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Abstract

Humans have the innate ability to recognize new objects

just by looking at sketches of them (also referred as to proto-

type images). Similarly, prototypical images can be used as

an effective visual representations of unseen classes to tackle

few-shot learning (FSL) tasks. Our main goal is to recognize

unseen hand signs (gestures) traffic-signs, and corporate-

logos, by having their iconographic images or prototypes.

Previous works proposed to utilize variational prototypical-

encoders (VPE) to address FSL problems. While VPE learns

an image-to-image translation task efficiently, we discovered

that its performance is significantly hampered by the so-

called hubness problem and it fails to regulate the represen-

tations in the latent space. Hence, we propose a new model

(VPE++) that inherently reduces hubness and incorporates

contrastive and multi-task losses to increase the discrimina-

tive ability of FSL models. Results show that the VPE++

approach can generalize better to the unseen classes and

can achieve superior accuracies on logos, traffic signs, and

hand gestures datasets as compared to the state-of-the-art.

1. Introduction

Machine learning algorithms generally require large

amounts of data to capture the underlying data distribution

and to effectively perform classification tasks. Conversely,

humans have the innate ability to generalize across new cate-

gories or unknown scenarios by efficiently utilizing their past

experience [58]. Hence, there is a significant semantic gap

in the way humans and machines learn to recognize objects.

This has led to the advent of modern learning paradigms

such as few-shot learning (FSL), which aims to recognize

the unseen categories by having only a few observations [9].

In this context, k-shot refers to the problem in which there

are only k samples for each unseen category. In the extreme

case, where the value of k=1, the model is expected to rec-

ognize a new category by just having one labeled example.

Figure 1. Illustration of spatial relationship between real images

and their prototypes (image in the center). We utilize contrastive

learning to enhance the mutual information between prototypes and

real images in the latent space.

Note that, the quality of the sample available for re-training

greatly affects the performance of the system. In this pa-

per, we focus on graphical symbols, sketches, or icons that

compactly convey the semantic meaning of the categories,

as they can be used as a single available training example

to tackle the problem of one-shot learning. Moreover, such

symbols, referred to as prototypes (refer to the clustering

centroid in Fig. 1), contain rich contextual and semantic in-

formation embedded in them which are proven to be helpful

in the one-shot learning tasks [22].

While humans can easily comprehend such prototypical

abstractions, machines face several challenges due to the

inherent perceptual gap between the prototypes and the real

images [22, 27]. In other words, the real images undergo

perspective transformations, distortions, variable lighting

conditions and occlusions, which makes data distribution

of the real images and their prototypes considerably differ-

ent from each other. Due to these challenges, very few re-

search works have successfully applied prototypical images

in FSL tasks. For instance, Kim et al. proposed Variational

Prototyping-Encoder (VPE) that learns a functional map-

ping that translates the real images into their prototypes [27].

While their method demonstrated a feasible way of utilizing

prototypical images, we noticed two major limitations of

VPE that hamper its performance on FSL.

First, VPE suffers from the data hubness problem i.e. a
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small subset of unseen samples tends to act as hubs and

they are more frequently retrieved than other samples. In

other words, some test samples are rarely retrieved even

when the similarity with the query image is high (refer to

Sections 2.3 and 3.2). Second, VPE does not impose any

additional constraints in the latent space i.e. it does not

explicitly force the latent representation of a real image and

its corresponding prototype to be equivalent. Hence, the data

points in the high-dimensional latent space that belong to

multiple classes can still distribute in ways that are difficult

to discriminate (refer to Sec. 2.4 and Sec. 3.3).

In this regard, we propose a new model (referred to as

VPE++) to address these limitations. Kim et al. tested

the VPE approach on logos and traffic sign datasets. We

conducted experiments on these datasets to show that VPE++

outperforms VPE by a significant margin. Furthermore, we

demonstrated the generalizability of our approach using the

American Sign Language (ASL) hand gesture dataset. The

rationale behind testing VPE++ on hand signs lies in the fact

that a significant part of the ASL community learns those

gestures from sketches, icons, and pictorial representations

that are complementary to face to face demonstration [6].

