 0.22; also c2 = 2 was first chosen in

Ref. [10] and then followed in almost all the later work except for Ref. [14] which explored

a range of possible c2 values.
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