In fact, ASL allows for an integration of visual imagery

with the linguistic structure on a magnitude not seen in other

spoken languages [51]. The same analogy can be made about

driving lessons - traffic signals are often learned from iconic

representations in instruction booklets as a pre-requisite for

passing the driver license’s test [23].

The main contributions of this work are as follows. First,

we demonstrate through experiments that the hubness issue

is prevalent in the latent space of VPE and thereby, in the

FSL problems. Next, we propose to utilize CL2N similarity

metric to address the issue of data hubness and show that

it can compensate for cases of unbalance that individual

samples being retrieved during the testing stage. Second,

we incorporate contrastive loss which allows better inter-

class discriminability when using prototypes. Lastly, we

integrate multi-task learning and deep supervision into our

model to improve the gradient backpropagation and model

generalization. Our code is released at: github.com/

MegaYEye/VPEReducedHubness.git

2. Related Work

2.1. Few­shot Learning

Conventional machine learning methods work well under

the assumption that training and testing data belong to the

same distribution. In contrast, transfer learning allows the

domains, tasks and data distribution of training and test

data to be significantly different [41, 32]. The task of few-

shot learning (a sub-paradigm of transfer learning) was first

introduced by Fei et al. [9] and was extensively studied in

domains related to object classification [10, 50, 29], face

recognition [45, 17], and action recognition [36, 2, 16]. For

example, Florian et al. proposed an approach to learn unified

embeddings of faces to improve real-time face recognition

[45].

Seminal works in few-shot learning include but not lim-

ited to [9, 29, 35, 13, 38, 56]. Works such as [56, 47, 50] ex-

tracted and transformed the task-related information to a met-

ric space, in which the classification was performed through

comparing the similarity scores. These approaches fall un-

der the category of metric learning. Conversely, [35, 13, 38]

focus on endowing the ability to adapt to new tasks, and

thereby belong to the category of meta-learning.

2.2. Few­Shot Learning Based on Prototypes

In this work, our primary objective is to perform one-shot

recognition with prototypical images as the only available

examples for the new classes. The intuition behind utilizing

prototypes lies in the fact that they carry rich contextual

information that can be leveraged upon for recognizing new

classes [27]. Several attempts were made in the past to

effectively utilize the prototypes as a part of the one-shot

framework. For instance, [47, 56, 33] constructed “proto-

types” from statistical information obtained from the training

samples.

In this regard, a prototype would act as a cluster center for

samples belonging to a particular category. However, the es-

timation bias of the clustering center can increase drastically

when the data distribution in the latent space is unbalanced,

or the data is relatively sparse. Furthermore, [26, 27] pro-

posed a novel framework in which variational auto-encoders

were adapted to take real images as the input and recon-

struct their prototypes instead of reconstructing the inputs.

Their framework does not consider prototypes as outliers

and significantly reduces the estimation bias of the latent

representations.

2.3. Hubness Reduction

Hubness is a phenomenon in which a small subset of

samples act as hubs or universal neighbors and are more

frequently retrieved by neighborhood searching algorithms

than other samples [7, 42]. In other words, a small set of

samples are observed too frequently while other samples are

rarely retrieved. As an intrinsic problem in high-dimensional

space, the hubness issue is known to have negative effects on

many representation learning tasks such as word translation

[5, 25, 15] and image retrieval [7]. Although the hubness has

been studied in detail in natural language processing tasks,

it has been hardly analyzed in the context of FSL.

Several hubness-aware machine learning techniques were

developed in the past in order to alleviate such adverse ef-

fects. For instance, [25] proposed an approach that explic-

itly penalizes the hubness-aware loss function known as

RCSLS. On the other hand, some works passively reduced

the hubness on the embedding samples in the latent space.
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Such approaches generally rely on improved neighbourhood

searching strategies that can increase the chance of discover-

ing samples that are being visited with low possibility. These

approaches include NHBNN [54], HWKNN [53], HFNN

[55], CSLS [5], and ISF [46]. However, these methods are

only available for embedding spaces with abundant observa-

tions (not suitable for few-shot learning).

In this paper, we discover that the hubness has a negative

effect on the accuracy of the metric-based few-shot learning

tasks. The FSL task differs from the aforementioned prob-

lems in the number of observations of the target domain that

are available. Since FSL problems have only a few examples

from the target domain, calculating a hubness score for each

individual sample is non-trivial. We address this issue by uti-

lizing a recently proposed neighborhood searching approach

known as CL2N [57].

2.4. Contrastive Loss and Auxiliary Supervision

Contrastive learning aims to learn representations so

that samples corresponding to the same category (or instance)

are pushed together and the samples belonging to distinct

categories are pulled away from each other [33]. Contrastive

learning is known to have the ability to improve generaliza-

tion capacity [3, 33, 18, 39, 52]. One main reason for this

is that overfitting can be prevented by increasing the class

margin [59]. It was shown that contrastive learning coupled

with self-supervised learning can achieve performances com-

parable with many supervised learning approaches [3, 18].

Recently, machine learning approaches began to lever-

age on auxillary supervision to improve performance on

multiple tasks and thereby, improve generalization. For clas-

sification tasks, deep supervision [30] induces side-branches

to accelerate convergence and alleviate the vanishing gradi-

ents problem. In [31], a step ahead is taken by enhancing the

gradient agreement from different branches. Their experi-

ments show that deep supervision can improve the prediction

accuracy and generalization.

Another mainstream method is multi-task learning,

where supervision is accomplished using different tasks. The

shared parameters learned across different tasks can better

capture the underlying data distribution and improve general-

ization [14]. In this work, we integrate both deep supervision

and multi-task learning to improve model generalization.

3. VPE++: Improved Prototypical Encoder

Our approach to few-shot learning from prototypes builds

on the variational prototypical-encoder (VPE) model [27]

by addressing its key limitations. Our model, referred to as

VPE++, leverages on the VPE by jointly optimizing multi-

task classification and contrastive latent losses in addition to

prototypical reconstruction loss. In this section, we discuss

the issue of hubness in the context of FSL and present three

major components of VPE++ model which led to significant

improvements in the performance on FSL tasks.

3.1. VPE Backbone

Given a real image x, VPE [27] learns a mapping that

transforms the input image x to its corresponding prototype

t. This is achieved through an auto-encoder paradigm in

which the encoder maps the raw input image x from image

space to an embedding zx in the latent space while the

decoder maps these latent embeddings to the corresponding

prototypes t in the image space. Kim et al. showed that

the generalization of VPE can be significantly improved by

augmenting the training data (x, t) via random rotations and

flips, and by utilizing spatial transformations [21] through

the encoder to counteract the variances of inputs.

VPE++ model utilizes the original network structure of

VPE to construct its encoder and decoder components. How-

ever, we recognize that utilizing the VPE architecture di-

rectly will result in a hubbed latent representation that re-

duces inter-class discriminability. Our key improvements

lie in model optimization procedures that involve additional

training objectives. For instance, the parameters of the VPE

model i.e. the parameters of the encoder pθ(zx|x) and the

decoder pθ(t|zx) are learned by minimizing the prototyp-

ical reconstruction loss given in Eq. (2), which does not

fully exploit the prior knowledge from the templates. In

this context, VPE++ model tackles this issue by simulta-

neously optimizing the prototypical latent/contrastive loss

LPCCL and multi-task label prediction loss Lmtl in addition

to the reconstruction loss. The overall loss function of the

VPE++ is a weighted sum of these three components (refer

to Eq. (1)). An overview of our method during training is

shown in Fig. 2.

LV PE++ = Lrecon + αLPCCL + βLmtl (1)

3.2. Hubness Reduction

Hubness is a recurrent problem that is reportedly present

in the latent space i.e. the latent vectors that are closer to the

centroid are more likely to act as hubs [61]. In this section,

we show that the VPE suffers from the so-called hubness

problem and propose to utilize CL2N metric to effectively

tackle this issue.

To prove the existence of the hubness problem, we visu-

alized the latent space of the VPE model by transforming

it into two-dimensional t-SNE embeddings, as shown in

Fig. 3 (a). Overall, 9585 samples obtained from the Flickr32

dataset (refer to Sec. 4) were visualized. For each sample,

we retrieved its nearest 15 neighbouring samples based on

Euclidean distance in the embedding space, and then used

color (blue and red color indicate lowest and highest fre-

quencies respectively) to indicate how many times a sample

was retrieved in the t-SNE visualization. Furthermore, a
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Figure 2. Training pipeline of the VPE++ model. The VPE++ architecture utilizes Spatial Transformer Network (STN) for feature

encoding and simultaneously alleviates the issues related to data hubness and vanishing gradients by minimizing a combined loss function

LV PE++ = Lrecon + αLPCCL + βLmtl.

histogram of the retrieval count of samples was shown in

Fig. 3 (b).

It can be noticed that Fig. 3 (b) resembles a long tail

distribution i.e. the histogram is not centered at the average

value (15) and was skewed towards the left side. In other

words, a small subset of samples was visited too frequently

(hubs) while a considerable number of samples were rarely

visited. Hence, there were few red circles and a large number

of blue/white circles in Fig. 3 (a). This experiment shows that

the VPE suffers from the hubness problem i.e. the similarity

comparison in the latent space has an inherent bias towards

a small set of frequently visited samples.

(a) (b)

Figure 3. (a) Visualization of the latent space using t-SNE embed-

dings. We performed k-NN with k = 15 on all samples, and use

color to indicate how many times a sample has been retrieved. (b)

The corresponding histogram plot showing that a small subset of

samples (hubs) was visited too frequently while a considerable

number of samples were rarely visited.

Our approach to tackle the hubness issue in few-shot

learning is two-fold. The first improvement lies in alter-

ing the VPE loss function to reduce hubness to an extent.

VPE suffers from the hubness problem partially due to the

assumption that the latent space is a Gaussian sphere i.e. em-

beddings follow a Gaussian distribution. This can be shown

by investigating the VPE loss function (refer to Eq. (2)).

log pθ(t) =Eqφ(zx|x) [log pθ(t|zx)]

−DKL [qφ(zx|x)pθ(zx)]
(2)

The first loss term Eqφ(zx|x) [log pθ(t|zx)] is used to max-

imize the likelihood of reconstructing prototype t. The sec-

ond loss term DKL [qφ(zx|x)pθ(zx)] is the KL divergence

between latent data distribution p(zx|x) and the distribu-

tion prior pθ(zx). Given the intractability of obtaining the

true latent distribution, VPE assumes that pθ(zx) follows a

Gaussian distributionN (0, I), where I is an identity matrix.

This Gaussian prior is induced by the variational approxi-

mation and is known to improve generalization due to the

inherent regularization effect [44, 60]. On the contrary, the

recent studies in contrastive learning suggest that enlarging

the inter-class distance can be more beneficial in achiev-

ing better generalization abilities as opposed to shrinking

the latent space to a Gaussian sphere [3, 40]. Furthermore,

the probability density function associated with N (0, I) is

known to aggravate the issue of hubness as the samples

are more likely to distribute around the origin, thus having

higher likelihood of acting as hubs [4, 61]. Lastly, while

the Gaussian prior enables sampling in the latent space by

modeling it as a continuous and a disentangled distribution

[28, 19], our approach does not rely on this effect as we do

not sample from the latent space. Therefore, we believe that

there is no need to induce the Gaussian prior in our method-

ology. Further, we show in our experiments that assuming

the latent space to follow a Gaussian distribution has a neg-

ative effect on performance. That is, optimizing solely on

the loss function given in Eq. (3) can improve performance

considerably in comparison to VPE.

Lrecon = Eqφ(zx|x) [log pθ(t|zx)] (3)

A t-SNE visualization of the embedding space generated

by optimizing the Eq. (2) and Eq. (3) using Flickr32 dataset

is shown in the Fig. 4 (a) and 4 (b), respectively. Intuitively,

Fig. 4 (b) has distinct boundaries between the clusters, and

the density around origin is smaller compared to Fig. 4 (a).

This shows that the issue of hubness is reduced and the

discriminability between classes is improved.

The second improvement for anti-hubness is to incorpo-

rate a hubness reduction scheme during retrieval. Hence, we

experimented with several hubness reduction schemes and

found the following three strategies to be equally effective

in our one-shot tasks: 1. Nearest Neighbourhood with Cen-

tered and L2-normalized feature (CL2N) [57], 2. K-Nearest
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(a) (b)

Figure 4. Visualization of the latent space using t-SNE embeddings

(color indicates the sample density): (a) The embedding space

distribution obtained by optimizing the original VPE loss func-

tion (Eq. (2)). (b) The embedding space distribution obtained by

optimizing the improved loss (Eq. (3))

Neighbor Graph (K-NNG) [8, 12], and 3. Hierarchical Nav-

igable Small World (HNSW) [34, 12]. However, we used

CL2N as the default metric for our algorithm due to its low

computational cost. The procedure of incorporating CL2N

with our prototype based 1-shot learning paradigm is given

as follows. First, we calculated the mean latent embeddings

of all prototypes zt (constructed by the encoder), and sub-

tract it from the embeddings of candidate template image zt

and the query image zx, as shown in Eq. (4).



ẑt = zt −
1
K



t∈Dtest
zt

ẑx = zx −
1
K



t∈Dtest
zt,

(4)

Next, we performed L2-normalization on both the ẑt and

ẑx, as shown in Eq. (5). This step reduces the chance of

being retrieved for samples located in dense areas [5]. One-

shot learning is then formulated as a retrieval task by k-NN

with L2 metric on the ẑt embedding set queried by ẑx.



ẑt ←
ẑt

||ẑt||2

ẑx ←
ẑx

||ẑx||2

(5)

3.3. Prototype Centered Contrastive Loss (PCCL)

Contrastive learning has been widely shown to be capable

of improving the model generalization [3, 33, 45]. Hence,

we developed a novel loss referred to as Prototype Centered

Contrastive Loss (PCCL) that facilitates contrastive learning

to be applied for the prototypical images.

Given a set of samples (i.e. a minibatch) in the latent

space Z = [zx1
, zx2

, ..., zxr
, ..., zxn

], assume that a sub-

set of them Zs = [zx1
, zx2

, ..., zxr
] belongs to the same

category s, while Zd =


zxr+1
, zx2

, ..., zxn



are samples

from categories other than s. Now, our goal is to shrink the

distance between zxi
∈ Zs and its prototype representation

zti while enlarging the distance between zxi
and the rest

templates.

For this purpose, we optimize on our proposed PCCL loss

function (refer to Eq. (6)), where fsim is the sample-wise

similarity function. ωk is a weight parameter (ωk = 1 for

k ≤ r and otherwise ωk = r
n−r

), γ is a hyper-parameter

for balancing two terms. This first term is a variant of the

InfoNCE loss [40]. However, our approach differs from In-

foNCE loss by leveraging on the prototypical images that act

as anchors for the image categories. In addition, simply opti-

mizing the first term does not necessarily place the prototype

image at the class center, thus deviating from our evaluation

protocol under CL2N. Therefore, we enforce this property

by adding the latent loss,
n

i=1 zxk
− ztk2.

LPCCL =− γ log

r

k=1 ωk exp (fsim (zxk
, ztk))

n

k=1 ωk exp (fsim (zxk
, ztk))

+

n


k=1

zxk
− ztk2

(6)

3.4. Deep Supervision by Multi­Task Learning

While it has been shown that a deeper model can con-

tribute to a better generalization, the backbone of VPE is

a long chain that is difficult to optimize due to the long

path of the gradient flow. We integrate the deep supervision

technique with the goal of improving cross-domain general-

ization and stabilize training. Our idea to create additional

paths for gradient flow is inspired by the method from litera-

ture [30, 31]. While [30, 31] used a weighted sum of losses

from all auxiliary classifiers, we empirically found that better

generalization can be achieved when the side-branches are

supervised by classification and template reconstruction sep-

arately. In other words, we integrated the multi-task learning

into the few-shot learning paradigm.

We utilize the DenseNet architecture for class label pre-

diction as its feed-forward connections can alleviate the

vanishing gradients problem [20]. This module takes the

latent vectors as the input and predicts the class labels. This

classification branch is trained in conjunction with the recon-

struction task by optimizing a negative log likelihood of the

prediction y:

Lmtl = −Ezx∼p(zx|x)[log p(y|zx)] (7)

4. Experiments

In this section, we conducted experiments to validate our

approach (VPE++) and compare it against the VPE and other

state-of-the-art approaches.

Logo Datasets: For the purpose of comparison, we uti-

lized the same five logo datasets and the experimental design

followed by Kim et al [27]. These logo datasets include

two traffic sign datasets (GTSRB, TT100K) and three logo

datasets (Belga, Flickr32, and Toplogos-10). The detailed

description of these datasets can be found in literature [27].

Gesture Dataset: We show that gesture prototypes can

be used to perform one-shot gesture classification. In this re-

gard, we utilized the American Sign Language dataset [1, 37]
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consisting of 26 gesture classes representing 26 English al-

phabets from A to Z. Each category has 3,000 image samples.

The samples are images extracted from a few gesture video

clips [37]. The gesture categories corresponding to the al-

phabets from A to Z, where A to P were used for training

and Q to Z were used for testing. The gesture examples and

their prototypes were illustrated in the Fig. 5.

Optimization Parameters: The VPE++ model is opti-

mized using the Adam optimizer. We used a batch size

of 128 in our experiments. For all experiments except for

GTSRB→TT100K, the best performance is achieved by

using a learning rate of 1× 10−4. We found that the perfor-

mance is robust to the weight balancing of our loss function

and thereby we simply set α = 1, β = 1, and γ = 1. For

the GTSRB→TT100K experiment, the best performance is

achieved using a learning rate of 2× 10−4, α = 0.1, β = 1,

and γ = 1.

A B C D E F G H I J K L M

N O P Q R S T U V W X Y Z

Figure 5. An illustration of gesture prototypes versus real images.

The gestures are listed from A to Z.

4.1. Few­Shot Classification on Logo Datasets

First, we compare the results obtained by VPE++ and

VPE approaches with respect to one-shot recognition accura-

cies [27]. We performed these experiments using traffic sign

datasets and logo datasets. We conducted four experiments

to validate our methodology. They are described as follows.

1. Train the network on a sub-set of classes in the GTSRB

dataset [48], and test the generalization performance on other

GTSRB classes. 2. Train the network on the GTSRB dataset

and test the network on the TT100K dataset [62]. 3. Train

the network on the Belga logo dataset [24], validate on the

Toplogos dataset [49], and test the model performance on

the Flickr32 dataset [43]. 4. Train the network on the Belga

dataset, validate on the Flickr32 dataset and then test the

model on the Toplogos dataset. The data partitions were

made following the protocol proposed by Kim et al [27].

Note that a scenario with C unseen categories with K

examples for each category is denoted as C-way K-shot

classification. Moreover, we conducted experiments in two

conditions: 1. Open set condition: Test on a combination

of seen and unseen categories and 2. Completely unseen

condition: Test only on unseen categories. While the former

condition assumes that the examples present in the testing

stage can belong to both seen and new categories, the latter

condition assumes that the new examples belong to unseen

classes alone. For the purpose of comparison, we reported

the one-shot accuracies obtained by other algorithms re-

ported by [27] in the Table 1 and 2. The highest accuracies

are highlighted as bold digits, and the second highest accu-

racies are colored as blue digits.

Table 1. 1-shot learning accuracy on brand logo datasets.

Belga–>Flickr32 Belga –>Toplogos

Split All Unseen All Unseen

No. classes 32 28 11 6

No. support set 32-way 11-way

SiamNet 23.25 21.37 37.37 34.92

SiamNet + aug 24.7 22.82 30.84 30.46

QuadNet 40.01 37.72 39.44 36.62

QuadNet + aug 31.68 28.55 38.89 34.16

MatchNet 45.53 40.95 44.35 35.24

MatchNet +aug 38.54 35.28 28.46 27.46

VAE 25.01 25.48 21.9 15.89

VAE+aug 27.7 27.31 23.3 18.59

VPE 28.71 27.34 28.01 26.36

VPE+aug 51.83 50.25 47.48 41.82

VPE+aug+stn 56.6 53.53 58.65 57.75

Ours 65.54 62.56 65.57 70.27

Table 2. 1-shot learning accuracy on traffic sign datasets.

GTSRB –>GTSRB GTSRB –>TT100K

Split Unseen All Unseen

No. classes 21 36 32

No. support set (22+21)-way 36-way

SiamNet 22.45 22.73 15.28

SiamNet + aug 33.62 28.36 22.74

QuadNet 45.2 42.3 N/A

MatchNet 26.03 53.16 49.53

MatchNet +aug 53.3 62.14 58.75

VAE 20.67 33.14 29.04

VAE+aug 22.24 32.1 27.98

VPE(48*48) 55.3 52.08 49.21

VPE+aug 69.46 66.62 63.91

VPE+aug+stn 74.69 66.88 64.07

VPE(64*64) 56.98 55.58 53.04

VPE+aug 81.27 68.04 64.8

VPE+aug+stn 83.79 73.98 71.8

Ours 86.51 78.31 76.36

Results show that VPE++ outperforms other approaches

in all experimental scenarios by a significant margin. Table 1

shows the one-shot classification accuracies for the brand

logos. Consider the Belga->Flickr32 scenario, we achieved

65.54% classification accuracy in the open set condition

which is 9.94% higher than the second best approach. Fur-

thermore, we achieved a classification accuracy of 62.56%

in the completely unseen condition which is 9.03% higher

than the second best method (VAE+aug+stn). For Belga-

>Toplogos experiment, we achieved 65.57% open set con-

dition classification accuracy and 70.27% in the completely
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unseen condition, which outperforms the second best method

by 6.92% and 12.51% respectively. This is a significant per-

formance boost compared to the existing approaches.

Similarly, our approach also outperforms other methods

on the traffic sign dataset, as shown in the Table 2. For com-

pletely unseen condition, we achieved 86.51% in GTSRB-

>GTSRB experiment and 76.36% in GTSRB->TT100K ex-

periment, which is 2.71% and 4.56% superior to the second

best result, respectively. For open-set condition, the VPE++

achieves 78.3%, which is 4.33% better than the second best.

4.1.1 Logo Reconstruction on Unseen Images

Next, we compared the performance of the VPE++ and VPE

on a subset of GTSRB road sign images. Fig. 6 depicts the

images of true and predicted prototypes. It can be observed

that the reconstructed images obtained by VPE++ are visu-

ally better in comparison to the ones generated by VPE. This

shows that VPE++ model was able to better represent the

images in the latent space.

(a) Ours

(b) VPE

Figure 6. A comparison of image reconstruction of: (a) Our ap-

proach and (b) VPE model on the unseen road logo images. The

images in the 4 rows are: 1) Input image, 2) Input image after STN

transformation, 3) Network reconstruction output, and 4) Target

prototypical image.

4.2. One­Shot Gesture Recognition on ASL dataset

In addition to validating on logo datasets, the VPE++

approach was tested on the one-shot gesture recognition task

using American Sign Language dataset. In this experiment,

we have 16 seen classes and 10 unseen classes. First, we

computed 1-shot 10-way accuracies as shown in the Table 3.

We report the classification accuracy of each class, and the

mean class accuracy is obtained by averaging the accuracy of

all 10 unseen classes. VPE++ achieves a mean accuracy of

61.28%, outperforming the VPE by 8.31%. On the per-class

basis, our approach outperforms VPE for 9 out of 10 gesture

classes.

Next, we computed the confusion matrix associated with

the ten unseen classes as shown in the Fig. 7. We noticed

that most of the errors originate from the samples that are

visually similar. For example, gestures related to ‘R’ and

‘U’ are similar (fingers crossed) and hence, the classification

errors are higher. Similarly, the gestures ‘S’, ‘T’, ‘X’ consist

of closed fingers and resemble a fist. These results show that

our learned mapping is a meaningful metric for comparing

gesture similarity, but the discriminability is low for visually

similar gestures.

Figure 7. Confusion matrix of one-shot prediction on ASL dataset.

Furthermore, the gesture images are shown in the embed-

ding space, as shown in the Fig. 8. Note that these images

are the frames extracted from the gesture video clips. The

temporal structure can be observed in the embedding space,

where each video clip is shown as a trajectory. It can be

noticed that the temporal information is consistent as the

gesture sequences appear as continuous trajectories in the

latent embedding space.

Figure 8. Visualization of the embeddings of the visual sequences,

with each gesture class assigned a unique color. We observed that

the temporal information is maintained in the latent space.
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Table 3. One-shot gesture recognition accuracies on the ASL gesture dataset. Alphabets (Q-Z in this table) indicate the gesture classes.

mean class accuracy Q R S T U V W X Y Z

VPE 52.97 95.40 61.13 33.13 74.30 32.93 53.06 32.67 7.77 77.2 62.07

Ours 63.26 98.86 94.60 77.83 93.37 0.00 58.83 33.33 19.76 82.5 73.03

4.3. Ablation Study

4.3.1 Ablation Study on Model Performance

Next, we conducted an ablation study to show how each

improvement is contributing towards an increase in one-shot

accuracies for the VPE++ approach on Belga→Flickr32 task.

The results obtained from the ablation experiment are shown

in the Fig. 4. In this table, VPE backbone, anti-hubness,

PCCL and MTL refer to the original VPE approach (Sec.

3.1), hubness reduction scheme (Sec. 3.2), contrastive loss

(Sec. 3.3) and multi-task loss (Sec. 3.4) respectively.

It can be observed that the hubness reduction techniques

have significantly contributed towards the improvement in

performance i.e. accuracies improved by 6.51% and 6.39%

for open set and completely unseen conditions, respectively.

These results show that VPE is significantly affected by

the data hubness problem. Lastly, it is worth noting that

the improvements in unseen classification accuracies after

introducing PCCL and MTL supervision are relatively small.

We conclude that the boost in the performance of VPE++ is

achieved due to hubness reduction and the combination of

all three loss components.

Table 4. An ablation study: step by step improvements of VPE++

approach on Belga →Flickr32

method 1 2 3 4
VPE backbone    

Anti-Hubness   

PCCL  

MTL supervision 

All classes 65.54 64.71 63.11 56.60

Unseen classes 62.56 61.67 59.72 53.53

4.3.2 Anti-Hubness by CL2N

We discovered that CL2N can be used as an effective anti-

hubness technique for one-shot learning. We conducted

another ablation study to compute the skewness metric

[4, 11] on the embedding space created from Flickr32 in

Belga→Flickr32 experiment. The metric Sk is given in

Eq. (8). The k-occurrence of sample x (denoted as Ok(x))
means the number of times that sample x is retrieved by

k-NN search. µOk and σOk denote the mean and standard

deviation of the k-occurrence distribution. A higher skew-

ness value indicates that the hubness problem is severe and

vice versa. The skewness values of raw embedding, normal-

ized raw embedding and mean centered - normalized raw

embedding are 1.867, 1.3478 and 1.311, respectively.

Sk =
1

σ3
Ok

E





Ok − µOk

3


(8)

(a) (b)

Figure 9. (a) Visualization of the embedding space after centroid

subtraction and normalization. (b) Histogram of samples being

retrieved. The long-tail effect was reduced compared to the Fig. 3.

The improvement of centroid subtraction and normaliza-

tion can also be visualized. We use the same experiment

setting as in the Fig. 3 in Sec. 3.2. Intuitively, Fig. 9 (a)

shows that the hub points distribute more evenly compared

to the Fig. 3 (a). Furthermore, Fig. 9 (b) shows that the long

tail effect is partially reduced i.e. there are relatively more

samples that are retrieved frequently. In other words, the

retrieval rate of the hub points is significantly reduced.

5. Conclusions

This paper proposes an improved one-shot learning al-

gorithm (VPE++) which is built on top of the existing VPE

approach. The VPE model was successful in utilizing pro-

totypes to achieve superior performances in the one-shot

learning tasks. However, there are several limitations to the

existing VPE approach that are addressed in this work. First,

we discovered and demonstrated through experiments that

VPE suffers from the data hubness problem which hampers

its performance on the recognition of novel classes. Hence,

a hubness reduction scheme using CL2N metric was incor-

porated into the VPE++ approach. Second, we proposed a

prototype centered contrastive loss function to facilitate con-

trastive learning by directly using the available prototypical

images. Third, we improved the gradient backpropagation

of the VPE backbone by utilizing multi-task learning. Exper-

iments were conducted on five logo datasets and a gesture

recognition dataset, and the results show that VPE++ consid-

erably outperforms VPE on all of the one-shot recognition

tasks.
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